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ABSTRACT

Human operators will remain to play an essential
role in picker-to-parts order picking systems despite
increasing digitalization and automation of warehouse
processes. While manual order picking is a laborious
and cost-intensive task in warehousing, it is extensively
examined in the logistics and supply chain management
literature. However, the operational and individual
performance of forklift operators in warehouse picking
operations has received little attention yet. We aspire
to close this gap by drawing on sociotechnical systems
theory and formulate a multilevel approach to evaluate
heterogeneity in human behavior towards differences
in picking performance. We use batch execution times
as the dependent variable and source level of operation,
target level of operation, filling level of the palette, the
necessity to correct replenishment quantities, as well
as travel distance as independent variables on the first
level. For the second level, we utilize forklift operators
to quantify whether heterogeneity in human behavior
is impacting the performance of forklift operators. We
find that 15.1% of the variance among batch execution
times results from heterogeneity in human behavior. In
a further simulation, we show that this method can be
used to assess the performance of order pickers through
a multi-dimensional parametric production frontier
analysis. Our findings are highly relevant for logistics
management when aspiring to forecast the necessary
capacity of forklift operators in a warehouse or building
bonus systems that are based on more than the existing
two-dimensional measures such as process time per
operation.

KEYWORDS: Human factor · behavioral operations
management · forklift operators · multilevel modeling
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1. INTRODUCTION

Intralogistics processes are characterized by
ongoing discussions regarding further automation
and digitalization [1–4], which include new robotics
technologies [5], e.g., robotic sorting systems [6],
autonomous mobile robots [7], or automated guided
vehicles [8]. However, it is becoming increasingly
obvious that the human factor is a highly relevant
input factor for the performance of logistics systems,
for example, in warehousing or order picking [9–
11]. Despite this increasing relevance, analytical
approaches and models, as well as empirical data on
the performance impact of heterogeneity in human
behavior in intralogistics operations, are very scarce.
Three explanatory approaches might explain this
existing gap: First, digital performance documentation
has only recently become available to track individual
intralogistics movements of forklifts with individual
employees. Second, union and personal influence,
as well as data protection regulations, might have
prohibited a thorough investigation of personal
performance inputs and developments. Third,
management and leadership, as well as logistics
research attention, might have been occupied with
other topical fields such as technological development
and large-scale logistics operations optimization
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literature focuses on e-commerce, this proportion is not
mirrored in recent scientific discussions [19]. Moreover,
the underlying circumstances between warehousing in
e-retailing and brick-and-mortar retailing are different.
E-commerce warehouses mostly face low-volume-high-
mix orders, as private households order few pieces from
a large assortment provided by the online retailer [19].
An example is the average order demand at Amazon
warehouses in Germany, which amounts to 1.6 pieces
per order [20]. In contrast, the distribution centers of
brick-and-mortar retailers process high-volume-low-
mix orders. Thus, we position our paper in the area of
warehousing for traditional brick-and-mortar retailing.
Because a detailed review of existing warehousing
literature is beyond the scope of this paper, the reader
is referred to [21–25] for systematic reviews with a
general view on warehousing, [26–28] for reviews on
performance measurement in warehousing, [29–31] for
robotization and automation in warehousing, [19] for
e-commerce warehousing and [32] for e-fulfillment in
multi-channel distribution.
Main operations in brick-and-mortar retail logistics

include receiving, transferring, and storing incoming
items from suppliers for order picking and shipping to
grocery stores [33]. Regarding the existing warehouse
system, different order characteristics, including order
size, assortment, workload variation, load stability,
store-specific build-up, product expiry, and lead time
mainly determine what is applicable for a given retail
setting [20, 34]. Thus, suitable order picking systems
may range from fully-automated case picking systems
to fully manual picker-to-parts order picking systems.
However, most of the existing warehouses in western
Europe still adopt traditional picker-to-parts setups in
their operations [35] due to the following facts: First,
manual picker-to-parts order picking systems are highly
flexible and scalable, as further order picking capacity
can be generated by integrating additional order
pickers and forklifts into the work system. Second,
large assortments in retailing lead to high variability
of products and special requirements for grasping and
stacking the items (for example, fragility), which makes
the picking task difficult to automate. In summary, our
paper belongs to the research stream of manual picker-
to-parts order picking systems where pickers travel
with vehicle support.
Within the warehouses of traditional brick-and-

