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Abstract

In this paper, we extend the individual evolutionary learning model by incor-
porating other-regarding considerations and apply the model to some Cournot
games. Using the model fitted to the experimental data of a repeated 3-player
Cournot game (with nonlinear cost and demand functions), we construct out-
of-sample predictions regarding the “feedback effects” and “number effects”
and test these using data gathered via newly conducted experiments. The pre-
diction regarding the feedback effect is only partially confirmed, being observed
for 3- and 4-player games but not the 2-player game. The prediction regarding
the number effect is also partially confirmed in that while the model predicts
the number effect to be observed with detailed and not aggregate feedback, the
effect is observed with both types of feedback.

Keywords: Individual Evolutionary Learning, Oligopoly, Experiment

JEL Classification: D43, D83, D90

∗We sincerely acknowledge the contribution of the late Jasmina Arifovic, who sadly passed away
before her final editing of this then unfinished paper. Comments and suggestions from Nick Vriend
are gratefully acknowledged. Part of this research was conducted when Hanaki was affiliated with the
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1 Introduction

Cournot games have long been one of the workhorse models of industrial organization.

One of their interesting features is that different learning models lead to sharply con-

trasting outcomes. Learning models that rely on best replies converge to the Cournot–

Nash equilibrium, while those based on imitating the most successful player (which

includes evolutionary selection) converge to the competitive (Walrasian) equilibrium

(see, among others, Vega-Redondo, 1997; Vriend, 2000; Vallée and Yildizoğlu, 2009).

In addition, simple and plausible trial-and-error learning converges to the collusive

outcome (Huck et al., 2003, 2004a).

These theoretical predictions have led to extensive experimental analyses of these

games. Huck et al. (1999, 2000), Offerman et al. (2002), and Apesteguia et al. (2010)

experimentally examine “feedback effects,” i.e., the impact of differences in the infor-

mation provided to participants after each play of the game (feedback) on the out-

comes. These studies demonstrate that outputs are higher (thus, more competitive)

in settings where participants receive detailed feedback (price, aggregate quantity,

quantities chosen, and profits obtained by each of the other participants in the same

market) after each play of the game, compared with those settings where they receive

only aggregate information as feedback (price and aggregate quantity, apart from

their own choice of quantity and the resulting profits).

Note that imitating what successful others did is easier with detailed feedback

than with only aggregate feedback, although, as Bigoni and Fort (2013) show, the

extent to which each piece of information is used when making decisions may differ

across participants. Recently, Friedman et al. (2015) showed that previously reported

feedback effects are only a temporary phenomenon (observed in the first 50 periods of

their 1,200-period experiment with 2 or 3 players per market), and that after a couple
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of hundreds of periods, even with detailed feedback, participants learn to collude.

Bosch-Domènech and Vriend (2003) varied the difficulty to perform best reply (by

manipulating the information required to compute payoffs in the instructions as well

as the decision time) to investigate whether participants imitate successful others

when undertaking the best reply is more difficult. They did not, however, observe

outputs much higher in the environment more conducive to imitation.

Another well-known result from the experimental analysis of Cournot competition

is “number effects,” (Selten, 1973) which concerns the number of players (firms)

interacting and the resulting degree of competition. In an experiment with aggregate

feedback, Huck et al. (2004b) show that while some collusion can be observed when

only two players interact in a market, there is near Cournot–Nash equilibrium with

three players interacting, and that outcomes are never collusive and typically above

the Cournot–Nash equilibrium with four or more players interacting (see Horstmann

et al., 2018, for a recent survey as well as additional experimental evidence). In fact,

Oechssler et al. (2016) shows that this is also the case in near-continuous 1,200-period

settings similar to that of Friedman et al. (2015) and thus, unlike feedback effects, it

is robust against increasing the number of periods.

In this paper, we extend the individual evolutionary learning model (first applied

to Cournot games by Arifovic, 1994) by incorporating other-regarding considerations

as done by Arifovic and Ledyard (2012) and apply it to Cournot games. We first fit the

model to the experimental data of a repeated 3-player Cournot game (with nonlinear

cost and demand functions) by Offerman et al. (2002) to fix the parameter values. We

then simulate the model in n-player games (with n ∈ {2, 3, 4}) to make out-of-sample

predictions regarding both the feedback effects and the number effects.

We then conduct our own experiment to test these out-of-sample predictions of

the model. The experimental data partially confirm the prediction regarding the
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feedback effect; namely, the treatment with detailed feedback resulted in competitive

outcomes significantly more frequently than the treatment with only the aggregate

feedback for n ∈ {3, 4} but not for n = 2. Furthermore, the prediction regarding

the number effect is also partially confirmed; namely, while the model predicts the

number effect to be observed only with the detailed feedback and not the aggregate

feedback, it is observed with both the detailed and the aggregate feedback treatments.

The remainder of the paper is organized as follows. Section 2 presents the extended

individual evolutionary learning model, along with its fit to existing experimental data

and out-of-sample predictions. The experimental design to test the out-of-sample pre-

diction of the model is presented in Section 3, followed by the results of the experiment

in Section 4. Section 5 concludes.

