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Abstract 
Forecast combinations, also known as ensemble models, routinely require practitioners to 
select a model from a massive number of potential candidates. Ten explanatory variables can 
be grouped into 21078 forecast combinations, and the number of possibilities increases further 
to 21078+21078 if we allow for forecast combinations of forecast combinations. This paper derives 
a calculation for the effective degrees of freedom of a forecast combination under a set of 
general conditions for linear models. It also supports this calculation with simulations. The 
result allows users to perform several other computations, including the F-test and various 
information criteria. These computations are particularly useful when there are too many 
candidate models to evaluate out of sample. Furthermore, computing effective degrees of 
freedom shows that the complexity cost of a forecast combination is driven by the parameters 
in the weighting scheme and the weighted average of parameters in the auxiliary models as 
opposed to the number of auxiliary models. This identification of complexity cost contributions 
can help practitioners make informed choices about forecast combination design. 

Topics: Econometric and statistical methods  
JEL codes: C, C01, C02, C1, C13, C5, C50, C51, C52, C53 

Résumé 
Les combinaisons de prévisions, aussi appelées modèles d’ensemble, obligent régulièrement 
les praticiens à sélectionner un modèle parmi un grand nombre de modèles potentiels. Dix 
variables explicatives peuvent être groupées en 21078 combinaisons de prévisions, et le nombre 
de possibilités atteint même 21078+21078 si l’on tient compte des combinaisons de prévisions 
des combinaisons de prévisions. Dans cette étude, l’auteur s’attache à calculer les degrés de 
liberté effectifs d’une combinaison de prévisions en fonction d’un ensemble de conditions 
générales applicables aux modèles linéaires. Il conforte aussi son calcul par des simulations. Le 
résultat permet aux utilisateurs d’effectuer plusieurs autres calculs, dont le test de Fisher (test 
F) et divers critères d’information. Ces calculs sont particulièrement utiles lorsqu’il y a trop de 
modèles possibles à évaluer hors échantillon. De plus, le calcul des degrés de liberté effectifs 
montre que le coût de complexité d’une combinaison de prévisions dépend des paramètres du 
système de pondération et de la moyenne pondérée des paramètres dans les modèles 
auxiliaires, plutôt que du nombre de modèles auxiliaires. Cette détermination de la contribution 
du coût de complexité peut aider les praticiens à faire des choix éclairés pour la formation de 
combinaisons de prévisions. 

Sujets : Méthodes économétriques et statistiques 
Codes JEL : C, C01, C02, C1, C13, C5, C50, C51, C52, C53 
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Introduction: Effective degrees of freedom as a tool in model 
evaluation 
Several forecasting methods use an ensemble of multiple auxiliary forecasts combined through a 
weighting scheme to create a forecast combination. Forecast combination methodologies have a rich 
history. Some notable papers include Bates and Granger (1969), Breiman (1996), Leblanc and Tibshirani 
(1996), Stock and Watson (2004) and Hansen (2007). Originally, these methods were used to combine 
third-party forecasts. Recently, however, forecast combinations have also been considered a shrinkage 
estimator to mitigate parameter uncertainty (Hansen 2007) and a means of diversifying a forecast to 
achieve robustness to regime changes (Elliott and Timmermann 2005).  

The problem with forecast combinations is that model selection can be challenging when the number of 
candidate models is massive.1 Several papers have tried to address this problem by developing an optimal 
forecast combination design to bypass the search requirement. This has led to a fascinating literature on 
optimal forecast combinations, featuring papers such as Elliott and Timmermann (2005), Hansen (2007), 
Hsiao and Wan (2014), Claeskens et al. (2016), Samuels and Sekkel (2017) and Diebold and Shin (2019). 
However, the model selection problem has still not been resolved.  

This paper attempts to mitigate the model selection problem by estimating the degrees of freedom of a 
forecast combination. This is done in a linear model setting under broad conditions that cover a range of 
practical applications. The methodology follows the literature on effective degrees of freedom: Efron 
(2004) discusses the approach in general; Efron et al. (2004) apply it to the LARs model; Zou, Hastie and 
Tibshirani (2007) and Tibshirani and Taylor (2012) apply it to the LASSO model; Kato (2009) applies it 
to shrinkage estimation; and Mukherjee et al. (2015) apply it to reduced rank estimators.  

Calculating effective degrees of freedom allows for other computations, including the F-test and several 
information criteria.2 These measures are useful for selecting models from groups of candidate models 
that are too large to evaluate exhaustively out of sample. Additionally, this identifies the complexity 
contributions of the weighting scheme and individual auxiliary models. This allows practitioners to make 
better decisions about the design of forecast combinations.  

The first section of the paper creates a single model representation of a forecast combination, subject to 
the conditions that the auxiliary models are single equations that are linear in specification and that the 
auxiliary model weights are non-time varying, linear in specification and estimated on a balanced sample 
as a function of auxiliary model fitted values. The second section follows the literature and uses Stein’s 
unbiased risk estimate (SURE) to calculate a forecast combination’s effective degrees of freedom 
(Proposition I). We then show this to be a generalization of the result Hansen (2007) derived for fixed-
weight forecast combinations. The third section simplifies the vector derivative and identifies the effective 

 
1 Appendix 2 itemizes the number of forecast combinations that can be produced from a given set of explanatory variables. 
Equations 21 and 22 in Appendix 2 establish that 10 explanatory variables can be grouped into 21078 forecast combinations—

or 21078+21078 when we include forecast combinations of forecast combinations: 2∑ �10𝑖𝑖 �
10
𝑖𝑖=1 = 21078, and 2∑ �10𝑖𝑖 �

10
𝑖𝑖=1 +2

∑ �10𝑖𝑖 �
10
𝑖𝑖=1

=
21078+21078. 
2 In particular, effective degrees of freedom allow the computation of the Akaike information criterion, the Bayesian 
information criterion, the generalized cross-validation statistic and Mallow’s Cp statistic. 
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degrees of freedom contribution from each of a forecast combination’s components (Proposition II). The 
Proposition II result is then simplified further for practical applications, with the final term being 
approximated with its limit, resulting in equation (19). The fourth section evaluates the effectiveness of 
equation (19) using a simulation. Appendix 1 provides detailed derivations of propositions I and II. 
Appendix 2 provides a formula for the number of ways variables can be combined into forecast 
combinations. Appendix 3 details the simulation procedure. 

 

1. A single model representation of a forecast combination 
As a first step to determining effective degrees of freedom, we represent a forecast combination as a single 
model by stacking the auxiliary models and expressing the weighting scheme as a matrix. We start with 
the M underlying auxiliary models indexed by i, where i = 1, … M. Each auxiliary model has an n by 𝑝𝑝𝑚𝑚𝑖𝑖 
matrix of observations 𝑋𝑋𝑚𝑚𝑖𝑖 with 𝑝𝑝𝑚𝑚𝑖𝑖explanatory variables and a 𝑝𝑝𝑚𝑚𝑖𝑖 by 1 column vector of parameters 
�̂�𝛽𝑚𝑚𝑖𝑖. In accordance with the structure of a forecast combination, each auxiliary model is required to have 
the same n by 1 dependent variable Y. To achieve the single model representation, each auxiliary model 
must be linear in specification and must be estimated as one equation and not as a system. Across the set 
of M models, the explanatory variables may repeat, and estimation samples may differ. 

The weighting scheme is a diagonal matrix q that weights the contribution of each auxiliary model m by 
a value 𝑞𝑞𝑚𝑚𝑖𝑖. The weights in q must satisfy the conditions of being non-time varying, linear in specification 
and estimated on a balanced sample as a function of Y and the n by 1 fitted values from each of the 
auxiliary models 𝑌𝑌�𝑚𝑚𝑖𝑖.   

The forecast combination fitted values, explanatory variables and parameters are notated as 𝑌𝑌� , 𝑋𝑋 and �̂�𝛽, 
respectively, with dimensions n by 1, n by p and p by 1. Throughout the paper, the following indexing 
convention will be used: variables within an auxiliary model will be indexed with k, where k = 1,… 𝑝𝑝𝑚𝑚; 
auxiliary models themselves will be indexed with i, where i = 1,…M; the forecast combination will include 
all the variables of the auxiliary models and will be indexed with j, where j = 1,…p, such that 𝑝𝑝 =
∑ 𝑝𝑝𝑚𝑚𝑖𝑖
𝑀𝑀
𝑖𝑖=1 ; and observations will be indexed with 𝑙𝑙, where 𝑙𝑙 = 1, …𝑛𝑛. 

