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Abstract

The purpose of this work is to study the joint interaction of three
founding elements of modern capitalism, namely endogenous tech-
nical change, income distribution and labour markets, within a low-
dimensional nonlinear dynamic setup extending the Goodwin model.
By going beyond the conservative structure typical of the predator-prey
model, we insert an endogenous source of energy, namely a Kaldor-
Verdoon increasing returns specification, that feeds the dynamics of
the system over the long run and in that incorporates a transition to an
(anti) dissipative framework. The qualitatively dynamics and ample
array of topological structures reflect a wide range of Kaldorian stylised
facts, as steady productivity growth and constant income distribution
shares. The intensity of learning regimes and wage sensitivity to unem-
ployment allow to mimic some typical traits of both Competitive and
Fordist regimes of accumulation, showing the relevance of the demand-
side engine, represented by the KV law, within an overall supply-side
framework. High degrees of learning regimes stabilise the system and
bring it out of an oscillatory trap. Even under regimes characterised by
low degrees of learning, wage rigidity is able to stabilise the business
cycle fluctuations and exert a positive effect on productivity growth.
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1 Introduction

Is it possible to integrate a process of increasing returns of technical change
with a conflicting class structure typical of a predator-prey model? If yes,
how does productivity growth react to different elasticities to aggregate
demand? How do unemployment and income distribution are affected by the
interaction between labour markets and endogenous technical change? To
address the above questions this work develops an extension of the Goodwin
model (Goodwin, 1967).

The original model represents one of the most elegant, symbolic but also
stylised representation of the recurrent cycles occurring in the capitalist
system due to the conflicting class structure between capitalists and workers.
Based on the Lotka-Volterra type predator-prey biological model (Lorenz,
1993), the Goodwin model presents a low dimensional nonlinear dynamical
system, wherein business cycle fluctuations are due to functional income
distribution showing opposing relations between profits and wages. The
nature of such fluctuations is entirely endogenous, and in that the class
struggle between predators and preys lies, providing a formalization of
Marx’s conflicting nature of capitalism (Dutt, 1992; Shaikh, 2016).

The model has been so seminal that an entire strand of literature has
emerged with the attempt of modifying and extending the original frame-
work, both from a purely modelling perspective and from an economic one.
From the modelling perspective, extensions (Pohjola, 1981; Velupillai, 1979)
have been proposed to overcome the topological structural instability of the
system (Veneziani and Mohun, 2006). From an economic perspective, ex-
tensions focus on the dynamics of price formation through variations in the
labour market equation (Desai, 1973), or to include new components such
as the role of government expenditure (Wolfstetter, 1982). The majority of
these extensions were in continuous time, while among discrete-time models,
the paper by Canry (2005) advances beyond the original Classic supply-side
scaffold and integrates a Keynesian endogenous source of demand. The
contribution in Dosi et al. (2015) had the dual scope of overcoming struc-
tural instability and including endogenous sources of demand generation,
by comparing alternative profit-led and demand-led investment drivers and
labour market configurations.

So far, the majority of extensions has devoted few or no attention to
the endogenization of technical progress, which in the model is constantly
increasing at an exogenous rate. Exogeneity in productivity growth impedes
any type of feedback mechanism from demand to supply, and, at the oppo-
site, from productivity growth to labour markets and income distribution.
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In the following, we intend to overcome the lack of a proper treatment of
technical change and to study the ensuing feedback loops. In order to do
that, in addition to the two original state variables – employment rate and
wage share – we include a third element in the predator-prey scheme to
allow the system to endogenously increase vis-à-vis its internal state. The
specification we adopt encompasses a reduced form of the Kaldor-Verdoorn
law in order to study the feedback from demand and income distribution to
increasing returns and vice-versa (Verdoorn, 1949; Kaldor, 1966).

By including increasing returns, we make the original Goodwin model
able to account for the three characteristic elements of a modern capitalist
system, namely, income distribution, labour market and technical change,
within a framework of both growth and business cycle. After introducing
the new model specification, we start analyse a series of feedback dynamics
by means of local sensitivity analysis upon alternative configurations of the
parameter space. Our scenario analysis is performed upon two parameters,
namely, the learning coefficient, that is the elasticity to economies of scale,
and the wage elasticity to (un)employment as a proxy of labour market
flexibility. By making varying the intensity of learning opportunities and
labour market flexibility we intend to capture how the transition from
informal economic systems, characterised by the absence of any type of
increasing returns and protection in labour markets, to advanced capitalist
systems, wherein technical change is affected by demand, and labour markets
are more regulated and less volatile, affects the overall growth in labour
productivity.

The paper is structured as follows. In section 2, we present the theoret-
ical underpinnings behind the extension of the Goodwin model through
a formalization à la Kaldor-Verdoorn. In section 3, we present the newly
developed model including labor productivity as a state variable, and we
discuss the ensuing stability properties. In section 4, we present a battery of
simulations, comparing alternative degrees of formalization of economic sys-
tems, by means of local sensitivity analysis. Section 5 analyses the feedback
mechanisms from income distribution to labour productivity growth. Finally,
our conclusions are in section 6, together with a discussion on limitations
and possible extensions.
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2 Increasing returns and dissipative systems: be-
yond the Goodwin model

The lack of an explicit endogenous dynamics of technical change in the
Goodwinian tradition implies the model being silent upon one of the main
sources driving economic progress - typical of modern capitalism (Schum-
peter, 1942). Indeed, a long research tradition has studied and modelled
technical change with a complex system perspective (Arthur, 2009; Dosi and
Virgillito, 2021; Dosi et al., 2022), emphasizing the role of evolution and
increasing returns on knowledge accumulation to explain the very process
of growth. In addition, the joint hypotheses of exogenous technical change
and of Say’s Law - according to which capitalists savings are immediately
reinvested - make the Goodwinian model a conservative system, in line with
the Lotka-Volterra framework (Lorenz, 1993).