2 Individual Evolutionary Learning Model

We extend the individual evolutionary learning (IEL) model that incorporates the

other-regarding consideration proposed by Arifovic and Ledyard (2012), in which the

following utility function represents each agent’s preference.

ui(qi, Q−i) = πi(qi, Q−i) + βiπ̄(Q)− γimax{0, π̄(q)− πi(qi, Q−i)} (1)

where πi(qi, Q−i) is the profit for agent i when i produces qi and the other agents

produce Q−i =
∑

j ̸=i qj in total. π̄(Q) is the average profit obtained by the agents

when the total output is Q =
∑

i qi. The β
i ≥ 0 captures the degree to which i cares

about the average profit. Because βi ≥ 0, the higher the average profit is, the higher

the i’s utility is. The term max{0, π̄(q)− πi(qi, Q−i)} captures how much less profit

i makes compared with the average profit, and γi ≥ 0 the degree to which i cares
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about making less profit than the average. As we can see from the negative sign in

front of the third term, the less profit i makes compared with the average, the lower

i’s utility is.

The profit for firm i is defined as follows.

πi(qi, Q−i) = (a− b
√
Q)qi − cqdi (2)

In this paper, we assume {a, b, c, d} = {45,
√
3, 1, 3/2} because these are the values

used in the experiment of Offerman et al. (2002).

The existence of other-regarding preferences is often posited as an explanation for

seemingly irrational behavior in experimental settings. For example, in the context of

Cournot games, Iriş and Santos-Pinto (2014) have used other-regarding preferences

to explain several regular deviations from theoretical predictions.

As the superscript i on βi and γi indicates, we assume agents are heterogeneous.

Andreoni and Miller (2002) report that the vast majority of behavior in a standard

dictator game can be explained by the presence of a range of heterogeneous other-

regarding preferences. Blanco et al. (2011) find further evidence for a range of hetero-

geneous other-regarding preferences among the experimental population. However,

they also find that these preferences are unstable or manifest differently in different

experimental settings.

Furthermore, as Bigoni and Fort (2013) show in their experiment where partici-

pants can choose which information to consider, not all the participants utilize the

same feedback information, which may be a result of participants belonging to differ-

ent types, as Rassenti et al. (2000) suggest. We, therefore, assume that there are the

following five types of agents in the population:

• Individualistic: βi = 0, γi = 0
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• Cooperative: βi ∼ U(0, B), γi = 0 where B is the upper bound

• Retaliatory: βi = 0, γi ∼ U(0, G) where G is the upper bound

• Mixed: βi ∼ U(0, B),γi ∼ U(0, G)

• Flexible: A flexible agent starts as an Individualistic agent. At the start of each

turn, the agent updates their γit (β
i
t), entering the utility function in equation

(a), with a fixed probability ρ as follows:

γit =
π̄−i
t−1 − πi

t−1

π̄−i
t−1

(G− γit−1)× ωf + γit−1 if π̄−i
t−1 ≥ πi

t−1

βi
t =

πi
t−1 − π̄−i

t−1

πi
t−1

(B − βi
t−1)× ωf + βi

t−1 if π̄−i
t−1 < πi

t−1

where π̄−i
t−1 is the average profit of other agents in the previous turn, and ωf

measures how sensitive the Flexible type agent is to others’ profits.

2.1 Dynamics of IEL

In IEL, each agent i, regardless of type, has a set of J actions (quantities), Si
t with

|Si
t | = J , to choose from in each period t. The initial set of actions, Si

0, is randomly

generated from the set of possible actions for player i, S i, and the initial action, qi0,

is randomly selected from Si
0. Learning in IEL takes the form of updating Si

t at the

end of each period by the following two steps: Experimentation and Replication.

Experimentation introduces new actions into Si
t that otherwise might never have

a chance to be tried. This ensures that a certain amount of diversity is maintained

in Si
t . For each q

i
j,t ∈ Si

t (j = 1, ..., J), with probability µ, a new action, q, is selected

randomly according to N(qij,t, σ|S i) and replaces it. This means that the ‘new’ action
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that is replacing qij,t, on average, has the same value. µ and σ are parameters of the

model. Let S̃i
t be the set of actions after experimentation.

Replication reinforces, after experimentation, actions that would have been good

choices in period t. This allows potentially better-performing actions to replace

worse-performing actions. We assume that the performance of qij,t ∈ S̃i
t is evaluated

according to the type-dependent utility function stated above, conditional on the in-

formation i received regarding the outcome in period t, I i(xt). Let vi(qij,t|I i(xt)) =

ui(qij,t, Q−i|I i(xt)) be the computed performance level of qij,t holding constant the out-

put levels of other firms. This measures the utility i that would have been obtained

had i played qij,t in period t holding everything else constant. The element of the new

action set Si
t+1, q

i
j,t+1, is chosen as follows. For each j = 1, · · · , J , select two members

of S̃i
t , q

i
m,tand q

i
l,t, uniformly randomly with replacement. Then,

qij,t+1 =


qim,t with probability e

vi(qim,t|I
i(xt))

e
vi(qim,t|I

i(xt))+e
vi(qi

l,t
|Ii(xt))

qil,t otherwise.