𝑋𝑋 =  [𝑋𝑋𝑚𝑚1 ⋯ 𝑋𝑋𝑚𝑚𝑀𝑀], with dimensions 𝑛𝑛 by 𝑝𝑝, where 𝑝𝑝 = ∑ 𝑝𝑝𝑚𝑚𝑖𝑖
𝑀𝑀
𝑖𝑖=1 .                                                 (1) 

�̂�𝛽 =  �
�̂�𝛽𝑚𝑚1
⋮

�̂�𝛽𝑚𝑚𝑀𝑀

� , with dimensions 𝑝𝑝 by 1.                                                                                                     (2) 

𝑞𝑞 =  �
𝑞𝑞𝑗𝑗=1 0 0

0 ⋱ 0
0 0 𝑞𝑞𝑗𝑗=𝑝𝑝

� is a diagonal matrix with dimensions 𝑝𝑝 by 𝑝𝑝, such that diagonal                  (3) 

values are constant within 𝑀𝑀 blocks that correspond to the blocks in 𝑋𝑋 and �̂�𝛽.  In particular, 
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�𝑞𝑞𝑗𝑗�𝑗𝑗=1

𝑗𝑗=𝑝𝑝𝑚𝑚1 = 𝑞𝑞𝑚𝑚1 , �𝑞𝑞𝑗𝑗�𝑗𝑗=𝑝𝑝𝑚𝑚1+1
𝑗𝑗=𝑝𝑝𝑚𝑚2 = 𝑞𝑞𝑚𝑚2 , … , �𝑞𝑞𝑗𝑗�𝑗𝑗=𝑝𝑝𝑚𝑚𝑀𝑀−1

𝑗𝑗=𝑝𝑝𝑚𝑚𝑀𝑀 = 𝑞𝑞𝑚𝑚𝑀𝑀  .  
 

𝑌𝑌� = 𝑋𝑋𝑞𝑞�̂�𝛽.                                                                                                                                                   (4) 

 

2. Stein’s unbiased risk estimate to calculate effective degrees of 
freedom and generalize Hanson’s result 
Estimating degrees of freedom (DF) with effective degrees of freedom (EDF) follows the common 
practice in the literature of utilizing Stein’s unbiased risk estimate (Stein 1981). The resulting EDF is 
considered interchangeable with DF for practical purposes of computing F-tests and information criteria. 
Following Efron (2004), Efron et al. (2004), Zou, Hastie and Tibshirani (2007), Kato (2009), Tibshirani 
and Taylor (2012) and Mukherjee et al. (2015), the starting point is the well-known equations (5) and (6). 
Equation (5) is a representation of Stein’s unbiased risk estimate, where 𝜎𝜎2 is the fitted residual’s variance. 
The expectation relationship in equation (5) then motivates estimating DF with EDF, where EDF is 
defined by equation (6). 

𝐷𝐷𝐷𝐷 = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌� ,𝑌𝑌 )
𝜎𝜎2

𝑛𝑛
1  = 𝐸𝐸 �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝜕𝜕𝑌𝑌

�

𝜕𝜕𝑌𝑌
��.                                                                                                     (5) 

𝐸𝐸𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝜕𝜕𝑌𝑌
�

𝜕𝜕𝑌𝑌
�.                                                                                                                                  (6) 

Branching off from the literature, we substitute the single model representation of a forecast 
combination in equation (4) into the EDF measure of equation (6), which results in equation (7):  

𝐸𝐸𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 � 𝜕𝜕
𝜕𝜕𝑌𝑌

 𝑋𝑋𝑞𝑞�̂�𝛽�.                                                                                                                         (7) 

Throughout the paper, 𝑣𝑣𝑇𝑇𝑇𝑇 is the vectorization operator, ⊗ is the Kronecker product, and 𝐼𝐼 is the identity 
matrix. Matrix derivatives of matrices will utilize the conventions presented in Magnus (2010), which are 
provided in equations (8) and (9).3  The derivative in equation (7) can be calculated using (9), which 
results in (10), where 𝐼𝐼1 is the 1 by 1 identity matrix. Equation (10) can then be simplified into (11). From 
the properties of block matrix multiplication4 and the properties of the trace operator,5 (11) can be 
rewritten as (12). Further details are in Appendix 1. 

 
3 The conventions of Magnus are provided below in equations (8) and (9), where F  is an r  by s  matrix, G  is a t  by u  
matrix, and Z  is a v  by w  matrix. 

𝐷𝐷𝑇𝑇𝑇𝑇𝐷𝐷𝑣𝑣𝑇𝑇𝐷𝐷𝐷𝐷𝑣𝑣𝑇𝑇 𝑜𝑜𝑜𝑜 𝐷𝐷(𝑍𝑍) 𝑤𝑤𝐷𝐷𝐷𝐷ℎ 𝑇𝑇𝑇𝑇𝑟𝑟𝑝𝑝𝑇𝑇𝑇𝑇𝐷𝐷 𝐷𝐷𝑜𝑜 𝑍𝑍 =  𝜕𝜕 𝐶𝐶𝑣𝑣𝑣𝑣 𝐹𝐹(𝑍𝑍)
𝜕𝜕(𝐶𝐶𝑣𝑣𝑣𝑣 𝑍𝑍)′

,𝑤𝑤ℎ𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷𝑚𝑚 𝐷𝐷(𝑍𝑍) 𝐷𝐷𝑟𝑟 𝑇𝑇 𝑜𝑜𝑓𝑓𝑛𝑛𝑇𝑇𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜 𝑚𝑚𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷𝑚𝑚 𝑍𝑍                             (8) 

𝑃𝑃𝑇𝑇𝑜𝑜𝑃𝑃𝑓𝑓𝑇𝑇𝐷𝐷 𝑇𝑇𝑓𝑓𝑙𝑙𝑇𝑇: 𝐷𝐷𝑇𝑇𝑇𝑇𝐷𝐷𝑣𝑣𝑇𝑇𝐷𝐷𝐷𝐷𝑣𝑣𝑇𝑇 𝑜𝑜𝑜𝑜 𝐷𝐷(𝑍𝑍)𝐺𝐺(𝑍𝑍) 𝑤𝑤𝐷𝐷𝐷𝐷ℎ 𝑇𝑇𝑇𝑇𝑟𝑟𝑝𝑝𝑇𝑇𝑇𝑇𝐷𝐷 𝐷𝐷𝑜𝑜 𝑍𝑍 = (𝐺𝐺′ ⊗ 𝐼𝐼𝑟𝑟)𝐷𝐷𝐷𝐷(𝑍𝑍) + (𝐼𝐼𝑢𝑢 ⊗ 𝐷𝐷)𝐷𝐷𝐺𝐺(𝑍𝑍),    

𝑤𝑤ℎ𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷𝑚𝑚𝑇𝑇𝑟𝑟 𝐷𝐷(𝑍𝑍) 𝑇𝑇𝑛𝑛𝑃𝑃 𝐺𝐺(𝑍𝑍) 𝑇𝑇𝑇𝑇𝑇𝑇 𝑜𝑜𝑓𝑓𝑛𝑛𝑇𝑇𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛𝑟𝑟 𝑜𝑜𝑜𝑜 𝑚𝑚𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷𝑚𝑚 𝑍𝑍                                                                                              (9) 
4 See chapter 2 in Harville (2008). 
5 See chapter 5 in Harville (2008). 
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𝐸𝐸𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋 ���̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌

+ (𝐼𝐼1 ⊗ 𝑞𝑞) 𝜕𝜕𝛽𝛽
�

𝜕𝜕𝑌𝑌
� �.                                                                             (10) 

𝐸𝐸𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝑞𝑞 𝜕𝜕𝛽𝛽�

𝜕𝜕𝑌𝑌
� + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋��̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�

𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌
�.                                                                              (11) 

𝐸𝐸𝐷𝐷𝐷𝐷 = ∑ 𝑞𝑞𝑚𝑚𝑖𝑖
𝑀𝑀
𝑖𝑖=1 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �

𝜕𝜕𝑌𝑌�𝑚𝑚𝑖𝑖
𝜕𝜕𝑌𝑌

� + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋��̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌
�.                                                                     (12) 

Equation (6) allows for the substitution 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �
𝜕𝜕𝑌𝑌�𝑚𝑚𝑖𝑖
𝜕𝜕𝑌𝑌

� , where 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 is the EDF of auxiliary 

model 𝑚𝑚𝑖𝑖. With the substitution, (12) becomes (13). 

