Bank capital regulation,
the lending channel and business cycles

Longmei Zhang
(Johann Wolfgang Goethe University)

Discussion Paper
Series 1: Economic Studies
No 33/2009

Discussion Papers represent the authors’ personal opinions and do not necessarily reflect the views of the Deutsche Bundesbank or its staff.
Abstract:

This paper develops a Dynamic Stochastic General Equilibrium (DSGE) model to study how the instability of the banking sector can amplify and propagate business cycles. The model builds on Bernanke, Gertler and Gilchrist (BGG) (1999), who consider credit demand friction due to agency cost, but it deviates from BGG in that financial intermediaries have to share aggregate risk with entrepreneurs, and therefore bear uncertainty in their loan portfolios. Unexpected aggregate shocks will drive loan default rate away from expected, and have an impact on both firm and bank’s balance sheet via the financial contract. Low bank capital position can create strong credit supply contraction, and have a significant effect on business cycle dynamics.

JEL classification: E32, E44, E52

Key words: Bank capital regulation, banking instability, financial friction, business cycle
Non-technical summary

Dynamic Stochastic General Equilibrium (DSGE) models have long been criticized for disregarding the financial sector and for thereby failing to explain important regularities of business cycles. Given the recurrent financial crises and the present worldwide recession triggered by the U.S. subprime mortgage market and the subsequent banking instability, it has become clear that financial frictions play an important role in the amplification of business cycles. In the literature, credit demand frictions have been studied the most extensively. Representative work from Bernanke, Gertler and Gilchrist (1999, BGG thereafter) establishes a link between firms’s borrowing cost and their net worth, which can generate counter-cyclical external finance premiums and amplify various macro shocks. However, the financial friction coming from the supply side or the vulnerability of the financial intermediary itself has so far not been incorporated into stylized DSGE models. Recent authors have tried to link the financial structure of banks to their lending rate to motivate the role of bank capital (e.g. Markovic (2006), Aguiar and Drumond (2007)) or have modeled the function of banks in a detailed manner (Gerali, Neri, and Signoretti (2007), Christiano, Motto, and Rostagno (2007)). However, by using financial contracts that insulate banks from aggregate shocks, previous models have avoided the key issue of linking systemic risk to banks’ balance sheet and the related banking instability, which is then passed on to the macro economy through the credit market. This linkage is shown to be of critical importance in the current crises.

This paper focus on financial structure of banks and related credit supply frictions. The basic model is a closed economy DSGE model similar to BGG. Key deviations from the basic model is integrating a financial contract where borrowers and lenders share systemic risk. At the end of each period, a loan contract is signed based on two parties’ expectation of future economic condition. Contractionary aggregate shocks in the next period will lead to higher than expected loan default rate, and will therefore not only influence firm’s balance sheet, i.e. net worth, but also bank’s balance sheet, or capital position, as they face large write-offs from the unexpected loan losses. This is in contrast with the BGG model, in which banks issue state-contingent contract with entrepreneurs, therefore returns on their loan portfolio are independent of any aggregate shocks. Given its initial capital position, banks face the trade-off between increasing asset size and higher funding cost, as households perceive lower capital-asset ratio as more in-
stable financial structure and charge a higher premium for holding banks' equity. Therefore, in economic downturn, in addition to the credit demand friction induced by low firm net worth, as captured in a financial accelerator, low bank capital position also gives rise to strong credit supply friction. Credit frictions from both sides will interact and reinforce each other, and drive the economy down further.

Model simulations show that instability of the banking sector alone can create strong credit supply frictions and can amplify and propagate short-run cycles significantly. Shocks that originate from the banking sector, e.g. a sudden decline in bank capital, can lead to strong contraction in the real economy. In the long run, instability of the banking sector implies a lower capital stock in the economy and therefore a lower level of investment and output.

This paper also compares the relative contribution of various frictions in shock transmission. Three cases are considered. In the first case, only nominal rigidities and capital adjustment cost are considered; in the second case, a financial accelerator effect is added; in the third case, the bank balance sheet channel is incorporated. Model simulations show that the bank capital channel is more important than the financial accelerator in amplifying policy shocks. This is consistent with previous findings in the literature that the financial accelerator contributes only marginally to monetary policy transmission. However, the relative importance of the two channels is reversed when a positive technology shock hits the economy, when strong corporate balance sheets play an important role in driving up asset prices and increasing aggregate investment.

The model can also replicate the long-established puzzle that aggregate lending does not decline immediately following a contractionary monetary policy shock but increases for four to six quarters and then falls. (Christiano, Eichenbaum and Evans (2005)). The mechanism behind this phenomenon is that firm net worth contracts faster than asset prices in the initial period following a negative policy shock, and that therefore firms have to borrow more external funds to finance a reduced amount of investment. In the following period, contraction of firm net worth slows down, while asset price is declining faster, firm’s external borrowing therefore goes down.
Nichttechnische Zusammenfassung

Diese Arbeit vergleicht auch den relativen Beitrag verschiedener Friktionen zur Schocktransmission. Es werden drei Fälle untersucht. Im ersten Fall werden ausschließlich nominale Rigiditäten und Kapitalanpassungskosten betrachtet, im zweiten Fall wird ein Finanzakzeleratoreffekt hinzugefügt, und im dritten Fall wird der Bankbilanzkanal integriert. Modellsimulationen verdeutlichen, dass bei der Verstärkung geldpolitischer Schocks dem Bankkapital als Transmissionskanal eine größere Bedeutung zukommt als dem Finanzakzelerator. Dies steht im Einklang mit bereits bekannten Ergebnissen aus der Fachliteratur, denen zufolge der finanzielle Akzelerator nur geringfügig zur geldpolitischen Transmission beiträgt. Wird die Volkswirtschaft jedoch von einem positiven Technologieschock getroffen, in dem starke Unternehmensbilanzen die Vermögenspreise und die gesamtwirtschaftlichen Investitionen deutlich in die Höhe treiben, so kehrt sich die relative Bedeutung der beiden Kanäle um.

Dieses Modell kann auch das seit langem bekannte Phänomen, dass die Gesamtkreditvergabe nach einem kontrakten geldpolitischen Schock nicht unmittelbar zurückgeht, sondern zunächst vier bis sechs Quartale lang zunimmt, bevor sie anschließend abfällt, abbilden (Christiano, Eichenbaum und Evans (2005)). Hinter diesem Phänomen verbirgt sich ein Mechanismus, der bewirkt, dass das Reinvermögen der Unternehmen nach negativen geldpolitischen Schocks zunächst schneller abnimmt als die Vermögenspreise, sodass die Unternehmen stärker auf Fremdfinanzierung zurückgreifen müssen, um geringere Investitionen zu finanzieren. In der darauffolgenden Periode verlangsamt sich die Abnahme des Reinvermögens der Unternehmen, während die Vermögenspreise schneller sinken; dadurch verringert sich die Kreditaufnahme der Unternehmen.
Contents

1 Introduction 1

2 Model 4
 2.1 The Financial Contract 4
 2.2 General Equilibrium 8
 2.2.1 Households 8
 2.2.2 Entrepreneurs 9
 2.2.3 Capital Producers 11
 2.2.4 Banking Sector 11
 2.2.5 Retail Sector 14
 2.2.6 Monetary Policy 15

3 Calibration 16

4 Simulation 16
 4.1 Technology shocks 17
 4.2 Monetary policy shocks 19
 4.3 Financial shock 21
 4.4 Model Comparison: Marginal Effect of Banking Instability 22
 4.4.1 Long-run effect 22
 4.4.2 Short-run effect 23

5 Conclusion 25

Appendix A: The Financial Contract 26

Appendix B: First-Order Conditions 28

Appendix C: The Steady States 30

References 31
List of Tables and Figures

List of Tables

1 Steady states comparison 23

List of Figures

1 Distribution of Bank Capital Ratio of U.S. Banks in 2000:4 13
2 Impulse responses to a productivity shock 18
3 Impulse responses to a monetary policy shock 20
4 Impulse responses to a financial shock 22
5 Impulse responses to a monetary policy shock 24
6 Impulse responses to a productivity shock 24
Financial frictions have long been ignored in the literature on business cycles. The main theoretical justification for this omission is the Modigliani-Miller proposition, which implies that financial structure is irrelevant for real economic outcomes. However, the ongoing global financial crisis has demonstrated that financial conditions play a central role in determining how real shocks are transmitted through the economy and has shown that financial disturbances can be a source of economic fluctuations. Moreover, there are many historical episodes in which distressed banking systems and adverse credit market conditions have triggered or contributed to serious macroeconomic contractions.

Yet in the canonical Dynamic Stochastic General Equilibrium (DSGE) models, there are no financial sector and consequently no financial shocks. Recently, a number of authors have sought to incorporate banking sector and related credit market frictions into DSGE models to study the interaction between the real economy and the financial sector. This paper is part of that effort.