(3)

Once Si
t+1 is generated, in period t+ 1, the action of agent i is chosen probabilis-

tically according to

ψi
k,t+1 =

eλv
i(qik,t+1|I

i(xt))∑J
j=1 e

λvi(qij,t+1|Ii(xt))
(4)

where λ ≥ 0 is a parameter of the model that governs the sensitivity of action choice

to their performance level.
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2.2 Model fitting

To fix values of the parameters of the IEL model, we fit the model to the data

reported in Offerman et al. (2002). In Offerman et al. (2002), participants play a 3-

player repeated Cournot game as specified above for 100 periods. Three treatments,

Q, Qq, and Qqπ, are considered by varying the information participants receive after

each play of the game (feedback after each period) across treatments. In Treatment

Q, participants are informed of the realized price and aggregate quantity (in addition

to their own quantity and profit). In Treatment Qq, in addition to the information

provided in treatment Q, participants are informed of the quantity chosen by each of

the other participants in the group. In Treatment Qqπ, participants are informed, in

addition to those provided in Qq, profits obtained by each of the other participants

in the group.

These variations in feedback after each period across the three treatments influence

the simulations of our model as follows.

In Treatment Q , agents only know the aggregate output. They cannot calculate

the average profit without information on the individual output level because the

cost function is nonlinear. Therefore, we assume that all agents are Individualistic

agents in our simulation. This restriction means that we have three parameters—

µ, σ, and λ—in our model. We have conducted a grid search in the space of

µ ∈ {0.03, 0.07, 0.1, 0.3, 0.6}, σ ∈ {0.3, 0.5, 0.7, 2, 5, 10, 20}, and λ ∈ {6 × 10−4, 8 ×

10−4, · · · , 24 × 10−4} (in step size of 2 × 10−4). For each combination of parameter

values, we run 30 simulations. Based on the measure of fit described in Appendix A,

we select µ = 0.03, σ = 2, and λ = 0.002 as the best parameter values.
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In Treatment Qq and Qqπ , in addition to the aggregate output, agents also know

the individual output of others in the group in Qq. In Qqπ, they are further informed

of the profits of others in the group. Although it is hard to say how well agents

compute others’ profits from their outputs given the nonlinearity of the cost function,

it is possible. Therefore, we simulate the model with the full set of parameters. We

vary the proportions of the five types of agents in the population (fI , fC , fR, fF , and

fM for Individualistic, Cooperative, Retaliatory, Flexible, and Mixed, respectively,

while maintaining
∑

x fx = 1 where x ∈ I, C,R, F,M), B (the upper bound of βi), G

(the upper bound of γi), ρ and ωf (probability of updating and sensibility to others’

profit for Flexible type), and fix the values of µ, σ, and λ to those we selected for

Treatment Q.

Because of the large parameter space that needs to be investigated, we conduct

a grid search in two steps, as detailed in Appendix B: First, a coarse grid search,

and second, a finer grid search for the subregion of the parameter space that resulted

in the highest fit under the coarse grid search. For each combination of parameter

values considered, 50 simulations are run. We find, in addition to µ = 0.03, σ = 2,

and λ = 0.002 that were fixed, the sets of parameter values reported in Table 1 to be

the best ones in fitting the model to the experimental data according to the criterion

reported in Appendix A.1

Comparing the best set of parameter values for treatment Qq and Qqπ reported

in Table 1 reveals an interesting difference. Our simulations show that Qq can be best

described by the interactions between Individualistic and Cooperative types, although

more than two-thirds of the agents are the former. In contrast, for Qqπ, there is

no Individualistic type. Instead, it is best described by the interactions between

1There was another set of parameter values for Qq that was equally good, but we have used the
one reported in Table 1 for our out-of-sample simulation to be reported in the next subsection. See
Appendix B.
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Table 1: The best set of parameter values for the three treatments.

µ σ λ fI fC fR fF fM B G ρ ωf

Q 0.03 2.0 0.002 1.0 - - - - - - - -
Qq 0.03 2.0 0.002 0.8 0.2 0.0 0.0 0.0 80 0 0 0
Qqπ 0.03 2.0 0.002 0.0 0.2 0.4 0.4 0.0 60 50 0.1 1.0

Cooperative, Retaliatory, and Flexible, with the Cooperative share being the lowest.

This difference in composition, particularly the prevalence of the Individualistic type

in Treatment Qq, may reflect the difficulties participants (in the experiment) have in

computing others’ profits from the quantity information.

Figure 1 depicts the distributions of group outputs in three treatments from the

experiment of Offerman et al. (2002) (Top) and the IEL model (Bottom). The model

does a good job of capturing the distributions from the experiment in Treatment Q

that is centered around the Cournot–Nash equilibrium. While the model does not

exactly replicate the distributions from the experiment in Treatments Qq and Qqπ, it

does capture the qualitative differences across treatments; namely, in Treatment Qqπ,

collusive and competitive outcomes are much more frequently observed compared

with treatments Qq and Q. Furthermore, in Treatment Qq, the output distribution

is skewed toward collusive ones compared with Treatment Q.

Thus, the simulation of the fitted model demonstrates the feedback effect. How-

ever, this is because the model is fitted to the data that demonstrate the effect.

