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Abstract: This paper estimates the effects of a subway expansion on labor market outcomes in 
Santiago, Chile. First, we estimate these effects through a reduced-form analysis. We find changes in 
work locations and wages consistent with a reduction in firms' labor market power in areas where the 
subway expanded. We then lay out a model with labor market oligopsonies to calculate the welfare gains 
from the subway expansion. The model allows decomposition of welfare gains into i) efficiency gains 
from improved worker-firm matching and ii) gains from reducing labor misallocation due to labor 
market power. We analyze the distributional implications of the subway expansion. We find that 
workers benefit as firms see reduced profits. In a model with labor market power these welfare gains are 
larger than in a competitive model.
Keywords: transit infrastructure, labor market power, spatial misallocation, quantitative spatial 
economics
JEL Classification: J44, R12, R42

Resumen: En este trabajo se estiman los efectos de una expansión del metro en el mercado laboral de 
Santiago, Chile. Primero, estos efectos se estiman utilizando un análisis de forma reducida. Se 
encuentran cambios en las ubicaciones de los trabajos y en los salarios, consistentes con una reducción 
del poder de mercado laboral de las empresas en las áreas donde el metro se expandió. Se presenta un 
modelo con oligopsonios en el mercado laboral para calcular las ganancias de bienestar derivadas de la 
expansión del metro. El modelo permite descomponer las ganancias de bienestar en: i) ganancias de 
eficiencia por un mejor emparejamiento entre trabajadores y firmas; y ii) ganancias de reducir la 
ineficiencia asignativa del trabajo que se origina por el poder de mercado. Se analizan las implicaciones 
distributivas de la expansión del metro. Se encuentra que los trabajadores se benefician mientras que las 
firmas ven reducidas sus ganancias. En un modelo con poder de mercado estas ganancias de bienestar 
son mayores que en un modelo competitivo.
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1 Introduction

Urban transit infrastructure projects involve large capital investments, but it is challenging to
measure their benefits. How much of the change in neighborhoods targeted by infrastructure
expansions is a causal effect on incumbents rather than a change in the neighborhood’s worker
composition? Beyond direct efficiency gains from reduced commuting costs, are there indi-
rect benefits from reduced labor market power now that workers can substitute more easily
between jobs? The lack of individual-level panel data when most subway networks around
the world were built has posed a challenge when investigating these aspects. This paper aims
to answer these questions. We use a unique employer-employee dataset from Santiago, Chile,
that allows us to track workers over time. We circumvent the principal challenge faced by
the urban economics literature that has assessed the effect of transit infrastructure on wages:
worker sorting vs. efficiency gains.1

First, we test if transit infrastructure gives workers better job opportunities and more bar-
gaining power due to the improved access to labor markets in the city. We compare areas
affected by the network expansion to those not affected through a panel event-study leverag-
ing the opening of 84 new subway stations. By combining administrative data on monthly
earnings from an unemployment insurance database and data on each worker’s residence lo-
cation and each firm’s business location, we obtain reduced-form estimates of the effects of
improving market access on wages and work locations. Because we include worker and firm
fixed effects in our event-study regressions, we estimate the impacts of infrastructure net of
any sorting caused by the treatment.

Second, we build a quantitative spatial equilibrium model in which workers commute and
firms exert labor market power over workers. The model serves two purposes: One, it allows
us to disentangle the channels behind the reduced-form estimates, and two, it provides a
tool to quantify the infrastructure expansion’s effect on aggregate welfare and market power.
The model is based on Monte et al. (2018) and Berger et al. (2022) that uses the framework
from Atkeson and Burstein (2008) to model the market structure. Its main assumption is that
firms behave as oligopsonies in the labor market.2 Using the model estimates, we quantify

1The challenge faced by previous work in the urban economics literature is similar to the one faced by the lit-
erature that has aimed to understand the gap in labor productivity between the agricultural and non-agricultural
sector in low-income countries, that is, whether differences can be explained by sorting of more productive peo-
ple to cities or whether cities increase productivity. In this literature, estimates with individual panel data lead
to substantially different policy conclusions. For instance, Hicks et al. (2017) shows that including individual
fixed effects reduces the estimated urban - rural productivity gaps by as much as 92%.

2The assumption of oligopsonies is similar to assuming different Nash-Bargaining parameters in search
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the economic impact of transit improvements considering two channels. First, we measure
the efficiency gains from the infrastructure expansion, accounting for the direct benefits of
reducing commuting costs and the indirect effects of changing labor market power. Second,
we measure the effects on the welfare distribution between firms and workers. The aggregate
impact of the infrastructure expansion on firms’ labor market power can go in either direction.
On the one hand, as labor market integration increases, more competition among firms for
workers reduces labor market power. On the other hand, larger firms may become bigger, and
some firms may exit the market, increasing the wage-setting ability of the most productive
firms.

Our reduced-form estimates reveal four facts that motivate our model: 1) After the sub-
way network expands to connect an additional district, workers who experience an improve-
ment in market access commute longer distances and earn higher wages. 2) After the subway
network expands to a district, even workers who live in that district and do not switch jobs
start earning more. 3) After the subway network expands to a district, firms in that district
start hiring workers from farther away. 4) Expansions of the subway network lead earnings
to converge across space. Specifically, firms start paying workers wages closer to the average
of their sector-education-age group after the subway connects the district where the firm is.

The convergence of earnings across space that we find in fact number 4 suggests that there
is heterogeneity in the firm’s responses to infrastructure that we find in fact number 3. Firms
with little access to workers were paying higher wages to attract them. After being connected,
these firms can pay lower wages closer to the city average. In contrast, firms that had access
to many workers who were unconnected to other places could pay lower wages and now have
to increase them to bring them closer to the city average. The wage equalization we observe is
equivalent to the convergence of tradeable-goods prices after trade costs decrease. Moreover,
it suggests differentiation of jobs by commuting costs, as theorized by job differentiation
models like in Card et al. (2018), which leads to labor market power. Therefore, the previous
facts imply that there are potential winners and losers of a city’s labor market integration, and
that a model is needed to assess the overall gains. The facts also indicate that incorporating
labor market power is important to rationalize the gains seen by workers who do not switch
jobs and to account for the differentiation of jobs due to commuting costs.

Our model with oligopsonistic firms incorporates this firm heterogeneity. The model’s
main predictions on the welfare impact of new infrastructure depend on two structural pa-

models (Manning, 2021).
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rameters: the labor supply elasticity across sectors and the commuting supply elasticity spe-
cific to firms. First, we describe the model’s limit cases and show that the data conforms to
its main predictions. Then, we estimate the model’s key parameters. Last, we simulate an
infrastructure expansion and show that the welfare gains from reducing commuting costs are
significantly larger when accounting for imperfect labor markets.

Our paper relates to three different strands of the literature. First, it complements the
urban economics literature that analyzes the impact of transit infrastructure. Second, it relates
to the literature that has studied the causes and consequences of spatial mismatch. Third, it
follows a growing literature in labor and macroeconomics analyzing the implications of labor
market power.

This paper is closely related to the literature measuring the impact of transportation in-
frastructure on economic activity. Part of this literature has studied the integration of different
regions through railroads, highways, and administrative unification (Alder, 2016; Bartelme,
2015; Donaldson, 2018; Donaldson and Hornbeck, 2016; Faber, 2014; Redding and Sturm,
2008). Other papers have studied property prices and population in cities as a response to
various transportation infrastructure improvements (Baum-Snow, 2007; Baum-Snow et al.,
2017; Billings, 2011; Gibbons and Machin, 2005; Glaeser et al., 2008; Gonzalez-Navarro
and Turner, 2018; Gupta et al., 2022; Tsivanidis, 2018; Zárate, 2020). For example, Tsivani-
dis (2018) measures the welfare gains from Bogotá’s bus rapid transit system using rich data
at the census tract level. He shows that when considering general equilibrium effects and re-
allocation, welfare gains are 20-40% larger than usual estimates based on time savings alone.
Our paper contributes to this literature in two ways. First, we use linked employer-employee
data, which allows us to obtain more credible reduced-form estimates. Second, we incorpo-
rate labor market power into a quantitative spatial equilibrium model, allowing us to analyze
the welfare gains from infrastructure-induced labor market power changes.

The paper also contributes to the spatial mismatch literature. This strand of work started
with Kain (1968), who argued that low black employment in U.S. cities was partially due
to residential segregation. Hsieh and Moretti (2019) estimate that mismatch across cities in
the U.S. due to housing constraints lowered population growth by 36% between 1964 and
2009. On the other hand, other papers suggest that local mismatch does not significantly
affect employment (Hellerstein et al., 2008; Marinescu and Rathelot, 2018). Closer to the
Chilean context, Meneses et al. (2021) studies how the subway network in Santiago expanded
educational choices for students, and Carrera and Rojas (2023) finds that having access to the
network reduced the harmful effects of displacement to the outskirts from camps near the city
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center. Our paper uses a shock to commuting costs to test the importance of mismatch in a
city. We find that mismatch plays a role in work decisions, as workers change work locations
and earn more when labor market access expands.

Last, we also build on the growing labor market power literature, which has received in-
creasing attention in the last decade (Amodio and de Roux, 2023; Azar et al., 2019, 2020a;
Berger et al., 2022; Bhaskar et al., 2002; Dube et al., 2020; Felix, 2021; Lamadon et al., 2022;
Naidu et al., 2016; Staiger et al., 2010; Tortarolo and Zarate, 2020; Yeh et al., 2022). We con-
tribute to this literature by quantifying responses to additional labor market integration in a
city. Our findings on reduced labor market power due to transportation infrastructure expan-
sion are consistent with those of Brooks et al. (2021), who find reduced labor markdowns
after an infrastructure expansion in India that may facilitate migration.