 

𝑃𝑃𝑇𝑇𝑜𝑜𝑝𝑝𝑜𝑜𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐼𝐼 

Given auxiliary models that are single equations and linear in specification, and a weighting scheme that 
is non-time varying, linear in specification and estimated on a balanced sample as a function of auxiliary 
model fitted values, the effective degrees of freedom are defined by equation (13).  

𝐸𝐸𝐷𝐷𝐷𝐷 = ∑ 𝑞𝑞𝑚𝑚𝑖𝑖
𝑀𝑀
𝑖𝑖=1 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖  + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋��̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�

𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌
�.                                                                             (13) 

 

Proposition I is a solution for the effective degrees of freedom of a forecast combination. Additionally, 
Proposition I is a generalization of Hansen’s Lemma 1 (Hansen 2007), which is the first term in 
equation (13). Hansen’s Lemma 1 𝐸𝐸𝐷𝐷𝐷𝐷 = ∑ 𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀
𝑖𝑖=1 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 states that the effective degrees of freedom of 

a forecast combination with fixed weights is the weighted average of the EDFs of the individual auxiliary 
models. Proposition I generalizes this by adding a second term, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋��̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�

𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌
�, to capture the 

effective degrees of freedom associated with estimating the weighting scheme. In the case of a forecast 
combination weighting scheme with fixed weights not estimated as a function of Y, 𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌
= 0 and  

equation (13) reduces to Hansen’s Lemma 1.  

 

3. Attributing effective degrees of freedom to the components of 
a forecast combination  
Proposition I provides a solution for effective degrees of freedom of a forecast combination; however, the 
term 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋��̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�

𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌
� is awkward for most purposes. This section simplifies the term into a 

contribution from estimating the weighting scheme in a linear setting and an interaction term arising from 
estimating the weighting scheme on the fitted values of the auxiliary models that are a function of Y. 
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Using the properties of block matrices,6 equation (13) can be rewritten as equation (14), where 𝑋𝑋𝑛𝑛𝑗𝑗 is the 

n j entry of matrix X, and �̂�𝛽𝜕𝜕 is a 1 by m vector �
𝑞𝑞𝑚𝑚1
⋮

𝑞𝑞𝑚𝑚𝑀𝑀

�. Further details are in Appendix 1. Also, through 

the properties of block matrices,7 equation (14) can be rewritten as equation (15), where 𝑌𝑌�1𝑖𝑖 is a fitted 
value of the ith auxiliary model.  

𝐸𝐸𝐷𝐷𝐷𝐷 = ∑ 𝑞𝑞𝑚𝑚𝑖𝑖
𝑀𝑀
𝑖𝑖=1 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖  + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

⎝

⎛

⎣
⎢
⎢
⎡∑ 𝑋𝑋1𝑗𝑗�̂�𝛽𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝑌𝑌1

𝑃𝑃
𝑗𝑗=1 ⋯ ∑ 𝑋𝑋1𝑗𝑗�̂�𝛽𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝑌𝑌𝑛𝑛

𝑃𝑃
𝑖𝑖=1

⋮ ⋱ ⋮
∑ 𝑋𝑋𝑛𝑛𝑗𝑗�̂�𝛽𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝑌𝑌1

𝑃𝑃
𝑗𝑗=1 ⋯ ∑ 𝑋𝑋𝑛𝑛𝑗𝑗�̂�𝛽𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝑌𝑌𝑛𝑛

𝑃𝑃
𝑖𝑖=1 ⎦

⎥
⎥
⎤
 

⎠

⎞.                                    (14) 

𝐸𝐸𝐷𝐷𝐷𝐷 = ∑ 𝑞𝑞𝑚𝑚𝑖𝑖
𝑀𝑀
𝑖𝑖=1 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖  + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

⎝

⎜
⎛

⎣
⎢
⎢
⎢
⎡∑ 𝑌𝑌�1𝑖𝑖

𝜕𝜕𝜕𝜕𝑚𝑚𝑖𝑖
𝜕𝜕𝑌𝑌1

𝑀𝑀
𝑖𝑖=1 ⋯ ∑ 𝑌𝑌�1𝑖𝑖

𝜕𝜕𝜕𝜕𝑚𝑚𝑖𝑖
𝜕𝜕𝑌𝑌𝑛𝑛

𝑀𝑀
𝑖𝑖=1

⋮ ⋱ ⋮
∑ 𝑌𝑌�𝑛𝑛𝑖𝑖

𝜕𝜕𝜕𝜕𝑚𝑚𝑖𝑖
𝜕𝜕𝑌𝑌1

𝑀𝑀
𝑖𝑖=1 ⋯ ∑ 𝑌𝑌�𝑛𝑛𝑖𝑖

𝜕𝜕𝜕𝜕𝑚𝑚𝑖𝑖
𝜕𝜕𝑌𝑌𝑛𝑛

𝑀𝑀
𝑖𝑖=1 ⎦

⎥
⎥
⎥
⎤

⎠

⎟
⎞

.                                          (15) 

Equation (15) can then be rewritten as equation (16), where 𝑋𝑋𝐴𝐴 is an n by m matrix of auxiliary model 

fitted values �
𝑌𝑌�11 ⋯ 𝑌𝑌�1𝑚𝑚
⋮ ⋱ ⋮
𝑌𝑌�𝑛𝑛1 ⋯ 𝑌𝑌�𝑛𝑛𝑚𝑚

�. Using the condition that �̂�𝛽𝜕𝜕 is estimated by a single equation linear in 

specification as a function of 𝑋𝑋𝐴𝐴 results in the form �̂�𝛽𝜕𝜕 = 𝐷𝐷(𝑋𝑋𝐴𝐴)𝑌𝑌, which is non-linear with respect to Y  
because 𝑋𝑋𝐴𝐴 is a function of Y:     

𝐸𝐸𝐷𝐷𝐷𝐷 = ∑ 𝑞𝑞𝑚𝑚𝑖𝑖
𝑀𝑀
𝑖𝑖=1 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖  + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴

𝜕𝜕𝛽𝛽�𝑞𝑞
𝜕𝜕𝑌𝑌
�.                                                                                          (16) 

The derivative in equation (16) is taken using equation (9), resulting in equation (17). The effective 
degrees of freedom contribution from the weighting scheme is then represented as two 

terms: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑋𝑋𝐴𝐴𝐷𝐷(𝑋𝑋𝐴𝐴)) and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴 �(𝑌𝑌𝑇𝑇 ⊗ 𝐼𝐼𝑚𝑚) 𝜕𝜕𝐹𝐹(𝑋𝑋𝐴𝐴)
𝜕𝜕𝑌𝑌

��.  

𝐸𝐸𝐷𝐷𝐷𝐷 = ∑ 𝑞𝑞𝑚𝑚𝑖𝑖
𝑀𝑀
𝑖𝑖=1 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑋𝑋𝐴𝐴𝐷𝐷(𝑋𝑋𝐴𝐴)) + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴 �(𝑌𝑌𝑇𝑇 ⊗ 𝐼𝐼𝑚𝑚) 𝜕𝜕𝐹𝐹(𝑋𝑋𝐴𝐴)

𝜕𝜕𝑌𝑌
��.                              (17) 

Using equation (6), 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑋𝑋𝐴𝐴𝐷𝐷(𝑋𝑋𝐴𝐴)) equals 𝐸𝐸𝐷𝐷𝐷𝐷𝑤𝑤—the effective degrees of freedom of the weighting 
scheme if 𝑋𝑋𝐴𝐴 were not dependent on Y.8  The impact of 𝑋𝑋𝐴𝐴′s dependency on Y is then captured in the final 

term, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴 �(𝑌𝑌𝑇𝑇 ⊗ 𝐼𝐼𝑚𝑚) 𝜕𝜕𝐹𝐹(𝑋𝑋𝐴𝐴)
𝜕𝜕𝑌𝑌

��. 