mortar retailing, order picking is a necessary task, as
incoming items from suppliers are usually received
and stored in the form of large unit loads, for example,
pallets. Customer orders originating from grocery
stores are organized in fixed delivery cycles [36],
and they comprise different items that mirror the
assortments offered in the store while the volume is
limited to the stores’ shelf capacity [37]. Meanwhile,
a process that retrieves items from the large unit loads
in response to a specific customer request is required,
which is defined as order picking [38]. While picking
operations are mostly done on ground level, the upper

from transport to location planning. Nevertheless, the
identified research gap is highly relevant because great
effort is implemented to attract suitable warehouse and
intralogistics personnel, but detailed knowledge about
which individual competencies are actually in high
demand and highly efficient for intralogistics processes
is lacking. It is an interesting objective for logistics
research how the heterogeneity in human behavior can
be measured for their contribution to overall efficiency
and performance.
Therefore, we aspire to answer the following research

questions to address this identified gap: (1) What are
the relevant factors that significantly impact the batch
execution times of forklift operators? (2) How and to
what extent are differences among the batch execution
times of forklift operators quantifiable and traceable to
the heterogeneity in human behavior? The relevance
of these questions becomes obvious when considering
the role of human factors in manual picker-to-parts
order picking systems [12, 13]. From a theoretical
viewpoint, we draw on sociotechnical systems theory
[14], a sub-field of general systems theory [15], and
are especially interested in the behavioral aspects of
human-technology collaboration [16].
This paper is structured as follows: The literature

framework in Section 2 positions this study in the
area of manual picker-to-parts order picking systems,
highlights the theoretical background of this study,
and presents existing research in behavioral operations
management (BeOM) and human-centric analyses
on forklift operation. Finally, parametric models
that measure the efficiency of human operators in
warehouses are presented. In Section 3, we describe
the data and sample used in this study and introduce the
multilevel model together with our strategy for validity
and reliability. In the empirical results in Section 4,
we discuss the impact of heterogeneity in human
behavior and develop the final model in hierarchical
steps. Based on the β-values of our final model, we
formulate a multi-dimensional production frontier to
evaluate operators’ performances in Section 5. Finally,
managerial learning, limitations, future research
direction, and a summary are presented in Section 6.

2. THEORETICAL FRAMEWORK

2.1. Forklift operations in manual picker-to-
parts order picking systems

Warehouses play an essential role in most of the
existing retail supply chains [14], and they impact the
retailer’s business success to a large extent because
they control product flows to meet customer demands
[17]. Based on current figures on the global share of
retail sales, e-retail sales accounted for 18% in 2020
[18]. Despite impressive growth rates in e-commerce,
stationary retailing still accounts for the majority of
global retail sales. However, as recent warehousing
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workspace, aims, and constantly in contact. In our case
of forklift operation in manual picker-to-parts order
picking systems, the human operator and machine
share work time and workspace, and they both aim to
fulfill retrieval operations to supply picking places at
the ground level and fulfill storage operations from the
ground level to the reserve level.
Additionally, they are constantly in contact because

the operator sits in the forklift and utilizes the steering
wheel to maneuver and control the machine parts to lift
and lower forks. Hence, we are especially interested in
the human-technology interaction of forklift operators.

2.3. Human–technology collaboration in forklift
operation through the lens of human factors

As a scientific discipline, the human factor (synonymous
with the term “ergonomics”) is concerned with the
investigation of the interaction between humans and
systems, or elements of a system, to optimize human
well-being and overall system performance [47]. The
theoretical basis is systems thinking and systems theory
explained in the previous section, together with the
claim that humans are part of operations and production
systems and that they need to be integrated.
Calls for more human-centered research in these

systems by [48], [49], [50], and more recently [51], point
to the importance of human factors. The studies argued
that deterministic models neglect the human factor by
treating humans and technology, either implicitly or
explicitly, as independent from each other. In recent
reviews [9, 12, 13, 35], the human factor was divided into
perceptual aspects (information processing, reading),
mental aspects (learning, forgetting, behavior), physical
aspects (workload, lifting, carrying), and psychosocial
aspects (motivation, stress, feedback, monotony).
However, the impact of these aspects on the forklift
operator’s task is difficult to assess on a general level
as mental and physical reactions to a perception depend
on the respective tasks. Meanwhile, [46] argued that the
application of the perception–cognition–motor–action
cycle framework is relevant for all human-system
interactions.
The cycle includes (1) gathering information through

the human sensory system, (2) proceeding with the
sensory input cognitively, (3) planning the action of
the musculoskeletal system, and (4) responding with
an action [52]. This action leads to a system output
that is again perceived by the human operator. An
existing schema in the human brain is then reinforced,
extended, or newly built. This perception-action cycle
is grounded on the circular cybernetic flow of cognitive
information, a basic biological principle that links
humans to their environment [53]. Table 1 systemizes
the process steps of forklift operation and the relevant
aspects of human factors for a detailed view of human–
technology collaboration in forklift operation.