The rest of the paper is structured as follows. Section 2 narrates the process behind the
subway expansion, Section 3 describes the different data sources used. Section 4 presents
the reduced-form empirical strategy and results, section 5 lays out the model, and section 6
concludes.

2 Context about Santiago’s Subway Expansion

Santiago is Chile’s capital. With a population of 5.6 million, it is home to 30% of the coun-
try’s inhabitants. Like many other Latin American cities, it has a central business district
(CBD), and other than for a few high-income suburbs, income tends to fall as one moves
away from the CBD. Connecting people from the peripheries to jobs downtown has been the
main advertised reason behind the creation of new subway lines, since the initial project was
devised in 1968. That year, President Eduardo Frei Montalva signed a decree to begin con-
structing a subway network in Santiago. Figure 1 shows the master plan that was approved,
which included five lines covering a large part of Santiago. The first line was inaugurated in
1975, stretching from East to West. Construction continued during the ’80s and ’90s, and by
2000, the network had three lines, shown in Figure 2, panel (a). The network had 52 stations,
covering 40 km, and transported almost 1 million passengers daily. Our analysis starts after
this, so the network’s extent up to this point is our baseline.

President Ricardo Lagos took office in March 2000 and quickly expressed his intent to
expand the subway network. His first announcements were on the short extensions of two
existing lines. Then, in 2001, he announced the next expansion. After a lobbying campaign
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from the majors of Santiago’s two most populated districts (Puente Alto and Maipú) in the
southeast and southwest areas of the city (Cooperativa, 2001), the President announced the
construction of Line 4 connecting the downtown and the southeast. Between 2004 and 2006,
the extensions to the previous lines and line 4 were inaugurated, extending the network over
70 km. Figure 2, panel (b) shows the network after this construction wave. We refer to this
expansion the first wave.

The government announced the second expansion wave in 2005. It included a sizable
extension of one of the existing lines to serve the previous contender district, Maipú, in the
southeast. The other extension was shorter and aimed at reaching the East of the city, an
affluent area where many people work. The stations’ opening took place between 2010 and
2011. Figure 2 panel (c) shows the layout of the extended network.

The third and most recent expansion announcement occurred in October 2010. New Lines
3 and 6 opened in 2017 in 2019, serving the north and the west of the city. Figure 2 panel (d)
shows the network’s current state. After the three expansion waves, the network has grown
from 52 to 136 stations, 40 to 140 km, and now carries over 2.5 million passengers daily.
Figure 3, panel (a) shows the current location of the subway stations in the city’s districts.

Our primary analysis pools the results of the first and second expansion waves in a stag-
gered adoption framework. Nevertheless, the impacts of each expansion wave may show
some differences because of other transit system changes that happened over time. The most
important of these changes was the creation of Transantiago, an upgraded bus system, in
2007, soon after the first expansion wave ended. Transantiago introduced several changes
to the bus system. First, it reduced the number of firms competing in the city’s bus system.
Second, it changed bus drivers’ payment schemes. Last, it integrated bus and metro fares to
make the Metro the backbone of the transit system.3 Transantiago’s creation should make
the impact of the first expansion larger than that of other waves. However, the launch of
Transantiago was problematic (Muñoz and Gschwender, 2008), with initial years of low fre-
quency, crowded buses, and overall longer travel times. The initial failure of Transantiago
suggests that travel times might not have decreased despite the subway line expansions. In

3Transantiago was a high-profile project that completely changed the logic and functioning of Santiago’s
public transit system. The previous system consisted of 8000 buses (serving 380 routes) owned by competing
firms which, on average, owned two buses each (Muñoz and Gschwender, 2008). Such fragmentation meant
long bus routes and on-street competition between buses. Because drivers received a share of collected fares,
they frequently skipped less busy stops. They also did not comply with student fares (30% of the adult fare).
Transantiago reduced the number of bus firms to 10, each operating in an area with buses that fed into main
“trunk lines” and the Metro. The bus and metro fares were integrated and allowed multiple transitions within
90 minutes, and drivers were not paid based on the fares collected.
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the appendix, we show results by wave to see if the effects of the first expansion wave are
different.

3 Data

Data sources. We use data from three sources. Our primary data source is an 8% sample of
the Unemployment Insurance Database (UID), an employer-employee dataset with monthly
earnings for all private sector formal employees starting in October 2002. It also has informa-
tion on each worker’s date of birth, gender, education, district of residence, and each firm’s
sector and the district where it is registered.4

Table 1 shows descriptive statistics on workers from the UID from a cross-section of
September 2012. We can see that average monthly earnings at this time were USD 1,406.5

This figure underestimates average earnings since earnings are top-coded at USD 4,860. Only
14% of workers work in their residence district and almost 50% work in firms in one of the
three districts with the most jobs. We refer to these three districts as “Downtown” from now
on. About 15% of workers have a college degree (2-year technical or 5-year university).
Despite this low percentage, the younger cohorts have more educational attainment.

Our second data sources are the 2001 and 2012 Origin-Destination Surveys (OD surveys
from now on). These surveys collect the exact coordinates of origin and destination, time,
purpose, and transportation mode for thousands of trips in Chile’s Metropolitan Region. They
are representative at the district level. We restrict our analysis to the 38 districts included in
the 2001 OD Survey. Since the surveys’ purpose is to characterize commuting in Santiago,
the included districts should represent an adequate sample to study the effects of the subway
expansion. Figure 3, panel (a), shows the 38 districts and the current subway network. Figure
3 panel (b) maps all the origin points of trips from both surveys, which we use in Section 4.

Our third dataset contains the coordinates of each subway station, along with their open-
ing date.

Commuting statistics and infrastructure effects. Table 3 shows statistics on commut-

4In terms of variance of our estimates, there would be limited gains from accessing the full sample, since we
cluster standard errors at the district level. Reassuringly, 60% of firms in Chile are categorized as small-medium
(up to 4 million USD in annual sales), and these make up 70% of employment. These firms are less likely to be
multi-establishment. Additionally, our analysis is focused on the city of Santiago, so even if a firm has multiple
establishments across Chile, if they have only one in Santiago, we’ll capture that single establishment.

5Using September 2012 pesos, converted to USD at 486 pesos per dollar
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ing and its evolution between 2001 and 2012. Between these years, commutes increased
in time and distance, and they exhibit large differences across districts. The share of pub-
lic transportation trips increased only slightly, but as expected, subway usage increased by
200%. By 2012 half of all commutes were through the subway in some districts. This in-
crease in subway use is partly due to the expansions, but it could also be due to the change in
the bus system detailed in the previous section.

If the subway expansion affected the labor market, it should have reduced commuting
times. We use the 2001 and 2012 Origin Destination Surveys to evaluate this. Table 2 shows
trip-level regressions of commuting time on a “treated” dummy. This dummy equals one if
the district or zone where the trip started saw a reduction of its average distance to the closest
subway station larger than 50%, controlling for distance to work.6 Column 1 analyzes these
effects at the district level, defining treatment by the district of origin and using ‘district
of origin-district of destination’ fixed effects. Column 2 replicates the analysis at the zone
level, dividing Santiago into approximately 400 rectangular zones. Both regressions compare
similar trips in 2001 and 2012 and examine how a change in the distance to subway stations
affected commuting times, controlling for distance and overall increases in commuting time.
We see that in both specifications, trips from places that received better access to the subway
network experienced a 6% reduction in commuting times relative to places which did not.
These results are unsurprising yet fundamental to believe that the expansion of the subway
network could have affected the labor market. We explore the labor market effects in the next
section.

4 Reduced-form Evidence

4.1 Empirical Strategy

We first present reduced-form evidence on the subway expansion’s impact on affected work-
ers and firms. Thanks to the UID, we can control for worker fixed effects in our estimations,
avoiding the problem of worker sorting present in most previous attempts at estimating the
effects of transit infrastructure.

We first combine the 2001 and 2012 OD surveys to have a representative sample of work

6Appendix Table A.1 performs a similar analysis but using the distance of the trip origins and destinations
as a continuous variable.
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trips from each district. We take the origin coordinates of these trips, shown in Figure 3,
panel (b), and calculate the distance to the closest subway station that has been opened so
far for each month. We then take a district-level average of these distances for each month,
obtaining an average minimum distance to the subway for each month, a measure of access
to the subway network. We consider the month with the largest percentage reduction in the
average minimum distance as the event period for each district. This choice allows us to
assign a treatment month even for the neighboring districts of districts where subway stations
opened. For districts that did have a station opening, this choice aligns the treatment date with
the month when the station opened, or, if there was more than one station opening within the
district, with the opening date of the most central station within the district. For simplicity
of exposition and precision of our estimates, we group all 198 months in our sample into
groups of 6 months, and therefore the semester in which the event month is in is the event
semester.7 All thirty-eight districts experience some reduction in distance to the subway
between 2002 and today, with different intensities. Figure 4 shows which the treated districts
and the average reduction in the distance for three of the event-semesters and overall.

We estimate the following specification relating outcomes to the subway expansion:

yidt = α +β−5−T−5−
dt × Id +

8

∑
k=−4

βkT k
dt × Id +β9+T 9+

dt × Id +λi +δt + εidt , (4.1)

where yidt is the outcome of worker i, who lives in district d, in month t. The coefficients λi

are worker fixed effects, and δt are month fixed effects. The variables T k
dt are district-level

event-time dummies, which range from 4 semesters prior to 8 semesters after each event. We
exclude the semester prior to the semester of the event to have it as the baseline. Following
the literature on panel event study estimation (Freyaldenhoven et al., 2021; Schmidheiny and
Siegloch, 2023), we bin the event-time dummies beyond this range in T−5−

dt and T 9+
dt , and

estimate β−5− and β9+ but do not present them in the results. Each event-time dummy is
interacted with Id , which is the percentage reduction in the average minimum distance to the
subway that took place in the event.8 This scales each event by the intensity of its treatment,
and the interpretation of each coefficient is the effect of a 100% reduction in the distance to

7Although we refer to them as semesters, they are not calendar semesters because the sample does not begin
in January 2002.

