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Non-technical summary

The new growth theory considers knowledge to be a decisive engine of economic

growth. More precisely, knowledge is not used solely to the benefit of its originator,

but generates positive side effects also for others, provided they have the capability

to understand the transferred knowledge potential. Knowledge generation has also

welfare implications for a country or a region. On a macroeconomic level, the im-

plication of knowledge diffusion for growth seems straightforward, whereas on the

microeconomic level the effect of knowledge diffusion seems more complex.

Before dealing with the question of how knowledge diffusion can be adequately

modeled in a concise microeconomic approach, two important aspects have to be

distinguished from each other: knowledge diffusion and knowledge transfer. Al-

though these terminologies are well established in the relevant literature, it is not or

rather inaccurately acknowledged within the knowledge diffusion modeling context.

Knowledge transfer is associated with the exchange of knowledge within networks,

which consists of innovators and imitators of knowledge. On the contrary, knowl-

edge diffusion describes the diffusion of knowledge within the group of innovators

and imitators. Apparently, knowledge transfer can accelerate but is not a neces-

sary condition for knowledge diffusion. From this point of view, welfare implications

are mainly expected from knowledge diffusion, which can be indirectly enforced by

knowledge transfer. Therefore, the intensity of knowledge networks should also affect

the diffusion pattern of knowledge.

This paper proposes a model that can explain endogenously the knowledge diffusion

patterns induced by network effects. In this way, to the best of my knowledge this

is the first attempt to discuss both, knowledge diffusion and knowledge transfer in

a comprehensive framework. A key result shows that unimodal diffusion patterns

are generated by strong network effects, whereas bimodal diffusion patterns occur

due to weaker network effects. Thus, the stronger network effects, the faster is

knowledge diffusion. Furthermore, this model assumes that the knowledge diffusion

process is embedded in a stochastic environment. Particularly, at the beginning and

in the middle the uncertainty of adopting new knowledge is larger than at the end



of the diffusion process. From an econometric point of view, this can be modelled

via heteroscedastic errors in the error term. A further pleasant feature of this model

is that it can be directly estimated with a seemingly unrelated regression (SUR)

approach.



Nicht-technische Zusammenfassung

Wissen als Produktionsfaktor wird in der neuen Wachstumstheorie als eine ele-

mentare Erklärungsgröße für wirtschaftliches Wachstum gesehen. Dabei wird der

Diffusion von Wissen ein hohes Maß an Aufmerksamkeit gewidmet, da Wissen nicht

nur vom Produzenten genutzt werden kann, sondern auch über Transferkanäle an-

deren Nutzen stiften kann. Je stärker die Wissensdiffusion dabei ausgeprägt ist,

desto mehr Wirtschaftssubjekte können dieses Wissenspotential nutzen, voraus-

gesetzt die Wirtschaftssubjekte können das gesendete Wissen verstehen und ver-

arbeiten. Dies hat natürlich auch Implikationen für die Gesamtwohlfahrt eines

Landes. So einfach diese Wirkungskette auf der makroökonomischen Ebene klin-

gen mag, so komplex ist die Beantwortung der Frage der Wissensdiffusion auf der

mikroökonomischen Ebene.

Bevor man sich der Frage widmet, wie Wissensdiffusion auf der mikroökonomischen

Ebene modelliert werden kann, sind zunächst zwei Aspekte stringent voneinander zu

trennen: Wissensdiffusion auf der einen, und Wissenstransfer auf der anderen Seite.