shelf levels are the reserve space used for unit loads, and
they represent the inventory of a picking place. Forklifts
are utilized to store unit loads in the reserve levels after
receiving them from the supplier, and they retrieve the
unit loads from the reserve levels to the ground level to
replenish the picking places [20]. In summary, we are
especially interested in the operators steering forklifts
in manual picker-to-parts order picking systems with
vehicle support in the context of traditional brick-and-
mortar retailing. After specifying the object of research
that we aim to empirically investigate in this study, we
now establish the theoretical background.

2.2. Systems theory, sociotechnical systems and
human-system interaction

Triggered by the introduction of computational
technology in the mid-20th century, scholars and
practitioners have been increasingly confronted
with large-scale problems. The goal of integrating
similarities within science, promoting communication
across disciplines, and establishing a common
theoretical basis for general scientific discussions and
education have led to system thinking grounded in
system science [15]. General systems theory enables the
abstraction of large-scale problems by simplifying them
on a common theoretical basis while simultaneously
capturing the multi-dimensionality of the underlying
problem [39]. The theoretical systems view has been
applied to various circumstances where humans
interact with other systems existing in reality, including
socio-ecological systems interlinking human (social)
and nature (ecological) [40] or socio-political systems
[41]. As a first step, we position our research in systems
theory.
In the 1950s, the transformation of working

conditions led to hardly predictable work environments
where interactions between humans and technology
had to be considered [42]. The first set of principles
for a sociotechnical systems design was proposed by
Cherns in 1976 [43], which interlinked humans (social)
and technology (machines). Since then, sociotechnical
systems thinking has often been applied to human-
machine work systems [14]. It has also been used to
explain more modern phenomena such as human-
computer systems [44] and has been extended to
cyber–sociotechnical systems interlinking intelligent
software (cyber) and humans (social) as well as
machines (technical) [45]. In summary, sociotechnical
systems theory is the theoretical basis that deals
with the interaction of humans with any kind of
engineered system [46]. However, an interaction such
as a reciprocal action or influence is not trivial and
may differ depending on several dimensions, such as
workspace, work time, or the overall aim of the work
system. The taxonomy applied by [16] systemizes these
interactions as follows: human–system coexistence
sharing work time and workspace; human–system
cooperation sharing work time, workspace and aims;
and human–system collaboration sharing work time,
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2.4. Research on human behavior and the
human factor in forklift operation

Research on human behavior in operations systems aims
to contribute to the field of BeOM, which has become
an accepted sub-field of operations management [54,
55] and is relevant for supporting managers in decision
making, designing and optimizing employees’ working
conditions, as well as improving processes for customers
[56]. While BeOM starts at the micro-level to facilitate
a better understanding of the heterogeneity in human
behavior, the research approaches associated with this
stream analyze decisions, skills, and capabilities of
individuals or small groups [57, 58]. This may include
a cognitive perspective, for example, individual risk
aversion in the context of the newsvendor problem [59],
individual cognitive reflection in the same context [60],
individual perception [61], social preferences [62], or

Table 1.: Forklift sub-processes through the lens of human factors

Operator tasks Perceptual Mental Physical Psychosocial

Setup

Perceiving the setup
of the operation, e.g.,
batch details on a
touch display.

Receive and
understand the setup,
e.g., batch details on a

touch display.

Movements when
setting up the

workstation, e.g.,
bending or neck
flexion extension
during a departure

check.

Aspects regarding
motivation, stress,
workload, boredom,
and interaction with
co-workers within
all operator tasks,
including the setup,
travel, search, as
well as store/
retrieve tasks.

Travel

Perceive warehouse
layout, including the
visual record and

orientation in aisles,
shelves, and places.

Understand and
remember a route
when starting at a
source and traveling
to a target location.

Steer the forklift
through the

warehouse, including,
e.g., arm movement
while sitting or

standing in front of
a steering wheel.

Search

Perceive arrangement
of places with visual
record and orientation
with the place logic of

the warehouse

Search and identify
locations and items,
e.g., load unit in
target level.

Movements during
the search process,

including neck flexion
extension when,
e.g., searching the
environment.

Retrieve/
store

Perceive height of racks
with visual record

and orientation when
operating within several

rack levels.