Generally speaking, there are two aspects in integrating credit market frictions: one is credit frictions from the demand side, and the other is from the supply side. Earlier work by Bernanke and Gertler (1989) and Bernanke et al. (1999) (hereinafter BGG) investigated the role of credit demand friction, as a result of asymmetric information between the borrower and the lender. Their model established a link between firms’ borrowing costs and net worth. In an economic downturn, firms’ leverage ratio increases, causing them to face a higher external finance premium because information

1The author thanks the Deutsche Bundesbank for research support and seminar participants at Deutsche Bundesbank and Hong Kong Monetary Authority, the 7th workshop "Monetary and Financial Economics", MOOD Workshop, Joint BIS/ECB workshop on "Monetary Policy and Financial Stability" for discussions, thanks Stefan Gerlach, Hans Genberg, Simon Gilchrist, Heinz Herrmann, Frank Smets, Tommaso Monacelli, Eric Van Wincoop, Alexander L. Wolman, and Haibin Zhu for useful comments. The author is especially grateful to Thomas Laubach, Falko Fecht, and Alex Ho for detailed discussions. Contact information: IMFS, Goethe University, Grueneburgplatz 1 (Box H 12), 60629 Frankfurt/Main, Germany, email: lozhang@wiwi.uni-frankfurt.de.

2Including past crisis in Scandinavia, Latin America, Japan, and other East Asian countries.
asymmetry is exacerbated, reducing capital demand. The drop in capital demand reinforces the initial decline of firms' net worth and the business cycle is propagated. This mechanism is known in the literature as the "financial accelerator". However, the financial friction coming from the credit supply side or the vulnerability of the financial intermediary itself has not been incorporated into DSGE models. Recent authors have tried to link the financial structure of banks to their lending rate to motivate the role of bank capital (e.g. Markovic (2006), Aguiar and Drumond (2007)) or have modeled the function of banks in a detailed manner (Gerali, Neri, and Signoretti (2007), Christiano, Motto, and Rostagno (2007)). However, by using financial contracts that insulate banks from aggregate shocks, previous models have avoided the key issue of linking systemic risk to banks' balance sheet and the related banking instability, which is then passed on to the macro economy through the credit market. This linkage is shown to be of critical importance in the current crises.

This paper focuses on financial structure of banks and related credit supply frictions. The basic model is a closed economy DSGE model similar to BGG. Key deviations from the basic model is integrating a financial contract where borrowers and lenders share systemic risk. At the end of each period, a loan contract is signed based on two parties' expectation of future economic condition. Contractionary aggregate shocks in the next period will lead to higher than expected loan default rate, and will therefore not only influence firm's balance sheet, i.e. net worth, but also bank's balance sheet, or capital position, as they face large write-offs from the unexpected loan losses. This is in contrast with the BGG model, in which banks issue state-contingent contract with entrepreneurs, therefore returns on their loan portfolio are independent of any aggregate shocks. Given its initial capital position, banks face the trade-off between increasing asset size and higher funding cost, as households perceive lower capital-asset ratio as more unstable financial structure and charge a higher premium for holding banks' equity. Therefore, in economic downturn, in addition to the credit demand friction induced by low firm net worth, as captured in a financial accelerator, low bank capital position also gives rise to strong credit supply friction. Credit frictions from both sides will interact and reinforce each other, and drive the economy down further.

Model simulations show that instability of the banking sector alone can create strong credit supply frictions and can amplify and propagate short-run cycles significantly. Shocks that originate from the banking sector, e.g.
a sudden decline in bank capital, can lead to strong contraction in the real economy. In the long run, instability of the banking sector implies a lower capital stock in the economy and therefore a lower level of investment and output.

This paper also compares the relative contribution of various frictions in shock transmission. Three cases are considered. In the first case, only nominal rigidities and capital adjustment cost are considered; in the second case, a financial accelerator effect is added; in the third case, the bank balance sheet channel is incorporated. Model simulations show that the bank capital channel is more important than the financial accelerator in amplifying policy shocks. This is consistent with previous findings in the literature that the financial accelerator contributes only marginally to monetary policy transmission. However, the relative importance of the two channels is reversed when a positive technology shock hits the economy, when strong corporate balance sheets play an important role in driving up asset prices and increasing aggregate investment.

The model can also explain the long-established puzzle that aggregate lending does not decline immediately following a contractionary monetary policy shock but increases for four to six quarters and then falls. (Christiano, Eichenbaum and Evans (2005)). The mechanism behind this phenomenon is that firm net worth contracts faster than asset prices in the initial period following a negative policy shock, and that therefore firms have to rely more on external financing. In the following period, contraction of firm net worth slows down, while asset price is declining faster, so that firm’s external borrowing declines.

This paper is also related to the banking literature which focus on fragility of financial intermediaries. Representative work from Diamond and Dybvig (1983) shows the inherent instability coming from the bank liabilities side. Given the explicit or implicit government guarantee on bank deposit, this problem has been mitigated to a large extent. This paper shows the banking instability arising from the asset side. i.e., although banks can diversify away idiosyncratic shocks by holding a large loan portfolio, they are still vulnerable to any systemic risk. Another key difference is that in this model, financial instability is driven by fundamentals rather than pure self-fulfilling expectations.

\[3\text{See Meier and Mueller (2006), Christensen and Dib (2008).}\]
The remainder of the paper is structured as follows. Section 2 presents the model. Section 3 describes the calibration strategy. Section 4 discusses the effect of the bank capital channel on long-run steady states and short-run dynamics. Section 5 concludes.

2 Model

The economy is inhabited by four types of agents: households, entrepreneurs, retailers and bankers. The structure of the basic model is the following: Bankers raise equity and deposit from the households, and then intermedi-ate these funds to the entrepreneurs. Entrepreneurs combine their own net worth and the money they borrowed from banks to purchase physical capital, which will be used in aggregate production together with labor supplied by households. The product will then be differentiated in the retail sector to become final goods, which is either invested or consumed by the agents. Nominal Return on risk-free assets (i.e., deposit) is set by the central bank, who conducts monetary policy following a Taylor rule. Banks are subject to regulatory requirement on minimum capital ratio.

Next, we will present a financial contract where borrowers and lenders share aggregate risk, and then integrate it into a general equilibrium.

2.1 The Financial Contract

In this part, we discuss the design of an optimal financial contract between entrepreneurs and banks, which is the key deviation of our model to the original BGG model. The contract is derived in a partial equilibrium setting, taking the price of capital goods, entrepreneurs’ net worth, the cost of deposits and bank capital as given. In the next section, these variables will be endogenously determined in the general equilibrium.

There are two parties to the contract: an entrepreneur with net worth \(n \), and a bank which can raise funds from the household in the form of either deposits or equity and may wish to lend to the entrepreneur. Both parties are assumed to be risk-neutral. There is a continuum of entrepreneurs, indexed by \(i \in (0, 1) \). At the end of period \(t \), entrepreneurs need to purchase capital for use at \(t + 1 \). The quantity of capital purchased by entrepreneur \(i \) is denoted \(K_{t+1}^i \), and the real price paid per unit of capital in period \(t \) is \(q_t \). The return on capital is subject to both idiosyncratic and aggregate
risk. The ex-post gross return to entrepreneur i is $\omega_{t+1} R_k^t$, where ω_{t+1} is an idiosyncratic shock to entrepreneur i, and R_k^t is the ex-post aggregate rate of return on capital. The idiosyncratic shock ω_{t+1} is independently distributed (across time and entrepreneurs) with log-normal distribution and a mean of one.

To finance the purchase of capital, entrepreneurs use internal funds (net worth) and borrow the rest from a bank. Let N^i_{t+1} denote the net worth of entrepreneur i at the end of period of t; then borrows from the bank is the following:

$$L^i_{t+1} = q_t K^i_{t+1} - N^i_{t+1}$$ \hspace{1cm} (1)

ω_{t+1} is private information to entrepreneur i and the bank has to pay a monitoring cost to observe it. Entrepreneurs observes the realization of ω_{t+1} and decide whether to repay the debt or default. If they repay the debt, they pay $R^L_{t+1} L_{t+1}$. R^L_{t+1} is the gross loan rate specified in the contract that the entrepreneur need to pay to the bank for loan payment. It can be fixed or state-contingent. If they default, the bank seizes the entrepreneur's remaining assets after paying the monitoring cost.\(^4\) For a particular value of R^L_{t+1}, there is a corresponding cut-off value of idiosyncratic productivity $\overline{\omega}_{t+1}$, such that, if the realization of the idiosyncratic productivity falls below it, the entrepreneur defaults. That is:

$$\overline{\omega}_{t+1} R^L_{t+1} q_t K^i_{t+1} = R^L_{t+1} L^i_{t+1}$$ \hspace{1cm} (2)

The BGG model assume that entrepreneurs will absorb all of the aggregate risk and that bank hold risk-free loan portfolios by issuing state-contingent contract. The optimal contract, as a result, maximizes the expected return to entrepreneurs as following:

$$\max E_t \left\{ \int_{\overline{\omega}_{t+1}}^{\infty} \omega_{t+1} R^k_{t+1} q_t K^i_{t+1} f(\omega_{t+1}) d\omega - (1 - F(\overline{\omega}_{t+1})) \omega_{t+1} R^k_{t+1} q_t K^i_{t+1} \right\}$$ \hspace{1cm} (3)

where expectations are taken with respect to the random variable R^k_{t+1}, and $\overline{\omega}_{t+1}$ is a function of realization of R^k_{t+1} (and therefore, function of the states). \(f(.)\) and \(F(.)\) are respectively the density function and the cumulative distribution function of the random variable ω. The optimal contract must observe the participation constraints of the bank as well.