Obwohl diese Termini in der Wissensdiffusionsliteratur weitestgehend bekannt sind,

fehlt in der Wissensdiffusionsmodellierung bis dato eine wirkliche Trennung bei-

der Aspekte. Wissenstransfer meint im Wesentlichen den Austausch von Wissen in

Netzwerken zwischen Innovatoren und Imitatoren von Wissen, während Wissens-

diffusion die Verbreitung von Wissen innerhalb der Gruppe von Innovatoren und

Imitatoren bezeichnet. Es ist offenkundig, dass Netzwerkeffekte die Wissensdiffusion

beschleunigen können, andererseits ist auch ohne Wissenstransfer über Netzwerkef-

fekte eine Verbreitung von Wissen möglich. Wohlfahrtstheoretische Implikationen

sind daher nur von der Wissensdiffusion zu erwarten, die indirekt über Wissenstrans-

fers über Netzwerke verstärkt werden können. Die Intensität von Netzwerkeffekten

sollte sich demnach auch im Diffusionsmuster von Wissen widerspiegeln.

Mit dem in diesem Aufsatz vorgestellten Modell ist es mithin möglich, Diffusions-

muster endogen durch Netzwerkeffekte zu erklären. Es zeigt sich, dass stärkere Netz-

werkeffekte unimodale Diffusionsmuster von Wissen erzeugen, während schwache

Netzwerkeffekte auf bimodale Diffusionsmuster schließen lassen. Starke Netzwerk-



effekte führen damit zu einer schnelleren Verbreitung von Wissen. Zudem wird im

Rahmen dieses Aufsatzes der Tatsache Rechnung getragen, dass der Wissensdiffu-

sionsprozess stochastisch ist und insbesondere zu Beginn und in der Mitte die Adop-

tionsunsicherheit größer ist als am Ende des Diffusionsprozesses. Im ökonometrischen

Kontext kann diese Unsicherheit mittels heteroskedastischer Störterme modelliert

werden. Ein weiterer Vorteil des theoretischen Modells liegt darin, dass es sich

mittels eines Seemingly Unrelated Regression (SUR)-Ansatzes direkt schätzen lässt.
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Understanding the way in which knowledge is technically produced and transferred, and

how its diffusion path can be characterized is of fundamental importance for the performance

of an economy. Although this fact seems to be plausible ex ante, the relevant literature so

far has paid less attention investigating the microeconomic link between knowledge transfer

and knowledge diffusion in a comprehensive approach. The aim of this paper is to highlight

the link between knowledge transfer, knowledge diffusion and network effects in a stochastic

environment, because the adoption decision of new knowledge should be treated as a stochastic

event. For this reason, a new knowledge diffusion model in the line of Bass (1969) has been

put forward, which integrates knowledge diffusion and knowledge transfer. The advantage

of the proposed model is twofold. From a theoretical point of view, not only the so-called

unimodal diffusion phenomena can be modelled, but also bimodal diffusion phenomena can

be obtained. From an empirical point of view, the model which incorporates heteroscedastic

errors and mean reverting behaviour can be theoretically estimated directly within a standard

SUR context.
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1 Motivation

To know how knowledge is technically produced and to understand its diffusion path

is of fundamental importance in the innovative process. In an economic context,

knowledge itself can be embodied in new products, or it can be approximated by

citation of scientific publications1, but loosely spoken there is no clear-cut definition

of what knowledge constitutes. What we know, first, is that technological knowledge

is often not transferred as itself, but instead within new technologies - via licensing

or through FDI - for instance. Thus if we talk about knowledge diffusion, it is either

a direct transfer in the sense of human capital transfer or more indirectly linked

with the diffusion of new technologies and of intermediate and capital goods, as

Rivera-Batiz and Romer (1991) have argued. This model follows the first direction

and assumes direct knowledge diffusion.

Second, we know that knowledge diffusion and adoption is not a homogeneous pro-

cess over the entire distribution of potential adopters. In a simplistic homo economi-

cus world, where everybody knows everything from the beginning, or in a world with

a less strict assumption that everybody can learn anything with probability one, dif-

fusion of knowledge can be associated with a picture of dropping colour in a glass of

water and waiting until the colour is more or less uniformly distributed. In such a

world, the question of what kind of knowledge diffuses easily and what kind diffuses

with difficulty is obsolete.