At the opposite, socio-economic systems are rarely conservative and tech-
nical progress is exactly one of the main reason of violation of such dynamics.
Indeed, endogenous technical progress allows the system to grow and gener-
ate more resources than those used. In this respect, the final output tends
to be more than the used inputs, with a typical (anti) dissipative structure,
whereby with (anti) dissipative systems we consider those endogenously
generating activity, or energy from a physics perspective. Economies seen as
complex evolving systems are therefore better characterised by such type
of structures, wherein, beyond regular cycles, also out-of-equilibrium dy-
namics, as bifurcations and chaos, do emerge (Nicolis, 1977; Dosi et al.,
2015).

By preserving the predator-prey setup, we insert an endogenous source of
technical change into the unstable, cyclical and conflicting dynamics of the
Goodwin model turning the system into a dissipative one. Endogenous tech-
nical change might however be both a dis-equilibrating (Arrow, 1996; Dosi
and Nelson, 2010) and a coordinating force. From the Schumpeterian per-
spective of arrival of new technologies and paradigms, endogenous technical
change creates destruction, more or less creative, but with an end result of re-
organizing the system. From a Kaldor-Verdoorn (henceforth KV) perspective
(Kaldor, 1966, 1972), technical change, rather than being a dis-equilibrium
force, tends to create quite ordered dynamic increasing returns. Increasing
returns occur in those sectors of activity more exposed to demand growth,
therefore they are rather systematic, more than erratic. In fact, the KV law is
based on a dynamic principle formalizing the role of aggregate demand as a
driver of labour productivity growth. Therefore, beyond supply-side, invest-
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ment formation and capital accumulation, productivity growth emerges out
of demand.

In line with the KV law, we introduce an endogenous source of technical
change making the dynamics of labour productivity dependent on the em-
ployment rate. Indeed, the employment rate can be considered a proxy of
the general level of activity, being a procyclical and coincident variable with
output. Therefore, an increase in the employment rate due to a phase of ex-
pansion of the cycle, and therefore driven by an increase in production (and
so by the capital accumulation), stimulates the accumulation of knowledge
and feeds the dynamics of continuous learning. These processes are indeed
at the core of increasing returns that, according to Smith (Kaldor, 1972;
Young, 1928), stimulate the rate of growth of labour productivity through
the generation of economies of scale.

During an expansionary phase of the business cycle, firms will increase
their demand for labour, with an increase in the employment rate. Compared
to the basic Goodwin model, an increase in the employment rate will not only
lead to an increase in workers’ real wages but, at the same time, will have a
positive impact on labour productivity growth. Such positive influence on
the rate of productivity is expressed through the KV coefficient (learning
coefficient) capturing the effects of increasing returns and economies of
scale in the economy. The coefficient value – corresponding to a degree of
dependence on increasing returns of the whole economy – modulates the
impact on the growth of labour productivity.

Labour productivity dynamics becomes part of the class struggle: consid-
ering the conflicting nature of capitalism and the co-existence of increasing
returns underlying the learning dynamics of the system, different degrees
of labour market elasticity (wage elasticity) may affect labour productivity
dynamics and ensuing income distribution. The conflict is therefore not
anymore over an exogenous produce but over an endogenous one. In that,
we link a (anti) dissipative learning dynamics with a perpetual class struggle
between capitalists and workers, substantiated in the symbiotic relationship
between income distribution, strength of the labour market and technical
change.

3 The Model

Before introducing the new model specification, let us briefly recall the main
assumptions and model specification of the original model.
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3.1 The Goodwin model

The main assumptions of the model read as follows:

• Two economic forces: employment effect and profits effect.

• A constant productivity growth rate α > 0

• A constant population growth rate β > 0.

• A constant capital/output ratio σ > 0.

• Wages are entirely spent, profits are entirely saved and reinvested.

• Output growth rate equals profit rate.

• The equilibrium growth rate will be equal to a natural growth rate
given by the sum of population and productivity growth rates.

• Technical progress is assumed to be Harrod neutral.

• All quantities are real.

Productivity growth rate a, defined as output per capita, grows according to
the following specification:

ȧ/a = (q̇/ l̇)/(q/l) = q̇/q − l̇/ l = α (1)

Labour demand growth rate is defined as:

(l̇/ l) = (1−u)σ −α (2)

Employment growth rate is defined as:

(v̇/v) = (1−u)σ − (α + β) (3)

The positive relation between real wages and employment is expressed by
means of a linearized Phillips Curve1:

(ẇ/w) = −γ + ρv (4)

The final equations are expressed in terms of the employment rate v and the
share of wages u:

v̇ = [(1/σ − (α + β))− 1/σu]v (5)

1It lies in between the Phillips Curve and the so called Wage Curve. The last one is a
real relation between the levels of the wage rate and the unemployment rate
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u̇ = [−(α +γ) + ρv]u (6)

We can rewrite the system in the following way, obtaining the Lotka-
Volterra type of formulation:

v̇ = (a− bu)v (7)

u̇ = (−c+ dv)u (8)

3.2 Introducing increasing returns: a three dimensional
predator-prey model

In the following, we present the basic structure of our three-dimensional
predator-prey model. We start with the endogenous dynamics of technical
change, according to the KV law, which reads as follows:

ȧ
a

= α′v, α′ > 0 (9)

Labour demand growth is equal to:

l̇
l

=
1−u
σ
−α′v (10)

Hence, the employment growth rate is given by the following dynamic
equation:

v̇
v

=
1−u
σ
− β −α′v, v ∈ [0,1] (11)

Differently from the original model, employment rate change now nega-
tively depends on the level of employment rate in itself, implying that its
growth trajectories over time are anchored to a level of employment reflecting
the influence of an endogenous force of technical change. This is the first
implication of the endogenous dynamics in technical change.

Conversely, the pure dynamics of wage growth is not affected by the
introduction of an endogenous component in technical change:

ẇ
w

= −γ + ρv, γ,ρ > 0 (12)

However, the change in the wage share is affected by the new specifica-
tion, in fact income distribution now depends on the difference between
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wage elasticity to unemployment, a proxy of the strength of the collective
bargaining, and the rate of endogenous productivity (ρ −α′):

u̇
u

= −γ + (ρ −α′)v, u ∈ [0,1] (13)

In our version, the overall stylised representation of the modern cap-
italism is described by a three-dimensional non linear dynamical system
including an endogenous source of technical change, labour markets and
income distribution. The system obtained by combining the three equations
(9), (11) and (13), reads as:


ȧ
a = α′v
v̇
v = 1−u

σ − β −α
′v

u̇
u = −γ + (ρ −α′)v

(14)

3.3 Stability analysis

In the following stability analysis we focus on the topological behaviour of
equations (11) and (13), being equation (9) an ever-increasing process with
no meaningful fixed point (Arrow, 1996).