\(^4\)see Townsend (1979) and Gale and Hellwig (1985)
such that, for each possible realization of states of nature (and therefore, R_{k+1}^i and ω_{i+1}) the contract satisfies:

$$(1 - F(\omega_{i+1})) R_{i+1}^i L_{i+1} + (1 - \mu) \int_0^{\omega_{i+1}} \omega E_t R_{i+1}^k q_t K_{i+1} f(\omega) d\omega = R_{i+1}^f L_{i+1}$$

(4)

In equation (4), the left hand side shows that banks' return on the loan portfolio has two components: the loan amount that is paid back by the entrepreneurs, and, in the default case, the acquisition of the firm’s remaining assets after paying off the monitoring cost, which is a linear function of capital return. μ is a parameter that captures the degree of monitoring cost or information asymmetry. If μ is set to zero, there is no financial accelerator effect. R_{i+1}^f is the cost of funding of the bank, which will be discussed in the general equilibrium. The aggregate uncertainty does not impose systemic risk to the bank’s portfolio under the assumption that entrepreneurs bear all the aggregate risk. For each state of the economy, banks receive a risk-free rate of return on their loan portfolio.

By contrast, since the focus of this paper is banking instability and related credit supply frictions, this model assumes that aggregate risk is shared between banks and entrepreneurs. The financial contract cannot be therefore contingent on the realized capital return but has to be written based on the two parties’ expectation of capital return in the next period. Under this risk sharing rule, we have to make a distinction between the ex-post loan default threshold $\omega_{i,b}^i$ and the ex-ante $\omega_{i,a}^i$.

Let $E_t R_{i+1}^k$ denote the expected capital return at the end of period t. We assume that the entrepreneur can only offer the contract based on $E_t R_{i+1}^k$ instead of all possible realizations of R_{i+1}^k. The contract maximizes the expected return of the entrepreneur as following:

$$\int_{\omega_{i,b}^i}^\infty \omega_{i+1}^i E_t R_{i+1}^k q_t K_{i+1} f(\omega_{i+1}^i) d\omega - (1 - F(\omega_{i,a}^i)) \omega_{i,a}^i E_t R_{i+1}^k q_t K_{i+1}$$

(5)

where $\omega_{i,a}^i$ is the cut-off idiosyncratic productivity that the entrepreneur is

5The existence of the banking sector in this paper is taken as given. It could also be motivated by assuming that the households need to pay an extremely high cost to monitor the project outcome.

6A state-contingent contract could be prevented by assuming that the state of the economy is not observed by the enforcement of the contract, but only observed at the very end of the period when people form expectations for the next period.
expected to default in period t+1 based on information up to period t. Correspondingly, the participation constraint of banks is also based on \(E_t R^{k}_{t+1} \):

\[
(1 - F(\omega_{t+1})_t) R^{L}_{t+1} L^i_{t+1} + (1 - \mu) \int_{0}^{\omega_{t+1}^i} \omega_{t+1} E_t R^{k}_{t+1} q_{t+1} f(\omega_{t+1}) d\omega = R^{f}_{t+1} L^i_{t+1}
\]

By solving the contract we obtain the credit demand equation (see Appendix A):

\[
E_t R^{k}_{t+1} = S(q_{t+1} K^i_{t+1}) R^{f}_{t+1}
\]

The property and interpretation of S(.) is identical to BGG, where S denotes the external finance premium, which captures the wedge (driven by the existence of monitoring cost) between the cost of finance from the firm’s side and the cost of funds from the bank’s side. \(S' > 0 \), implying that the higher is the leverage ratio of firms, the higher is the external finance premium.

After solving the optimal contract, the contractual lending rate could be derived as

\[
R^{L}_{t+1} = \frac{\omega_{t+1}^i E_t R^{k}_{t+1} q_{t+1} K^i_{t+1}}{L^i_{t+1}}
\]

Note that in this model the contractual lending rate is fixed and independent to the realizations of the return on capital in t+1, whereas in BGG the lending rate is state-contingent:

\[
R^{L}_{t+1} = \frac{\omega_{t+1}^i R^{k}_{t+1} q_{t+1} K^i_{t+1}}{L^i_{t+1}}
\]

In period t+1, given the specified loan rate \(R^{L}_{t+1} \) and the realized return on capital, the ex-post default threshold \(\omega^b_{t+1} \) is now determined by:

\[
\omega^b_{t+1} = \frac{R^{L}_{t+1} L^i_{t+1}}{R^{k}_{t+1} q_{t+1} K^i_{t+1}}
\]

Recall that the expected default threshold is defined by:

\[
\omega_{t+1}^i E_t R^{k}_{t+1} q_{t+1} K^i_{t+1} = R^{L}_{t+1} L^i_{t+1}
\]
This implies:

\[\omega_b^{t+1} = \frac{\omega_a^{t+1} E_t R_k^{t+1}}{R_k^{t+1}} \] \hspace{1cm} (12)

From this expression, we see that any deviation of the realized capital return from expected one will drive a wedge between ex-post loan default rate and ex-ante. In the next session, we will analyze how this wedge between ex-ante and ex-post loan default rate will influence the banking sector and aggregate economy.

2.2 General Equilibrium

In this section, we analyze how can aggregate shocks influence firm and bank’s balance sheet via the financial contract in a general equilibrium. In addition to a firm’s credit demand curve which is contingent on its net worth (capturing the traditional financial accelerator effect), this model also derives an implicit credit supply curve, which is contingent on bank’s capital position.

2.2.1 Households

There is a continuum of households in the economy, each indexed by \(i \in (0, 1) \). They consume the final good, \(c_t \), invest in risk free bank deposits, \(d_t \), and bank equity, \(e_t \), supply labor \(l_h^{t} \) and own shares in a monopolistically competitive sector that produces differentiated varieties of goods. The households maximize the utility function:\(^7\)

\[
\max E_t \sum_{k=0}^{\infty} \beta^k \left[\ln(c_{t+k}) + \frac{d_{t+k}^{1+\varphi}}{1+\varphi} + \rho \ln(1 - l_h^{t+k}) \right] \] \hspace{1cm} (13)

subject to the sequence of budget constraints:

\[
d_{t+1} + e_{t+1} + c_t = w_t l_t + R_{t+1}^d d_t + R_{t+1}^e(1 - \phi_{t+1}) e_t + \Pi_t \] \hspace{1cm} (14)

\(d_{t+1} \) and \(e_{t+1} \) are deposits and bank equity in real terms. \(R_{t+1}^d \) and \(R_{t+1}^e \) reflect the gross real return on holding deposit and bank equity, and \(\phi_{t+1} \) is the default rate on bank capital. \(l_t \) is household labor supply, \(w_t \) is the real wage for household labor, \(\Pi_t \) is dividends received from ownership of retail firms.

\(^7\)Inserting deposits into the utility function is just a modeling device to capture the bank’s liquidity creation function. Model dynamics are robust if we consider a standard utility function with only consumption and leisure.
Following Van den Heuvel (2007), the liquidity services of bank deposits are modeled by assuming that the household has a derived utility function that is increasing in the amount of deposits. The households’ optimization problem yields following first-order conditions:

\[
U(c_t, d_t) = \beta E_t R^{d}_{t+1}(1 - \phi_{t+1})U(c_{t+1}, d_{t+1})
\]

\[
U(c_t, d_t) - U_d(c_t, d_t) = \beta E_t R^{d}_{t+1}U(c_{t+1}, d_{t+1})
\]

\[
-U_{c,t}/U_{l,t} = w_t
\]

Equation (15) shows that households’ intertemporal consumption decisions are determined by the default-adjusted return on holding bank equity. Equation (16) implies that the wedge between the return on bank equity and that on deposits is composed of two parts. The first is the liquidity premium, as captured in \(U_d(c_t, d_t)/U_c(c_t, d_t)\). Since deposits can provide households extra utility in addition to carry a monetary reward, bank equity has to provide a higher return to compete against deposits for households’ willingness to hold assets. The second part comes from the default risk of bank capital. As will be discussed later, banks will be shut down and default on capital return when their capital ratios fall below the regulatory threshold. Bank equity therefore has to provide a higher return than that on deposits to compensate for the default risk.\(^8\) Equation (17) describes the usual trade-off between consumption and leisure.

\[\text{2.2.2 Entrepreneurs}\]

Other than difference in the financial contract, the entrepreneur sector at the aggregate level is identical to the BGG. We describe the entrepreneur sector for completeness purpose below. After signing the financial contract, entrepreneurs combine loans acquired from the bank and their own net worth to purchase capital. They use capital and labor to produce wholesale goods and sell them on a perfect competitive market at a price equal to their nominal marginal cost. The aggregate production function is given by:

\[
Y_t = A_t K_t^{\alpha_k} L_t^{\alpha_l} (I_t^h)^{\alpha_h} (L_t^l)^{\alpha_l} (I_t^b)^{\alpha_b}
\]

Following BGG (1999), it is assumed that, besides operating firms, entrepreneurs also supply labor services in the general labor market. The same

\(^8\)This paper assumes a relationship between households and bankers as delegated monitoring. Therefore, households do not care about the capital structure of banks in their decision.
is assumed of bankers. As will be see later, α_e and α_b are calibrated so that these two additional labor forces have a negligible effect on the output level and model dynamics.\footnote{The salary that bankers earn from labor supply could be understood as fee income collected from transaction services, a function of financial intermediaries that is not modeled in the paper.}