 
6 See chapter 2 in Harville (2008). 
7 See chapter 2 in Harville (2008).  
8 For models that can be written in the linear form 𝑌𝑌� = 𝑋𝑋�̂�𝛽, where �̂�𝛽 = 𝐷𝐷(𝑋𝑋)𝑌𝑌, the effective degrees of freedom is the trace 
of the hat matrix (Hastie, Tibshirani and Friedman 2001, chapter 7). This is readily derived from equation 6 and the derivative 

of 𝑌𝑌�:  
𝜕𝜕𝑌𝑌�

𝜕𝜕𝑌𝑌
= 𝑋𝑋𝐷𝐷(𝑋𝑋).     
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Equation (17) is simplified by substituting 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑋𝑋𝐴𝐴𝐷𝐷(𝑋𝑋𝐴𝐴)) for 𝐸𝐸𝐷𝐷𝐷𝐷𝑤𝑤 and rewriting the final term as 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕�, where �̂�𝛽∆𝜕𝜕 is an 𝑚𝑚 by 𝑛𝑛 matrix expressing the change in �̂�𝛽𝜕𝜕 as a result of 𝑋𝑋𝐴𝐴 being a 
function of 𝑌𝑌. See Appendix 1 for more details.  

This results in Proposition II, where the effective degrees of freedom of a forecast combination is 
decomposed into the Hansen result ∑ 𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀
𝑖𝑖=1 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 for fixed weight combinations, plus the EDF of the 

weighting scheme in a deterministic setting 𝐸𝐸𝐷𝐷𝐷𝐷𝑤𝑤, plus an interaction term 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕� accounting for 
the dependency between 𝑋𝑋𝐴𝐴 and Y. 
 

𝑃𝑃𝑇𝑇𝑜𝑜𝑝𝑝𝑜𝑜𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐼𝐼𝐼𝐼 

Given auxiliary models that are single equations that are linear in specification, and a weighting scheme 
that is non-time varying, linear in specification and estimated on a balanced sample as a function of 
auxiliary model fitted values, the effective degrees of freedom is defined by equation (18):  

𝐸𝐸𝐷𝐷𝐷𝐷 = ∑ 𝑞𝑞𝑚𝑚𝑖𝑖
𝑀𝑀
𝑖𝑖=1 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑤𝑤 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕�.                                                                             (18) 

 
Therefore, the effective degrees of freedom of a forecast combination is the weighted average of the 
effective degrees of freedom of the individual auxiliary models, plus the effective degrees of freedom of 
the weighting scheme ignoring the dependency between 𝑋𝑋𝐴𝐴 and Y, plus an interaction term for 𝑋𝑋𝐴𝐴 and Y.  

Given the complexity of computing 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕�, it may be advantageous in many practical situations 
to approximate 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕� with is limit   lim

𝑌𝑌�′𝑠𝑠→𝑌𝑌
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕�, which is shown in Appendix 1 to be 

zero for well-behaved cases. As a result, a forecast combination’s 𝐸𝐸𝐷𝐷𝐷𝐷 can be approximated as 
equation (19):  

𝐸𝐸𝐷𝐷𝐷𝐷 ≈ ∑ 𝑞𝑞𝑚𝑚𝑖𝑖
𝑀𝑀
𝑖𝑖=1 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑤𝑤.                                                                                                           (19) 

 

4. Simulation results 
We use a Monte Carlo simulation to illustrate the performance of equation (19) as an approximation of 
the 𝐸𝐸𝐷𝐷𝐷𝐷 under different model specifications. The simulation procedure is specified in Appendix 3. 

The simulation computes the Mallow’s Cp estimate of squared forecast error and compares it to actual 
out-of-sample squared forecast errors. Mallow’s Cp is computed using both the EDF approximation of 
equation (19) and the naïve EDF measure of counting the number of estimated parameters. The simulation 
covers four forecast combination specifications:  2 auxiliary models of 2 variables each, 3 auxiliary models 
of 3 variables each, 5 auxiliary models of 5 variables each, and 10 auxiliary models of 10 variables each. 
In all cases 100 observations are used, the explanatory variables have a correlation of 0.8, the auxiliary 
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models and the weighting schemes are linear models estimated with ordinary least squares, the constraint9 
of ∑ 𝑞𝑞𝑚𝑚𝐷𝐷

𝑀𝑀
𝑖𝑖=1 = 1 is applied to the weighting scheme, and results are averaged over 100,000 repetitions.  

Simulation results are shown in Figure 1. The EDF approximation from equation (19) results in a ratio 
close to 1, indicating that the Mallow’s Cp resulting from equation (19) is a relatively accurate estimate 
of squared forecast error. The small difference from 1 may be the result of approximating 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕� 
with its limit of zero in equation (19), or the number of observations being insufficiently large for 
Mallow’s Cp. By contrast, the naive EDF measure deviates notably from 1, indicating relatively weaker 
performance. Overall, this simulation would appear to support the use of equation (19) to approximate a 
forecast combinations EDF as defined by propositions I and II. 

 

 

Conclusion 
An established literature is followed to compute the EDF of a forecast combination using Stein’s unbiased 
risk estimate. This results in Proposition I, which is shown to be a generalization of Hansen’s Lemma 1 
(Hansen 2007). Proposition I simplifies to Proposition II, which expresses the EDF of a forecast 
combination as the weighted average of the EDF of the individual auxiliary models, plus the EDF of the 
weighting scheme plus an interaction term. Given the complexity of the interaction term, which limits to 
zero, practitioners may find it advantageous to use the approximate EDF from equation (19). Simulation 
results support the effectiveness of this approach. Equation (19) provides practitioners with a simple 
calculation for the EDF of a forecast combination—simply the weighted average of the EDF of the 
auxiliary models plus the EDF of the weighting scheme.      

 
9 This is a commonly used constraint found in many applied papers, and its use is advocated in chapter 8 of Hastie, Tibshirani 
and Friedman (2001). 
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A calculation for the EDF of a forecast combination has two main applications. First, as a result of their 
design, forecast combinations tend to produce massive numbers of candidate models, as shown in 
Appendix 2. An EDF allows candidate models to be evaluated with information criteria or F-tests without 
resorting to out-of-sample forecast evaluations, which are challenging to conduct on a massive scale. 
Second, the EDF allows practitioners to see what elements of model design drive complexity cost. In 
particular, equation (19) shows that the complexity cost of a forecast combination is driven by parameters 
in the weighting scheme and the weighted average of parameters in the auxiliary models, as opposed to 
the number of auxiliary models.            
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Appendix 1: Detailed derivations of propositions I and II 
Proposition I begins with equation (6) from the literature: 

𝐸𝐸𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �
𝜕𝜕𝑌𝑌�
𝜕𝜕𝑌𝑌
� .                                                                                                                                              (6) 

Equation (4) is substituted into equation (6).  

𝐸𝐸𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �
𝜕𝜕
𝜕𝜕𝑌𝑌

 𝑋𝑋𝑞𝑞�̂�𝛽�                                                                                                                                       (7) 

Equation (7) is differentiated using equation (9).  