System (14) presents three fixed points:

(α′∗1 ,v
∗
1,u
∗
1) = (0,0,0)

(α′∗2 ,v
∗
2,u
∗
2) =

(
0,

1− βσ
α′σ

,0
) (15)

and

(α′∗3 ,v
∗
3,u
∗
3) =

(
0,

γ

ρ −α′
,
ρ −α′ −α′γσ − βσρ+α′σβ

ρ −α′

)
(16)

Considering that two of the three state variables, employment rate and wage
share, are limited within the square [0,1]2, then their stationary points must
also lay in the [0,1] interval:

γ > 0∧ ρ , α′ ∧α′ ≤ ρ −γ (17)

α′ >
βσρ − ρ

σβ −γσ − 1
∧α′ ≤

βρ

β −γ
(18)

The study of the local dynamic properties of the fixed points is based on
the Jacobian matrix of the dynamic system (14). In any generic point, the
Jacobian matrix has the following specification:
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J =


α′γ
ρ−α′ 0 0

0 α′−ρ−α′βσ+α′γσ+βρσ
σ (ρ−α′ + β − 2α′γ

ρ−α′ −
1
σ − γ

σ (ρ−α′

0 α′ −α′βσ +α′γσ + βρσ − ρ γ − α′γ
ρ−α′ + γρ

ρ−α′

 (19)

The eigenvalues λi are the roots of the characteristic equation |A−λI| = 0.
In a three dimensional continuous system, the eigenvalues associated to the
Jacobian matrix (19) are three and can assume the following behaviour2:

1. Monotonic convergence towards the fixed point: if all eigenvalues λi
are real and lower than zero. The fixed point is asymptotically stable.

2. Dampening convergence towards the fixed point: if there is at least
a pair of complex conjugate eigenvalues λk , λ̄k+1 and the real parts
of all λk ∈ C, ℜ(λk) are lower than zero. The stationary point is
asymptotically stable.

3. Monotonic divergence: if all eigenvalues are real and strictly greater
than zero, then the system diverges monotonically toward +∞ or −∞.
The stationary point is unstable.

4. Saddle point: if λj,k ∈R but some λj > 0 and some λk < 0.

5. Unstable focus: if there is a pair of eigenvalues complex conjugates,
λk , λ̄k+1 ∈C, whose real part is greater than zero,ℜ(λk) > 0, then the
system produces diverging oscillations.

6. Stable focus: if the real part of complex conjugates eigenvalues is
lower than zero,ℜ(λk) < 0, the system has converging oscillations.

7. Center: given a pair of complex conjugate eigenvalues, ifℜ(λk) = 0,
the system exhibits constant oscillations.

According to these conditions, the fixed points (15) are saddle points, so
they do not have a noteworthy economic significance. The only stationary
point worthy of attention is the (16), which can be locally asymptotically
stable, unstable or a center around which the trajectories of the system (14)
infinitely oscillate.

2We restrict the properties in R
2 considering the trivial nature of one fixed-point.
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In addition, changes in critical parameters entering the fixed points
closed form may also result in topological changes giving rise to the emer-
gence of local bifurcations (Lorenz, 1993; Orlando et al., 2021). Differently
from the original model, the technical change coefficient enters the closed
form solutions and therefore also the eigenvalues associated to the Jacobian
matrix (19). Hence, technical change has an explicit effect on the system
stability (14).

4 Simulations

In order to study the possible changes in the topological structure of the
model, we perform a battery of simulations on two critical parameters,
namely the learning rate, α′, and the wage elasticity to unemployment, ρ, on
the macrodynamics of the system, considering the analysis of eigenvalues
and the possible birth of local bifurcations. The variations of the intensity of
these two coefficients might be considered alternative configurations of the
macroeconomic system, with different degrees of formality in the economy,
represented by the intensity of the learning coefficient, and degrees of labour
market rigidity.

Table 1 presents the baseline coefficients of the model, and the range of
variations we are going to consider, also given the restrictions in conditions
(17) and (18).

Parameters of the Baseline Model
Parameters Baseline Value Variation Range
α′ 0.001 0.001-0.2
σ 0.4 -
β 1 -
γ 0.05 -
ρ 0.3 0.1-0.5

Table 1: Baseline Parameter Values and Relative Range of Variation

4.1 Stages of development: variation of α′

We start by asking what is the effect of the increase in the KV α′ coefficient
on the dynamics of modern capitalism, hereby represented by the three-
dimensional predator-prey model. We interpret the learning coefficient of
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the KV law as a process that differently manifests along different stages
of capitalist development, and therefore associated with distinct phases of
modern capitalism. Our interpretation derives from the fact that learning
regimes and economies of scale are typical of the manufacturing sector,
a sector that characterises industrialising capitalist systems exiting from
informal, putting-out, agricultural systems.

(a) Employment Rate Time Series (b) Wage Share Time Series

(c) Limit Cycle (d) Oscillatory Loop in a 3D Space

Figure 1: Macrodynamics with α′=0.001

In our baseline setup, shown in figure 1, the typical nature of centre of the
equilibrium point a’ la Goodwin is presented, with a perpetual oscillatory
dynamics in both wage share and employment rate. Being the value of
the learning coefficient dramatically low, vis-à-vis our range of parameter
variations, simulation results show that economies characterised by a poor
dependence on increasing returns exhibit strong macroeconomic instability
and business cycle volatility, manifested through the oscillatory dynamics in
income distribution. The low, almost zero, elasticity of productivity growth
to employment dynamics, proxy of the level of economic activity, means
that the economic system is not able to fully exploit economies of scale.
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Therefore, learning by doing processes are such irrelevant that they do not
allow the generation of increasing returns for labor productivity growth in
the long run. Indeed, the model maintains the typical conservative structure
of the Lotka-Volterra model.