Decide on how to
handle sub-processes,
e.g., how to position
the forklift and how
high to lift forks
during a retrieval

operation.

Movements during
the search process,

including neck flexion
extension when, e.g.,
bending for optimal

view on forks.

Note: Examples in brackets. Initially introduced by [35] for order picking.

trust in technology [63–65]. The physical perspective
is rarely addressed by BeOM, but it is extensively
addressed by the more engineering-driven human factor
stream. Although forklift operators are less studied
than order pickers, there is still a considerable body of
research dealing with them in the context of human-
factor analysis. [66] examined cold-related symptoms
among forklift drivers operating in a cool warehouse in
Thailand. Further approaches that deal with the physical
factor explore neck pain [67], neck and backloads [68],
energy consumption [69], the impact of whole-body
vibration [70], or low back pain [71]. Additionally, a
well-examined sub-process of forklift operation is the
driving process itself, which is the reason many studies
investigate collision warning systems [72, 73], safety
systems [74], and sensor-based assistant systems [75].
Regarding mental processes, fatigue and learning are
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study focuses on one warehouse storing perishable
and non-perishable non-cooled items. In our sample
warehouse, orders are picked through a manual picker-
to-parts order picking system, and storage locations
used for picking are replenished by forklift operators.
The warehouse has two cross-aisles, 28 aisles on the
ground level, one depot storing empty roll cages, and
drop-off points for the pickers at every aisle. Since
the racking system comprises several gripping levels
(minimum, ground level; maximum, 1.05 m) and
five reserve levels (level 1, 2.10 m; level 2, 4.20 m;
level 3, 6.30 m; level 4, 8.40 m; level 5, 10.5 m), the
storage of pallets in the higher levels is particularly
a challenge. The maximum height for the delivered
pallets (including pallet timber) is 1.05 m (CCG1) or
1.95 m (CCG2). Altogether, storing or retrieving a 1.95-
m CCG2 pallet in a storage place with a height of 1.95 m
on the highest rack level (10.5 m) is a challenging task.
This is why we expect individual heterogeneity and
behavioral factor to be relevant for the batch execution
time. Many warehouse management systems (WMS)
store replenishment and order picking logs, which
quantify operations on a detailed level. The batch
execution times for individual forklift operators may
depend on warehouse-specific circumstances, for
example, a varying amount of order pickers operating in
the same warehouse, which depends on work time and
workgroup decisions. However, as human capabilities,
skills, and heterogeneity in human behavior have
been identified as relevant for intralogistics [12, 80],
behavioral factors may also influence batch execution
times.
We included these behavioral factors implicitly

through the available data by considering and evaluating
the past performance of the forklift operators. One
batch is equal to a storage or retrieval operation of one
single full pallet. The warehouse management data
obtained for this study on batch execution times for
replenishment operations of forklift operators included:
(1) batch ID, (2) forklift operator ID, (3) starting date
of the batch, (4) ending date of the batch, (5) starting
time of batch, (6) ending time of batch, (7) distance
traveled by a forklift as a difference between the source
and target locations, (8) height of the pallet, (9) level
of the source location, (10) level of the target location,
(11) degree of filling for each pallet as a percentage of
the CCG1 or CCG2 type, (12) necessity of correcting
the amount on a picking location as errors occur in
upstream processes (as a dichotomy variable, 0 = no
and 1 = yes).

well examined. [76, 77] examined fatigue associated
with the sub-process of driving. An approach that
contributes to this direction is exploring the situation
awareness of forklift operators for preventing collisions
[78]. Hence, we identify a research gap regarding the
interplay of perceptual, mental, and physical aspects
when humans operate forklifts within a human–
technology setting. This may include the fact that some
individuals are more efficient in combining task sets
than others. As humans are an essential part of these
work systems, they significantly impact the outcomes of
warehouse systems, including performance and quality.
In the next section, we will focus on methodologies
to operationalise, evaluate and benchmark human-
operator performance in warehousing.

2.5. Parametric models for performance
measurement of human operators in
warehousing

When multilevel modeling is applied to warehousing,
the basic idea is to measure the performance of order
picks and decompose large datasets that contain order
batches. However, it is often difficult to determine
how and to what extent human capabilities and skills
cause performance differences. In one approach, [10]
applied multilevel modeling to order picking logs and
proved that almost 10.3% of the total time variance
in batch execution time could be traced to individual
differences. Another approach was presented by [79]
using pick duration as the dependent variable. They
analyzed the impact of the independent variables
through a survival model, more precisely a parametric
accelerated-failure-time. More parametric models have
been applied to measure fatigue and learn order pickers
[80, 81], using Wright’s, Sandford-B, or DeJong’s
learning curve. Most of these approaches use cumulated
picks and investigate the development of the time per
pick while concluding that minimizing the pick time
is equal to a learning effect where a human operator
improves picking skills.