Assuming that the world is not perfect with respect to learning abilities and in-

formation potentials for instance, however, makes the question of what determines

and fosters knowledge diffusion relevant and important. Polany (1967) takes this

question seriously and separates implicit knowledge from explicit knowledge. Ex-

plicit knowledge can be transferred without any limits, whereas implicit knowledge

-labelled tacit- can not. If knowledge is partly or completely tacit, its diffusion de-

pends on the specific characteristics of the individuals. Thus, some people are more

in touch with new developments than others. This is especially the case for two

important groups of adopters that play an important role in the diffusion process:

1Refer to Fok and Franses (2007), for instance.
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the innovators and imitators of new knowledge.

Bass (1969) in his seminal work and others such as Easingwood et al. (1983), Ma-

hajan and Peterson (1985) and Mahajan and Wind (1986), p. xiii, have mentioned

that innovators and imitators behave differently in the diffusion process. This as-

sumption is reasonable because innovators and imitators have different intentions to

adopt. Following Kalish (1985), one can differentiate between the so called search

attributes and experience attributes. The innovators need only search information

to adopt the new knowledge, while imitators require experience type information

before they adopt. As noted by Gatignon and Robertson (1985) and Rogers (1983)

the speed of diffusion of knowledge depends on several characteristics, including

complexity, relative advantage, status value or observability etc.. These characteris-

tics influence innovators and imitators in different ways. However, most of existing

studies fail to highlight the different behaviour of these two groups.

Although Schmalen (1982) has mentioned that innovators’ and imitators’ behaviour

regarding their adoption decision differs, he does not capture this fact in a nota-

tional form. The famous so-called two compartment model, proposed by Tanny and

Derzko (1988) goes in line with the model of Schmalen (1982), but their definition

of innovators and imitators seems not to be clear-cut: innovators adopt because

of learning effects driven by external information, whereas imitators adopt because

of external knowledge by prior adopters. This model hypothesises that innovators

adopt because of search information, while imitators adopt due to experience but

also due to knowledge transfer which can be justified with the existence of networks.

It is therefore assumed that the adoption decision is also influenced by networks,

which are a necessary condition for knowledge transfer between both groups. If

a dense network structure is available, knowledge transfer is easier and thus the

imitator should adopt faster. On the contrary, if networks do not exist, knowledge

transfer is excluded and thus adoption takes place later. The latter scenario often

leads to the so called chasm pattern between early and late adoptions, which is

extensively discussed in Moore (2002) and sometimes mentioned in diffusion related

2



literature2.

Therefore, network effects should also have an influence on the shape of the adoption

curve, which is in the latter case not necessarily unimodal but bimodal for the entire

market. The novelty is that the introduced model treats the chasm pattern as an

endogenous number. The literature is still silent about this topic, and only a few

papers take the network effects into account, including Van den Bulte and Lilien

(2001), Van den Bulte and Joshi (2007), Hill et al. (2006) and Golendberg et al.

(2006).

The aim of this paper can be laid out as follows: on the basis of Golendberg et al.

(2006), Van den Bulte and Joshi (2007), Boswijk and Franses (2005) and Boswijk

et al. (2006) a knowledge diffusion model is set up, which includes the behaviour

of both innovators and imitators. The model is able to replicate unimodal and bi-

modal adoption patterns. Which pattern occurs depends on whether or not network

effects play a crucial role within the diffusion process. Additionally, the model will

be extended into a stochastic knowledge diffusion model to capture the idea that

uncertainty of adoption is a function of time, which means at the end of the diffu-

sion process uncertainty regarding the adoption should tend to zero, while at the

beginning and in the middle of the diffusion process uncertainty of adoption is high.

Another feature of the proposed model is that it can be tested empirically within a

SUR context.