We conduct out-of-sample simulations by varying the number of players in the next

subsection to generate a set of hypotheses to be tested using our experiments.
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Results of Offerman et al. (2002)
Treatment Q Treatment Qq Treatment Qqπ

Results of IEL simulation
Treatment Q Treatment Qq Treatment Qqπ

Figure 1: TOP: Distributions of group outputs in the three treatments of Offerman
et al. (2002). Regenerated from the original experimental data. BOTTOM: Dis-
tributions of 15,000 simulated group outputs (50 simulations by 100 periods in 3
treatments) from the best set of parameter values.

2.3 Out-of-sample simulations: Varying number of players

Figure 2 presents the results of simulations in which we vary the number of players,

n ∈ {2, 3, 4}, in each of the three information treatments, Q, Qq, and Qqπ.2 The

n = 3 case is identical to that shown in Figure 1 but replicated to facilitate the

comparison.

Figure 2 shows that in TreatmentQ, the outcomes are distributed around Cournot–

Nash regardless of the number of players. Thus, the model predicts no number effect

2Participants in our experiment (Section 3) could choose from integer values between 40 and 170
in 2-player treatments, 40 and 113 in 3-player treatments, and 40 and 85 in 4-player treatments,
inclusive, as a quantity in each period. In simulating the model, we introduced the same constraints
in quantities.
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n = 2
Treatment Q Treatment Qq Treatment Qqπ

n = 3
Treatment Q Treatment Qq Treatment Qqπ

n = 4
Treatment Q Treatment Qq Treatment Qqπ

Figure 2: Distribution of the 45,000 simulated group outputs (50 simulations by 100
periods in 9 treatments) from the best set of parameter values.
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under TreatmentQ.3 In TreatmentQqπ, on the other hand, when n = 2, collusive and

competitive outcomes are more likely to be observed than Cournot–Nash outcomes.

For n = 3, the collusive outcome becomes less likely (compared with n = 2), while the

Cournot–Nash and collusive outcomes instead become more prevalent. The output

distribution is centered around the Cournot–Nash for n = 4, thereby demonstrating

the number effect.

These differences in the simulated outcomes between treatment Q and Qqπ con-

stitute our main hypotheses to be tested in the experiment.

Hypothesis 1 The feedback effects (the more detailed the feedback is, the more com-

petitive outcomes become) exist. Furthermore, when the number of players is 2 or 3,

it is not just that there are more competitive outcomes, but also that we observe more

collusive outcomes, with more detailed than aggregate feedback.

Hypothesis 2 The number effect (the larger the number of players, the less collusive

the outcome) arises with detailed feedback (Treatment Qqπ) but not with aggregate

feedback (Treatment Q).

Note that while Horstmann et al. (2018) reports the number effect with detailed

feedback, which is consistent with our Hypothesis 2, Huck et al. (2004b) details

the number effect with aggregate feedback, which is inconsistent with our second

hypothesis. However, there are several differences in setting that make comparison of

our simulation results and these existing experimental results difficult. First, and most

importantly, these two experiments are based on linear demand and cost functions

(in the case of Horstmann et al. (2018) with zero cost), while our simulation is based

on nonlinear cost and demand functions. Second, there are 25 and 60 periods in

3However, the relative locations of the collusive, Cournot–Nash, and competitive outcomes change
depending on the number of players. Namely, Cournot–Nash is closer to collusive than to competitive
in n = 2, while the opposite is the case for n = 4.
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the experiments in Huck et al. (2004b) and Horstmann et al. (2018), respectively,

while our simulation is based on 100 periods. The results in Huck et al. (2004b),

which are based on 25 periods, therefore can arise because of insufficient learning by

participants. Because we are unaware of experimental analysis concerning the number

effect in the Cournot game using the nonlinear demand and cost functions considered

by Offerman et al. (2002) under varying feedback conditions, we have conducted a

new set of experiments of our own to test these hypotheses.

3 Experiment Design

Table 2 presents the treatments in our two-by-three design: we vary feedback infor-

mation (Partial vs. Full) and the number of players in a market (n ∈ {2, 3, 4}). In

Partial-Info treatments, the players received feedback information on the total quan-

tity, the price, and their own individual output and profit at the end of each period

(thus, identical to treatment Q above). In Full-Info treatments, the players received

additional information on the individual outputs and profits of others in the same

group (thus, identical to treatment Qqπ). When they made decisions, they could

always review the full history of the individual outputs in a graph and a table (see

Appendix D.3). Both information treatments were run in 2-, 3-, and 4-player Cournot

games.

We repeated the game for 100 periods. In each period, firms must decide simulta-

neously how much to produce. They can only choose integer values between 40 and

170 in 2-player treatments, 40 and 113 in 3-player treatments, and 40 and 85 in 4-

player treatments, inclusive. Note all firms face the same cost and demand functions.

All firms in the industry receive the same price for each commodity produced. Both

the relationship between own production and costs and aggregate production and

14



Table 2: Summary of treatments.

Feedback information
Number of players Partial-Info (πi,Q,P ) Full-Info(πi,Q,P ,qj,πj)

2 players Partial2 Full2
3 players Partial3 Full3
4 players Partial4 Full4

Notes: All the feedback information concerns the previous period. Subscript i refers
to the firm itself; subscript j concern other firms in the industry; π denotes profit; Q
denotes aggregate output; and P denotes price.

price were illustrated in interactive graphs. Players needed to correctly answer ques-

tions about the cost and demand functions before proceeding with the experiment.