The optimization problem of production remains standard:

\begin{align}
z_t &= \alpha_k mc_t \frac{Y_t}{K_t} \quad (19) \\
w_t^h &= \alpha_h mc_t \frac{Y_t}{l_t^h} \quad (20) \\
w_t^c &= \alpha_c mc_t \frac{Y_t}{l_t^c} \quad (21) \\
w_t^b &= \alpha_h mc_t \frac{Y_t}{l_t^b} \quad (22)
\end{align}

where z_t is the real rental rate of capital and w_t^h,w_t^c and w_t^b are, respectively, the real wage of households, entrepreneurs and bankers. mc_t denotes real marginal cost. The expected return on capital is then:

\begin{equation}
E_t R^k_{t+1} = E_t \left(z_{t+1} + \left(1 - \delta \right) q_{t+1} \right) \quad (23)
\end{equation}

The accumulation of entrepreneurs’ net worth consists of two parts: profits from operating the firms and labor income. It is assumed that, in every period, entrepreneur will die with the probability $1 - \gamma$. This assumption ensures that entrepreneurs never accumulate enough net worth to finance a project without external financing. Those entrepreneurs who die at time t will consume $(1 - \gamma)V_t$. The evolution of aggregate net worth is therefore given by:

\begin{equation}
N_{t+1} = \gamma V_t + w_t^c \quad (24)
\end{equation}

where V_t represents net return on operating business. It is the difference between gross capital return and loan payment.

\begin{equation}
V_t = \int_{\omega^b} \omega R^k_{t+1} q_t K_{t+1} f(\omega) d\omega - (1 - F(\omega^b)) R^L_{t+1} L_{t+1} \quad (25)
\end{equation}
2.2.3 Capital Producers

Capital producers purchase a fraction of final goods from the retailer as investment goods i_t and combine this with the existing capital stock to obtain capital stock in the next period. A quadratic capital adjustment cost is included to motivate a variable price of capital, which contributes to the volatility of firm net worth and bank capital. Capital producers will choose the quantity of investment goods to maximize profit subject to the adjustment cost:

$$\max E_t \left[q_t i_t - i_t - \frac{\chi}{2} \left(\frac{i_t}{k_t} - \delta \right)^2 k_t \right]$$

(26)

where q_t is the real price of capital. The optimization problem yields the following capital supply curve:

$$q_t = 1 + \chi \left(\frac{i_t}{k_t} - \delta \right)$$

(27)

where χ captures the sensitivity of capital price to investment fluctuation. The higher χ is, the more volatile the price of capital. The aggregate capital stock evolves according to:

$$k_{t+1} = i_t + (1 - \delta) k_t$$

(28)

where δ is the depreciation rate.

2.2.4 Banking Sector

The bank’s equity value is accumulated through retained earnings, as shown in the following equation:

$$e_{t+1} = (1 - \phi_t)e_t + R^L_{t+1}L^i_{t+1}(1 - F(\omega))$$

$$+(1 - \mu) \int_0^{\omega^b} \omega R^b_{t+1}q_tK_{t+1}f(\omega)d\omega - R^I_{t+1}L_{t+1} + w^b_t$$

where ϕ_t is the bank default rate, which will be explained in the bank regulation section. Aggregate bank equity at time $t+1$ consists of three parts: the first part is equity from those banks who did not default at time t; the second part is unexpected gains or losses in the loan portfolio; the third part is bankers’wages collected by serving in the aggregate production function.
Substituting equation (6) into the equity evolution rule, we get:

\[e_{t+1} = (1 - \phi_t)e_t + R_{t+1}^i L_{t+1}^i (F(\omega^a) - F(\omega^b)) \]

\[+ (1 - \mu) \int_0^{\omega^b} \omega R_{t+1}^k q_t K_{t+1} f(\omega) d\omega \]

\[- (1 - \mu) \int_0^{\omega^a} \omega E_t R_{t+1}^k q_t K_{t+1} f(\omega) d\omega + w_t^b \]

It could be shown that if a contractionary shock hits the economy, which drives realized capital return \(R_{t+1}^k \) lower than the expected value, higher loan default rate \(F(\omega^b) \) than anticipated \(F(\omega^a) \) will create losses that write down bank’s capital position.

Given the aggregate loan size, \(L_t \), and the amount of bank equity, we obtain the aggregate capital ratio:

\[\Delta_t = \frac{e_t}{L_t} \quad (29) \]

The rest of bank funding

\[d_t = L_t - e_t \quad (30) \]

will be collected from the households in the form of deposits. Therefore, from an aggregate level, the opportunity cost of bank funding is a linear combination of cost of bank equity and cost of deposits, where the proportion of each type of funding varies according to the bank capital ratio.

\[R_{t+1}^f = \Delta_t R_{t+1}^e + (1 - \Delta_t) R_{t+1}^d \quad (31) \]

The respective costs of deposits \(R_{t+1}^d \) and equity \(R_{t+1}^e \) are derived endogenously from households’ optimization problem.

Bank regulation In modern banking regulation, capital requirement has become the focal point.\(^{10}\) Given the implicit or explicit government guarantee on bank deposit, bank capital regulation is imposed to curb banks’ excessive risk-taking. In 1987, the Basel Committee of Banking Supervision established the Basel I Accord, which provided a uniform capital standard for all banks in the member countries. Basel I required the ratio of

\(^{10}\)In this paper, bank capital regulation is taken as given, instead of being motivated from a micro perspective. It could be understood to mean that the threshold requirement is set to keep the government or the central bank from having to shoulder the burden of massive bank failures.
banks’ capital to risk-weighted assets to amount to a minimum of 8 percent, with at least 50 percent of it being tier 1 capital. By 1993, nearly all of the world’s big banks had satisfied the Basel capital requirement. Many of them have been increasing their capital ratio. Figure 1 presents a histogram of the risk-based total capital ratios of U.S. commercial banks in the fourth quarter of 2000. As we can see from the figure, capital ratios vary across banks, with most of them between 10 and 11 percent, and very few below 10 percent.

Motivated by this empirical observation, the capital ratio across banks in the model is assumed to have log-normal distribution. The mode of the distribution is given by the aggregate capital ratio derived above. \(\Delta_{t} \) log-normal \((\Delta_{t}, \sigma) \).\(^{11}\) The health of the banking sector as a whole will depend largely on the variation of aggregate capital ratio. With a higher aggregate ratio, the distribution moves to the right, and fewer banks will fall short of the 8 percent threshold and thus default, and vice versa. The default probability is given by the cumulative distribution function up to the regulatory

\(^{11}\)The conditional distribution of bank capital ratio could be derived endogenously from the bank equity accumulation equation. For simplicity, in the simulation only the mean of the distribution is used, while the variance is assumed constant. As Krussell and Smith (1995) have shown, the behavior of the macroeconomic aggregates can be described almost perfectly using only the mean of the wealth distribution.
threshold:

$$\phi_t = cd f(\Delta_t, \sigma)$$ \hspace{1cm} (32)

The higher the default probability, the more it costs banks to raise equity. Therefore, a low capital position today will lead to higher equity costs in the next period. This increase in funding costs will dampen banks’ incentive to supply credit, and reduce aggregate investment.

By contrast, in BGG, banks’ funding costs are independent of its capital structure, and always equal to the risk free rate. In economic downturn, even though large loan losses lead to a weak capital position, funding costs remain the same, as households do not charge a risk premium for the increased banking instability; therefore, there is no amplification effect of business cycles from the bank’s side.

2.2.5 Retail Sector

The retail sector is introduced into the model to motivate sticky prices. As is standard in the literature, monopolistic competition and Calvo pricing are assumed. Retailers purchase the wholesale good from entrepreneurs at a price equal to its nominal marginal cost and differentiate them at no cost. They then sell these differentiated retail goods in a monopolistically competitive market. Let $Y_t(i)$ be the quantity of output sold by retailer i, measured in units of wholesale goods, and let $P_t(i)$ be the nominal price. Total final usable goods Y_t are the following composite of retail goods:

$$Y_t = \left[\int_0^1 Y_t(i)^{(c-1)/c} di \right]^{1/(c-1)}$$ \hspace{1cm} (33)

with $c \geq 1$ representing the degree of monopolistic competition. The corresponding price index is given by

$$P_t = \left[\int_0^1 P_t(i)^{(1-\epsilon)/\epsilon} di \right]^{1/(1-\epsilon)}$$ \hspace{1cm} (34)

Following Calvo (1983), in a given period the retailer receives the signal to adjust the price with probability $1 - \theta$ and otherwise has to maintain the