The paper is structured as follows: In the second section, I start off with an introduc-

tion and discussion of the Bass (1969) model. In the third section, a deterministic

knowledge diffusion model is set up. After discussing the solution of this model the

solution’s stability has been investigated. The fourth section embeds the determin-

istic knowledge diffusion model into a stochastic frame. Additionally, a sensitivity

analysis of the stochastic model is performed to derive some model implications. The

fifth section conducts a simulation study of both the deterministic and stochastic

models. Before giving final remarks and highlighting avenues for further research in

the seventh section, I provide some econometric remarks regarding the estimation

2Refer to Van den Bulte and Joshi (2007) for instance.
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of the stochastic knowledge diffusion model in section six.

2 The Bass diffusion model

The Bass (1969) model, loosely spoken, describes how a new product or technique is

adopted over time via interaction between potential and de facto adopters or users.

Adoption stops if the market saturation level m has been reached, which means that

every potential adopter has become a de facto adopter. For each potential adopter

the time of adoption is random, i.e., ex ante the potential adopter does not know

when he will adopt the product. In statistical terms, time of adoption is a random

variable with a distribution function F (t) and the corresponding density f(t). The

Bass (1969) model assumes that the portion of potential adopters who adopt at

time t, given that they have not adopted yet, can be written as a linear function of

adopters as:

f(t)
[1− F (t)]

= p+ qF (t). (1)

The left hand side of equation (1) can also be interpreted as the hazard rate of po-

tential adopters. The parameter p denotes the probability that a potential adopter

adopts at t influenced by external factors, such as word of mouth influence through

the de facto adopters. On the contrary, q can be interpreted as the internal prob-

ability that a potential adopter adopts at t. The latter adoption decision depends

solely on the internal influence caused by the group of de facto adopters.

The time-dependent diffusion process3 of the Bass (1969) model can be written as

a differential equation:4

dF (t)
dt

= f(t) = [p+ qF (t)][1− F (t)], (2)

3A mathematical diffusion function can be expressed as the solution y = y(t) of a deterministic

differential equation dy
dt

= f(y, t). f(·) describes the pattern of the diffusion path and y gives

information about the evolution of the diffusion process over time. Thus f(·) is a dependent function

of y and diffusion time t. This is the basic idea of modelling diffusion paths.
4Refer to Kalish and Sen (1986) and Mahajan et al. (1984), for instance.

4



which can be interpreted as follows. On the left hand side of equation (2) we can find

the rate of change with respect to time t of the cumulative number of adopters. This

is equal to the hazard rate [p+qF (t)] times the adopters which have not adopted yet

in t. Consequently, [1−F (t)] denotes the fraction of potential adopters. If p→ 0 we

obtain a diffusion process which is entirely driven by internal influence of adopters

in t, whereas for q → 0 the diffusion process depends solely on external influence.

In general, a mixture influence model is assumed, i.e., {p, q} ∈ (0, 1).

Labelling the cumulative number of adopters at t as N(t) = mF (t), the alteration

rate of adopters is given by

n(t) ≡ dN(t)
dt

= m
dF (t)
dt

= mf(t), (3)

or inserting (2) in (3) and noting that N(t) = mF (t) yields

n(t) ≡ dN(t)
dt

= m

{[
p+ q

N(t)
m

] [
1− N(t)

m

]}
, (4)

or

n(t) ≡ dN(t)
dt

=
[
p+ q

N(t)
m

]
[m−N(t)] = χ(t)[m−N(t)], (5)

with N(t) =
∫ t
t0
n(t)dt. The last derived equation is the so called Ricatti-differential

equation with constant coefficients. Equation (5) can be interpreted as the rate of

change with respect to time t of the cumulative number of adopters, which is equal

to a time dependent variable χ(t) =
[
p+ qN(t)

m

]
, which covers the mixture influence

of adoption, governed by {p, q} ∈ (0, 1), times the cumulative number of potential

adopters in t given by [m−N(t)]. From equation (5) we observe that the change rate

of cumulative adopters is zero, given the number of potential adopters equals the

number of cumulative adopters which is equal to the postulation that [m−N(t)] = 0.