Employment rate and wage share, shown in figures 1(a) and 1(b) respec-
tively, manifest a structural weakness: indeed, low elasticity of productivity
to employment dynamics exacerbates the unstable and conflicting nature
of capitalism, because the latter is not able to sufficiently stimulate the en-
dogenous engine of growth. Therefore, within the predator-prey skeleton, a
slow dynamism in labour productivity fuels class struggle and makes the
system even more unstable. Notably, the amplitude of oscillations are quite
remarkable, with strong upswing and downswing phases. High amplitude
of cycles imply large perpetual instability, with a large range of potential
values that both variables can reach. In fact, the lack of any transfer of levels
of output (employment) toward productivity makes wages compressed by
profits, and the ensuing conflicting dynamics strongly exacerbated.

The absence of an endogenous engine capable of fuelling the whole
system in the long run not only contributes to making the economy unstable,
but at the same time does not allow a proper coordination between the
components of the system. Low learning regimes coexist with a persistent
unstable and cyclic loop in labour productivity, as shown in figure (1(d)).
Due to learning processes not able to generate sufficient increasing returns,
the macroeconomic dynamic stops and locks in an oscillatory trap induced
by a very low learning coefficient. Adopting the metaphor of the ‘bicycle
postulate’ (Dosi and Virgillito, 2021), it is as if the slow learning dynamics,
typical of a certain development stage of modern capitalism, are not able to
generate enough kinetic energy to progress and move forward. This implies
floating to infinity around a dynamic center, as in figure (1(c)), by exactly
replicating goodwinian patterns.

Let us now show the effects of changes in the learning coefficient. The
following figures depict the impact on the temporal evolution of the employ-
ment rate, wage share and the two-dimensional phase portraits, respectively.
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(a) Employment Rate Time Series (b) Wage Share Time Series

(c) Unstable Focus

Figure 2: Macrodynamics with α′=0.2

Firstly, a qualitative change in the nature of the stationary point (16)
from a center to an unstable focus, as shown in figure (2(c)), occurs. From
a topological point of view (Arnold, 2012), the learning coefficient, α′, is
the bifurcation parameter of the system (14). Our analysis is concerned on
the category of local bifurcations, that is topological changes of the system
around the fixed points that can be analysed by linearisation (Kuznetsov,
1998). The phase transition from a dynamic center to an unstable focus is
exactly due to the intensity of the learning parameter. The change in the
topological structure is the opposite path with respect to the Hopf Bifurca-
tion.3

3See appendix A for a formal exposition.
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Figure 3: Hopf Bifurcation Diagram with respect to α′

Source: Our Simulation

Hopf bifurcation arises in presence of non-conservative dynamical sys-
tems (Lorenz, 1993). Consequently, the transition from a center to a focus
for employment rate and wage share coupled dynamics is an evidence that,
compared to the original Goodwin model, we have introduced an (anti)
dissipative component for the final created and transmitted energy within
the system, given by an endogenous technical change source.

The (anti) dissipative structure is however a source of stabilisation for the
system. In fact, contrary to the conservative setup characterised by low levels
of α′, as the parameter increases, the sensitivity of the system to economies
of scale induces a progressive change in the trajectories that tend to con-
verge towards an unstable focus. Due to the loss of fragility and oscillatory
properties as the bifurcation parameter increases, the introduction of an
endogenous source of technical change helps to remove the trajectories of
the system from a corridor of stability (Lorenz, 1993). Until the elasticity
of the capitalist system with respect to economies of scale is very low, the
conflicting and symbiotic dynamic of the two predator-prey components is
persistently attracted by the limit cycles, this phase being marked by a less
dark color at the beginning of the figure 3. Higher coefficients allow the
fixed point to exit from the oscillatory trap.

A high elasticity of the economic system to scale economies is an attribute
of a given, quite advanced, stage of development of modern capitalism, in
line with the North-South literature. High elasticity to scale economies
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allows the entire system to benefit from increasing returns, which stimulate
labour productivity, in line with the KV law (Kaldor, 1960; Fingleton and
McCombie, 1998; McCombie et al., 2002; Deleidi et al., 2021). In such
stage, increasing returns generated by learning by doing processes grant
exponentially and persistently growing labour productivity.

Sustained productivity growth allows employers to compensate for the
increase in real wages following the expansion of the business cycle. The
wage share tends to stabilise, as shown figure (2(b)). Consequently, the profit
share will stabilise as well. In that, the class struggle dynamics is tamed
and distributive shares will no longer be subject to wide fluctuations thanks
to the effect of the endogenous source of technical progress, which indeed
stabilises the whole economic cycle and allows to escape from the purely
oscillatory and unstable dynamics. At the same time, the employment rate
(2(a)) also tends to stabilise and looses persistent fluctuations, endemic of an
economy marked by low learning coefficients.

In terms of empirical counterpart, our results are in line with Kaldorian
stylised facts (Kaldor, 1961), according to which distributive shares of wages
and profits are constant over the long run, and not perpetually oscillating as
predicted by the predator-prey model. The Kaldorian stylised facts emerged
in a historical phase wherein the stimulus to growth and coordination orig-
inated from the manufacturing sector, the engine of growth (Kaldor, 1960).
Indeed, the way-out from the classical Goodwin phase occurs by means of a
phase transition due to an endogenous source of technical change such as
the KV law. Increasing returns are able to smooth the cycle, promoting a
coordination between its elements, although imperfect due to the unstable
nature of the node (Dosi and Orsenigo, 1988; Dosi and Virgillito, 2021).