8We define Id = max
t
{MDd,t−MDd,t−1

MDd,t−1
}, where MDd,t is the average minimum distance to the subway network

from district d in month t.
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the subway. Last, we allow for correlation in the error terms εidt within each district.

Recent work has highlighted the problems that event-study designs have in the presence
of dynamic and heterogeneous treatment effects (Borusyak and Jaravel, 2017; Sun and Abra-
ham, 2021). Suppose the first wave of expansions (2004-2006) caused a change in trend in
an outcome rather than a jump in levels. In that case, this could lead to an implicit estimation
of a negative effect on the subsequent waves (because districts treated in the first wave act as
controls when estimating the effects for the other waves), leading to a miss-estimated zero
effect. To deal with this, we estimate equation (4.1) interacting all event-time dummies and
month fixed effects with a wave categorical variable. This interaction means we estimate the
effects separately (but in the same regression to estimate covariances between coefficients)
for each wave. We then average the effects across waves, weighting by the share of workers
affected by each wave. Since the third wave happened late in our sample, we excluded it from
our analysis. Another advantage of estimating the effect separately for each wave is that we
only exploit variation in timing within each wave. Using only within-wave variation reduces
endogeneity concerns if the timing of openings within each wave is orthogonal to the trends
in the outcome variables.

4.2 Results

We summarize the reduced-form evidence into four main facts that serve as motivation for
our model. Recall that the event-study coefficients are the effect of a 100% decrease in the
distance to a subway station. The weighted average reduction of distance in our sample is
42%. Therefore, for the discussion, we scale the coefficients by 0.42 to represent the effect
for the average worker:

Fact 1: After the subway network expanded to a district, workers who lived in that district

started working farther away and earning more.

To measure the effect on the distance to work, we calculate the average commuting time
by public transportation between districts using the 2001 OD survey, so they are measured
before the subway expansion and should only be interpreted as distance. A positive effect
of infrastructure expansion on these travel times implies that workers started commuting to
districts further away –as measured by pre-expansion travel time–, but does not necessar-
ily imply commuting time increases. Alternatively, we measure the distance to work as the
euclidean distance between the centroids of worker’s residence district and the firm’s regis-
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tration district. We use the average distance inside each district for workers who work in the
same district where they live.

Figure 5, panel (a) shows the coefficients estimated in equation (4.1) using the log of
this pre-expansion travel time to work as the outcome. We do not see statistically significant
pre-trends, and we find a persistent increase of almost 1% in this outcome. Panel (b) looks
at the effects on the distance to work. Even though this measure of distance is coarse, we
see similar results. Both of these measures are very noisy since we only see a change in the
outcome for a worker if they switch jobs to an entirely different district. The dynamic effect
in both panels is not surprising since not all workers search for jobs each period. As natural
turnover happens, more workers in affected districts start considering jobs further away, and
the average distance to work in the district starts increasing. These effects suggest that the
subway expansion did influence workplace decisions.

Figure 6, panel (a) shows the effect on log monthly earnings. Workers’ earnings increase
slightly over 1% four years after the subway expansion. Including worker fixed effects allows
us to rule out the possibility of this effect arising from higher-earnings workers moving to
the affected districts. One way to interpret these results is that some workers could have
taken higher-paying jobs before the subway expansion, but did not due to high commuting
costs. With the new infrastructure reducing these costs, workers can now take those jobs and
experience higher earnings.

Fact 2: After the subway expands to a district, workers who lived in that district and did

not switch jobs started earning more.

The results in Figure 6, panel(a), and Figure 5 show that workers affected by the infras-
tructure expansion start earning more and that this effect may be coming from changes in
worker’s place of work. Nevertheless, we expect that workers who do not change their place
of work should benefit from the infrastructure expansion. Since commuting costs have de-
creased, job location becomes less of a differentiating factor across jobs, which would imply
a decrease in the labor market power of firms according to models of job differentiation such
as Card et al. (2018). Recent work by Caldwell and Harmon (2019) suggests that an increase
in the value of outside options can be enough to cause an increase in earnings without the
worker having to change jobs. Both of these previous papers suggest that reducing commut-
ing times could increase earnings for workers who do not change jobs.

To test this prediction, we estimate equation (4.1) with worker-firm fixed effects instead
of worker fixed effects. In practice, this specification estimates the changes in earnings for
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“stayers” since it exploits changes in earnings within each worker-firm pair. Panel (b) in
Figure 6 shows the results. We see a similar effect as the ones in panel (a), although the point
estimates are slightly smaller. These results are consistent with wage effects from reduced
labor market power.

There may be alternative explanations for these wage increases not associated with the
changes in outside options from reduced commuting costs. For example, the infrastructure
expansion may have induced changes in the local labor supply and the composition of the
labor force. To the extent that the expanded infrastructure increased the labor supply of
high-productivity workers, wages could increase. The reduced commuting and trade costs
could also boost agglomeration externalities, increasing earnings. Last, the infrastructure ex-
pansion may stimulate local economic activity at station construction sites, boosting local
wages. While we can distinguish between these mechanisms in the model, we only attempt
to rule them out in the reduced-form analysis. Figure 7 presents estimates that include both
worker-firm fixed effects and district-of-firm-sector-month fixed effects. This model com-
pares stayers who work in the same district and sector but experience subway expansions at
different times in their district of residence. We see an effect of a similar magnitude to Figure
6, panel (b). If changes in wages were because of a shift in the labor supply curve, we would
expect wages for all workers in a district-sector cell to change, instead of only the wages of
those who experienced an increase in connectivity to other jobs. Moreover, if the effects came
from local economic activity changes or agglomeration effects, we would expect to see them
for all the workers in the same district of work and sector, and not only for those workers
whose commuting costs decreased.

Another alternative explanation is that reduced commuting times either increased the pro-
ductivity or hours of work of stayers. Both of these could translate into higher earnings. To
test this hypothesis, we split the sample into two: residence-workplace pairs with high com-
muting time reductions, and residence-workplace pairs with low commuting time reductions.
We do not have data on commuting times after the subway expansion, so we simulate the
commuting time reductions using the network analysis tool in ArcMap. We fix a residence
district and simulate the commuting time reduction to all other districts when the residence
district receives a subway expansion. We then assign the residence-workplace pairs with
below-median simulated commuting time reduction to the low-reduction sample and the rest
to the high-reduction sample. We repeat this process for every residence district. To validate
that our sample split based on simulated commuting time reductions is meaningful, we es-
timate the effect of the subway expansion on the probability of working in a district in the
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high-reduction sample. Figure 8, panel (a) shows the results. After the subway expands to
a district, workers are more likely to start working in high-reduction districts. This result
suggests that our sample split properly selects the most and least affected location pairs.

We then estimate the event study with worker-firm fixed effects for the low-reduction
sample. If the effect came from workers who experience a sizable reduction in commuting
time to their jobs (who should be in the high-reduction sample), we should expect smaller or
null effects. Figure 8, panel (b) shows that this is not the case, suggesting that the reduction
in commuting times to their current job is not what is driving the results for stayers.

Fact 3: After the subway network expands to a district, firms in that district start hiring

from further away.

We estimate a modified version of equation (4.1), including firm fixed effects and defining
the event using the distance to the subway in the firms’ districts. Figure 9, panel (a), shows
that firms start employing workers from further away after the event. Four years after their
access to subways improves, firms are employing workers who, on average, live 3% further
away than before the subway arrived in their district.

Figure 9, Panel (b) looks at the effects on how much firms pay their workers. The esti-
mates on the effect on average wages at the firm level are noisy and the confidence intervals
are wide. We cannot rule out positive or negative effects of around 2%.

Fact 4: Earnings converge across space.

If firms face upward-sloping labor supply curves, we might expect disconnected firms
with little access to nearby workers to decrease wages after being connected, while discon-
nected firms with access to plenty of nearby workers to increase wages after being connected.
They should both converge toward the ’market wage’. To test this, we compute the average
earnings for each sector-education-age group every month, and take each worker’s monthly
earnings difference with this group average.9 We estimate equation (4.1) on the log of the
absolute value of that difference, which represents the gap with the ’market wage’. Figure 10
shows that the gap is reduced by approximately 4% two years after the subway arrives at a
firm’s district.

9We divide education in four categories: no high school, high school, tertiary technical degree, and tertiary
university degree. We classify age in 5-year bins.
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4.3 Robustness

Time Aggregation: To have a better visualization of the pre-trends, Appendix Figures A.1 -
A.4 show the main results aggregating months in groups of 3 instead of 6. Our results display
the same patterns as the main results using 6-month aggregations.