\footnote{Since banks that fall below the regulatory threshold cannot make new loans, they exit from the industry. Note that the default case in this model is benign, i.e. banks default because of bad fundamentals. Irrational bank runs caused purely by shifts in people’s expectations are not considered here.}
previous price. Let \(P^*_t(i) \) denote the price set by retailers who are able to change price at \(t \), and \(Y^*_t(i) \) the demand given this price. The retailer will thus choose this price to maximize future expected discounted real profits, given by:

\[
\max E_t \sum_{k=0}^{\infty} \left[\theta^k \Lambda_{t,k} \Omega_{t+k}(i)/P_{t+k} \right]
\]

subject to the demand function

\[
Y^*_{t+k}(i) = \left(\frac{P^*_t(i)}{P_{t+k}} \right)^{-\varepsilon} Y_{t+k}
\]

where the discount rate \(\Lambda_{t,k} = \beta^k C_t/C_{t+k} \) (given assumed log utility in consumption) is the household intertemporal marginal rate of substitution, which the retailer takes as given. \(\Omega_{t+k} \) is nominal profits given by \((P^*_t(i) - MC_{t+k})Y^*_{t+k}(i)\). The optimization problem yields the following condition:

\[
P^*_t(i) = \theta \frac{\theta}{\theta - 1} \frac{E_t \sum_{k=0}^{\infty} \theta^k \Lambda_{t,k} MC_{t+k}(i) Y^*_{t+k}(i)/P_{t+k}}{E_t \sum_{k=0}^{\infty} \theta^k \Lambda_{t,k} Y_{t+k}(i)/P_{t+k}}
\]

Given that the share \(\theta \) of retailers do not change their price in period \(t \), the aggregate price evolves according to:

\[
P_t = \left[\theta P_{t-1}^{1-\varepsilon} + \frac{1}{\theta - (1-\theta)(P^*_t)^{1-\varepsilon}} \right]^{\frac{1}{1-\varepsilon}}
\]

Combining the optimal pricing and the evolution of aggregate price and then log-linearizing, we obtain a standard Phillips curve where \(\hat{\text{mc}}_t \) represents the real marginal cost gap.

\[
\beta E_t \pi_{t+1} = \pi_t - \left(1 - \beta \theta \right) \frac{1}{\theta - \theta} \hat{\text{mc}}_t
\]

2.2.6 Monetary Policy

This model considers a simple rule according to which the central bank adjusts the current nominal interest rate in response to the lagged inflation rate and the lagged interest rate.

\[
r^n_t = \rho_n r^n_{t-1} + \rho_\pi \pi_{t-1} + \epsilon_t
\]
3 Calibration

In the household utility function, ρ is chosen so that steady-state labor is 0.3. φ is calibrated so that the steady-state liquidity premium is 380 bp on an annual basis. β is calibrated at 0.988. In the aggregate production function, the capital share is 0.33, the share of household labor is 0.66, the share of entrepreneur labor is 0.00956 and the share of banking labor is 0.00044. Capital depreciates at 2.5 percent quarterly. In the retail sector, the degree of monopolistic competition ϵ is calibrated at 6, which implies a steady-state mark-up of 20 percent. The Calvo probability that a firm does not change price in a given period θ is set to 0.75, which implies that prices in the economy are adjusted every four quarters on average. In monetary policy, the autoregressive coefficient is set to 0.65 and the coefficient of lagged inflation 1.2. These calibrations are standard in the literature.

In the financial contract, the monitoring cost parameter μ is set to 0.12, following BGG 1999. The probability that entrepreneurs die in a given period $1 - \gamma$ is set to 0.019. The variance of idiosyncratic productivity is set to 0.265. These parameterizations lead to the following steady-state values: a capital-to-net worth ratio of 2 (leverage ratio of 0.5), an annual loan default rate of 2.56 percent and an annual external finance premium of 180 bp. In the distribution of the bank capital ratio, the steady-state ratio is calibrated at 10 percent and the variance of the distribution is set to match a steady-state bank default rate of 1 percent.

As usual, the aggregate productivity shock follows an AR (1) process, with a coefficient of 0.9 and a standard deviation of 0.0056. Another parameter important for the model dynamics is the capital adjustment parameter χ, which is calibrated at 2 based on the estimates in Chirinko (1993).

4 Simulation

Technology shocks and monetary policy shocks are considered in the simulation. First, the impulse responses to shocks are analyzed; then the model is compared with a model where the only financial friction comes from the credit demand side and with a baseline model with no financial friction. The marginal contributions of the bank capital channel to the long-run steady state and short-run dynamics are studied.
4.1 Technology shocks

After a positive technology shock, the realized capital return is higher than expected, leading to lower than expected loan default rate. This generates unexpected gain on the loan portfolio, which strengthens banks’ capital position. Given the improvement in banks’ balance sheets, households expect a lower bank default rate in the next period and are therefore willing to hold bank capital at lower rates of return. The reduction in the cost of funding from the banks’ side expands credit supply and drive up investment in equilibrium. On the other hand, after a positive technology shock, firms’ net worth increases and leverage ratios decline, causing them to face lower agency costs in the credit market and enabling them to obtain loans at lower external finance premiums. The positive reaction from both the credit supply and credit demand side drive up aggregate lending to a large extent, which implies an investment boom. This raises output, consumption, and asset prices. The marginal cost of production falls after productivity increases; therefore, inflation falls.\(^\text{13}\)

\(^{13}\)In all the graphs in the simulation part, the X-axis represents the number of quarters after shocks hit the economy, the Y-axis represents the percentage deviation from the steady state value.
Figure 2: Impulse responses to a productivity shock
4.2 Monetary policy shocks

After a monetary policy tightening, the cost of deposits rises, bank credit supply declines, ex-post loan default rate goes up. The unexpected loss in loan portfolio will write off bank’s capital. The deterioration in banks’ balance sheets will lead households to demand higher returns for holding bank capital in the next period. The difficulty in raising capital will further depress banks’ credit supply and propagate the monetary policy shock. On the other hand, the net worth of entrepreneurs falls, the leverage ratio rises. This makes them look less attractive in the credit market and forces them to pay a higher external finance premium. Note that, despite the contraction in both credit supply and credit demand, the aggregate lending rises for about four to six quarters and then falls. This behavior has been well documented in empirical studies. Christiano, Eichenbaum and Evans (2005) argue that "following a contractionary shock to monetary policy, net funds raised by the business sector increases for roughly a year, and then fall". The reason for the temporary increase in the loan amount is that, after a monetary policy tightening, there is contraction in firm net worth, capital stock and asset prices. The adjustment speed of capital is low; therefore, the change in aggregate lending depends on the adjustment speed of net worth and asset prices. Since at the beginning net worth decreases much faster than the
asset price, the firm has to borrow more external funds to finance a reduced amount of investment. In the following period, contraction of firm net worth slows down, while asset price is declining faster, firm’s external borrowing therefore goes down. The rest of dynamics are standard: after interest rates are increased, inflation and consumption fall. Contraction of investment and consumption reduces the output level.

Figure 3: Impulse responses to a monetary policy shock
4.3 Financial shock

This section considers the model dynamics after a negative shock to bank capital. Assume that there is an exogenous deterioration of bank’s balance sheet and therefore a sudden drop of bank capital, possibly due to the burst of an asset price bubble, which leads to larger write-offs of bank equity compared to the case where asset swing is only driven by fundamental as modeled in this paper. From the simulation we can see that, a sudden drop of bank’s capital position leads to strong contraction in bank’s credit supply. We observe a decrease in aggregate lending and an increase in credit spreads. Tightening of credit market leads to dampened aggregate investment, which further deteriorates firm’s balance sheet, loan default rate goes up. Weak aggregate demand leads to both low output and inflation.
4.4 Model Comparison: Marginal Effect of Banking Instability

Next, we compare this model with a model where only the BGG type of financial friction exists as well as with a standard model with no financial friction. The results show that additional instability of the banking sector will reduce aggregate capital stock and the investment level in the long run and have an acceleration effect on the short-run dynamics of the model.

4.4.1 Long-run effect

In the steady state, instability of the banking sector implies higher bank funding cost, compared to the risk-free rate in BGG model. Given the increased funding cost, banks are only willing to finance project with higher return. Since the marginal return on capital is decreasing at the aggregate level, this implies a lower capital stock and therefore low investment, output and consumption level.
Table 1: Steady states comparison

<table>
<thead>
<tr>
<th>Variable</th>
<th>Zhang</th>
<th>BGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital</td>
<td>7.1621</td>
<td>7.4116</td>
</tr>
<tr>
<td>Investment</td>
<td>0.17905</td>
<td>0.1853</td>
</tr>
<tr>
<td>Output</td>
<td>0.86509</td>
<td>0.875</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.68604</td>
<td>0.68964</td>
</tr>
</tbody>
</table>

4.4.2 Short-run effect

Figure 5 and 6 compare the relative importance of various frictions in shock transmission. The green line describes impulse responses in a standard DSGE model, where only nominal rigidity and capital adjustment costs are considered. The red line incorporates the additional friction coming from the credit demand side, or the financial accelerator effect. The blue line captures the model dynamics where the bank capital channel is added to the previous frictions.

As we can see from the figures, the bank capital channel has a strong acceleration and propagation effect on both the impulse responses to the technology shock and the monetary policy shock. Compared to previous literature (e.g. Markovic (2006)), where the bank capital channel can generate the acceleration effect, but very little propagation effect, as the marginal contribution of credit supply friction vanishes after around 8 quarters following a policy shock. In this model, by introducing bank capital as a state variable, low capital position not only amplifies the cycle, but also creates more persistence of cycles. This corresponds to the real world scenario, where after a one-time deterioration of banks’ balance sheets, it takes time to repair the balance sheets and restore credit supply.

The most significant effect of bank capital is on investment, asset prices, and credit spreads. The instability in the banking sector introduces extra volatility to these variables, while its impact on output is relatively minor. This is because consumption, which accounts for 80 percent of output in the model calibration, is not strongly subject to the influence of banking instability. If consumer loan is incorporated, bank capital channel will have a much larger effect on the consumption level, and therefore a more significant impact on output.