Beyond constant distributive shares over the long run, the introduction of
increasing returns allows to regulate and depict different stages of economic
development, just varying the intensity of the learning coefficient. Indeed,
the change of the topological nature of the fixed point with respect to higher
levels of α′ allows to distinguish different phases of capitalist development,
characterised by different degrees of stability/instability and macroeconomic
fragility (Aglietta, 1976; Boyer and Saillard, 2005). Moreover, it emerges a
stabilisation of income distribution dynamics thanks to an energy-pushing
technical change, the latter allowing to maintain coupled the joint dynamics
between real wages and labour productivity. Technical change has therefore
a beneficial stabilising effect on functional income distribution, meaning
that gains from productivity growth are not appropriated by capitalists, but
are rather transferred into wages, due to the fact that employment level
stabilises and anchors employment growth.
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4.2 Flexibility in labour markets: variation of ρ

Let us now analyse the impact on the macroeconomic dynamics of a change
in the coefficient capturing the elasticity of real wages relative to the employ-
ment rate, that is the coefficient of the quasi Phillips Curve (from here on,
PC). We consider the intensity of the elasticity of wage changes to employ-
ment level a sort of thermometer of strength (weakness) of class conflict, in
terms of the exposition of wages to variations in employment levels. In the
following, we present a transition dynamics from a quasi-inelastic labour
market to a setup characterised by high levels of elasticity. Clearly, low levels
of ρ stand for high labour power, while at the opposite, high levels of ρ stand
for low labour power.

(a) Employment Rate Time Series (b) Wage Share Time Series

(c) Limit Cycle

Figure 4: Macrodynamics with ρ=0.1
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(a) Employment Rate Time Series (b) Wage Share Time Series

(c) Limit Cycle

Figure 5: Macrodynamics with ρ=0.5

Figures (4(a)) and (5(a)) show the effect on the employment rate dynamics
of the transition from a non-elastic to a more sensitive and elastic labour
market. In the latter configuration, the labor market is very sensitive to
business cycle fluctuations. Even in the absence of strong learning regimes,
a lower wage elasticity reduces the amplitude of oscillations of the cycle,
dampening volatility in employment rate, as figure (4(a)) shows. From the
simulation results, it emerges that a low wage elasticity has a beneficial effect
on the unstable cyclicality of the employment rate because it does not expose
real wages to cyclical fluctuations. This setup ensures a higher employment
rate, since it fluctuates in ranges of values overall more restricted compared
to the opposite case, depicted in figure (5(a)). On the contrary, under higher
wage elasticities, the amplitude of oscillations is so high that employment
rate can reach the boundary values. This is due to a decline in real wage
growth rate and to a further weakening of the share of income allocated to
workers. Indeed, a very elastic labour market further discourages dynamism
in recessionary periods and tends to overheat the dynamic path of the system
exacerbating its macroeconomic fragility and cycle volatility.
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Figure (4(b)) shows that stronger wage rigidity guarantees a dynamic
variation of the wage share within a small range. This lower volatility on
the side of wage earners is consequently also reflected for capitalists. On the
contrary, as shown in figure (5(b)), volatility and fluctuations of the wage
share are much sharpened under high wage elasticity making the all system
more unstable, including profits and their investment.

The transition from a low to a highly flexible labour market has an
effect on the coupled dynamics of employment rate and wage share, whose
trajectories in the two-dimensional space are represented in figures (4(c)) and
(5(c)), in a rigid and a flexible setup respectively. The increase in flexibility
causes a higher weakness of the system with the consequent increase of
fluctuations and above all of the amplitude of the limit cycles, as depicted in
figure (6), with a three-dimensional representation.

Wage flexibility does not necessarily guarantee a good coordination of
the entire capitalist system which, instead, benefits from a certain degree
of wage rigidity. In addition to being qualitatively consistent with some
stylised facts of the post-war phase of modern capitalism (Boyer and Saillard,
2005; Dosi and Virgillito, 2019), our simulations are also in line with agent-
based modelling results that have highlighted the detriment effects of labour
market flexibilization on micro, meso and macroeconomic dynamics (Dosi
et al., 2017, 2018a,b). In general, high degrees of labour power on the class
struggle conflict appear to act as a crisis stabilisers.
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(a) Amplitude of Oscillations

(b) Wage Flexibility (c) Wage Rigidity

Figure 6: Amplitude of Oscillations in 3D Space

5 Feedback mechanisms to productivity growth

In this section we analyse the effects of alternative setups of both stages of
development and degrees of labour market flexibility on the dynamics of
labor productivity growth, in order to detect the feedback mechanisms from
KV law and income distribution, in that fuelling economic growth.

5.1 Learning regimes and productivity dynamics

In the following, we show the retroactive effects upon labour productivity of
two different parametrizations of the learning coefficient.

Starting with the baseline parametrization, in figure (7(a)), under a low
learning coefficient, productivity growth is not sufficiently stimulated by the
KV effect. Low learning coefficients are not able to spur economic growth,
due to low opportunities for increasing returns in the economic activity. In
line with the analysis presented to so far, not only employment and income
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distribution but also productivity growth is stacked in the very initial stage
of economic development. Notably, under low learning regimes the system
is trapped into a form of looping hysteresis, that is, there is no escape from
the oscillatory trap of the Goodwinian cycle. This latter topological structure
represents bad lock-in and path-dependent patterns (David, 2000; Castaldi
and Dosi, 2006; Setterfield, 2009). The positive retroactive effects are instead
quite visible in figure (7(b)), where the dynamics of labour productivity is
now presented in the case of a high learning coefficient. In this case we do
observe a setup of stages of development in which employment rate reflects
into high learning regimes and opportunity to growth. Therefore, the escape
from the oscillatory trap, that allows to stabilise employment and income
share, also induces higher opportunities for economic growth.

Which is the speed of learning in the system? Or better, how much time
does the system take in order to benefit from learning regimes? We zoom in
into the case of α′ = 0.2, by focusing on the first 200 steps. We first analyse
the first 50 time steps in figure 8(a) and we then move to the whole range in
figure 8(b). By comparing the two figures it emerges a time-to-learn effect
in the system, which maps into a threshold behaviour reached at t = 100.
Indeed, the step-wise dynamic that we detect in the baseline (figure (7(a)))
and in the high learning regime specification until t = 50 are very similar
among them. The system requires a given period of time to absorb the gains
from such learning opportunities, and the dynamic becomes exponential
after a given time-to-learn threshold is overcome.