3. DATA AND METHODOLOGY

3.1. Warehouse and dataset description
We analyzed the performance of forklift operators
employed in the distribution center of a large German
grocery retail chain. Within this distribution center,
refrigerated and non-refrigerated foods are stored,
picked, packed, and delivered to supermarkets. This
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Table 2.: Descriptive statistics of the observed forklift operators

Operator ID Observations Mean
execution time Standard deviation Variance

1 1,198 155.63 79.74 0.51

2 500 161.39 67.14 0.42

3 735 114.65 67.35 0.59

4 908 190.81 91.19 0.48

5 626 199.17 91.16 0.46

6 469 176.10 99.66 0.57

7 920 112.53 70.55 0.63

8 673 171.85 102.11 0.59

9 961 118.21 67.84 0.57

10 446 177.35 68.66 0.39

11 1,022 179.73 87.82 0.49

12 1,357 147.11 75.45 0.51

13 932 107.78 43.05 0.40

14 981 207.23 89.98 0.43

15 1,261 193.05 111.66 0.58

16 1,154 111.07 48.71 0.44

17 467 250.46 122.42 0.49

18 423 195.05 104.30 0.54

19 945 157.13 66.67 0.42

20 537 194.59 98.72 0.51

21 1,167 183.64 74.00 0.40

22 778 153.20 98.58 0.64

23 789 153.40 87.72 0.57

24 431 222.00 102.23 0.46

25 633 139.48 91.98 0.66

26 635 210.72 96.94 0.46

27 706 99.92 38.57 0.39

28 1,129 204.17 110.12 0.54

29 1,275 165.98 102.15 0.62

30 525 185.00 96.88 0.52

31 980 169.92 75.97 0.45

32 707 125.07 72.03 0.58

33 709 193.94 85.01 0.44
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the first level of our model, we tried to explain the batch
execution time with the five independent variables used
to quantify heterogeneity in human behavior. Table 3
summarizes the dependent and independent variables
for the first level of our model to operationalize
behavioral factors.
In our multilevel model, we represent the sub-tasks

of the individual operator by linear regression model
betas. Let βi, j be one sub-task within i∈ I, where i is the
number of the examined task, and I is the total set of
tasks described in Table 3. Additionally, j ∈ J defines the
forklift operator with an individual operator j and a set
of examined operators J. After clarifying the basic idea
of our approach based on multiple linear regression,
we added a second level. Multilevel modeling is used
to additionally distinguish between groups [83–85],
which are represented by forklift operators in our case.
Herein, we added group variables that enabled us to
differentiate between groups and to evaluate whether
or not this differentiation is beneficial for the model.
Furthermore, we concretized the dependent variable
yij as the batch execution time t for a set of possible
batches r ∈ R from the set of order O that we also
used for the independent variables. The hierarchical
two-level model was notated as a group-dependent
regression, with j reflecting the group level. We used
the notation of [10] formulating a multilevel approach
for order pickers to forecast the picking time in the first
level and grouping according to operator ID:

(2)

(3)

The whole dataset contained 27,985 batches (equal
to full loads on pallets) for replenishment operations
performed by 45 forklift operators during a 1.5-month
period. All operations were performed between 7
a.m. and 6 p.m., and all the operators used identical
technology. As we use real-life data, some datasets were
polluted by personal breaks during batches. Therefore,
we filtered out all batches lasting longer than 15 mins
and all batches without operator ID. Additionally, we
excluded zero values and checked for unreasonable
traveling speed within the warehouse. After the data
cleaning, the dataset containing 26,979 out of 27,985
batches and 33 out of 45 forklift operators were used
for further analysis. Table 2 summarizes the descriptive
statistics of the operators.