Another observation from figure 5 is that the bank capital channel is
more important than the financial accelerator in amplifying policy shocks. This is consistent with previous findings in the literature that the financial accelerator contributes only marginally to monetary policy transmission. However, the relative importance of the two channels is reversed when a positive technology shock hits the economy, where strong corporate balance sheets play an important role in driving up asset prices and aggregate investment.

Figure 5: Impulse responses to a monetary policy shock

Figure 6: Impulse responses to a productivity shock
5 Conclusion

This paper extends a general equilibrium model with a BGG-type financial accelerator to a model in which financial friction coming from both the credit supply and credit demand sides are considered. By integrating a financial contract, in which entrepreneurs and banks share systemic risk, aggregate shocks will have impact not only on firms’ balance sheet, but also banks’ balance sheet. In economic downturn, in addition to credit demand friction induced by low firm net worth, this paper shows that low bank capital position also creates strong credit supply friction, and leads the economy to contract further. This bank balance sheet to credit market linkage has been shown to be critical importance in the current crisis.

The extended model enables us to study how real shocks, e.g., technology shocks, monetary shocks, affect the financial sector and how shocks originate in the banking sector can influence the real economy. The model also facilitate us to understand the role of different frictions in shock transmissions.

In future research, this model could be extended to consumer loans. Since consumption is the major component of output, once the feedback from banking instability to consumption is incorporated, the effect on output will be much more significant compared to the corporate-loans-only case. The model could also be extended to an open economy and study how the instability of a financial intermediary in one country could influence the real sector in the other economy.
Appendix A: The Financial Contract

In the financial contract, the entrepreneurs maximize expected profit subject to the participation constraint of the bank,

$$\max \int_{\omega^{i,a}}^{\infty} \omega E_t R_{i+1} q_i K_{i+1} f(\omega) d\omega - (1 - F(\omega^{i,a})) \omega^{i,a} E_t R_{i+1} q_i K_{i+1}$$

subject to

$$(1 - F(\omega^{i,a})) R^L_{i+1} L_{i+1} + (1 - \mu) \int_{0}^{\omega^{i,a}} \omega E_t R_{i+1} q_i K_{i+1} f(\omega) d\omega = R^f_{i+1} L_{i+1}$$

Recall that

$$\omega^{i,a} E_t R_{i+1} q_i K_{i+1} = R^L_{i+1} L_{i+1}$$

The key difference in solving the contract compared to BGG is that, in BGG, the expectation operator is outside the brackets, since ω itself is not fixed but instead contingent on R_{i+1}:

$$\max E_t \left\{ \int_{\omega^{i,a}}^{\infty} \omega R_{i+1} q_i K_{i+1} f(\omega) d\omega - (1 - F(\omega^{i,a})) \omega^{i,a} R_{i+1} q_i K_{i+1} \right\}$$

subject to

$$(1 - F(\omega^{i,a})) R^L_{i+1} L_{i+1} + (1 - \mu) \int_{0}^{\omega^{i,a}} \omega R_{i+1} q_i K_{i+1} f(\omega) d\omega = R^f_{i+1} L_{i+1}$$

This participation constraint has to hold for each realization of R_{i+1}; therefore, $\omega^{i,a}$ is a function of R_{i+1}. By contrast, in our model the participation constraint only holds for $E_t R_{i+1}$ and will break down ex-post if the realization of R_{i+1} deviates from expectation.

Define

$$\Gamma(\omega^{i,a}) = \int_{\omega^{i,a}}^{\infty} \omega f(\omega) d\omega - (1 - F(\omega^{i,a})) \omega^{i,a}$$

(A-1)

$$G(\omega^{i,a}) = \int_{0}^{\omega^{i,a}} \omega f(\omega) d\omega$$

(A-2)

The financial contract can then be transformed into

$$\max_{k_{i+1}, \omega^{i,a}} \left(1 - \Gamma(\omega^{i,a}) \right) E_t R_{i+1} q_i K_{i+1}$$

subject to

$$(\Gamma(\omega^{i,a}) - \mu G(\omega^{i,a})) E_t R_{i+1} q_i K_{i+1} = R^f_{i+1} (q_i K_{i+1} - N_{i+1})$$

26
Define external finance premium $s^i = \frac{E_t R^k_{t+1}}{R^f_{t+1}}$ and firm leverage ratio $k^i = \frac{K^i_{t+1}}{N^i_{t+1}}$ and let λ be the Lagrange multiplier on the bank participation constraint. First-order conditions imply that:

$$
\lambda = \frac{\Gamma'(\omega^{i,a})}{\Gamma'(\omega^{i,a}) - \mu G'(\omega^{i,a})} \quad (A-3)
$$

$$
s^i = \frac{\lambda}{1 - \Gamma(\omega^{i,a}) + \lambda(\Gamma(\omega^{i,a}) - \mu G(\omega^{i,a}))} \quad (A-4)
$$

Combining first-order conditions with the participation constraint enables us to derive a one-to-one relationship between the external finance premium and the cut-off threshold value, as well as a one-to-one relationship between the leverage ratio and the cut-off threshold value:

$$
s^i = s(\omega^{i,a}) = \frac{\lambda(\omega^{i,a})}{1 - \Gamma(\omega^{i,a}) + \lambda(\Gamma(\omega^{i,a}) - \mu G(\omega^{i,a}))} \quad (A-5)
$$

$$
k^i = k(\omega^{i,a}) = 1 + \frac{\lambda(\Gamma(\omega^{i,a}) - \mu G(\omega^{i,a}))}{1 - \Gamma(\omega^{i,a})} \quad (A-6)
$$

Therefore there exists a one-one relationship between the firm leverage ratio and the external finance premium:

$$
k^i = \phi(s^i) \quad (A-7)
$$

or $q_t K^i_{t+1} = \varphi(s^i) N^i_{t+1}$. Since the leverage ratio is the same across firms, they pay the same external risk premium s. We can thus easily aggregate this equation, and derive the following:

$$
q_t K_{t+1} = \varphi(\frac{E_t R^k_{t+1}}{R^f_{t+1}}) N_{t+1} \quad (A-8)
$$

where K_{t+1} and N_{t+1} represent aggregate capital and firm net worth. We can also rewrite this equation into equation (6) in the paper:

$$
E_t R^k_{t+1} = s(\frac{q_t K_{t+1}}{N_{t+1}}) R^f_{t+1} \quad (A-9)
$$
Appendix B: First-Order Conditions

\[U_c(c_t, d_t) = \beta E_t R_{t+1}^c (1 - \phi_{t+1}) U_c(c_{t+1}, d_{t+1}) \]
\[U_c(c_t, d_t) - U_d(c_t, d_t) = \beta E_t R_{t+1}^d U_c(c_{t+1}, d_{t+1}) \]
\[-U_{c,t}/U_{h,t} = w_t \]
\[z_t = \alpha_k m c_t Y_t^k / R_t \]
\[w_t^h = \alpha_h m c_t Y_t^h / h_t \]
\[w_t^l = \alpha_e m c_t Y_t^l / l_t \]
\[w_t^b = \alpha_h m c_t Y_t^b / b_t \]
\[q_t = 1 + \chi (i_{t} / k_t - \delta) \]
\[k_{t+1} = i_t + (1 - \delta)k_t \]
\[R_{t+1}^k = z_{t+1} + (1 - \delta)q_{t+1} \]
\[E_t R_{t+1}^k = S(q_t K_{t+1}) R_{t+1}^f \]
\[R_{t+1}^f = \Delta_t R_{t+1}^f + (1 - \Delta_t) R_{t+1}^d \]
\[\varphi_{t+1} = \alpha_i R_{t+1}^k q_t K_{t+1} = R_{t+1}^k L_{t+1} \]
\[q_t K_{t+1} = 1 - s(\varphi_{t+1}) (\Gamma(\varphi_{t+1}) - \mu \varphi_{t+1}) \]
\[\varphi_{t+1} = \varphi_{t+1} E_t R_{t+1}^k / R_{t+1}^k \]
\[N_{t+1} = \gamma V_t + w_t^e \]
\[V_t = \int_{\varphi_{t+1}}^\infty \omega R_{t+1}^k q_t K_{t+1} f(\omega) d\omega - (1 - F_{\varphi_{t+1}}) R_{t+1}^k L_{t+1} \]
\[\phi_t = \alpha d f(\Delta_t, \sigma) \]
\[\begin{align*}
P_t^r(i) &= \frac{\theta}{\theta - 1} \frac{E_t \sum_{k=0}^{\infty} \theta^k \Lambda_{t,k} M C_{t+k}(i) Y_{t+k}^*(i)}{E_t \sum_{k=0}^{\infty} \theta^k \Lambda_{t,k} Y_{t+k}(i)} / P_{t+k} \\
e_{t+1} &= (1 - \phi_t) e_t + R_{t+1}^L L_{t+1}^i (F(\varpi^a) - F(\varpi^b)) \\
&\quad + (1 - \mu) \int_{0}^{\varpi^b} \omega R_{t+1}^k q_t K_{t+1} f(\omega) d\omega \\
&\quad - (1 - \mu) \int_{0}^{\varpi^a} \omega E_t R_{t+1}^k q_t K_{t+1} f(\omega) d\omega + w_{t+b}^b
\end{align*}\]
Appendix C: The Steady States