The introduction, along with the interactive graphs, were made available throughout

the experiment (see Appendix D.2 for an example of the on-screen instruction.)

Unlike Offerman et al. (2002) but as in Bigoni and Fort (2013), we provided an

on-screen profit calculator to help players figure out their best responses. They could

enter their own hypothetical output and the aggregate output of others in the market

to get their own hypothetical profit. Players used the calculator on average three

times per period, with 72 percent of players using it more than once per period.

During the experiment, players earned experimental points according to the profits

they obtained. Participants were rewarded based on the sum of the points earned

during 100 periods. At the end of the experiment, the experimental points were

exchanged for Canadian dollars at an exchange rate of 5,000 experimental points =

1 Canadian dollar.

The experiment is programmed in oTree (Chen et al., 2016). The Cournot game

was preceded by a part of the advanced version of Raven’s Progressive Matrix test

(Raven, 1998). For the Raven test, we selected 16 questions from the original test

15



Table 3: Summary of the number of groups and average earnings (in Canadian dol-
lars).

Treatment Num. of Groups Cournot game Raven test Total earning
Partial2 6 $20.7 $2.7 $30.4
Partial3 6 $14.3 $2.3 $23.6
Partial4 6 $11.0 $2.5 $20.5
Full2 9 $19.4 $2.6 $29.0
Full3 7 $12.7 $3.1 $22.8
Full4 6 $9.8 $2.5 $19.3

Notes: Total earnings equal to the sum of the earnings in Cournot game, Raven test,
and $7 participation fee.

to be finished within 10 minutes.4 In each question, players analyzed a geomet-

ric pattern and identified a missing part to complete the series. For each question

answered correctly, players were paid 0.25 Canadian dollars (see Appendix D.1 for

the Raven test instructions). The Raven test measures “fluid intelligence”; that is,

“the capacity to think logically, analyze and solve novel problems, independent of

background knowledge” (Mullainathan and Shafir, 2013, p.48). Recently, Proto et al.

(2019) reported that participants with higher scores on the Raven test are more likely

to achieve and sustain cooperation in an infinitely repeated prisoners’ dilemma game

than those with lower scores. Because our experiment on Cournot games involves

similar trade-offs between short-run temptation and long-run gain, we decided to

gather this information to control its effect, if any, when analyzing the data.

Laboratory experiments were conducted between September 2019 and January

2020. Participants were recruited at Simon Fraser University. A total of 117 subjects

participated. An experiment lasted between 1.5 and 2 hours. Average earnings were

23.5 Canadian dollars (see Table 3 for the number of groups and earnings under

different treatments). The number of participants differs across treatments because

4The original test consists of 48 questions to be answered in 30 to 40 minutes. We selected 1 in
every 3 questions while retaining the order of questions.
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of variation in the rate of show up or appearance.

4 Results of the Experiment

Figure 3 shows the distribution of group outputs observed for each of our six treat-

ments. In the three Partial-Info treatments, total group outputs are distributed

around the Cournot–Nash equilibrium, just as we observed in the simulations of the

extended IEL shown in Figure 2. In contrast, in the three Full-Info treatments, more

competitive group outputs are observed compared with the Partial-Info treatment

for each group size. While the frequency of collusive outcomes is low for the Full2

treatment, it is much higher in Full3 than in the Full4 treatment.

Let us define “collusive outcomes” to be outcomes such thatQg ≤ 1
2
(QNash +QColl)

and “competitive outcomes” to be outcomes such that Qg ≥ 1
2
(QNash +QComp) where

Qg is the total output of firms, and QNash, QComp, and QColl are the corresponding

Nash, competitive, and collusive levels of total outputs, respectively. We also define

remaining outcomes that are around QNash to be “Nash outcomes.”

Figure 4 shows the distribution of the relative frequencies of “Nash”, “Collusive”,

and “Competitive” outcomes for each group across the various treatments. In each

plot, filled marks represent groups in the Partial-Info treatment while unfilled marks

represent the Full-Info treatment. The point at the very top of the triangle cor-

responds to (“Nash′′, “Collusive′′, “Competitive′′) = (100, 0, 0); that is, the group’s

output was Nash outcomes 100% of the time. The left and the right bottom apexes of

the triangle corresponds to (“Nash′′, “Collusive′′, “Competitive′′) = (0, 100, 0) and

(0, 0, 100), respectively. That is, the group’s output was collusive or competitive out-

comes 100% of the time. The p values beneath the plot are for the Mann–Whitney

test (two-tailed) comparing the frequencies of collusive and competitive outcomes
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Partial4 Full4

Figure 3: Distribution of group outputs across the six treatments.
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p=0.23 (Collusive) p=0.94 (Collusive) p=0.56 (Collusive)
p=0.81 (Competitive) p=0.01 (Competitive) p=0.02 (Competitive)

Figure 4: Distribution of the frequencies of “Nash”, “Collusive”, and “Competi-
tive” outcomes. Filled (unfilled) marks represent partial (full) info treatment. The
p values beneath the plot are from a Mann–Whitney test (two-tailed) comparing the
frequencies of collusive and competitive outcomes between the Partial and Full-Info
treatments.

between the Partial-Info and Full-Info treatments.