3.2. Multilevel modeling
Linear regression models are used to explain the
statistical relationship between a dependent variable
yi and an independent variable xi. They can be
extended to multiple linear regression with more than
one independent variable. Therefore, one possible
approach is to explain the batch execution time of a
forklift operator for batch i as the dependent variable
and the travel distance and filling level of a pallet, both
on the individual batch level I, as independent variables.
The standard ordinary least squares (OLS) regression,
which includes the error term ɛ, is given by Eq. (1):

(1)

Multilevel modeling depicts a series of nested OLS
regression analyses in which the coefficients at level 1
become the dependent variable at another level [82]. In

Table 3.: Operationalization of human behavior and variables for level 1

Behavioral factor Role in model Operationalization

The performance of the forklift operator shall be high when
the processing time for storage and replenishment operations
is minimized

Dependent Batch execution time

The heterogeneity in the speed of work execution when
performing the sub-task of retrieving pallets from the racking
system with different levels

Independent (β1) Source level of operation

The heterogeneity in the speed of work execution when
performing the sub-task of storing pallets on the grasping
level for the order picker

Independent (β2) Target level of operation

The heterogeneity heterogenity in the speed of work execution
when performing the sub-task of handling different heights of
pallets where the difficulty increases with high filling levels
(less space for maneuveringmanoeuvring)

Independent (β3) Filling level of a pallet

The heterogeneity in the speed of work execution when
performing the sub-task dealing with errors and correct them
through his mobile computer connected to the WMS

Independent (β4) Necessity to correct

The heterogeneity in the speed of work execution when
performing the sub-task of driving a forklift fast and saving
within the assigned warehouse area

Independent (β5) Travel distance
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After calculating the null model as a basis for further
evaluation in Section 4.1, we used the model fits in
Eqs. (4)–(6) to assess whether or not the integration of
additional dependent variables is beneficial for the total
R2. This approach is similar to hierarchical regression
analysis and enables the evaluation of integrated level
one predictors.

4. EMPIRICAL RESULTS

4.1. Differences between operators
In the first step, we calculated a variance components
model without predictors , which is well-known
as a null model in multilevel modeling [82]. Herein,
one fixed effect of the grand mean, in our case, the
mean of the batch execution times, was estimated for
all batch IDs and operator IDs. The null model is given
as follows:

(7)

(8)

Based on this, we computed the intraclass correlation
coefficient (ICC) to evaluate between-group variations
[87–89]. In our case, this measure can explain whether
or not variations in batch execution times occur
between forklift operators and if it is suitable to apply
multilevel modeling. For the mathematical formulation,
the ICC is given by [82]:

(9)

where

: variance of batch execution time in the second
level (operator ID)

: variance of batch execution time in the first level
(batch ID)

The ICC for our case is 0.1510, indicating that
15.1% of the variance among the batch execution time
originates from the forklift operators on the second
level of our multilevel model, and 84.9% can be traced
back to the batches themselves. [10] conducted the same
analysis for order pickers, and their model showed that
10.3% of the variance in batch execution time was
due to the individual differences of order pickers. The
results are presented in Table 4, and they confirm that
our results are significant at the alpha level of 0.05. As
the Wald-Z value of 4.03 is highly significant (p < .001),
we can reject the null hypothesis that there are no
significant differences in batch execution time among
the examined forklift operators.

where

: batch execution time

: individual batch (indicated as a level-one unit)

operator ID (indicated as a level-two unit)

: regression weight for the independent variable

operator ID (indicated as a level-two unit)

individual task

independent variable

within-group error term

slope effect dependent variable

group-level error term

The models were formulated using IBM SPSS
Statistics and its multilevel modeling options. As we
associate a low batch execution time t r,w with a highly
efficient forklift operator, lower βi are beneficial for
low execution times. Therefore, lower βi values of
the individual operators lead to decreasing batch
execution times. Consequently, high variations in
βi values are linked to higher heterogeneity in human
behavior, and we set the relationship as follows: (1)
high variations in β1 as high heterogeneity in human
behavior when retrieving pallets, (2) high variations
in β2 as high heterogeneity in human behavior when
storing pallets on the grasping level, (3) high variations
in β3 as high heterogeneity in human behavior when
handling different heights of pallets, (4) high variations
in β4 as high heterogeneity in human behavior when
dealing with errors, and (5) high variations in β5 as
high heterogeneity in human behavior when driving a
forklift within the assigned warehouse area.
To assess the model fit for our multilevel approach,

we followed the approach by [86] and calculated
R2 values for levels 1 and 2, as well as for the total
model by opposing the results of our initial null-model
(baseline) with the models integrating the independent
variables.