Stacked difference-in-differences: There could still be the concern that within-wave, we are
using early-treated districts as controls for later-treated ones, a problem highlighted by Sun
and Abraham (2021). To address this, we re-estimate the effects using a stacked difference-
in-differences specification. For each wave, we consider districts with a treatment intensity
below 30% as “pure” controls. Then, we estimate event studies for each treatment cohort
against the corresponding controls and aggregate the results according to the number of work-
ers in each regression.10 This estimation compares districts treated with high intensity vs. low
intensity and not districts with similar treatment intensity but differences in treatment timing.
With this specification, we can control for differential pre-trends in the regressions on earn-
ings by estimating pre-treatment trends for each treatment-cohort and partialling them out of
the full panel, as suggested in Bhuller et al. (2013); Goodman-Bacon (2021a,b). This spec-
ification has 13 treated districts and five controls in the first wave, and six treated districts
and four controls in the second wave. Appendix Figures A.5 - A.7 show the main results
from this estimation. These alternative specifications are quite noisy, but they are qualita-
tively similar to the main specifications, suggesting that our results are not being driven by
early-treated districts serving as controls for later-treated districts, which can lead to mis-
leading results when there are heterogeneous treatment effects, as highlighted by the recent
differences-in-differences literature.

Using another region as a control: Another possible concern with our main estimates is
the possibility of spillovers across space. The districts we use as controls are likely to be
benefiting from the subway expansion as well. For example, a new subway line might not
reduce the minimum distance from a particular district to the subway. However, it may still
create a faster route to a specific part of the city from that district, reducing commuting
times for some workers. With such spillovers, our primary regression may underestimate the
benefits of receiving access to the subway network.

To tackle this concern, we compare the districts in Santiago to 33 districts from the Bio

10In practice, we generate a dataset for each comparison, stack the datasets, and then estimate an event-study
regression interacting the worker fixed effects and the month fixed effects with dummy variables by dataset.
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Bio region, where Concepción, Chile’s third largest city, is located.11 We estimate event
studies for each treatment cohort against all control districts. Then, we aggregate the re-
sults from each cohort according to the share of workers in each, interacting the treatment
intensities with the event-time dummies and partialling out pre-treatment linear trends on the
earnings regressions. Unfortunately, we do not have travel times between districts for any
region outside of Santiago; therefore, we can only look at the Euclidean distance between
districts.

Figures 12 - 14 shows the results from this analysis. The regression with worker fixed
effects and the regression with worker-firm fixed effects both show effects that are larger than
those from the within-Santiago analysis. These results suggest that the main analysis may
underestimate the effects of the infrastructure expansion due to spillover effects.

Randomization inference: We cluster standard errors at the district level in the main anal-
ysis. With a small number of districts, our hypotheses test may not have the correct size
Bertrand et al. (2004); Cameron and Miller (2015). For robustness, we probe the main results
using randomization inference. We take the 38 districts, randomize the 38 timing-intensity
pairs across them, and estimate the same specification on log wages. Figure 11 shows the
results. Following Abadie et al. (2010), we square each coefficient and compute the average
squared coefficient pre and post-event. Finally, we calculate the ratio between this post and
pre measures. The actual estimates have the 3rd largest ratio out of 60 permutations, putting
them in the top 5%. This position means that if the treatment were meaningless, there would
be less than a 5 percent chance of seeing a trend break of the magnitude we are seeing.

Overall, our reduced-form results are pretty intuitive. A reduction in commuting costs
appears to integrate labor markets, leading to new worker-firm matches and the convergence
of earnings across space. When workers gain access to the subway network, they are more
likely to take a job further away, at a higher wage because these locations may be more
productive than the locations nearby. On the other hand, our results also suggest that even
workers who do not switch jobs obtain earnings gains, which do not result from by higher
productivity or working more hours. Different mechanisms that can explain this result: such
as larger agglomeration forces or changes in the bargaining power of firms and workers. In
addition, our complementary analysis suggests that there are spillover effects. To disentangle
these channels and to be able to estimate the overall welfare gains of transit infrastructure,
we develop a model of oligopsonistic firms that considers all these mechanisms in the next

11Valparaíso, Chile’s second-largest city, also built new railway stations during the analysis period, and there-
fore is not an ideal control.
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section.

5 Model

This section develops a quantitative spatial equilibrium model with oligopsonistic labor mar-
kets. The model has two objectives. First, it provides a framework to explain the economic
forces driving the reduced-form results. Second, it allows us to compute the welfare effects
of transit improvements through different margins in the labor market. We focus on the effect
on wages and rent-sharing parameters between firms and workers. We split the welfare ef-
fects of infrastructure expansion into i) the efficiency gains of transit improvements through
improved matching between firms and workers and ii) the gains from reduced factor misal-
location across firms. We also use the model to measure how the new infrastructure modifies
the distribution of surpluses between firms and workers due to the changes in labor market
power.12

5.1 Labor supply

There is a set of locations I within a closed city, S sectors and F firms where F =

∪sFs and Fs represents the set of firms in each sector. Workers allocate their wages, net of
commuting costs, towards consumption at a price P and housing at a price ri. Consumption
prices do not vary across the city, but housing prices depend on location. The utility of a
worker ω who lives in i, works in location j, sector s, and firm f is:

Uωi js f = uiεωi j( f )s( f ) f

(
Cω

α

)α( Hω

1−α

)1−α

,

where Cω is a consumption aggregator, and Hω is the amount of housing. The parameter
1−α represents the expenditure share in housing, ui is an amenity parameter, and the variable
εωi j( f )s( f ) is an idiosyncratic shock. Given the preferences, indirect utility is given by:

Vωi js f =
uiw j( f )s( f ) f d−1

i j( f )εωi j( f )s( f ) f

Pαr1−α

i
. (5.1)

12The model can be easily extended for different types of workers and to allow migration across locations
within the city that, for now, we have assumed fixed.
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Here, the wages w js( f ) f are wages paid per efficiency unit. The parameters di j ≥ 1 are ice-
berg commuting costs and represent the decrease in efficiency units of labor from commuting.
We assume that the idiosyncratic shock εωi j( f )s( f ) f affects efficiency units and comes from a
Nested Fréchet distribution with two nests: sector and firm. Conditional on this shock, each
agent makes two decisions: the sector to work in and the firm within each sector-location.
Letting ε denote the vector of all the shocks εωi j( f )s( f ) f , the CDF distribution of ε follows an
extreme value type II (Fréchet) distribution and is given by:

H(ε) = exp

−∑
s

Bis( f )

(
∑

f
B j( f )s( f )ε

−β

i j( f )s( f ) f

) κ

β

 , with κ ≤ β (5.2)

where the parameters β and κ capture the shocks’ dispersion in each nest.13 These parameters
capture how substitutable jobs are in the two nests. The parameter β represents how easy it is
for workers to substitute jobs across firms within each sector, and the parameter κ measures
how easy it is to substitute between jobs across sectors.14 On the other hand, the parameters
Bis( f ) and B j( f )s( f ) are scale parameters that capture amenity or productivity shocks in sector
s and firm f . For simplicity, we assume that there is no migration within the city.15

Given the properties of the Fréchet distribution, following McFadden (1978) that the share
of workers that are living in i, who decide to work in firm f from sector s at district j is:

λi j( f )s( f ) f =
BisW κ

is

∑s′ Bis′W κ

is′︸ ︷︷ ︸
Prob. of working in sector s

B j( f )s( f ) f wβ

js( f ) f d−β

i j

∑ f ′∈Fs B j′( f ′)s′( f ′)w
β

j′( f ′)s′( f ′) f ′d
−β

i j′( f ′)︸ ︷︷ ︸
Prob of working in j f conditional on working in s

, (5.3)

where Wis ≡
(

∑ f B j( f )s( f )w
β

j( f )s( f )d
−β

i j

) 1
β is a wage index for each combination of sector and

residence location. It also represents the expected wage conditional on choosing a sector to
work in each location i. To simplify the notation, we drop the dependency of j and s on the
firm index f from now on.

13We fix these parameters for both nests, but we could also assume that these parameters vary within each
nest as in Zárate (2020).

14We will show that this parameter also governs the labor supply elasticity when firm when firms behave like
oligopsonies in the labor market.

15To incorporate migration we could add a nest that depends on a migration elasticity parameter.
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5.2 Labor demand

We assume a wage posting model as in Card et al. (2018), where firms post wages per effi-
ciency unit and workers decide where to provide labor depending on the idiosyncratic shock
and commuting costs. However, while Card et al. (2018) assume a monopsonistic market
structure, we follow Berger et al. (2022) assuming an oligopsonistic market structure.16 Al-
though it would be hard to provide evidence for this assumption from our current dataset
because we do not observe evidence of strategic interactions, the literature has shown that
this may be the case in several labor markets. Work from Staiger et al. (2010) showed strate-
gic interaction in the nurses’ labor market, and recent work by Arnold (2019) shows evidence
of these interactions in the US.

We assume that there are several potential entrants M js into each sector and location that
draw their productivity from a Pareto distribution G(A). The production function for each
firm f in j,s is:

Y js f = A js f Lγ , 0 < γ < 1. (5.4)

Here A js f is a productivity parameter specific to each firm f that operates in location j

and sector s.17 The parameter γ represents decreasing returns to labor. To simplify things, we
will assume that all firms produce a homogeneous good, and there are no trade costs within
the city, meaning the good is freely tradeable. This assumption implies that the price index
for the consumption aggregator does not vary across locations. We normalize the price of this
good to 1. Then, the firm f ’s problem is:

max
w

π js f = Y js f −w js f L js f , (5.5)

where L js f = ∑i Li js f . Each firm posts a wage, assuming it affects wages in the entire city but
only within each sector s.18 Maximizing profits, we obtain that the wage posted by firm f is:

16Berger et al. (2022) follow Atkeson and Burstein (2008) and Edmond et al. (2015) and assume this market
structure to have a tractable framework to analyze market power responses.

17We are abstracting from external economies of scale, which the urban literature has shown to be important.
This simplification is because we want to identify the pro-competitive effects of transit improvements on labor
market power in the model.