\[R_{ss}^e (1 - \phi_{ss}) = 1/\beta \]
\[\frac{c_{ss}^e}{\delta_{ss}} = R_{ss}^e (1 - \phi_{ss}) - R_{ss}^d \]
\[\frac{c_{ss}^{\delta}}{\phi_{ss}} = u_{ss}^h \]
\[mc_{ss} = \frac{\theta - 1}{\theta} \]
\[z_{ss} = \alpha_k m c_{ss} \frac{y_{ss}}{k_{ss}} \]
\[w_{ss}^h = \alpha_k m c_{ss} \frac{y_{ss}}{p_{ss}} \]
\[w_{ss}^e = \alpha_e m c_{ss} \frac{y_{ss}}{l_{ss}} \]
\[w_{ss}^b = \alpha_b m c_{ss} \frac{y_{ss}}{p_{ss}} \]
\[q_{ss} = 1 \]
\[i_{ss} = \delta k_{ss} \]
\[R_{ss}^k = z_{ss} + 1 - \delta \]
\[lev_{ss} = \frac{q_{ss} K_{ss}}{N_{ss}} \]
\[R_{ss}^k = S(lev_{ss}) R_{ss}^f \]
\[R_{ss}^f = \Delta_{ss} R_{ss}^e + (1 - \Delta_{ss}) R_{ss}^d \]
\[\omega_{ss}^a = \frac{R_{ss}^k} {R_{ss}^k \eta_{ss} K_{ss}^a} \]
\[\omega_{ss}^b = \omega_{ss}^a \]
\[lev_{ss} = 1 - s(\omega_{ss}^a)(\Gamma(\omega_{ss}^a) - \mu G(\omega_{ss}^a)) \]
\[N_{ss} = (1 - \gamma) w_{ss}^e \]
\[\phi_{ss} = pdf(\Delta_{ss}, \sigma) \]
\[e_{ss} = (1 - \phi_{ss}) w_{ss}^b \]
\[\pi_{ss} = 1 \]
References

The following Discussion Papers have been published since 2008:

Series 1: Economic Studies

<table>
<thead>
<tr>
<th>No.</th>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>2008</td>
<td>Can capacity constraints explain asymmetries of the business cycle?</td>
<td>Malte Knüppel</td>
</tr>
<tr>
<td>02</td>
<td>2008</td>
<td>Communication, decision-making and the optimal degree of transparency of monetary policy committees</td>
<td>Anke Weber</td>
</tr>
<tr>
<td>03</td>
<td>2008</td>
<td>The impact of thin-capitalization rules on multinationals’ financing and investment decisions</td>
<td>Buettner, Overesch, Schreiber, Wamser</td>
</tr>
<tr>
<td>04</td>
<td>2008</td>
<td>Comparing the DSGE model with the factor model: an out-of-sample forecasting experiment</td>
<td>Mu-Chun Wang</td>
</tr>
<tr>
<td>05</td>
<td>2008</td>
<td>Financial markets and the current account – emerging Europe versus emerging Asia</td>
<td>Sabine Herrmann, Adalbert Winkler</td>
</tr>
<tr>
<td>06</td>
<td>2008</td>
<td>The German sub-national government bond market: evolution, yields and liquidity</td>
<td>Alexander Schulz, Guntram B. Wolff</td>
</tr>
<tr>
<td>07</td>
<td>2008</td>
<td>Integration of financial markets and national price levels: the role of exchange rate volatility</td>
<td>Mathias Hoffmann, Peter Tillmann</td>
</tr>
<tr>
<td>08</td>
<td>2008</td>
<td>Business cycle evidence on firm entry</td>
<td>Vivien Lewis</td>
</tr>
<tr>
<td>09</td>
<td>2008</td>
<td>Panel estimation of state dependent adjustment when the target is unobserved</td>
<td>Ulf von Kalckreuth</td>
</tr>
<tr>
<td>10</td>
<td>2008</td>
<td>Nonlinear oil price dynamics – a tale of heterogeneous speculators?</td>
<td>Stefan Reitz, Ulf Slopek</td>
</tr>
<tr>
<td>11</td>
<td>2008</td>
<td>Financing constraints, firm level adjustment of capital and aggregate implications</td>
<td>Ulf von Kalckreuth</td>
</tr>
</tbody>
</table>
12 2008 Sovereign bond market integration: the euro, trading platforms and globalization Alexander Schulz
 Guntram B. Wolff

13 2008 Great moderation at the firm level? Unconditional versus conditional output volatility Claudia M. Buch
 Jörg Döpke
 Kerstin Stahn

14 2008 How informative are macroeconomic risk forecasts? An examination of the Bank of England’s inflation forecasts Malte Knüppel
 Guido Schultefrankenfeld

15 2008 Foreign (in)direct investment and corporate taxation Georg Wamser

16 2008 The global dimension of inflation – evidence from factor-augmented Phillips curves Sandra Eickmeier
 Katharina Moll

17 2008 Global business cycles: convergence or decoupling? M. Ayhan Kose
 Christopher Otrok, Ewar Prasad

18 2008 Restrictive immigration policy in Germany: pains and gains foregone? Gabriel Felbermayr
 Wido Geis
 Wilhelm Kohler

19 2008 International portfolios, capital accumulation and foreign assets dynamics Nicolas Coeurdacier
 Robert Kollmann
 Philippe Martin

20 2008 Financial globalization and monetary policy Michael B. Devereux
 Alan Sutherland

21 2008 Banking globalization, monetary transmission and the lending channel Nicola Cetorelli
 Linda S. Goldberg

22 2008 Financial exchange rates and international currency exposures Philip R. Lane
 Jay C. Shambaugh
23 2008 Financial integration, specialization and systemic risk F. Fecht, H. P. Grüner P. Hartmann

24 2008 Sectoral differences in wage freezes and wage cuts: evidence from a new firm survey Daniel Radowski Holger Bonin

25 2008 Liquidity and the dynamic pattern of price adjustment: a global view Ansgar Belke Walter Orth, Ralph Setzer

26 2008 Employment protection and temporary work agencies Florian Baumann Mario Mechtel, Nikolai Stähler

27 2008 International financial markets’ influence on the welfare performance of alternative exchange rate regimes Mathias Hoffmann

28 2008 Does regional redistribution spur growth? M. Koetter, M. Wedow

29 2008 International financial competitiveness and incentives to foreign direct investment Axel Jochem

30 2008 The price of liquidity: bank characteristics and market conditions Falko Fecht Kjell G. Nyborg, Jörg Rocholl

01 2009 Spillover effects of minimum wages in a two-sector search model Christoph Moser Nikolai Stähler

02 2009 Who is afraid of political risk? Multinational firms and their choice of capital structure Iris Kesternich Monika Schnitzer

03 2009 Pooling versus model selection for nowcasting with many predictors: an application to German GDP Vladimir Kuzin Massimiliano Marcellino Christian Schumacher
<table>
<thead>
<tr>
<th>Year</th>
<th>2009</th>
<th>Paper Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>2009</td>
<td>Fiscal sustainability and policy implications for the euro area</td>
<td>Balassone, Cunha, Langenus Manzke, Pavot, Prammer Tommasino</td>
</tr>
<tr>
<td>05</td>
<td>2009</td>
<td>Testing for structural breaks in dynamic factor models</td>
<td>Jörg Breitung Sandra Eickmeier</td>
</tr>
<tr>
<td>06</td>
<td>2009</td>
<td>Price convergence in the EMU? Evidence from micro data</td>
<td>Christoph Fischer</td>
</tr>
<tr>
<td>07</td>
<td>2009</td>
<td>MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area</td>
<td>V. Kuzin, M. Marcellino C. Schumacher</td>
</tr>
<tr>
<td>08</td>
<td>2009</td>
<td>Time-dependent pricing and New Keynesian Phillips curve</td>
<td>Fang Yao</td>
</tr>
<tr>
<td>09</td>
<td>2009</td>
<td>Knowledge sourcing: legitimacy deficits for MNC subsidiaries?</td>
<td>Tobias Schmidt Wolfgang Sofka</td>
</tr>
<tr>
<td>10</td>
<td>2009</td>
<td>Factor forecasting using international targeted predictors: the case of German GDP</td>
<td>Christian Schumacher</td>
</tr>
<tr>
<td>11</td>
<td>2009</td>
<td>Forecasting national activity using lots of international predictors: an application to New Zealand</td>
<td>Sandra Eickmeier Tim Ng</td>
</tr>
<tr>
<td>12</td>
<td>2009</td>
<td>Opting out of the great inflation: German monetary policy after the breakdown of Bretton Woods</td>
<td>Andreas Beyer, Vitor Gaspar Christina Gerberding Otmar Issing</td>
</tr>
<tr>
<td>13</td>
<td>2009</td>
<td>Financial intermediation and the role of price discrimination in a two-tier market</td>
<td>Stefan Reitz Markus A. Schmidt, Mark P. Taylor</td>
</tr>
<tr>
<td>14</td>
<td>2009</td>
<td>Changes in import pricing behaviour: the case of Germany</td>
<td>Kerstin Stahn</td>
</tr>
<tr>
<td>Page</td>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>15</td>
<td>2009</td>
<td>Firm-specific productivity risk over the business cycle: facts and aggregate implications</td>
<td>Ruediger Bachmann, Christian Bayer</td>
</tr>
<tr>
<td>16</td>
<td>2009</td>
<td>The effects of knowledge management on innovative success – an empirical analysis of German firms</td>
<td>Uwe Cantner, Kristin Joel, Tobias Schmidt</td>
</tr>
<tr>
<td>17</td>
<td>2009</td>
<td>The cross-section of firms over the business cycle: new facts and a DSGE exploration</td>
<td>Ruediger Bachmann, Christian Bayer</td>
</tr>
<tr>
<td>18</td>
<td>2009</td>
<td>Money and monetary policy transmission in the euro area: evidence from FAVAR- and VAR approaches</td>
<td>Barno Blaes</td>
</tr>
<tr>
<td>19</td>
<td>2009</td>
<td>Does lowering dividend tax rates increase dividends repatriated? Evidence of intra-firm cross-border dividend repatriation policies by German multinational enterprises</td>
<td>Christian Bellak, Markus Leibrecht, Michael Wild</td>
</tr>
<tr>
<td>20</td>
<td>2009</td>
<td>Export-supporting FDI</td>
<td>Sebastian Krautheim</td>
</tr>
<tr>
<td>21</td>
<td>2009</td>
<td>Transmission of nominal exchange rate changes to export prices and trade flows and implications for exchange rate policy</td>
<td>Mathias Hoffmann, Oliver Holtemöller</td>
</tr>
<tr>
<td>22</td>
<td>2009</td>
<td>Do we really know that flexible exchange rates facilitate current account adjustment? Some new empirical evidence for CEE countries</td>
<td>Sabine Herrmann</td>
</tr>
<tr>
<td>23</td>
<td>2009</td>
<td>More or less aggressive? Robust monetary policy in a New Keynesian model with financial distress</td>
<td>Rafael Gerke, Felix Hammermann, Vivien Lewis</td>
</tr>
<tr>
<td>24</td>
<td>2009</td>
<td>The debt brake: business cycle and welfare consequences of Germany’s new fiscal policy rule</td>
<td>Eric Mayer, Nikolai Stähler</td>
</tr>
</tbody>
</table>
 Jelena Stapf