For n = 3 (middle panel), we can see that while the filled dots are mostly dis-

tributed around the top apex (which means the outcomes are mostly “Nash” in most

of the groups), the unfilled dots are distributed either toward the bottom left or right

apexes of the triangle (which means that “Collusive” or “Competitive” outcomes are

more frequently observed than “Nash”). In particular, we observe that the frequen-

cies of competitive outcomes are significantly higher under the Full-Info than the

Partial-Info treatment for n ∈ {3, 4}. We therefore make the following observation.

Observation 1 The feedback effect exists in the experiment. Full-Info treatments re-

sult in competitive outcomes significantly more frequently than the Partial-Info treat-

ments for n ∈ {3, 4}.

Observation 1 is consistent with the first part of Hypothesis 1. However, the

second part of Hypothesis 1 (about collusive outcomes) is not confirmed in our data.
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Table 4: Tacit collusion.

Dependent variable: Tacit Collusion
(1)
none

FID -1.231∗∗∗

(0.013)
Agent Number -0.666∗∗∗

(0.002)
Agent Number times FID 0.313∗∗∗

(0.004)
Constant 5.352∗∗∗

(0.005)
Group FE Yes
Observations 4000
standard deviations in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: FID is a dummy variable: 1 if under Full-Info treatments, 0 otherwise.

We now investigate our Hypothesis 2 about the number effect. We do not, how-

ever, observe any significant differences across the three group sizes in terms of the

frequency of collusive outcomes, neither in the Partial-Info (p=0.40, Kruskal–Wallis

test) nor Full-Info treatment (p=0.71, Kruskal–Wallis test).

To check the number effect more closely, following Horstmann et al. (2018), Engel

(2007), and Suetens and Potters (2007), we measure the degree of tacit collusion by

ϕE
t ≡ pt−pNash

pJPM−pNash where pt is the market price.5 We then run a group fixed effects

regression to test the impact of the number of agents on this measure.6 Table 4 shows

the result.

Note that the degree of tacit collusion is lower in the Full-Info treatment as demon-

strated by the negative and significant coefficient for the Full-Info treatment dummy

(FID). This is consistent with our analyses above on the feedback effect summarized

5Replacing pNash by pWalras yields similar results.
6We use group fixed effects regression because there is substantial heterogeneity in terms of the

distribution of outcomes.
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in Observation 1. The negative and significant coefficient of Agent Number in Table 4

indicates a lower degree of collusion for larger markets, demonstrating the existence

of the number effect in the Partial-Info treatment which is contrary to our Hypothe-

sis 2. In fact, the positive and significant coefficient of Agent Number × FID shows

that the number effect is weaker under the Full-Info treatment compared with the

Partial-Info treatment. We, therefore, make the following observation.

Observation 2 The number effect exists in both the Full and Partial-Info treatments.

The number effect is weaker, however, under the Full-Info treatment, contrary to

Hypothesis 2.

4.1 Group behavior

Why are collusive outcomes rare in the Full2 treatment compared to its n = 3 coun-

terpart, and unlike what the simulated IEL predicts? One possible reason is the

differences in average cognitive ability among participants across treatments. While

we have randomized participants across treatments, it is possible that the distribution

of participants in terms of their cognitive ability was not the same across the treat-

ments. Because it has been shown that participants with higher cognitive ability tend

to achieve a higher degree of cooperation (Proto et al., 2019), variation in cognitive

ability across sessions (or more importantly, across treatments) can result in partici-

pants achieving more cooperative (collusive) outcomes in some sessions (treatments)

than in others.

As a first check, we run the following simple linear regression:

Average Outputij = βAverage Raven scoreij + Treatmentj + ϵij (5)

where Average Outputij and Average Raven scoreij are the average individual out-
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Table 5: Group output and the average score of the Raven test.

Dependent variable: Average Individual Output
(1) (2) (3)

Full Sample Partial-Info Full-Info
Average Raven Score -1.635∗ -0.461 -2.996∗

(0.873) (0.711) (1.540)
Treatment FE Yes Yes Yes
Observations 40 18 22
standard deviations in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Column 1 shows the result from the full sample. Column 2 uses the subsample
of three Partial-Info treatments. Column 3 uses the subsample of three Full-Info treat-
ments.

puts and the average score of the Raven test for participants in group i with treatment

j, respectively, and Treatmentj is the treatment fixed effect.

Table 5 details the results. The negative coefficient of Average Raven Score in

Column 1 means that groups with a higher average score on the Raven test tend to

produce less and are more likely to reach the collusive outcome. On average, a one-

point increase in the average Raven score leads to a 1.63 decrease in average individual

output. This finding is consistent with Proto et al. (2019). In our experiment, this

significant correlation between the Raven test score and the average output is driven

by the groups in the Full-Info treatments, as shown in Column 3. This correlation is

not significant in groups under the Partial-Info treatments.

Figure 5 compares the average group Raven scores from all the treatments. The

average Raven score for the Full3 treatment is much higher than in the other treat-

ments. This might indeed be the reason we observe more collusive outcomes in the

Full3 treatment than in the Full2 treatment, contrary to what our simulation pre-

dicted.