18An analogous assumption is that there is a continuum of sectors.
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w js f =

(
ε js f

1+ ε js f

)
MRPL js f . (5.6)

This equation means that the wage of each firm is a function of the labor supply elasticity
(LSE) and the marginal revenue product of labor. The LSE varies across firms:

ε js f = ∑
i

θi js f
[
λi js f |sκ +(1−λi js f |s)β

]
, (5.7)

where θi js f corresponds to the share of workers from firm f that live in i. This parameter cor-
responds to a rent-sharing parameter that captures how firms and workers share the marginal
revenue product of labor. On the other hand, the parameter λi js f |s represents the share of
workers from location i who work in firm f , conditional on working in sector s. The share of
the MRPL that is given to the worker is ε js f

1+ε js f
.

We compare our model with that of Berger et al. (2022) to ease interpretation. In our case,
residence locations i represent different local labor markets. All firms compete for workers
in each market, and LSE each firm faces is a linear combination of the elasticities from each
market. For instance, notice that the model replicates the case of Berger et al. (2022) when
di j → ∞ for all i ̸= j, or the case in which the local labor market is the entire city and di j = 1
for all i, j ∈ I . We now proceed to analyze extreme cases.

5.3 Extreme Cases

In this section, we analyze market power and the effects of reducing commuting costs –as
expected from the subway expansion– under extreme case such as β → ∞, di j = 1 ∀i, j; and
di j → ∞∀i ̸= j.

Lemma 1: Assume that firm f ′ has higher productivity than firm f ′′ within sector s and

location j, A js f ′ > A js f ′′ . Then firm f ′ has more labor market power than firm f ′′ in each

local labor market i.

The result follows from the fact that in each local labor market i, more productive firms
within each sector s and location j have a higher share of workers, that is, λi js f ′|s > λi js f ′′|s.

For all local labor markets i, ∂εi js f
∂λi js f |s

≤ 0 given the assumption that κ ≤ β . On the other hand,
it is easy to show that all firms within the same j,s have the same share of workers living in i

θi js f for all local labor markets i since this parameter is only a function of commuting costs.
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Combining these two results, we obtain that more productive firms face lower LSEs than less
productive firms and, as a consequence, exert more labor market power.

Lemma 2: If there is more than one firm in sector s and β → ∞, firms do not have labor

market power, and the model behaves as a model of perfect competition.

This result follows from Card et al. (2018). If there is more than one firm in sector s, given
that firms are differentiated, in each local labor market i, firm f has a share of workers lower
than one. Then the LSE εi js f goes to infinity, implying that the markdown goes to 1. Thus,
in this case, the model replicates the perfectly competitive equilibrium in the labor market.

Lemma 3: In the case in which di j → ∞ firms only operate in the local labor market in which

i = j and exert the highest level of market power.

This result follows from the fact that firm f will have the largest labor share λi js f |s when
i = j. Then, the lowest LSE is obtained when θ js f = 1 which is exactly the case in which
di j → ∞. Because there is a one-to-one correspondence between the LSE and the markdown,
firm f exerts the highest level of market power in this case.

Lemma 4: With a fixed number of firms, reductions in commuting costs di j decrease labor

market power for all firms.

This result is a consequence of the previous lemmas. There are two effects. On the one
hand, the increase in commuting costs di j reduces λi js f and θi js f in the locations in which
firms have more market power because some workers of local labor market i reallocate to
other areas of the city. On the other hand, there is an increase in λi′ js f and ωi′ js f in the local
labor markets i′ in which firms have less market power. Combining the two results, we obtain
an increase in the LSE ε js f , and labor market power for all firms decreases.

In the next section, we look at welfare in the model in equilibrium and decompose this
welfare into components attributed to different model mechanisms.

5.4 Welfare Decomposition

From the properties of the extreme value type II shocks, the average wage or workers’ welfare
in each location i is given by:

Wi =

(
∑
s

W κ
is

) 1
κ
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Following Holmes et al. (2014) and Asturias et al. (2019), we can decompose the welfare
in each location i using the following formula:

Ui = W PC
i︸︷︷︸

Efficiency term

× MDi︸︷︷︸
Average Markdown

×
(

Wi

W PC
i MDi

)
︸ ︷︷ ︸

Allocative efficiency

, (5.8)

where W PC
i is the wage index in location i under perfect competition, MDi is a term that cap-

tures the average markdown of workers from location i face, and Wi is the wage index if firms
behave as oligopsonies. Then, the first term captures the direct effects of the infrastructure.
In particular, this term captures how much the improvements reduce the spatial mismatch
between firms and workers. The second term captures the aggregate effect on market power;
on average, the change of market power at the aggregate level. Finally, the third term cap-
tures the misallocation channel, which corresponds to whether the infrastructure reduces the
dispersion of market power across establishments leading to higher or lower efficiency gains.

5.5 Key Predictions in the Data

There are some key predictions from the model that we can test in the data.

First of all, one of the key features of our model is the functional form of the LSE to the
firm, which we repeat for convenience:

ε js f = ∑
i

θi js f
[
λi js f |sκ +(1−λi js f |s)β

]
.

It is a standard result that the markdown on wages is higher when the LSE to the firm
is low. Our model, through the incorporation of multiple labor markets and oligopsonistic
competition between firms, provides a specific conjecture on what this elasticity depends on:
the shares θi js f and λi js f |s. Recall that θi js f is the share of workers within firm f who live in
location i, and λi js f |s is share of workers from location i who work in firm f , conditional on
working in sector s. Intuitively, a firm that hires from many different labor markets will have
a higher LSE than a firm that employs a larger share of a specific labor market since those
workers represent a larger share of the firm’s employment.

We test if the model-implied labor supply elasticity is associated with lower markdowns,
as measured by higher wages after controlling for firm fixed effects. To calculate the model-
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implied elasticity, we fix κ = 1.5 and β = 7 following previous estimations of these param-
eters in the literature.19 We then regress monthly earnings on the model-implied LSE, con-
trolling for firm size, firm fixed effects, and month fixed effects. Table 4, column 1, shows
the results. It shows that a more elastic LSE is associated with higher wages within the same
firm. Column 2 uses worker fixed effects instead of firm fixed effects. It shows that the same
worker earns more in a firm with a higher LSE, controlling for firm size.

Another way to test this model prediction is to use a decomposition a la Abowd et al.
(1999). This way, we obtain a firm effect for each firm, net of worker and time effects. These
firm effects can represent higher productivity but also higher rent-sharing. The first column
of table 5 presents the results of a regression (employment weighted) relating the firm fixed
effects on the LSE, controlling for a fixed effect for the average firm size (in bins of 5). With
this set of controls, this specification compares firms of the same size but with a different
average composition of workers. We see that firms with a more elastic LSE have larger firm
effects, consistent with having less labor market power and sharing a larger share of profits.

The model predicts that reducing commuting costs should decrease the labor market
power of firms and the cross-sectional dispersion of markdowns because of wage conver-
gence across space. Columns 2 and 3 of Table 5 test this prediction. Both columns show
the results of a regression identical to column 1, but after estimating two separate AKM
models. Column 2 uses wages and firm effects from an AKM model estimated using data
from 2002-2006, and column 3 uses wages and firm effects from 2012-2016. We see that in
the 2002-2006 period, before most of the new subway expansions happened, LSE correlates
strongly with the firm effects. However, the relationship was no longer statistically signifi-
cant during 2012-2016. This change in the relationship is consistent with the change in the
distribution of LSEs across firms over time. In 02-06, the average LSE (weighted by employ-
ment) was 6.83, with a 0.35 standard deviation and an interquartile range of 6.86-6.99. In
12-16, the average LSE was 6.88, with a standard deviation of 0.28 and an interquartile range
of 6.9-6.99. Therefore, the reduced correlation between LSE and wages in the 12-16 period
may be due to considerably less variation in LSEs. The lower dispersion of LSEs after the
subway expansion is consistent with the model’s predictions.

Last, Figure 15 shows the correlation between firm size and the firm fixed effects in both
periods. In 02-06, the relationship is flatter, consistent with more labor market power. Larger
firms do not pay higher wages (net of worker characteristics). In the 12-16 period, we see a

19See Zárate (2020) and Galle et al. (2023) for κ and Kline et al. (2019) for β .
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steeper relationship between firm size and firm effects, consistent with a smaller markdown
and a higher pass-through of the firms’ rents to workers’ wages.

5.6 Model Quantification

In this section, we quantify and analyze the welfare implications of reducing commuting costs
across the different locations within Santiago. Using our model, we find that: i) there is an
important reduction in labor market power and ii) the welfare implications of transit improve-
ments are larger when we take into account the effect of market power in the labor market.
For instance, welfare increases between 20%-50% relative to models with no heterogeneous
labor market power across firms such as Tsivanidis (2018) and Ahlfeldt et al. (2015). We
also show that workers gain more after the transit shock in detriment of firm owners. These
results are robust to different values of the main parameters.

5.6.1 Model Inversion

We invert the model to recover amenity and productivity parameters. Specifically, with data
on wages, the number of workers in each firm, and the number of residents in each location,
we can solve the labor supply and labor demand to recover the scale parameters.

Amenity parameters: We recover firm amenity parameters using the total number of work-
ers that work in each firm. Conditional on working in sector s, and using data on wages, we
match the number of workers in firm f with the labor supply and recover the amenity param-
eters. Let Ldata

js f be the share of workers from sector s that work on firm f . From equation
(5.3), this share must equal:

Ldata
js f = ∑

i

B js f wβ

js f d−β

i j

∑ f ′∈F B j′( f ′)s′( f ′) f wβ

j′s′( f ′) f d−β

i j′
.