(4)

(5)

(6)
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observable for the examined forklift operators.
Furthermore, we integrated this independent variable,
together with the other independent variables
introduced in Table 2, into our multilevel approach.
For the integration of travel distance, we formulated
the level 1 in Equ. (10) and the level 2 in Equ. (11, 12)
as follows:

(10)

(11)

(12)

4.2. A two-level model with fixed predictors and
random intercepts

In a second analysis stage, we built on the null
model and added travel distance per batch as the first
independent variable on the first level. Additionally,
we added the operator IDs in the second level. For
the initial bi-variate linear regression model with
execution time as the dependent variable, we find a high
statistical linear relationship with travel distance as the
independent variable. This is also illustrated in Figure 1
with linear regression lines per forklift operator.
The individual and different slopes per operator

indicate the high heterogeneity in human behavior

Table 4.: Summary of null-model for intraclass correlation coefficient test

Parameter Estimate Standard error Wald-Z p Lower bound Upper bound

7293.55 62.84 116.07 .000 7171.43 7417.75
1297.91 322.144 4.03 < .001 797.95 2111.13

Note: The lower and upper bounds are for an alpha level of 0.05.

Fig. 1.: Scatterplot for batch execution time and travel distance per operator
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independent variables. Additionally, the integration of
operator IDs as a second level increases the null model
up to 41%. This again confirms that heterogeneity in
human behavior is a critical factor. In total, our final
model increased the predicting power up to 86%
compared to the initial null model. Considering the
model betas, the results for the source level of operation
(β1) are not significant and must be excluded from our
analysis. Therefore, our final model comprises target
level of operation (β2), filling level of the pallet (β3),
the necessity to correct (β4), and travel distance (β5).
In summary, our findings show that heterogeneity in
human behavior plays a major role when forecasting
batch execution times with these variables. Table 6
summarizes all model betas for a multilevel model with
fixed predictors and random intercepts.

Compared to the initial null-model, our model 2 (null-
model + travel time as dependent variable) showed
an improved Akaike information criterion (AIC),
indicating a reduction of the error rate in our model.
We added the additional independent variables stepwise
until we reached the final model described in Eqs. (2)
and (3) with model 3 (model 2 + the filling level of the
pallet), model 4 (model 3 + source level of operation),
model 5 (model 4 + target level of operation) and model
6 (model 5 + necessity to correct). Table 5 summarizes
the results.
The results indicate that the level 1 prediction power

of the final model (model 6) increases by 94% when
integrating the variables described above. This finding
on predicting the batch execution time is not surprising,
and it still proves that it can be forecasted with the given

Table 5.: Summary of a multilevel model with fixed predictors and random intercepts

Model Parameter Estimate AIC Wald-Z p

Null-model
7293.65 316703 116.07 .000

1297.91 4.03 < .001

Model 2 .84
.92 609.42 249802 116.07 .000

.38 800.29 4.06 .000

Model 3 .86
.94 402.69 238638 116.06 .000

.41 769.74 4.06 .000

Model 4 .86
.94 402.59 238634 116.07 .000

.41 769.73 4.06 .000

Model 5 .86
.94 400.78 238513 116.07 .000

.41 764.68 4.06 .000

Model 6 .86
.94 400.63 238505 116.07 .000

.41 764.25 4.06 .000

Note: AIC is used as an estimator to predict error rates in the model.

Table 6.: Model betas for a multilevel model with fixed predictors and random intercepts

Parameter β Standard error df p Lower bound Upper bound

Constant 50.93 4.835 33 .000 41.10 60.76

Source level of operation -.01 .0110 26949 .484 .029 .014

Target level of operation 1.32 .155 26948 .000 1.016 1.62

Filling level of the pallet 119.80 1.031 26951 .000 117.79 121.83

Necessity to correct 1.22 .383 26947 .001 .47 1.97

Travel distance .48 .002 26949 .000 .48 .49

Note: Degrees of freedom (df) is the number of values in the final model that are free to vary.
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operators and the total working time for all batches.
This may be beneficial when logistics managers seek
to find the optimal capacity of forklifts and forklift
operators for their warehouse. Second, after being
aware that individual heterogeneity in human behavior
has an impact on the performance of forklift operators,
we adopt the level 1 regression model to forecast the
batches. Hence, we can formulate a multi-dimensional
and parametric production function that is beneficial
to evaluate a forklift driver’s performance compared
to the group performance level. The formulation of our
simulation approach is as follows:

5. SIMULATION OF BATCH EXECUTION
TIME FOR FORKLIFT OPERATORS

After formulating the multilevel approach and applying
it to the real data of 33 forklift operators, we are now
able to formulate a multiple regression model with the
estimates calculated in the previous section. At this
point, it is important to note that the source level of
operation (β1) is excluded in the simulation approach.
From a managerial perspective, there are two possible
tracks for simulation. First, by integrating level 1 and
level 2 formulations in Eqs. (25) and (26), it is possible
to forecast the batch execution times for forklift