To better understand the mechanism of the observed feedback effect in our exper-
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Figure 5: The average group Raven score across treatments.

iment, we analyze the data at the individual level in the next subsection.

4.2 Individual behavior

At the individual level, participants exhibit a large degree of heterogeneity. To quan-

tify their behavior, we divide the output levels into three categories: Individualistic,

Cooperative, and Retaliatory. We define an individual output decision to be Co-

operative if the output is 10 units lower than the best response output level based

on the total output of others in the previous round; Retaliatory if the output is 10

units higher than the best response output level based on the total output of others

in the previous round; and Individualistic otherwise. In addition to the above three

types, we also define an action to be Flexible if the agent increases (or decreases)

their output by at least 10 units, immediately following an increase (or decrease) in

the aggregate output of the others in the group in the previous round.
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We use these definitions because the total output of others is available in all

treatments, and participants can easily look for their profit-maximizing output level,

conditional on others’ total outputs, by using the calculators provided in the experi-

ment.7 In fact, an average agent uses the profit calculator 313 times throughout the

experiment.8

Figure 6 illustrates the composition of the various decision types for the two

information treatments. The participants under Full-Info treatments make more Re-

taliatory decisions and fewer Individualistic decisions than those under Partial-Info

treatments. Given aggregate output levels are provided to the participants in all treat-

ments, the significantly higher percentage of Retaliatory decisions under the Full-Info

treatments must be driven by the extra information (namely, individual quantities

and profits) provided.

To understand the effect of various action types on average output, the following

regression is conducted:

Average Outputij = β1Cooperativeij + β2Retaliatoryij + β3Flexibleij +Groupj + ϵij

(6)

where Average Outputij is the average output per round for individual i in the group

j; Cooperativeij, Retaliatoryij, and Flexibleij are the number of Cooperative, Re-

taliatory, and Flexible decisions (across 100 periods), respectively, for individual i in

group j; Groupj is the group fixed effect; and ϵij is the error term.9

Figure 7 provides the estimated coefficients of the various decision types. Not

surprisingly, an increase in the number of Cooperative decisions significantly decreases

7Although the information available is the total group output, participants can easily deduct
their own output from the total group output to compute the total output of other group members.

881 percent of participants use it at least 50 times throughout the experiment.
9Individualistic decisions are dropped given collinearity.
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Figure 6: Number of various types of individual action by information type.

average individual output, while an increase in the number of Retaliatory decisions

significantly increases average individual output. Flexible decisions have no significant

effect on average individual output. Importantly, these effects are similar across the

different information treatments and not statistically significantly different at the 5%

level (see, Table 6, in Appendix C), suggesting that the different distributions of

outputs across treatments we saw in Figure 3 are not driven by the relative strengths

of the various types of actions.

5 Summary and Discussion

In this paper, we extend the individual evolutionary learning model by incorporating

other-regarding considerations and apply the model to some Cournot games. Based on

the model fitted to the experimental data of a repeated 3-player Cournot game (with

nonlinear cost and demand functions), we make out-of-sample predictions regarding
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Figure 7: The estimated coefficients of various decision types for the two treatments.

the feedback and number effects and test them using the data gathered via newly

conducted experiments. The prediction regarding the feedback effect is partially

confirmed. Namely, we observe it in the 3- and 4-player games but not in the 2-player

game. The prediction regarding the number effect is also partially confirmed in that

while the model predicts the number effect to be observed with detailed feedback,

and not under aggregate feedback, the effect is observed with both types of feedback.

We investigate the role of cognitive ability and individual behavior to better un-

derstand the experimental outcomes. The data suggest that the differences in the

average cognitive ability of participants across treatments may account for a higher

frequency of collusive outcomes observed in the 3-player game with detailed feed-

back than the 2-player game with detailed feedback, although the model predicts the

opposite.

The individual level analyses reveal that participants are making Retaliatory de-
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cisions (that is to produce much more than the myopic best response level) much

more frequently with detailed feedback than with aggregate feedback, which results

in more competitive outcomes in the former than the latter.

We believe the approach taken in the paper—namely, to calibrate the param-

eter values of a boundedly rational behavioral model by fitting the model to an

existing experimental data set and then testing the out-of-sample predictions of the

calibrated model with newly corrected data—can be a powerful tool for advancing re-

search in behavioral and experimental economics. A well-known problem in working

with boundedly rational behavioral models is the so-called “wilderness” of bounded

rationality (Sims, 1980; Hommes, 2013); that is, because of the large degree of free-

dom modelers have in constructing these models, systematic investigation becomes

extremely difficult. By restricting our attention to those models with a solid em-

pirical (experimental) foundation, and further testing their out-of-sample prediction

with newly gathered data, we can narrow down the set of models to advance one’s

investigation.
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A Measure of Model Fit to the Experimental Data

The model’s fit to the experimental data is measured based on the distribution of

group-level total outputs. The unit of observations is the level of aggregate output

in one period (Qt =
∑

i q
i
t). Let Fsim,n be the empirical distribution function based

on the n observations generated by the simulation, and Fexpr,m be the empirical

distribution function based on the m observations from the experiment.