This equation has a unique solution for the vector of amenity parameters B js f . After
knowing these scale parameters we construct the wage indices for each sector and residence

location, Wis =
(

∑ f∈Fs B js f wβ

js f di j−β

) 1
β . Then we can match a sector amenity parameter

specific to each residence location. Let Ldata
is be the share of workers in location i who work

in sector s. We solve the following system of equations for the amenity parameters Bis:
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Ldata
is =

BisW κ
is

∑s′ Bis′W κ

is′
.

These amenity parameters represent labor supply shifts that are not explained by the wage
indices.20

Productivity parameters: We follow a similar procedure to recover the productivity param-
eters using the labor demand. In particular, we match the number of workers in the data with
the ones implied by the model. First, given the parameters κ and β and the shares of workers
in each firm, we can use equation (5.7) to calculate the labor supply elasticities. Then, given a
value of γ , we find the productivity parameters by solving the following system of equations:

LData
js f =

[
γ

(
ε js f

1+ ε js f

)
A js f

w js f

] 1
1−γ

.

After knowing the scale parameters, we can simulate counterfactual scenarios of transit
infrastructure expansions by varying the iceberg commuting cost parameters di j in the model.

5.6.2 Calibration of Commuting Costs

To calibrate the commuting costs, we follow the standard method from Ahlfeldt et al. (2015).
In particular, we parametrize the iceberg commuting costs as a function of travel times using
the following equation:

di j = exp(δ ti j),

where δ is a parameter that transforms travel times into commuting costs and ti j is the travel
time from location i to location j. For δ , we use a value of 0.01, a standard value used in
the literature (Ahlfeldt et al., 2015). To calculate travel times across locations, we randomly
sample 1000 points in the city. We then calculate the distance between every two points using
the network analysis tool in ArcMap. We then average the travel times over location pairs to
estimate ti j. To simulate counterfactual scenarios with the subway expansion, we calculate
these travel times before and after the subway expansion.21

20In both equations the parameters are only identified up to a constant (Ahlfeldt et al., 2015), so we need to
normalize one of the scale parameters B js f and Bis.

21We take a weighted average across the different transportation modes. Using this average implicitly as-
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5.7 Estimation of the Main Parameters

To adjust the model to the data, we need to estimate two main parameters that determine labor
supply elasticities and the effects of transit improvements on labor market power. These two
parameters are β , which captures how easy it is for workers to substitute jobs across firms
in the city, and κ , which captures how easy it is to substitute sectors within each residential
area.

To estimate β , we use the method of moments. Following Ahlfeldt et al. (2015), we
set β to match the standard deviation of the log wage distribution in the pre-period. The
reason behind using this moment is that β determines the cross-sectional variance of wages
across firms and places. As β increases, because of the Fréchet distribution assumption,
the dispersion of the idiosyncratic shock is lower. As a result, the wage dispersion across
establishments is also lower. To estimate the variation in wages that is coming from the
model we proceed in three different steps. First, we estimate a gravity equation for different
transportation modes regressing commuting flows with travel times in each location:

lnλi jm = µti jm + γi j + γim + γ jm,

where λi jm is the population share in location i that commute to location j using transportation
mode m, and ti jm is the travel time from location i to location j using mode m. The coefficient
of interest is µ , and to include the zeros, we estimate the gravity equation through PPML.
The parameter µ measures how sensitive are commuting flows to changes in travel times, and
it captures two different terms. First, the commuting elasticity β that captures how easy is to
substitute jobs across firms in the city, and a second parameter δ that transforms travel times
to commuting costs di j = exp(δ ti j). When we invert the model, we just need to know µ to
recover an adjusted wage distribution that we use to calculate the standard deviation of the
log wage distribution predicted by the model. In particular, using the employment measure
in each sector, we can recover an adjusted measure ω by solving the following equation:

LData
js f = ∑

i

B js f ω js f exp(−µti j)

∑ f ′∈F B j′( f ′)s′( f ′) f ω j′s′ f ′ exp(−µti j)
,

Once we recover the adjusted wage distribution ω , we minimize the following moment con-
dition:

sumes that the preferences for transportation modes follow a Cobb-Douglas structure.
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Table 6 reports the coefficients of the gravity equation. Overall, we find a value of µ of
around 0.035. Figures 16 and 17 plot the moment condition for different values of β and
κ . Overall, we find a labor supply elasticity across establishments of around 8.2, which is
consistent with the findings from Berger et al. (2022) and Felix (2021).

For the second parameter, we use the structure of the model. We assume that the model
holds at two points in time to obtain model-implied equations in time differences. First, note
that from equation (5.3), the share of workers working in sector s conditional that they live in
location i is:

λis|i =
BisW κ

is

∑s′ Bis′W κ

is′
.

Taking logs on both sides and a first difference across time, we get:

∆ lnλis|i = κ∆ lnWis +∆ lnBis. (5.10)

This equation can be estimated by linear regression of λis|i on lnWis to obtain an estimate
of κ . The term ∆Bis is a structural residual that captures changes in the amenity parameter Bis

–which captures how attractive a sector is for workers in a given residential location– over
time. Because we do not observe the amenity parameters, and their change in time may be
correlated with wages, we estimate (5.10) by instrumental variables. We use the following
moment condition:

E [∆Bis ·∆Zis] = 0,

where Zis corresponds to an instrument that is uncorrelated with the error term of equation
5.10. We obtain different estimates of κ from two different instruments.

First, we build an instrument at the sector level using a leave-out mean of the wage bill in
location i. In particular, for each sector s and location i, our first instrument ∆Zis corresponds
to:
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∆Zis = log

(
∑

f∈s, j ̸=i
w j( f )s( f ) f ,2016L j( f )s( f ) f ,2016

)
−log

(
∑

f∈s, j ̸=i
w j( f )s( f ) f ,2004L j( f )s( f ) f ,2004

)
,

(5.11)

where f indexes firms. The idea of this shock is to capture changes in productivity level in
sector s that affect the wage index Wis but are uncorrelated with the error term, in particular,
amenities. The exclusion restriction implies that changes in the wage bill within the same
sector of other locations only affect the sector decision of workers through the wage index.

In the presence of spatial correlation of this wage bill shock across locations, the in-
strument would not satisfy the exclusion restriction. For an alternative estimate, we build a
second instrument using the wage bill of the same sector but in the Bio-Bio region outside of
Santiago. In particular, the second instrument ∆Zist corresponds to:

∆Zis = log

(
∑
f∈s

wBio,s( f ) f ,2016LBio,s( f ) f ,2016

)
−

(
∑
f∈s

wBio,s( f ) f ,2004LBio,( f )s( f ) f ,2004

)
,

(5.12)

where the location index Bio represents the Bio-Bio region. The identification assumption is
that, on average, changes in the wage bill in sector s in the Bio-Bio region capture only pro-
ductivity shocks that are uncorrelated with changes in the amenities in location i in Santiago.

Table 7 presents the results of our regressions to estimate κ . Panel A reports the results
for the leave-out mean instrument and Panel B using the wage bill in the Bio-Bio region.
The odd columns presents the results of the reduced form and the even columns of the first-
stage. Since the instruments are productivity shocks by sector, we cannot include sector fixed
effects in these estimations, but we include location fixed effects to capture specific trends.
We find that both the employment shares at the sector level and the wage index are positively
correlated with productivity shocks. We find a value of κ –which measures the labor supply
elasticity across sectors– between 2.2 and 2.7. This parameter goes in line with some of the
findings of the literature. For example, Galle et al. (2023), and Zárate (2020) find a labor
supply elasticity across sectors of 2 for the US and Mexico City. The value is slightly larger
than the one found by Berger et al. (2022) that analyzes the effect of labor market power in
the US on local labor markets.

For the other parameters, we use values from the literature. Table 8 shows the values we
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use for the counterfactuals.

5.8 Counterfactual Results

Welfare Analysis: First, we analyze the welfare effects of the subway expansion. Figure 18
presents the main results. In panel (a), we plot the distribution of markdowns before and after
the shock to study markdown heterogeneity, which is the main determinant of the effect on
welfare (Hsieh and Klenow, 2009). In panel (b), we plot the welfare effects under perfect
competition and consider markdown responses for different values of β holding κ fixed at
3. In general, the counterfactuals imply that the subway expansion generated welfare gains
between 2% and 7% of real income, depending on the parameter values. The welfare gains
increase when we consider markdown responses. For example, in the case of β = 8, our
preferred value, the welfare gains increased by around 55%. Under perfect competition, the
welfare gains are 1.9%, but when we consider markdown responses, the welfare gains are
3.1%. This increase is higher as the difference between κ and β grows. This amplification
in the welfare gains occurs because dispersion of markdowns decreases with the subway
expansion. In panel (a), in the pre-period, the markdowns’ standard deviation was 2.44%,
while in the post-period, it was 2.40%.

Distributional Effects: Figure 19 plots the main effects in terms of redistribution between
firms and workers. In panel (a), we plot the effect on the average markdown for different
values of β . The markdown coefficient increases between 2% with a β = 5 to 10% with a β =

10. Increases in the markdown coefficient imply higher wages and lower markdown levels.
The reduction in markdowns implies that the transit infrastructure expansion significantly
affects firms’ rent-sharing parameters. In the baseline case setting β = 8, the average fraction
of the MRPL given to the worker is 0.80, and the transit shock increases this fraction to
0.85. Therefore, the transit shock increased the bargaining power of workers by a substantial
amount.