(13)

(14)

(15)

Fig. 2.: Comparison of simulation results and real batch execution times for forklift operators
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forklift operations. This would also allow improving
training processes for new and unknown employees:
Let us assume that operator A has an experience level
of 10,000 cumulative operations after a time period of
three months and is seen as an experienced employee.
Our model and the historic WMS data can now help
to estimate the model betas in the very first week
quantifying a low level of experience. These model
betas can then be assigned to new and unknown
operator B. In this exemplary case, the human-centered
batch assignment may be suitable to prevent overload
and resulting stress when incorporating new employees.
Second, data-driven multilevel analyses might be

beneficial to develop human-centered work system
design strategies. The presented parametric multilevel
models have the potential to shed light on operations
with human involvement at a very detailed level. Finding
that 15.1% of the total variance in time is related to
differences between human operators might, e.g., lead
to incentive-based sociotechnical work systems taking
behavioral factors more into account. It underlines the
importance of integrating ergonomic aspects for work
system design. Additionally, our method allows the
evaluation of operators’ performance on sub-tasks,
e.g., driving the forklift. This may be helpful to derive
whether and to which extent assistive technologies may
be necessary for certain tasks, sub-tasks, operators, or
batches. For an extensive review of assistive devices in
manual material handling, the reader is referred to [90].
In summary, quantifications of individual heterogeneity
in operations systems might trigger managers to rethink
work system design strategies.

6.2. Limitations and further research
The approach presented in this paper has specific
limitations. First, although the obtained data basis
of 26,979 batches remaining after the data cleaning
is extensive, the quantifications are limited to the
examined warehouse. Therefore, our model and the
approach would benefit from further applications in
alternative warehouse scenarios. Additionally, we
investigate humans operating in a warehouse storing
perishable and non-perishable non-cooled items. It
may, therefore, be interesting to research the impact of
temperature on human performance and heterogeneity
in cold supply chains, as well as the performance in
night shifts compared to those in day shifts.
From a methodological viewpoint, further research

avenues can be directed at multilevel models for panel
data. This could enable the quantification of the learning
effects and the development of human skills at a certain
time. Furthermore, non-parametric methodologies need
to be tested to build production frontiers without setting
regression weights a priori. Data envelopment analysis
and free disposable hull methodologies are suitable as
they apply a model-endogenous weighting of input and
output factors. The importance of research analyses and
concepts regarding the human-technology interaction
parts of operations and logistics systems will further

After running the simulation, we found significant
differences among the individual forklift operators,
which is as expected from our previous findings and
can be used for cross-validation purposes. As bonus
schemes in intralogistics mostly rely on process
time, for example, the average time per operation, a
multi-dimensional parametric approach may show
a promising way to integrate further performance-
relevant factors. Additionally, our approach integrates
time for correcting errors that result from upstream
processes and are, therefore, not caused by forklift
operators. However, these situations are often ignored
when benchmarking blue-collar workers in instore
logistics.

6. CONCLUSION

6.1. Management learnings
This paper has outlined an innovative method
and empirical evaluation approach regarding the
analysis of efficiency contributions from human
operators with forklift operators in retail warehousing
operations. A relevant explanation share of 15.1%
regarding the individual batch operating time data
was identified, warranting further research and
also management attention towards the analysis of
individual heterogeneity. Our model is transferable to
all warehouses where forklift operations are performed
by humans. This may include picker-to-parts or parts-
to-picker order picking systems. The main requirement
for transferring our formulated model to practice is the
availability of historical data, e.g., documented by a
WMS. Additionally, our method requires data on the
aggregation level of operations. Because most modern
warehouses utilize digitalized or intelligent picking
systems, e.g., pick-by-voice or pick-by-vision, we expect
that the data used in this paper is also available to a
majority of warehouse managers. To further optimize
warehouse processes, our findings may help managers
to rethink batch assignment methods in human-
cantered work systems and reorganize work system
design strategies.
First, taking the aspect of batch assignment methods,

most companies use simple rules, such as the first free
method. We expect a high application potential for batch
assignment respecting the individual heterogeneity of
the human workforce. After formulating the model,
operationalizing the constructs, and inserting the data
into SPPS or R, the software output provides model
betas per operator. Through a comparative analysis of
all operators, we are able to cluster humans according
to their performance, e.g., operators that are better
in driving the forklift than others. At the same time,
we can cluster all batches in the WMS according
to, e.g., distance. Bringing both together, we may
utilize the model betas from our multilevel approach
to implement human-centered batch assignment for
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