Fsim,n(x) =
1

n

n∑
i=1

I[−∞,x](Xi)

Fexpr,m(x) =
1

m

m∑
i=1

I[−∞,x](Xi)

where I[−∞,x](Xi) is the indicator function, equal to 1 if Xi ≤ x and equal to 0 other-

wise, with Xi ∈ {100, 105, 110, · · · , 395, 400}. Distance between the two distributions

is measured by

Dn,m =
∑
x

(Fsim,n(x)− Fexpr,m(x))
6.

We also considered two other measures of distance

D2n,m =
∑
x

(Fsim,n(x)− Fexpr,m(x))
2

D3n,m = supx|Fsim,n(x)− Fexpr,m(x)|

but the results are similar. These results are available from the authors upon request.

Note that D3n,m places all the weight on minimizing the largest difference between

the two distributions while sacrificing the distance in other parts. Dn,m and D2n,m,

in contrast, take distances for all the bins into account.
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B Two-step Grid Search

B.1 Coarse grid search

Grid searching is done for all possible combinations of shares of the five types in the

population (fI , fC , fR, fF , and fM for Individualistic, Cooperative, Retaliatory, Flex-

ible, and Mixed, respectively) such that fx ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} while
∑

x fx = 1

where x ∈ I, C,R, F,M . For the other parameters, we consider the space of B ∈

{0, 20, 40, 60}. G ∈ {0, 20, 40, 60}, ρ ∈ {0.1, 0.3, 0.7, 0.9}, and ωf ∈ {0.1, 0.3, 0.7, 1}.

The same exercise is carried out across treatments.

B.2 Finer grid search

B.2.1 Treatment Qq

The coarse grid search led to restricting our attention to the following subspace. For

the shares of the five types fI ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, fC ∈ {0, 0.1, 0.2, 0.3, 0.4},

fR ∈ {0, 0.1, 0.2, 0.3} fF ∈ {0, 0.1, 0.2, 0.3}, and fM = 1− (fI +fC +fR+fF ). For the

other parameters, B ∈ {30, 40, 50, 60, 80}, G ∈ {0, 20, 40, 60}, ρ ∈ {0.1, 0.3, 0.7, 0.9}

and ωf ∈ {0.1, 0.3, 0.7, 1}.

As a result, we obtain the following two sets of best parameter values.

fI fC fR fF fM B G ρ ωf

Qq (a) 0.8 0.2 0.0 0.0 0.0 80 0 0 0

Qq (b) 0.7 0.3 0.0 0.0 0.0 30 0 0 0

B.2.2 Treatment Qqπ

The coarse grid search led to restricting our attention to the following subspace. For

the shares of the five types fI ∈ {0.0, 0.1, 0.2, 0.3, 0.4}, fC ∈ {0.0, 0.2, 0.3, 0.4, 0.5},
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fR ∈ {0.0, 0.3, 0.4, 0.5, 0.6} fF ∈ {0.0, 0.2, 0.3, 0.4, 0.5, 0.6}, and fM = 1− (fI + fC +

fR+fF ). For the other parameters, B ∈ {20, 30, 40, 50, 60, 80}, G ∈ {20, 30, 40, 50, 60},

ρ ∈ {0.1, 0.3, 0.7, 0.9} and ωf ∈ {0.1, 0.3, 0.7, 1}.

As a result, we obtain the following set of best parameter values.

fI fC fR fF fM B G ρ ωf

Qqπ 0.0 0.2 0.4 0.4 0.0 60 50 0.1 1.0
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C Supplementary Materials

Table 6: Effects of decision types on individual output.

Dependent variable: Average Individual Output
(1) (2) (3)

Partial-Info Full-Info Full Sample
Cooperative -.292∗∗∗ -.26∗∗∗ -.292∗∗∗

(.0298) (.0378) (.0284)
Retaliatory .231∗∗∗ .234∗∗∗ .231∗∗∗

(.0244) (.0349) (.0233)
Flexible .223 -.261 .223

(.171) (.203) (.163)
Cooperative × FID .0323

(.0487)
Retaliatory × FID .00321

(.0433)
Flexible × FID -.484∗

(.268)
FID -9.59∗∗

(3.63)
Constant 70.8∗∗∗ 99.8∗∗∗ 70.8∗∗∗

(1.32) (1.55) (1.26)
Group FE Yes Yes Yes
Observations 54 63 117
standard deviations in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Column 1 shows the statistics from the Partial-Info treatments. Column 2 shows
the statistics from the Partial-Info treatments. Column 3 shows the statistics from the
Full sample, where FID is a dummy variable: 1 if it is under Full-Info treatments, 0
otherwise.
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D Experiment Introduction

D.1 Raven test

We do not display the decision screen for the Raven test because of issues with

copyright.

D.2 Cournot introduction

Here we show the on-screen Introduction for the 2-agent Full-Info treatment as an

example. The players in the Partial-Info treatments read the same introduction but

do not see anything about historical information.
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D.3 Cournot decision page

Once players answer the question correctly, they will see the decision page, where they

can move the slide bar to calculate the hypothetical payoff. The same instructions

are available at the bottom.

In the Full-Info treatments (but not the Partial-Info treatments), they can also

click the “Show History” button to see the outputs of the other players.
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D.4 Cournot result page

Once everyone in the group has made their decisions, they see the result page. The

players in the Partial-Info treatment do not see the information of other firms.
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