26 2009 Supply-side effects of strong energy price hikes in German industry and transportation Thomas A. Knetsch
 Alexander Molzahn

27 2009 Coin migration within the euro area Franz Seitz, Dietrich Stoyan
 Karl-Heinz Tödter

28 2009 Efficient estimation of forecast uncertainty based on recent forecast errors Malte Knüppel

29 2009 Financial constraints and the margins of FDI C. M. Buch, I. Kesternich
 A. Lipponer, M. Schnitzer

30 2009 Unemployment insurance and the business cycle: Prolong benefit entitlements in bad times? Stéphane Moyen
 Nikolai Stähler

31 2009 A solution to the problem of too many instruments in dynamic panel data GMM Jens Mehrhoff

32 2009 Are oil price forecasters finally right? Regressive expectations toward more fundamental values of the oil price Stefan Reitz
 Jan C. Rülke
 Georg Stadtmann

33 2009 Bank capital regulation, the lending channel and business cycles Longmei Zhang
<table>
<thead>
<tr>
<th>No.</th>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>2008</td>
<td>Analyzing the interest rate risk of banks using time series of accounting-based data:</td>
<td>O. Entrop, C. Memmel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>evidence from Germany</td>
<td>M. Wilkens, A. Zeisler</td>
</tr>
<tr>
<td>02</td>
<td>2008</td>
<td>Bank mergers and the dynamics of deposit interest rates</td>
<td>Ben R. Craig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valeriya Dinger</td>
</tr>
<tr>
<td>03</td>
<td>2008</td>
<td>Monetary policy and bank distress: an integrated micro-macro approach</td>
<td>F. de Graeve</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T. Kick, M. Koetter</td>
</tr>
<tr>
<td>04</td>
<td>2008</td>
<td>Estimating asset correlations from stock prices or default rates – which method is superior?</td>
<td>K. Düllmann</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Küll, M. Kunisch</td>
</tr>
<tr>
<td>05</td>
<td>2008</td>
<td>Rollover risk in commercial paper markets and firms’ debt maturity choice</td>
<td>Felix Thierfelder</td>
</tr>
<tr>
<td>06</td>
<td>2008</td>
<td>The success of bank mergers revisited – an assessment based on a matching strategy</td>
<td>Andreas Behr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frank Heid</td>
</tr>
<tr>
<td>07</td>
<td>2008</td>
<td>Which interest rate scenario is the worst one for a bank? Evidence from a tracking bank approach for German savings and cooperative banks</td>
<td>Christoph Memmel</td>
</tr>
<tr>
<td>08</td>
<td>2008</td>
<td>Market conditions, default risk and credit spreads</td>
<td>Dragon Yongjun Tang</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hong Yan</td>
</tr>
<tr>
<td>09</td>
<td>2008</td>
<td>The pricing of correlated default risk: evidence from the credit derivatives market</td>
<td>Nikola Tarashev</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Haibin Zhu</td>
</tr>
<tr>
<td>10</td>
<td>2008</td>
<td>Determinants of European banks’ engagement in loan securitization</td>
<td>Christina E. Bannier</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dennis N. Hänsel</td>
</tr>
<tr>
<td>11</td>
<td>2008</td>
<td>Interaction of market and credit risk: an analysis of inter-risk correlation and risk aggregation</td>
<td>Klaus Böcker</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Martin Hillebrand</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>A value at risk analysis of credit default swaps</td>
<td>B. Raunig, M. Scheicher</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Regulatory capital for market and credit risk interaction: is current regulation always conservative?</td>
<td>T. Breuer, M. Jandačka K. Rheinberger, M. Summer</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>The implications of latent technology regimes for competition and efficiency in banking</td>
<td>Michael Koetter Tigran Poghosyan</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>The impact of downward rating momentum on credit portfolio risk</td>
<td>André Güttler Peter Raupach</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Stress testing of real credit portfolios</td>
<td>F. Mager, C. Schmieder</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Real estate markets and bank distress</td>
<td>M. Koetter, T. Poghosyan</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Stochastic frontier analysis by means of maximum likelihood and the method of moments</td>
<td>Andreas Behr Sebastian Tente</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Sturm und Drang in money market funds: when money market funds cease to be narrow</td>
<td>Stehpan Jank Michael Wedow</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Dominating estimators for the global minimum variance portfolio</td>
<td>Gabriel Frahm Christoph Memmel</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Stress testing German banks in a downturn in the automobile industry</td>
<td>Klaus Düllmann Martin Erdelmeier</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>The effects of privatization and consolidation on bank productivity: comparative evidence from Italy and Germany</td>
<td>E. Fiorentino A. De Vincenzo, F. Heid A. Karmann, M. Koetter</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Shocks at large banks and banking sector distress: the Banking Granular Residual</td>
<td>Sven Blank, Claudia M. Buch, Katja Neugebauer</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Why do savings banks transform sight deposits into illiquid assets less intensively than the regulation allows?</td>
<td>Dorothee Holl, Andrea Schertler</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Does banks’ size distort market prices? Evidence for too-big-to-fail in the CDS market</td>
<td>Manja Völz, Michael Wedow</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>Time dynamic and hierarchical dependence modelling of an aggregated portfolio of trading books – a multivariate nonparametric approach</td>
<td>Sandra Gaisser, Christoph Memmel, Rafael Schmidt, Carsten Wehn</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Financial markets’ appetite for risk – and the challenge of assessing its evolution by risk appetite indicators</td>
<td>Birgit Uhlenbrock</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Income diversification in the German banking industry</td>
<td>Ramona Busch, Thomas Kick</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>The dark and the bright side of liquidity risks: evidence from open-end real estate funds in Germany</td>
<td>Falko Fecht, Michael Wedow</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Determinants for using visible reserves in German banks – an empirical study</td>
<td>Bornemann, Homölle, Hubensack, Kick, Pfingsten</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Margins of international banking: Is there a productivity pecking order in banking, too?</td>
<td>Claudia M. Buch, Cathérine Tahmee Koch, Michael Koetter</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Systematic risk of CDOs and CDO arbitrage</td>
<td>Alfred Hamerle, Thilo Liebig, Hans-Jochen Schropp</td>
<td></td>
</tr>
</tbody>
</table>
14 2009 The dependency of the banks’ assets and liabilities: evidence from Germany Christoph Memmel Andrea Schertler

15 2009 What macroeconomic shocks affect the German banking system? Analysis in an integrated micro-macro model Sven Blank Jonas Dovern
Visiting researcher at the Deutsche Bundesbank

The Deutsche Bundesbank in Frankfurt is looking for a visiting researcher. Among others under certain conditions visiting researchers have access to a wide range of data in the Bundesbank. They include micro data on firms and banks not available in the public. Visitors should prepare a research project during their stay at the Bundesbank. Candidates must hold a PhD and be engaged in the field of either macroeconomics and monetary economics, financial markets or international economics. Proposed research projects should be from these fields. The visiting term will be from 3 to 6 months. Salary is commensurate with experience.

Applicants are requested to send a CV, copies of recent papers, letters of reference and a proposal for a research project to:

Deutsche Bundesbank
Personalabteilung
Wilhelm-Epstein-Str. 14

60431 Frankfurt
GERMANY