This time-to-learn effect mimics the time necessary to build increasing
returns, and with a micro-level reference, the time required by workers
to accumulate knowledge and know-how (Hartley, 1965; Dosi and Nelson,
2010). The time-to-learn is likewise the propagation speed to feed effects
into the system (Young, 1928).
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(a) α′ = 0.001 (b) α′ = 0.2

Figure 7: Labour Productivity Dynamics

(a) Step-wise (b) Exponential

Figure 8: Time-to-learn threshold point in Labour Productivity, α′ = 0.2

5.2 Labour power and productivity dynamics

Let us now discuss the feedback effects from a rigid to a flexible labour
market on productivity growth, whose parametrizations represent two dif-
ferent degrees of labour power in the economy. We present in figure (15) the
dynamics of labour productivity under a rigid (figure 9(a)) and a flexible
(figure (9(b))) labour market regime, keeping the other parameters at the
baseline configuration. Under a more rigid wage growth dynamics vis-à-vis
employment (ρ = 0.1), even under a baseline parametrization of low learn-
ing regimes (α′ = 0.001), wage rigidity prevents the labour market from
being exposed to large cycle fluctuations. Therefore, although the chances
to reap the benefits of increasing returns are quite low, wage rigidity, via
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dampening of oscillations, is more conducive to (relatively low) labour pro-
ductivity growth, as shown by a rather smooth linear trend dynamics. The
increase in productivity originates from the positive feedback mechanisms
of small amplitudes in the cycle oscillations, e.g., from the pattern of income
distribution pushing economic growth.

At the opposite, the case of high wage elasticity to employment dynamics
is a volatility-fuelling setting, with the labour market more prone to busi-
ness cycle fluctuations. Large oscillations in income distribution translate
into large fluctuations in the employment rate, which tends to be less sta-
ble. The weak and oscillating employment dynamics causes a slowdown in
productivity growth, because of low output accumulation and volatility in
learning opportunities. Indeed, instability in income distribution maps into
unstable productivity dynamics, which keeps growing but with a distinct,
slow-moving step-wise dynamics.

Notably, positive and negative feedbacks from income distribution to
productivity growth do not only manifest in the amplitude of oscillations
but also in the final level of cumulated productivity reached during the
same time period (t = 200), which under high labour power and low wage
sensitivity to employment increases more than 10 p.p. compared to a 2 p.p.
increase under the low labour power setting.

(a) ρ = 0.1 (b) ρ = 0.5

Figure 9: Labour Productivity Dynamics

5.3 Coordination setups and bifurcation regions

So far, we have performed a local, one at-the-time, parameter analysis. We
now move to a two-dimensional bifurcation diagram in order to detect re-
gions of the constellation parameters allowing to identify the nature of the
system with respect to a two-dimensional parameter setup. The underlying
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question we address is what are the parameter constellations, and ensu-
ing economic configurations, which allow to reach coordination patterns,
defined as phases of cumulative and increasing growth, coupled with low
degrees of fluctuations in income distribution.

Figure (10) shows the bifurcation regions where different configurations
of the two parameters determine alternative dynamic trajectories of the
system, as marked by colours. We detect a greater complexity than the origi-
nal Goodwin model, with a division of the phase portrait into three areas,
depending on the values of the elasticity of the labor market ρ (ordinate axis)
and the learning coefficient α′ (abscissa axis).

To briefly summarise, a higher elasticity to scale economies and increas-
ing returns contributes to make convergent the entire dynamics towards an
unstable focus, with ensuing effects upon the dampening of oscillations in
employment rate and wage share. This implies an exponential productivity
growth after a period of adaptation of the system to the impulse originated
by increasing returns: the time to learn effect. At the same time, wage
rigidity has a positive (and therefore dampening) effect on the oscillatory
dynamics of employment rate and wage share, with a propagation feedback
effect on labour productivity growth, through the long run KV relationship.

The two-parameter diagram allows to have a synthetic and joint look on
both dynamics.

• Red area: for low values of α′ (low dependence of the system on
scale economies) and for values of ρ relatively low (wage rigidity),
the macrodynamics of the system assumes a Goodwinian pattern, that
is, presents persistent limit cycles around the dynamic centre. The
emergence of such Goodwinian trajectories is due to low energy input
from the endogenous source of technical change. This oscillatory
dimension is found both in two- (employment rate vs wage share,
figure (1(c))) and in three-dimensional space (oscillatory loop, (1(d))).
Even with a low wage elasticity able to guarantee low fluctuations
in the limit cycles, very low values of α′ nail the system into a stage
of capitalism characterised by fragility and cyclical instability. This
proves that the parameter that induces a phase transition is α′, the
bifurcation parameter.

• Blue area: for constantly increasing values of α′ and for low values
of ρ (in some intervals of the diagram even lower than those of the
red area), there is a topological change of the macrodynamics with
the emergence of a bifurcation region. This region represents the
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combinations of wage elasticities and learning coefficients that give
birth to Hopf Bifurcations: from an oscillatory dynamics (Goodwinian
setup) to a more stable configuration that sees the phase transition
from limit cycles to an unstable focus. As a result, positive feedback
chains emerge from the interaction of low labour market elasticity (or
high labour power), greater macroeconomic stability and sustained
labour productivity growth, thanks to higher α′ values that give the
necessary stimulus to the system to grow and self-coordinate, albeit
imperfectly, over the long run, out of the oscillatory trap. Hence, a
form of coordination among labour market, income distribution and
endogenous technical change emerges as a necessary condition for this
macrodynamic regime.

• Black area: value combinations of the two parameters leading to explo-
sive trajectories and divergence from any quasi stationary point, such
as the dynamic center or the unstable focus. This area represents one
of the drawback of the model which, being based on a Lotka-Volterra
skeleton, remains characterised by an inherent structural instability.

Figure 10: Bifurcation Regions
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6 Conclusions

The scope of this work has been to study the joint interaction of three
founding elements of modern capitalism, namely endogenous technical
change, income distribution and labour markets, within a low-dimensional
nonlinear dynamic setup. By going beyond the conservative structure typical
of the predator-prey model, we inserted an endogenous source of energy, a
Kaldor-Verdoon increasing returns specification, that fed the dynamics of
the system over the long run and in that incorporated a transition to an (anti)
dissipative framework.