𝐸𝐸𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋���̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�
𝜕𝜕𝑞𝑞
𝜕𝜕𝑌𝑌

+ (𝐼𝐼1 ⊗ 𝑞𝑞)
𝜕𝜕�̂�𝛽
𝜕𝜕𝑌𝑌�

 � .                                                                                (10) 

𝐸𝐸𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝑞𝑞
𝜕𝜕�̂�𝛽
𝜕𝜕𝑌𝑌
� + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋��̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�

𝜕𝜕𝑞𝑞
𝜕𝜕𝑌𝑌�

.                                                                                 (11) 

𝐸𝐸𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝐴𝐴
𝜕𝜕�̂�𝛽
𝜕𝜕𝑌𝑌
� + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋��̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�

𝜕𝜕𝑞𝑞
𝜕𝜕𝑌𝑌�

,                                                                                (11.1) 

where 𝐴𝐴 is an 𝑛𝑛 by 𝑝𝑝 block matrix [𝑋𝑋𝑚𝑚1𝑞𝑞𝑚𝑚1 , ⋯ 𝑋𝑋𝑚𝑚𝑀𝑀𝑞𝑞𝑚𝑚𝑀𝑀] of 𝑀𝑀 blocks 𝑋𝑋𝑚𝑚𝑖𝑖𝑞𝑞𝑚𝑚𝑖𝑖  of dimension 𝑛𝑛 by 𝑝𝑝𝑚𝑚𝑖𝑖 

and where 𝑞𝑞𝑚𝑚1 , … 𝑞𝑞𝑚𝑚𝑀𝑀  are scalars. 

The matrix
𝜕𝜕�̂�𝛽
𝜕𝜕𝑌𝑌

 is a 𝑝𝑝 by 𝑛𝑛 block matrix 

⎣
⎢
⎢
⎢
⎡𝜕𝜕�̂�𝛽𝑚𝑚1

𝜕𝜕𝑌𝑌
⋮

𝜕𝜕�̂�𝛽𝑚𝑚𝑀𝑀

𝜕𝜕𝑌𝑌 ⎦
⎥
⎥
⎥
⎤

 of 𝑀𝑀 blocks 
𝜕𝜕�̂�𝛽𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌
 of dimension 𝑝𝑝𝑚𝑚𝑖𝑖  by 𝑛𝑛. 

By the properties of block multiplication, 𝐴𝐴 𝜕𝜕𝛽𝛽�

𝜕𝜕𝑌𝑌
=  ∑ 𝑞𝑞𝑚𝑚𝑖𝑖𝑋𝑋𝑚𝑚𝑖𝑖

𝑀𝑀
𝑖𝑖=1  

𝜕𝜕𝛽𝛽�𝑚𝑚𝑖𝑖
𝜕𝜕𝑌𝑌

 , 

where the scalar 𝑞𝑞𝑖𝑖 commutes to the left side of𝑋𝑋𝑚𝑚𝑖𝑖 . 

𝐸𝐸𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ��𝑞𝑞𝑚𝑚𝑖𝑖𝑋𝑋𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

 
𝜕𝜕�̂�𝛽𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌 � + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋��̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�
𝜕𝜕𝑞𝑞
𝜕𝜕𝑌𝑌�

.                                                         (11.2) 

𝐸𝐸𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ��𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝜕𝜕𝑋𝑋𝑚𝑚𝑖𝑖�̂�𝛽𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌 � + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋��̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�
𝜕𝜕𝑞𝑞
𝜕𝜕𝑌𝑌�

.                                                          (11.3) 

Using the properties of the Trace function and substituting 𝑋𝑋𝑚𝑚𝑖𝑖�̂�𝛽𝑚𝑚𝑖𝑖  𝑤𝑤𝐷𝐷𝐷𝐷ℎ 𝑌𝑌�𝑚𝑚𝑖𝑖 ,  
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𝐸𝐸𝐷𝐷𝐷𝐷 = �𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �
𝜕𝜕𝑌𝑌�𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌
� + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋��̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�

𝜕𝜕𝑞𝑞
𝜕𝜕𝑌𝑌�

.                                                                       (12) 

Substituting 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �
𝜕𝜕𝑌𝑌�𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌
�  with 𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖  𝑏𝑏y using equation (6) results in Proposition I.   

 
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐈𝐈 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏     

𝐸𝐸𝐷𝐷𝐷𝐷 = �𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖  + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋��̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝�
𝜕𝜕𝑞𝑞
𝜕𝜕𝑌𝑌�

.                                                                                    (13) 

Proposition II is derived from Proposition I.  

𝐸𝐸𝐷𝐷𝐷𝐷 = �𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖  + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝐷𝐷
𝜕𝜕𝑞𝑞
𝜕𝜕𝑌𝑌�

,                                                                                                    (13.1) 

where 𝐷𝐷 = 𝑋𝑋��̂�𝛽𝑇𝑇 ⊗ 𝐼𝐼𝑝𝑝� is an 𝑛𝑛 by 𝑝𝑝2 block matrix [𝑋𝑋�̂�𝛽1 ⋯ 𝑋𝑋�̂�𝛽𝑃𝑃], of 𝑃𝑃 blocks  𝑋𝑋�̂�𝛽𝑖𝑖  

of dimensions 𝑛𝑛 by 𝑝𝑝 with scalars �̂�𝛽1 , … , �̂�𝛽𝑝𝑝 .  

The matrix 
𝜕𝜕𝑞𝑞
𝜕𝜕𝑌𝑌

 is a 𝑝𝑝2 by 𝑛𝑛 matrix as a result of the diagonal 𝑝𝑝 by 𝑝𝑝 matrix 𝑞𝑞 being vectorized  

and differentiated using the convention articulated in equation (8). 

𝐸𝐸𝐷𝐷𝐷𝐷 = �𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖  + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝐸𝐸),                                                                                                           (13.2) 

where 𝐸𝐸 =  𝐷𝐷
𝜕𝜕𝑞𝑞
𝜕𝜕𝑌𝑌

 is an 𝑛𝑛 by 𝑛𝑛 matrix 

⎣
⎢
⎢
⎢
⎢
⎢
⎡�𝑋𝑋1𝑗𝑗�̂�𝛽𝑗𝑗

𝜕𝜕𝑞𝑞𝑗𝑗
𝜕𝜕𝑌𝑌1

𝑃𝑃

𝑗𝑗=1

⋯ �𝑋𝑋1𝑗𝑗�̂�𝛽𝑗𝑗
𝜕𝜕𝑞𝑞𝑗𝑗
𝜕𝜕𝑌𝑌𝑛𝑛

𝑃𝑃

𝑖𝑖=1
⋮ ⋱ ⋮

�𝑋𝑋𝑛𝑛𝑗𝑗�̂�𝛽𝑗𝑗
𝜕𝜕𝑞𝑞𝑗𝑗
𝜕𝜕𝑌𝑌1

𝑃𝑃

𝑗𝑗=1

⋯ �𝑋𝑋𝑛𝑛𝑗𝑗�̂�𝛽𝑗𝑗
𝜕𝜕𝑞𝑞𝑗𝑗
𝜕𝜕𝑌𝑌𝑛𝑛

𝑃𝑃

𝑖𝑖=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

                                    (13.3) 

 and 𝑋𝑋1𝑗𝑗  is the 1 𝑗𝑗 entry of matrix 𝑋𝑋. 

𝐸𝐸𝐷𝐷𝐷𝐷 = �𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

⎝

⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎢
⎡�𝑋𝑋1𝑗𝑗�̂�𝛽𝑗𝑗

𝜕𝜕𝑞𝑞𝑗𝑗
𝜕𝜕𝑌𝑌1

𝑃𝑃

𝑗𝑗=1

⋯ �𝑋𝑋1𝑗𝑗�̂�𝛽𝑗𝑗
𝜕𝜕𝑞𝑞𝑗𝑗
𝜕𝜕𝑌𝑌𝑛𝑛

𝑃𝑃

𝑖𝑖=1
⋮ ⋱ ⋮

�𝑋𝑋𝑛𝑛𝑗𝑗�̂�𝛽𝑗𝑗
𝜕𝜕𝑞𝑞𝑗𝑗
𝜕𝜕𝑌𝑌1

𝑃𝑃

𝑗𝑗=1

⋯ �𝑋𝑋𝑛𝑛𝑗𝑗�̂�𝛽𝑗𝑗
𝜕𝜕𝑞𝑞𝑗𝑗
𝜕𝜕𝑌𝑌𝑛𝑛

𝑃𝑃

𝑖𝑖=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

⎠

⎟
⎟
⎟
⎞

.                                           (14) 
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By grouping terms by underlying auxiliary models and using the fact that 
𝜕𝜕𝑞𝑞𝑗𝑗
𝜕𝜕𝑌𝑌1

 is constant    

within the sum for each auxiliary model, 

�𝑋𝑋1𝑗𝑗�̂�𝛽𝑗𝑗
𝜕𝜕𝑞𝑞𝑗𝑗
𝜕𝜕𝑌𝑌1

𝑃𝑃

𝑗𝑗=1

= ���𝑋𝑋1𝑘𝑘�̂�𝛽𝑘𝑘
𝜕𝜕𝑞𝑞𝑘𝑘
𝜕𝜕𝑌𝑌1

�

𝑝𝑝𝑚𝑚𝑖𝑖

𝑘𝑘=1  

𝑀𝑀

𝑖𝑖=1

= ���𝑋𝑋1𝑘𝑘�̂�𝛽𝑘𝑘�

𝑝𝑝𝑚𝑚𝑖𝑖

𝑘𝑘=1  

𝑀𝑀

𝑖𝑖=1

𝜕𝜕𝑞𝑞𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌1
=  �𝑌𝑌�1𝑖𝑖

𝜕𝜕𝑞𝑞𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌1  

𝑀𝑀

𝑖𝑖=1

,                                (14.1) 

where 𝑌𝑌�1𝑖𝑖  𝐷𝐷s a fitted value of the ith auxiliary model. 