The solution of (5) for the cumulative number of adopters is given by:

N(t) = mF (t) = m

[
1− exp{−(p+ q)t}

1 + q
pexp{−(p+ q)t}

]
, (6)
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and for the adoption in t:

n(t) = mf(t) = m

[
p(p+ q)2exp{−(p+ q)t}
(p+ qexp{−(p+ q)t})2

]
. (7)

The question that remains is how to translate this theoretical model into practical

application. The number of adopters is usually measured in discrete values, whereas

the above derived diffusion equation (5) is written in continuous time. Therefore,

Bass (1969) applies a simple Euler-discretisation scheme to obtain the following

discrete time difference equation of the continuous time differential equation (5):

N(t) = N(t− 1) +
[
p+ q

N(t− 1)
m

]
[m−N(t− 1)] . (8)

Due to its parsimonious specification, the Bass (1969) diffusion model and its exten-

sions are popular in diffusion research5. It should be mentioned that from equation

(8) it is quite clear that the Bass (1969) model is primarily very attractive for em-

pirical application, especially for out-of-sample forecasts6, because equation (8) can

be estimated and tested without any relevant7 modifications8. Although the Bass

(1969) model seems to be very intuitive and well established both in theoretical and

empirical application, there are several drawbacks, particularly when it comes to

incorporating the diffusion of knowledge in new products.

Bass (1969) mentions, that innovators’ and imitators’ behaviour is driven by differ-

ent aspects in the diffusion process. This assumption is reasonable ex ante, because

it is justified that each subgroup of adopters, the innovators and imitators, have

different intentions to adopt. Following Kalish (1985), one can differentiate between

the so called search attributes and experience attributes. As a consequence of that,

the innovators need only search information to adopt knowledge, while the imitators
5Refer to Parker (1994), Mahajan et al. (1990), Mahajan et al. (1993), Sultan et al. (1990) and

Mahajan et al. (2000) for an overview.
6For instance, refer to Bass (1993) and Bass (1995) for this topic.
7Relevant in this context means that an error term must be added to this model.
8It should be mentioned that there is a large bulk of paper which discuss estimation strategies

for the Bass model. Refer to Boswijk and Franses (2005) for a discussion of that topic.
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require experience type information before they adopt. As noted by Rogers (1983)

among others, the speed of diffusion of knowledge depends on several characteris-

tics, such as complexity, relative advantage, status value and observability. These

characteristics influence innovators and imitators in different ways.

Additionally, communication between these two types and thus network effects cre-

ate a second channel which influence imitators adoption decision.9 This fundamental

assumption is not reflected in equation (8), although it is of central importance for

a micro founded theory of knowledge diffusion.10

A second limitation of the Bass (1969) model stems from the fact that it inherently

assumes a bell-shaped, single-peak adoption curve. Certainly, this could be the case

for some specific kinds of products, but this assumption is not universally valid. As

Kluyver (1977) has pointed out, that one major drawback of such (diffusion type)

models is that only unimodal phenomena can be fitted. If one refers to the empirical

literature, there is strong evidence that life cycle of innovations fits to a more bimodal

pattern11. This is due to the fact that in the early stages of an innovation life cycle

innovators’ demand leads to a sharp rise, followed by a plateau or a fall in adoption

until imitators cause a second but delayed rise of adoptions.

What causes the second, delayed rise of adoption? One possible answer is an as-

pect, which is not yet implemented in the existing diffusion frameworks: due to

the phenomenon of knowledge transfer, which is often closely related to network

effects. As highlighted by Audretsch and Feldman (1996), strong network effects

should considerably enhance knowledge transfer. From this point of view, it seems

reasonable to incorporate the aspect of knowledge transfer into a microeconomic

model of knowledge diffusion and to investigate further the effects of the degree of

tightness of networks on knowledge diffusion. In other words, one has to distinguish

between pure knowledge transfer, which is for instance practiced via face-to-face

communication and knowledge diffusion. Knowledge transfer must not necessarily

influence the adoption decision but it can. In this context it is meant that knowledge