Similarly, in panel (b), we plot the effects on the aggregate income variables: the ag-
gregate wage bill, the firms’ profits, and the total income (the sum of the two). In general,
we observe that workers gain more from the transit improvements to the detriment of firms
as the commuting elasticity specific to each firm, β , increases. For example, with a β = 8,
aggregate labor income increases by around 4%, while firm-owners lose 6% of operational
profits. Nevertheless, the aggregate effect on total income is positive, around 2%.
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Overall, the counterfactual results suggest two main conclusions. First, regarding ef-
ficiency, the results imply that considering markdown responses amplify the welfare gains
from transit infrastructure by a considerable proportion. This result is robust to different val-
ues of the commuting elasticity, β . For instance, in the most conservative case, the welfare
gains increase by 16%. Second, regarding redistribution, the results suggest that workers
gain more from the transit shock to the detriment of firms since average labor market power
decreases with the transit shock.

6 Conclusions

This paper studies a large subway expansion in Chile using linked employer-employee data
with geographical information on workers and employers. Using an event study framework,
we show four effects on the labor market of a subway expansion: 1) After a subway expands
to a district, workers from that district start working further away and earning more; 2) After
a subway expands to a district, workers from that district who do not switch jobs start earning
more; 3) After a subway expands to a district, firms in that district start hiring from farther
away, and 4) Earnings converge across space: specifically, firms start paying workers closer
to their sector-education-age average after the subway connects the firm’s district.

These facts suggest an integration of the labor market which should yield efficiency gains
and reduced labor market power from reduced differentiation between employers. We de-
velop a commuting model with oligopsonistic firms where each firm’s labor market power on
the workforce’s composition and where firms who dominate specific labor markets can apply
a higher markdown if that labor market represents a large share of its employees. The model
also predicts that reductions in commuting costs should reduce this measure of labor market
power and the dispersion of markdowns, yielding indirect efficiency gains through better la-
bor allocation. We provide evidence that the model’s measure of labor supply elasticity to the
firm correlates negatively with markdowns. After the subway expansion the average mark-
down and dispersion of markdowns decreased. Finally, we simulate the model to show that
incorporating labor market power suggests gains in the order of 20-50% larger than models
without it.
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Table 1: UID Descriptive Statistics - September 2012

Variable Mean Std. Dev. Min. Max.
Monthly Earnings (USD) 1,406 1,206 66 4,860
Age 37.4 11.17 16 93
Female 0.39 0.49 0 1
HS Complete 0.82 0.38 0 1
College Complete 0.15 0.36 0 1
Works in District of Residence 0.13 0.33 0 1
Works Downtown 0.5 0.5 0 1
N 108,889
Notes: Descriptive statistics from the Unemployment Insurance Dataset. A
cross-section of September 2012.

35



Table 2: Relationship between distance to subway and work-commuting times

(1) (2)
ln(Trip Duration) ln(Trip Duration)

Improved Access to Subway -0.057∗∗ -0.065∗∗∗

(0.025) (0.019)

N 17455 10898
R2 0.53 0.62
OD District FE Yes No
OD Zone FE No Yes
Distance Control Yes Yes
Year FE Yes Yes
Std Errors Cl at OD-District Cl at OD-Zone
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: These regressions use data from the 2001 and 2012 Origin-Destination surveys. OD District FE are fixed
effects for each pair of origin-destination districts. OD Zone FE divide Santiago into 400 rectangular zones, and
are fixed effects for each pair of origin-destination zones. Only work trips that use public transportation at some
stage are included in this sample. “Improved Access to Subway” is a dummy equal to 1 if the district or zone
saw its average distance to the closest subway station reduced by more than 50%. Results are robust to using a
different cutoffs or the continuous measure of the reduction in distance to the closest subway station.

Table 3: Commuting in Santiago

District-level
Mean Min–Max

Variable 2001 2012 2001 2012
Commuting 36.67 47.92 22.1–51 27.8–68.6
Time (min) (25.3) (29.5)

Commuting 7.27 8.5 3.5–13.3 4.1–14.4
Distance (km) (6.2) (7)

Used Public 0.49 0.54 0.19–0.67 0.19–0.81
Transport (0.5) (0.5)

Used Subway 0.08 0.25 0.01–0.22 0.05–0.51
(0.27) (0.43)

N 18,143 17,331 38 38
Notes: This table shows evolution in commuting patterns in the 38
included districts using the Origin Destination Surveys of 2001 and
2012. Columns 3 and 4 show the minimum and maximum district-
level averages
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Table 4: Relationship between LSE and earnings

(1) (2)
ln(Earnings) ln(Earnings)

ln(LSE) 0.27∗∗ 0.69∗∗∗

(0.12) (0.2)

ln(Firm Size) -0.06∗∗∗ 0.02∗∗∗

(0.003) (0.004)
N 52,308,062 52,315,973
R2 0.51 0.63
Firm FE Yes No
Worker FE No Yes
Time FE Yes Yes
Std Errors Cl at Firm Cl at Firm
Robust standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: Two-way fixed effects regressions of monthly
earnings on the model-implied measure of labor supply
elasticity for each firm.

Table 5: Relationship between LSE and firm effects

(1) (2) (3)
Firm Effect Firm Effect Firm Effect

ln(LSE) 0.16∗∗ 0.5∗∗∗ -0.1
(0.07) (0.07) (0.11)

N 54,435,127 6,937,539 21,189,593
R2 0.12 0.1 0.1
Firm Size FE Yes Yes Yes
Std Errors Cl at Firm Cl at Firm Cl at Firm
Time Period 02-16 02-06 12-16
Robust standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: Regressions of firm effects on the model’s measure of labor
supply elasticity to the firm. Firm effects are estimated from using
an AKM-style regression. Column 1 is from an AKM of the entire
sample. Column 2 from an AKM of 2002-2006, and column 3 an
AKM of 2012-2016.
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Table 6: Commuting gravity equations

(1) (2) (3) (4)
VARIABLES lnλi jm lnλi jm lnλi jm lnλi jm

timei j -0.035*** -0.038*** -0.039*** -0.042***
(0.002) (0.003) (0.003) (0.003)

Transportation mode fe X
Origin fe X X
Destination fe X X
Origin-mode fe X X
Destination-mode fe X X

Observations 3,328 3,328 3,328 3,328
Pseudo R-squared 0.148 0.157 0.163 0.171
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: This table reports the results of a gravity equation in which we re-
late commuting flows in the city with travel times for different transportation
modes. We estimate this equation through PPML to include the zeros.
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Table 7: Results: Estimation labor supply elasticity across sectors

(1) (2) (3) (4) (5) (6)
Panel A: Instrument leave-out mean

Variables ∆ lnλis ∆ lnWis ∆ lnλis ∆ lnWis ∆ lnλis ∆ lnWis

∆ lnZis 0.839*** 0.381*** 0.838*** 0.398*** 0.841*** 0.390***
(0.079) (0.099) (0.080) (0.105) (0.079) (0.102)

Constant -1.780*** 0.351 -1.778*** 0.310 -1.763*** 0.515*
(0.171) (0.230) (0.172) (0.243) (0.258) (0.259)

Observations 755 755 755 755 755 755
R-squared 0.374 0.076 0.405 0.206 0.381 0.137
Implied κ 2.20 2.11 2.16

Panel B: Instrument Bio-Bio region
Variables ∆ lnλis ∆ lnWis ∆ lnλis ∆ lnWis ∆ lnλis ∆ lnWis

∆ lnZis 0.699*** 0.257* 0.696*** 0.266* 0.700*** 0.261*
(0.128) (0.138) (0.131) (0.144) (0.128) (0.139)

Constant -1.456*** 0.642* -1.448*** 0.619* -1.453*** 0.797**
(0.272) (0.321) (0.278) (0.334) (0.317) (0.331)

Observations 756 756 756 756 756 756
R-squared 0.323 0.042 0.354 0.170 0.329 0.102
Implied κ 2.72 2.62 2.68
Comuna fe X X X X
Controls X X
Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
Notes: This table reports the results for the estimation of κ . We estimate a labor supply equation
relating the employment share by sector with a wage index. In panel A, we report the results in
which we use as an instrument the leave-out mean of the wage bill by sector, and in panel B using
the wage bill in the Bio Bio region.

Table 8: Parameters

Parameter Interpretation Value
κ Elasticity of substitution across sectors 2.2
β Elasticity of substitution across firms within a sector 5-10
γ Decreasing returns to scale 0.9
Commuting costs Travel times exp(δ ti j)
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Figure 1: 1968’s Subway Network Master Plan

Notes: Santiago’s subway Master Plan drawn in 1968 under President Eduardo Frei Montalva.
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Figure 2: Subway Expansions after 2001

(a) Jan 2001 (b) Jan 2007

(c) Jan 2002 (d) Jan 2020
Notes: Evolution of Santiago’s subway network.
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Figure 3: Districts in Sample

(a) Districts and Subway Stations (b) OD Surveys Origin Points

Notes: Maps of the 38 districts included in our sample. Panel A shows the subway stations up to date, and Panel
B also shows the Origin-Destination Survey points used to create representative work trips sample.
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Figure 4: Treatments Visualization
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(b) Treated in 2006