𝐸𝐸 can then be restated as  

⎣
⎢
⎢
⎢
⎢
⎢
⎡�𝑌𝑌�1𝑖𝑖

𝜕𝜕𝑞𝑞𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌1

𝑀𝑀

𝑖𝑖=1

⋯ �𝑌𝑌�1𝑖𝑖
𝜕𝜕𝑞𝑞𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌𝑛𝑛

𝑀𝑀

𝑖𝑖=1
⋮ ⋱ ⋮

�𝑌𝑌�𝑛𝑛𝑖𝑖
𝜕𝜕𝑞𝑞𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌1

𝑀𝑀

𝑖𝑖=1

⋯ �𝑌𝑌�𝑛𝑛𝑖𝑖
𝜕𝜕𝑞𝑞𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌𝑛𝑛

𝑀𝑀

𝑖𝑖=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 .                                                               (14.2) 

𝐸𝐸 can then be restated as 𝐸𝐸 = 𝑋𝑋𝐴𝐴
𝜕𝜕�̂�𝛽𝜕𝜕
𝜕𝜕𝑌𝑌

,                                                                                                         (14.3) 

where 𝑋𝑋𝐴𝐴 is an 𝑛𝑛 by 𝑚𝑚 matrix of auxiliary model fitted values �
𝑌𝑌�11 ⋯ 𝑌𝑌�1𝑚𝑚
⋮ ⋱ ⋮
𝑌𝑌�𝑛𝑛1 ⋯ 𝑌𝑌�𝑛𝑛𝑚𝑚

� ,                           (14.4) 

�̂�𝛽𝜕𝜕is an 𝑚𝑚 by 1 vector of 𝑞𝑞𝑚𝑚′ 𝑟𝑟 �
𝑞𝑞𝑚𝑚1
⋮

𝑞𝑞𝑚𝑚𝑀𝑀

� ,                                                                                                            (14.5) 

𝐸𝐸𝐷𝐷𝐷𝐷 = �𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

⎝

⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎢
⎡�𝑌𝑌�1𝑖𝑖

𝜕𝜕𝑞𝑞𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌1

𝑀𝑀

𝑖𝑖=1

⋯ �𝑌𝑌�1𝑖𝑖
𝜕𝜕𝑞𝑞𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌𝑛𝑛

𝑀𝑀

𝑖𝑖=1
⋮ ⋱ ⋮

�𝑌𝑌�𝑛𝑛𝑖𝑖
𝜕𝜕𝑞𝑞𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌1

𝑀𝑀

𝑖𝑖=1

⋯ �𝑌𝑌�𝑛𝑛𝑖𝑖
𝜕𝜕𝑞𝑞𝑚𝑚𝑖𝑖

𝜕𝜕𝑌𝑌𝑛𝑛

𝑀𝑀

𝑖𝑖=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎟
⎞

, and                                            (15) 

𝐸𝐸𝐷𝐷𝐷𝐷 = �𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴
𝜕𝜕�̂�𝛽𝜕𝜕
𝜕𝜕𝑌𝑌

� .                                                                                                     (16) 

Utilizing the condition that �̂�𝛽𝜕𝜕 is estimated by a single equation linear in specification as a function 
of 𝑋𝑋𝐴𝐴 results in the form �̂�𝛽𝜕𝜕 = 𝐷𝐷(𝑋𝑋𝐴𝐴)𝑌𝑌, which allows equation (16) to be rewritten as (16.1): 

𝐸𝐸𝐷𝐷𝐷𝐷 = �𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴
𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑌𝑌 

𝜕𝜕𝑌𝑌 � .                                                                                      (16.1) 
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Equation (16.1) is differentiated using equation (9): 

𝐸𝐸𝐷𝐷𝐷𝐷 = �𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴 �(𝑌𝑌𝑇𝑇 ⊗ 𝐼𝐼𝑚𝑚)
𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)
𝜕𝜕𝑌𝑌

+ (𝐼𝐼1 ⊗ 𝐷𝐷(𝑋𝑋𝐴𝐴))𝐼𝐼𝑛𝑛�� .                             (16.2) 

This simplifies to equation (17): 

𝐸𝐸𝐷𝐷𝐷𝐷 = �𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑋𝑋𝐴𝐴𝐷𝐷(𝑋𝑋𝐴𝐴)) + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴 �(𝑌𝑌𝑇𝑇 ⊗ 𝐼𝐼𝑚𝑚)
𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)
𝜕𝜕𝑌𝑌 �� .                             (17) 

The notation for (𝑌𝑌𝑇𝑇 ⊗ 𝐼𝐼𝑚𝑚)
𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)
𝜕𝜕𝑌𝑌

 is rewritten as �̂�𝛽∆𝜕𝜕, which is an 𝑚𝑚 by 𝑛𝑛 matrix.  

�̂�𝛽∆𝜕𝜕 = �𝑌𝑌𝑇𝑇⊗ 𝐼𝐼𝑚𝑚�
𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)
𝜕𝜕𝑌𝑌 =  �

𝑌𝑌1  0  0
 0 𝑌𝑌1  0
 0  0 𝑌𝑌1

⋯
⋯
⋯

𝑌𝑌𝑛𝑛  0 0 
 0 𝑌𝑌𝑛𝑛 0 
 0  0 𝑌𝑌𝑛𝑛

�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)11

𝜕𝜕𝑌𝑌1
⋯ 𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)11

𝜕𝜕𝑌𝑌𝑛𝑛
𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)21
𝜕𝜕𝑌𝑌1

 𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)21
𝜕𝜕𝑌𝑌𝑛𝑛

⋮
𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑚𝑚1
𝜕𝜕𝑌𝑌1

𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)12
𝜕𝜕𝑌𝑌1
⋮

𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑚𝑚𝑛𝑛
𝜕𝜕𝑌𝑌1

…  
  
 
⋯

 

 
⋮

𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑚𝑚1
𝜕𝜕𝑌𝑌𝑛𝑛

𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)12
𝜕𝜕𝑌𝑌𝑛𝑛  
 ⋮

𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑚𝑚𝑛𝑛
𝜕𝜕𝑌𝑌𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 .              (17.1) 

�̂�𝛽∆𝜕𝜕 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡�

𝑌𝑌𝑙𝑙𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)1𝑙𝑙
𝜕𝜕𝑌𝑌1

𝑛𝑛

𝑙𝑙=1
⋯ �

𝑌𝑌𝑙𝑙𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)1𝑙𝑙
𝜕𝜕𝑌𝑌𝑛𝑛

𝑛𝑛

𝑙𝑙=1
⋮ ⋱ ⋮

�
𝑌𝑌𝑙𝑙𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑚𝑚𝑙𝑙

𝜕𝜕𝑌𝑌1

𝑛𝑛

𝑙𝑙=1
⋯ �

𝑌𝑌𝑙𝑙𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑚𝑚𝑙𝑙
𝜕𝜕𝑌𝑌𝑛𝑛

𝑛𝑛

𝑙𝑙=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)11

𝜕𝜕𝑌𝑌1
⋯ 𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)1𝑛𝑛

𝜕𝜕𝑌𝑌𝑛𝑛
⋮ ⋱ ⋮

𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑚𝑚1
𝜕𝜕𝑌𝑌1

⋯ 𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑚𝑚𝑛𝑛
𝜕𝜕𝑌𝑌𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎤

𝑌𝑌.                                      (17.2) 

�̂�𝛽∆𝜕𝜕 =

⎣
⎢
⎢
⎢
⎢
⎡𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)11

𝜕𝜕𝑌𝑌1
⋯ 𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)1𝑛𝑛

𝜕𝜕𝑌𝑌𝑛𝑛
⋮ ⋱ ⋮

𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑚𝑚1
𝜕𝜕𝑌𝑌1

⋯ 𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑚𝑚𝑛𝑛
𝜕𝜕𝑌𝑌𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎤

𝑌𝑌.                                                                                                                (17.3) 

As shown in (17.3), �̂�𝛽∆𝜕𝜕 is the change in 𝐷𝐷(𝑋𝑋𝐴𝐴)𝑌𝑌 resulting from 𝑋𝑋𝐴𝐴 being a function of 𝑌𝑌.  