Our extension allows to enrich the dynamics of the Goodwin model and
to include a new element in the dynamics of modern capitalism, that is
endogenous productivity growth. Firstly, our model is able to reproduce
some typical dynamics of the Goodwin original model. For low values of
the endogenous response coefficient of labor productivity, the limit cycles
are kept. This reflects the unstable and conflicting nature of capitalism. At
the same time, by increasing the learning coefficient, there is a gradual but
constant transition towards a less oscillatory and fragile dynamics, attracted
by an unstable focus. With respect to the original framework, productivity
growth acts as a kinetic force that in the long run is able to keep together the
unstable and conflicting elements of modern capitalism.

The qualitatively dynamics and ample array of topological structures
reflect a wide range of Kaldorian stylised facts, as constant productivity
growth and constant income distribution shares (Kaldor, 1961; Boyer and
Saillard, 2005; Dosi and Virgillito, 2019). Indeed, the intensity of learning
regimes and wage sensitivity to unemployment allow to mimic some typical
traits of both Competitive and Fordist regimes of accumulation, and the
eventual transition from one configuration to another. We show the relevance
of the demand-side engine represented by the KV law, within an overall
supply-side framework typical of the Goodwin model. High degrees of
learning regimes stabilise the system and bring it out of an oscillatory trap.
Even under a low degree of learning regimes, wage rigidity is able to stabilise
the fluctuations of business cycle and to exert a positive effect on productivity
growth.

Limitations of our model include, first, the lack of one-to-one realism,
in terms of modeling dimensionality and counterpart empirical evidence,
and, second, the continuous time setting, poorly appropriate to model dis-
crete time decisions. Therefore, future advancements entail a discrete time
version of the model (Goodwin, 1990; Dosi et al., 2015), together with the
possible inclusion of a North-South gap and international trade structure,
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in order increase the dimensionality of the system and account for other
relevant patterns of modern capitalism, such as specialisation and persistent
structural asymmetries between countries/regions. Considering that some
of the Kaldor stylised facts, as the constant functional income distribution,
are loosing empirical relevance, it would be interesting to move beyond a
predator-prey setting, and possibly allowing in the model for a declining
wage share and an increasing profit share, as a result of the neoliberal turn,
modelling therefore the structural weakening of labour power over the long
run. Alternatively, the study of a counterbalancing dissipative effect acting
against the KV law, like financialization and retained profits not invested,
would be a relevant extension to include forms of rentified capitalism (Dosi
and Virgillito, 2019). Finally, the modelling of sources of inflation, extending
the model via a price equation and studying formation of wage-spiral vs
profit-spiral configurations is a further avenue of research.
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A Eigenvalues Analysis

In the following appendix, we insert the formal treatment from a mathemat-
ical point of view regarding the extension of the model in section 3.

Firstly, let us present the formal treatment of Hopf Bifurcation when
there is a three dimensional space. To deal with this specific topological
change, let us provide the following Hopf theorem for a three-dimensional
nonlinear dynamical system4.

Theorem 1 (Hopf Bifurcation) Consider the system of ordinary differential
equations on an open set U ⊆R

n,

ẋ = f (x,µ)

where x ∈ U and µ is a real parameter varying in some open interval I ⊆ R.
Suppose that for each µ there exists an equilibrium point x∗ = x∗(µ). Assume that
the Jacobian matrix of f with respect to x, evaluated at x(µ), has a pair of complex
conjugate eigenvalues, λ(µ) and λ̄(µ), which satisfy the following (transversality
conditions of the Hopf bifurcation):

ℜ[λ(µH )] = 0, ℑ[λ(µH )] , 0

dℜ[λ(µ)]
dµ

∣∣∣∣∣
µ=µH

, 0

whileℜ[γ(µH )] , 0 for any other eigenvalues γ . Then, the system has a family
of nonconstant, periodic solutions.

Let us now consider the above theorem applied to the nonlinear system
(14). Therefore, let us take into account the associated Jacobian matrix (19).
Given the three-dimensional reference system, the characteristic polynomial
associated with the Jacobian matrix has the following functional form:

λ3 + a1λ
2 + a2λ+ a3 = 0

where λ ∈ R denotes the characteristic roots and it is a scalar. Indeed,
the characteristic roots are the eigenvalues of the Jacobian matrix. Each
coefficient of the characteristic polynomial is given by:

a1 = −tr(J) = −(J11 + J22 + J33)

4This version is adopted from (Orlando et al., 2021).
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a2 =
∣∣∣∣∣J22 J23
J32 J33

∣∣∣∣∣+
∣∣∣∣∣J11 0
J31 J33

∣∣∣∣∣+
∣∣∣∣∣J11 J12

0 J22

∣∣∣∣∣ = J22 · J33 − J23 · J32 + J11 · J33 + J11 · J22

a3 = −det(J) = −

∣∣∣∣∣∣∣∣
J11 J12 J13
J21 J22 J23
J31 J32 J33

∣∣∣∣∣∣∣∣
The necessary and sufficient condition for the local stability of the fixed point
(16) is that all characteristic roots of the polynomial (i.e. the eigenvalues
of the Jacobian matrix) have negative real parts. From the Routh-Hurwitz
condition, it is equivalent to say that:

a1 > 0, a2 > 0, a3 > 0, a1 · a2 − a3 > 0

Consistent with the Hopf theorem and the results we obtain with respect
to the specific fixed points nature presented in section 3, let us now report
each individual eigenvalue analysis for each specific setup according to its
parameterization.

A.1 Low learning coefficient, α = 0.001

We start with the baseline case to which we have associated, in our interpre-
tative analysis, a low level of learning. With a low α′ value and all other
parameter values equal to the baseline of table (1), the Jacobian matrix (19)
assumes the following algebraic form:

J =

1/5980 0 0
0 −1/5980 −125/299
0 8969/50000 0



Since the associated Jacobian matrix has dimension 3x3, the relative
associated eigenvalues are three.