●●●●●●
●
●●

●●●●●
●●

●●●
●

●

●

●
●
●
●

●

●
●
●●
●

●●●●
●●

●●

●●

●●
●

●
●●
●
●

●

●

●●●

●
●●
●
●

●●●●●●
●
●

●
●

●
●

●●
●
●

●

●
●
●

●
●

●●

●

●
●
●

●●

●
●●

●
●
●
●
●

●
●
●

●
●

●
●

●
●

●

●
●

●●●●

●
●
●

●

●●●

●●●
●●

(c) Treated in 2010

●●●●●●
●
●●

●●●●●
●●

●●●
●

●

●

●
●
●
●

●

●
●
●●
●

●●●●
●●

●●

●●

●●
●

●
●●
●
●

●

●

●●●

●
●●
●
●

●●●●●●
●
●

●
●

●
●

●●
●
●

●

●
●
●

●
●

●●

●

●
●
●

●●

●
●●

●
●
●
●
●

●
●
●

●
●

●
●

●
●

●

●
●

●●●●

●
●
●

●

●●●

●●●
●●

●
●

●
●
●

●
●

●

● ●
●

● ●

●

●

●●●●●

●
●

●
●
●

●●●● ●●● ●

●

●●
●
●
●

(d) All Treatments
Notes: Black dots are existing subway stations. Blue dots are new subway stations. Districts in yellow reduced their distance to the subway by less than

25%, those in orange by 25-50%, and those in red by over 50%.
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Figure 5: The Effect of Subway Expansion on Workers: Where to work
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(a) Time to Work
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(b) Distance to Work
Notes: Event Study results on distance and time to work. Time to work is estimated before any subway

expansion, and therefore is just another measure of distance, does not necessarily imply longer commutes.
Coefficients are scaled by 0.42 to represent the effect on the average worker.
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Figure 6: The Effect of Subway Expansion on Workers: Earnings

-.01

0

.01

.02

.03
ln

(E
ar

ni
ng

s)

-2 -1 0 1 2 3 4
Years around Subway Expansion

(a) Earnings
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(b) Earnings - Stayers
Notes: Event Study results on earnings. Panel A using worker fixed effects, Panel B using worker-firm fixed

effects. Coefficients are scaled by 0.42 to represent the effect on the average worker.
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Figure 7: The Effect of Subway Expansion on Workers: Ruling out Labor Supply
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(a) Earnings - Stayers - District of Firm x Sector Fixed
Effects

Notes: This event study includes Worker x Firm fixed effects, and Month X District of Firm x Sector fixed
effects. Coefficients are scaled by 0.42 to represent the effect on the average worker.
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Figure 8: The Effect of Subway Expansion on Workers: Worker Flows and Earnings of
Unconnected Districts
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(a) Worker Flows
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(b) Earnings - Stayers - Unconnected
Notes: For each treated district, we simulate commuting times before and after the treatment to all other

districts. Then divide destination districts into above and below the median for each treated district. Above the
median districts are referred to as connected districts, below the median as unconnected. Panel A shows that

workers are more likely to work in connected districts, and Panel B shows that results on earnings using
worker-firm fixed effects hold even for workers who are working in districts that did not get connected.

Coefficients are scaled by 0.42 to represent the effect on the average worker.
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Figure 9: The Effect of Subway Expansion on Firms
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(a) Distance to Work
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(b) Earnings
Notes: Event Study results on firms. So the treatment is when the district where the firm is located gets the
subway expansion, and regressions are estimated with firm fixed effects. Coefficients are scaled by 0.42 to

represent the effect on the average worker.
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Figure 10: Convergence of earnings
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Notes: Each month we calculate sector-education-age average earnings. Then we calculate the difference of
each worker’s monthly earnings with this group average, and run the event study on the log of the absolute
value of this difference, from the firms’ perspective with firm fixed effects. We see that when the subway

reaches the district of a firm, the gap between its worker’s earnings and each worker’s group average decreases.
Coefficients are scaled by 0.42 to represent the effect on the average worker.
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Figure 11: The Effect of Subway Expansion on Earnings: Permutation Test
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Notes: We take the 38 treatment timing-intensity pairs and randomize them across the 38 districts, and
estimate the event study on earnings of workers. We repeat this 60 times, and plot the results. The break in the

trend is in the top 5%.

50



Figure 12: Another region as control: Where to Work
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(a) Distance to Work
Notes: Stacked Dif-in-Dif using districts from the Bio-Bio region as controls. Coefficients are scaled by 0.42

to represent the effect on the average worker.
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Figure 13: Another region as control: Earnings
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(a) Earnings
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(b) Earnings - Stayers
Notes: Stacked Dif-in-Dif using districts from the Bio-Bio region as controls. Panel A uses worker fixed

effects, while Panel B includes worker-firm fixed effects. Coefficients are scaled by 0.42 to represent the effect
on the average worker.
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Figure 14: Another region as control: Earnings (Robustness)
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(a) Ruling out hours/productivity
Notes: Stacked Dif-in-Dif using districts from the Bio-Bio region as controls. The regression includes

worker-firm fixed effects, and only includes workers who work in districts that were not connected by the new
subway line. Coefficients are scaled by 0.42 to represent the effect on the average worker.

Figure 15: Relationship between firm size and firm fixed effect
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(b) 12-16
Notes: We estimate an AKM model for 2002-2006 and 2012-2016. Then do an employment-weighted bin-
scatter of firm effects on ln(average firm size) during each period, controlling for firm’s district fixed effects.
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Figure 16: Objective Function-GMM

(a) Objective function
Notes: This figure plots the objective function of the GMM approach to estimate the main parameters of the

model.

Figure 17: Objective function-constant κ

Notes: This figure plots the objective function for constant values of κ .
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Figure 18: Simulation of the subway expansion: Welfare

(a) Markdown

(b) Markdown percent
Notes: In panel A we simulate how the distribution of markdowns before and after the shock with κ = 3, and

β = 10. In Panel B we show the change in welfare for different values of β .
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Figure 19: Simulation of the subway expansion: Distributional Effects

(a) % Change markdown

(b) % Change in income
Notes: In Panel A we simulate how welfare changes when reducing commuting costs. In Panel B we simulate

what % of the change in welfare is due to reduced variation in markdowns.
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Appendix

Table A.1: Relationship between distance to subway and commute duration

(1) (2) (3) (4)
ln(Trip Duration) ln(Trip Duration) ln(Trip Duration) ln(Trip Duration)

ln(Trip 0.20∗∗∗ 0.096∗∗ 0.19∗∗∗ 0.093∗

Distance) (0.024) (0.048) (0.023) (0.048)

ln(Distance of O 0.072∗∗∗ 0.077∗∗∗

to Subway) (0.0076) (0.0083)

ln(Dist of O to 0.12∗∗∗ 0.098∗∗∗

Subw + Dist of D to Subw) (0.011) (0.010)
N 18417 14148 18417 14148
R2 0.55 0.66 0.55 0.66
OD District FE Yes No Yes No
OD Zone FE No Yes No Yes
Time FE Yes Yes Yes Yes
Std Errors Cl at OD-District Cl at OD-Zone Cl at OD-District Cl at OD-Zone
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: These regressions use data from the 2001 and 2012 Origin-Destination surveys. OD District FE are fixed effects for each
pair of origin-destination districts. OD Zone FE divides Santiago into 400 rectangular zones, and is a fixed effect for each pair of
origin-destination zones. Only work trips that use public transportation at some stage are included in this sample. Dist of O to Subway
is the eucledian distance from the trip-origin to the subway, and Dist of D to Subway is the eucledian distance from the trip-destination
to the subway.
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Figure A.1: Trimesters: Where to work
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(a) Time to Work
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(b) Distance to Work
Notes: Event Study results on distance and time to work. Time to work is estimated before any subway

expansion, and therefore is just another measure of distance, does not necessarily imply longer commutes.
Coefficients are scaled by 0.42 to represent the effect on the average worker.
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Figure A.2: Trimesters: Earnings
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(a) Earnings
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(b) Earnings - Stayers
Notes: Event Study results on earnings. Panel A using worker fixed effects, Panel B using worker-firm fixed

effects. Coefficients are scaled by 0.42 to represent the effect on the average worker.
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Figure A.3: Trimesters: Ruling out Labor Supply
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(a) Earnings - Stayers - District of Firm x Sector Fixed
Effects

Notes: This event study includes Worker x Firm fixed effects, and Month X District of Firm x Sector fixed
effects. Coefficients are scaled by 0.42 to represent the effect on the average worker.
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Figure A.4: Trimesters: Worker Flows and Earnings of Unconnected
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(a) Worker Flows
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(b) Earnings - Stayers - Unconnected
Notes: For each treated district, we simulate commuting times before and after the treatment to all other

districts. Then divide destination districts into above and below the median for each treated district. Above the
median districts are referred to as connected districts, below the median as unconnected. Panel A shows that

workers are more likely to work in connected districts, and Panel B shows that results on earnings using
worker-firm fixed effects hold even for workers who are working in districts that did not get connected.

Coefficients are scaled by 0.42 to represent the effect on the average worker.
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Figure A.5: Stacked Dif-in-Dif: Where to Work
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(b) Distance to Work
Notes: Stacked Dif-in-Dif using districts within wave with under 30% treatment intensity as controls for the

treated districts in the wave. Coefficients are scaled by 0.42 to represent the effect on the average worker.
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Figure A.6: Stacked Dif-in-Dif: Earnings
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(a) Earnings
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(b) Earnings - Stayers
Notes: Stacked Dif-in-Dif using districts within wave with under 30% treatment intensity as controls for the

treated districts in the wave. Panel A uses worker fixed effects, while Panel B includes worker-firm fixed
effects. Coefficients are scaled by 0.42 to represent the effect on the average worker.
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Figure A.7: Stacked Dif-in-Dif: Earnings (Robustness)
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(a) Ruling out labor supply
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(b) Ruling out hours/productivity
Notes: Stacked Dif-in-Dif using districts within wave with under 30% treatment intensity as controls for the

treated districts in the wave. Both Panel include worker-firm fixed effects. Panel A also includes firm’s
district-month fixed effects instead of only month fixed effects. Panel B only includes workers who work in

districts that were not connected by the new subway line. Coefficients are scaled by 0.42 to represent the effect
on the average worker.
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