𝐴𝐴s a result, the final term in equation (17) can be written as 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕�, resulting in Proposition II.   
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𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐈𝐈𝐈𝐈 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 

𝐸𝐸𝐷𝐷𝐷𝐷 = �𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑤𝑤 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕�.                                                                                         (18) 

Computing the limit of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕� 𝑇𝑇𝑟𝑟 𝑌𝑌�′𝑟𝑟 → 𝑌𝑌:   

As 𝑌𝑌�′𝑟𝑟 → 𝑌𝑌, the matrix 𝑋𝑋𝐴𝐴 = �
𝑌𝑌�11 ⋯ 𝑌𝑌�1𝑚𝑚
⋮ ⋱ ⋮
𝑌𝑌�𝑛𝑛1 ⋯ 𝑌𝑌�𝑛𝑛𝑚𝑚

� → �
𝑌𝑌1 ⋯ 𝑌𝑌1
⋮ ⋱ ⋮
𝑌𝑌𝑛𝑛 ⋯ 𝑌𝑌𝑛𝑛

�  .                                                           (18.1) 

As 𝑋𝑋𝐴𝐴 → �
𝑌𝑌1 ⋯ 𝑌𝑌1
⋮ ⋱ ⋮
𝑌𝑌𝑛𝑛 ⋯ 𝑌𝑌𝑛𝑛

� , the vector �̂�𝛽𝜕𝜕 = 𝐷𝐷(𝑋𝑋𝐴𝐴)𝑌𝑌 → 𝜙𝜙, where 𝜙𝜙 is a vector of length 𝑚𝑚.              (18.2) 

As �̂�𝛽𝜕𝜕 = 𝐷𝐷(𝑋𝑋𝐴𝐴)𝑌𝑌 → 𝜙𝜙, the sum ��̂�𝛽𝜕𝜕𝑖𝑖

𝑚𝑚

𝑖𝑖=1

→ 1.                                                                                               (18.3) 

As ��̂�𝛽𝜕𝜕𝑖𝑖

𝑚𝑚

𝑖𝑖=1

→ 1, any changes in the elements of �̂�𝛽𝜕𝜕 are offsetting;  therefore,  

�
𝜕𝜕�̂�𝛽𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕

𝑚𝑚

𝑖𝑖=1

→ 0 for an arbitrary 𝜕𝜕.                                                                                                                      (18.4) 

Using the substitution �̂�𝛽𝜕𝜕 = 𝐷𝐷(𝑋𝑋𝐴𝐴)𝑌𝑌, equation (18.4) can be restated as (18.5):   

�
𝜕𝜕�̂�𝛽𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕

𝑚𝑚

𝑖𝑖=1

= �
𝜕𝜕(𝐷𝐷(𝑋𝑋𝐴𝐴)𝑌𝑌)𝑖𝑖

𝜕𝜕𝜕𝜕

𝑚𝑚

𝑖𝑖=1

= �
𝜕𝜕(∑ 𝑌𝑌𝑙𝑙𝐷𝐷(𝑋𝑋𝐴𝐴)𝑖𝑖𝑙𝑙𝑛𝑛

𝑙𝑙=1 )𝑖𝑖
𝜕𝜕𝜕𝜕

𝑚𝑚

𝑖𝑖=1

→ 0 for an arbitrary 𝜕𝜕.                                    (18.5) 

Taking the derivative in equation (18.5) results in (18.6):  

�
𝜕𝜕(∑ 𝑌𝑌𝑙𝑙𝐷𝐷(𝑋𝑋𝐴𝐴)𝑖𝑖𝑙𝑙𝑛𝑛

𝑙𝑙=1 )𝑖𝑖
𝜕𝜕𝜕𝜕

𝑚𝑚

𝑖𝑖=1

= ���
𝐷𝐷(𝑋𝑋𝐴𝐴)𝑖𝑖𝑙𝑙𝜕𝜕𝑌𝑌𝑙𝑙

𝜕𝜕𝜕𝜕
+
𝑌𝑌𝑙𝑙𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑖𝑖𝑙𝑙

𝜕𝜕𝜕𝜕
�

𝑛𝑛

𝑙𝑙=1

𝑚𝑚

𝑖𝑖=1

→ 0 for an arbitrary 𝜕𝜕.                      (18.6) 

For well behaved cases,���
𝐷𝐷(𝑋𝑋𝐴𝐴)𝑖𝑖𝑙𝑙𝜕𝜕𝑌𝑌𝑙𝑙

𝜕𝜕𝜕𝜕
�

𝑛𝑛

𝑙𝑙=1

𝑚𝑚

𝑖𝑖=1

≠ −1 ���
𝑌𝑌𝑙𝑙𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑖𝑖𝑙𝑙

𝜕𝜕𝜕𝜕
�

𝑛𝑛

𝑙𝑙=1

𝑚𝑚

𝑖𝑖=1

, which results  

in equations (18.7) and (18.8): 

 ���
𝐷𝐷(𝑋𝑋𝐴𝐴)𝑖𝑖𝑙𝑙𝜕𝜕𝑌𝑌𝑙𝑙

𝜕𝜕𝜕𝜕
�

𝑛𝑛

𝑙𝑙=1

𝑚𝑚

𝑖𝑖=1

→ 0 for an arbitrary 𝜕𝜕.                                                                                              (18.7) 
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 ���
𝑌𝑌𝑙𝑙𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑖𝑖𝑙𝑙

𝜕𝜕𝜕𝜕
�

𝑛𝑛

𝑙𝑙=1

𝑚𝑚

𝑖𝑖=1

→ 0 for an arbitrary 𝜕𝜕.                                                                                              (18.8) 

Utilizing the (17.2) representation of �̂�𝛽∆𝜕𝜕 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡�

𝑌𝑌𝑙𝑙𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)1𝑙𝑙
𝜕𝜕𝑌𝑌1

𝑛𝑛

𝑙𝑙=1

⋯ �
𝑌𝑌𝑙𝑙𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)1𝑙𝑙

𝜕𝜕𝑌𝑌𝑛𝑛

𝑛𝑛

𝑙𝑙=1
⋮ ⋱ ⋮

�
𝑌𝑌𝑙𝑙𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑚𝑚𝑙𝑙

𝜕𝜕𝑌𝑌1

𝑛𝑛

𝑙𝑙=1

⋯ �
𝑌𝑌𝑙𝑙𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑚𝑚𝑙𝑙

𝜕𝜕𝑌𝑌𝑛𝑛

𝑛𝑛

𝑙𝑙=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  

together with equation (18.8) implies that in the matrix 𝛽𝛽�∆𝑞𝑞, the sum of each column → 0.  