In matrix (A.1) it is possible to notice that the trace is equal to zero.
This in R

2 would be sufficient to affirm the presence of limit cycles around
the stationary point; however, in R

3 there might be a couple of complex
conjugated eigenvalues, of the type λk,k+1 = α ± βi.
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The eigenvalues associated with the matrix are the following three:

λ1 = 1/5980;λ2 = −(
√

10726923·1i)/11960−1/11960;λ3 = (
√

10726923·1i)/11960−1/11960

The real part of the pair of conjugated complex eigenvalues is almost
null and numerically equal to:

ℜ(λ2,3) = −1/11960 = 0,000083 =⇒ℜ(λ2,3) ≃ 0

Being the real part of the conjugated complex eigenvalues almost zero
implies that the oscillations of the trajectory of the system are stationary
over the long run and have a regular and constant amplitude. In other
words, from an economic point of view, it means that fluctuations in state
variables, such as employment rates and wage shares, are persistent and do
not appear to be decreasing. This explains the dynamics of the employment
rate and wage share in figures (1(a)) and (1(b)), just as it is possible to show
the presence of limit cycles concerning precisely the joint dynamics of these
two state variables (1(c)) to which are associated the complex and conjugated
eigenvalues with real part equal to zero.

A.2 High learning coefficient, α = 0.2

In this case we show the calculations relating to the variation of the coefficient
of KV.

First we show the Jacobian matrix related to this specific setup.

J =

1/50 0 0
0 −1/50 −1/4
0 111/625 0



We now calculate the eigenvalues associated with the matrix.

λ1 = 1/50;λ2 = 1/100 + (
√

443 · 1i)/100;λ3 = 1/100− (
√

443 · 1i)/100

The amplitude of the oscillations, as we have also in the previous case,
depends on the real part of the complex and conjugated eigenvalues. In this
case, the fact that the real part of the eigenvalues is positive tells us that
we are faced with an unstable focus, as we have shown in the figure (2(c))
regarding the joint dynamics of the employment rate and the wage share.
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A.3 Low Wage Elasticity, ρ = 0.1

In this circumstance we analyse a variation of the elasticity of real wages.
The Jacobian matrix with reference to the baseline values of the table (1) is:

J =

1/1980 0 0
0 −1/1980 −125/99
0 2969/50000 0



The associated eigenvalues are the following:

λ1 = 1/1980;λ2 = −(
√

1175723·1i)/3960−1/3960;λ3 = (
√

1175723·1i)/3960−1/3960

If we take into account the real part of the conjugated complex eigenvalue
pair, it is close to zero. Consequently this means that the oscillations of the
variables, and more generally the fluctuations of the trajectory of the system,
are persistent and constant, as it is possible to show in the figure 6(b).

ℜ(λ2,3) = 1/3960 = 0,000252 =⇒ℜ(λ2,3) ≃ 0

A.4 High Wage Elasticity, ρ = 0.5

J =

1/9980 0 0
0 −1/9980 −125/499
0 14969/50000 0


The associated eigenvalues are as follows:

λ1 = 1/9980;λ2 = −(
√

29878123·1i)/19960−1/19960;λ3 = (
√

29878123·1i)/19960−1/19960

Also in this case the real part of the couple of the conjugated complex
eigenvalues is null and this means that the fluctuations of the trajectory of
the system are persistent and constant over time. Indeed, as in the case of
the rigid labour market, we show the persistent fluctuations in the figure
6(c) where it can be noted that compared to the previous case the size of the
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closed orbits is much greater indicating a greater fragility of the economy as
a result of the process of flexibility of the labour market.

ℜ(λ2,3) = 1/19960 = 0,000050 =⇒ℜ(λ2,3) ≃ 0

B Robustness Checks

We report some robustness checks on the other parameters of the model.
Although we have proven that the parameters of relevance are α′ and ρ,
these robustness checks complete the whole parameter analysis of the sys-
tem. Table 2 shows the range of variation from the baseline setting. Below,
we report the simulations. The values chosen are such that the boundary
conditions are always satisfied, so that the state variables, especially employ-
ment rate and wage share, do not lose economic significance. For each of
the parameters of interest we perform a simulation exercise at high and low
levels of the range of variation.

Regarding the capital-output ratio σ , although analysed at its boundary
conditions, the topological nature of the system keeps assuming the original
Goodwinian patterns as shown in figure 11 in which the system is trapped
into an oscillatory loop. Regarding the rate of exogenous population growth
(see figures 12), the oscillatory and unstable à la Goodwin dynamic continues
to persist, with no effect on productivity dynamics and in general on possible
phase transitions. Finally, for the parameter γ , shown in figure 13, the
intercept of the quasi PC, starting from a floor value in the baseline scenario,
is stretched until 0.25. Even at this juncture, the oscillatory and highly
unstable nature of the macrodynamics of the system persists, with a slight
difference in the amplitude of the oscillations, now less marked than the
baseline scenario.

After carrying out this robustness analysis, we confirm that the macrody-
namic behavior à la Goodwin persists even in the above scenarios. The topo-
logical nature of the system is not unaltered in a structural way (Veneziani
and Mohun, 2006), regardless of the values assigned to the other parameters.
Therefore, the learning coefficient α

′
, actually the bifurcation parameter

of the system, is the only one governing the phase transition due to the
insertion of a non-conservative force, which causes the emergence of Hopf
bifurcations. Notably, the three parameters, rather than affecting the topolog-
ical structure, affect the path of productivity growth, which can exert both
step-wise versus smoother linear trends, vis-à-vis the alternative parameter
settings.
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Parameters of the baseline model
Parameters Baseline Value Variation Range
σ 0.4 0.27-0.61
β 1 0.75-1.5
γ 0.05 0.05-0.25

Table 2: Range of parameters variation

(a) Limit Cycle (b) Limit Cycle

(c) Dynamics in a 3D Space (d) Dynamics in a 3D Space

(e) Productivity Dynamic (f) Productivity Dynamic

Figure 11: Macrodynamics with low (0.27) and high (0.61) values of σ
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(a) Limit Cycle (b) Limit Cycle

(c) Dynamics in a 3D Space (d) Dynamics in a 3D Space

(e) Productivity Dynamic (f) Productivity Dynamic

Figure 12: Macrodynamics with low (0.75) and high (1.5) values of β
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(a) Limit Cycle (b) Limit Cycle

(c) Dynamics in a 3D Space (d) Dynamics in a 3D Space

(e) Productivity Dynamic (f) Productivity Dynamic

Figure 13: Macrodynamics with low (0.05) and high (0.25) values of γ
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