Therefore, as  ���
𝑌𝑌𝑙𝑙𝜕𝜕𝐷𝐷(𝑋𝑋𝐴𝐴)𝑖𝑖𝑙𝑙

𝜕𝜕𝜕𝜕
�

𝑛𝑛

𝑙𝑙=1

𝑚𝑚

𝑖𝑖=1

→ 0 for an arbitrary 𝜕𝜕, �̂�𝛽∆𝜕𝜕 → 𝜆𝜆, where 𝜆𝜆 is an 𝑚𝑚 by 𝑛𝑛  

matrix with columns that sum to zero.                                                                                                        (18.9) 

Substituting 𝑋𝑋𝐴𝐴 and �̂�𝛽∆𝜕𝜕 with their respective limits from equations (18.1) and (18.9) results in 
equation (18.10):  

  lim
𝑌𝑌�′𝑠𝑠→𝑌𝑌

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕� =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ��
𝑌𝑌1 ⋯ 𝑌𝑌1
⋮ ⋱ ⋮
𝑌𝑌𝑛𝑛 ⋯ 𝑌𝑌𝑛𝑛

� 𝜆𝜆� .                                                                                (18.10) 

Given that the rows of �
𝑌𝑌1 ⋯ 𝑌𝑌1
⋮ ⋱ ⋮
𝑌𝑌𝑛𝑛 ⋯ 𝑌𝑌𝑛𝑛

�  are constant and that the columns of 𝜆𝜆 sum  

to zero, their product is an 𝑛𝑛 by 𝑛𝑛 zero matrix. 

 lim
𝑌𝑌�′𝑠𝑠→𝑌𝑌

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕� = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ��
𝑌𝑌1 ⋯ 𝑌𝑌1
⋮ ⋱ ⋮
𝑌𝑌𝑛𝑛 ⋯ 𝑌𝑌𝑛𝑛

� 𝜆𝜆� =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �
011 ⋯ 0𝑛𝑛1
⋮ ⋱ ⋮

0𝑛𝑛1 ⋯ 0𝑛𝑛𝑛𝑛
� = 0.                          (18.11) 

 lim
𝑌𝑌�′𝑠𝑠→𝑌𝑌

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕� = 0.                                                                                                                               (18.12) 

Therefore, the limit of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕� as 𝑌𝑌�′𝑟𝑟 → 𝑌𝑌 is zero for well behaved cases.  

Approximating 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕� with its limit of zero reduces equation (18) to equation (19):    

𝐸𝐸𝐷𝐷𝐷𝐷 ≈�𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑤𝑤 + lim
𝑌𝑌�′𝑠𝑠→𝑌𝑌

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑋𝑋𝐴𝐴�̂�𝛽∆𝜕𝜕�  =   �𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑤𝑤 + 0.             (18.13) 

𝐸𝐸𝐷𝐷𝐷𝐷 ≈�𝑞𝑞𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝐸𝐸𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 + 𝐸𝐸𝐷𝐷𝐷𝐷𝑤𝑤 .                                                                                                                        (19) 



   
 

15 
 

Appendix 2: Number of ways to group variables into forecast 
combinations 
To compute the number of ways 𝑣𝑣 variables can be grouped into forecast combinations, �𝑣𝑣𝐷𝐷 � provides the 

number of possible groupings of 𝑣𝑣 variables into auxiliary models of 𝐷𝐷 variables, where �𝑣𝑣𝐷𝐷 � is the 
combination operator. Equation (20) computes the total number of possible auxiliary model variable 
groupings 𝑔𝑔, where auxiliary models range in size from 1 to 𝑣𝑣 variables.  

𝑔𝑔 = ��𝑣𝑣𝐷𝐷�
𝐶𝐶

𝑖𝑖=1

.                                                                                                                                                            (20) 

Then the number of ways the auxiliary model groupings can be arranged into forecast combinations 𝑇𝑇0 is 
arrived at by computing all possible subsets of 𝑔𝑔 by putting this number to a base of 2, provided that 
forecast combinations of forecast combinations are not included. 

𝑇𝑇0 = 2𝑔𝑔.                                                                                                                                                                     (21) 

To allow for a single generation of forecast combinations of forecast combinations, the initial set is 
increased from 𝑔𝑔 elements to 𝑔𝑔 + 𝑇𝑇0 elements, and the total of all possible subsets is 𝑇𝑇1. 

𝑇𝑇1 = 2𝑔𝑔+𝑣𝑣0 .                                                                                                                                                               (22) 

  

Appendix 3: Simulation procedure for section 4 
The simulation procedure for section 4 is itemized below. 

Step 1: Randomly generate 𝑝𝑝 correlated explanatory variables 𝑚𝑚𝑖𝑖 , where 𝐷𝐷 = 1, … 𝑝𝑝, such that each 𝑚𝑚𝑖𝑖 has 
100 observations drawn from a mean 0 variance 1 normal distribution, with a correlation of 0.8 across 
𝑚𝑚𝑖𝑖′𝑟𝑟.  

Step 2: Randomly generate the dependent variable as 𝑦𝑦 = 1
𝑝𝑝
𝑚𝑚1 + ⋯+ 1

𝑝𝑝
𝑚𝑚𝑝𝑝 + 𝜀𝜀,  where 𝜀𝜀 is randomly 

generated noise from a mean 0 variance 1 normal distribution.  

Step 3: Repeat steps 1 and 2 for the four cases 𝑝𝑝 = 4, 9, 25, 100. 

Step 4: Using observations 1 to 99, estimate a forecast combination model of 𝑦𝑦 for each of the four cases 
of 𝑝𝑝, where the auxiliary models are estimated with ordinary least squares of the forms provided below 
and the weighting scheme is estimated with ordinary least squares under the constraint ∑ 𝑞𝑞𝑚𝑚𝐷𝐷

𝑀𝑀
𝑖𝑖=1 = 1:   

• for 𝑝𝑝 = 4, two auxiliary models of two variables each 𝑦𝑦� = �̂�𝛽0 + �̂�𝛽1𝑚𝑚1 + �̂�𝛽2𝑚𝑚2 
• for 𝑝𝑝 = 9, three auxiliary models of three variables each 𝑦𝑦� = �̂�𝛽0 + �̂�𝛽1𝑚𝑚1 + ⋯+ �̂�𝛽3𝑚𝑚3 
• for 𝑝𝑝 = 25, five auxiliary models of five variables each 𝑦𝑦� = �̂�𝛽0 + �̂�𝛽1𝑚𝑚1 + ⋯+ �̂�𝛽5𝑚𝑚5 
• for 𝑝𝑝 = 100, ten auxiliary models of ten variables each 𝑦𝑦� = �̂�𝛽0 + �̂�𝛽1𝑚𝑚1 + ⋯+ �̂�𝛽10𝑚𝑚10 
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Step 5: Using Mallows’ 𝐶𝐶𝑝𝑝 formula,10 𝐶𝐶𝑝𝑝 = 𝑇𝑇𝑇𝑇𝑇𝑇����� + 2 𝐷𝐷𝐹𝐹
𝑛𝑛
𝜎𝜎�𝜀𝜀2 , where 𝐶𝐶𝑝𝑝 is the 𝐶𝐶𝑝𝑝 statistic, 𝑇𝑇𝑇𝑇𝑇𝑇����� is the training 

error, 𝜎𝜎�𝜀𝜀2 is the noise variance. For each of the four cases, compute two estimates of the out-of-sample 
mean squared forecast error using DF = equation 19 and 𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑜𝑜𝑓𝑓𝑛𝑛𝐷𝐷 𝑜𝑜𝑜𝑜 𝑇𝑇𝑟𝑟𝐷𝐷𝐷𝐷𝑚𝑚𝑇𝑇𝐷𝐷𝑇𝑇𝑃𝑃 𝑝𝑝𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑇𝑇𝐷𝐷𝑇𝑇𝑇𝑇𝑟𝑟. For 
both estimates, set 𝜎𝜎�𝜀𝜀2 equal to its true value of 1. 

Step 6: For each of the four cases, use the models from step 4 estimated on observations 1 to 99 and the 
100th observation of the 𝑚𝑚𝑖𝑖′𝑟𝑟, generate out of sample forecasts for the 100th observation of 𝑦𝑦, and calculate 
the out-of-sample squared forecast error. 

Step 7: Repeat steps 1 to 6 100,000 times and compare the average performance of the two estimates from 
step 5 with true out-of-sample squared forecast errors resulting from step 6. 

 

  

 
10 Hastie, Tibshirani and Friedman (2001, chapter 7) discuss using this formula to estimate out-of-sample mean squared 
forecast errors.  
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