9Refer to Gladwell (2000), Moore (1995), Rosen (2000) and Slywotzky and Shaprio (1993).
10Already Jeuland (1981) has pointed out this fact.
11See Rink and Swan (1979) and Tellis and Crawford (1981).
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transfer is only possible if the knowledge is transferable, for instance, via face-to-

face communication. This second limitation defines the central focus of this paper:

does and if yes in which direction does knowledge transfer via networks influence the

adoption decision of imitators and innovators in microeconomic model of knowledge

diffusion?

To address this question, in the next section a more general Bass (1969) type model

is set up, which first includes a heterogeneous potential adopter group that is split

in innovators and imitators. Furthermore, the new model formulation also includes

network effects, which are not symmetric: it is assumed that imitators can benefit

from information about the adoption of knowledge from the innovators. Thus, the

often mentioned effects of knowledge transfer via network effects and its effect on

knowledge diffusion, embodied by the adoption of a new knowledge are incorporated

in the model setup. In this manner, it is possible both to replicate unimodal as well

as bimodal shapes of the adoption curves. The shape of the curve only depends on

the easiness of knowledge transfer. The easier knowledge transfer, the faster should

knowledge diffusion be and the lower the probability that bimodal adoption pattern

or so-called chasm pattern between early and the later parts of the adoption curve

occurs12.

3 Deterministic knowledge diffusion model

In this section a deterministic diffusion model with its relevant elements is intro-

duced.

3.1 Setup

The group of adopters N(t) is separated into subgroups, N(t)k of innovators and

imitators with k = {1, 2}.13 k = 1 represents the subgroup of innovators, whereas

k = 2 symbolises the group of imitators. The key idea is to incorporate a commu-

nication channel between these two subgroups, which should cover the tightness of

12See to Van den Bulte and Joshi (2007).
13In the following time index t is only used if clarity demands it.
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the knowledge exchange network. In this way, an asymmetric communication flow is

created, because per definition the subgroup of innovators could not learn anything

about the subgroup of imitators regarding their adoption decision. Innovators by

definition are the first entering the market. To be more precise, the model contains

a tightness parameter q12 ∈ (0, 1) which stands for the communication probability

between the group of innovators and the group of imitators in the knowledge ex-

change network. The diffusion process for innovators N(t)1 is similar to the Bass

diffusion equation (5) and can be written as:

dN1

dt
=
[
p1 +

(
q1
N1

m1

)]
[m1 −N1] . (9)

The diffusion process for the imitators N(t)2 instead should be written as:

dN2

dt
=
[
p2 +

(
q2

N2

(m1 +m2)

)
+
(
q12

N1

(m1 +m2)

)]
[m2 −N2] . (10)

Therefore, the change rate of cumulative group of imitators dN2
dt is also affected by

network effects. If q12=0, then innovators’ and imitators’ adoption are independent

from each other, but still not symmetric, because even if q12 → 0, the entire market

saturation level m1 +m2 is of importance for the imitators.

These two model segments (9) and (10) can be stacked into a system of equations

as follows:

 dN1
dt

dN2
dt

 =

 [p1 +
(
q1

N1
m1

)]
0

0
[
p2 +

(
q2

N2
(m1+m2)

)]
  [m1 −N1]

[m2 −N2]

+

+

 0 0

0
(
q12

N1
(m1+m2)

)
 ×

 [m1 −N1]

[m2 −N2]

 , (11)

or in a compact manner:

Ṅ = Ξa+ Πb. (12)

9



From (11) we should notice that information flow is asymmetric, because the first

diagonal element of Π in (12) is zero and thus Π is an upper triangular matrix.

The next section deals with the solution of system (12).

3.2 Solution

Given N(0)1 = 0, the solution of our differential equation system for N(t)1 can be

written as:

N(t)1 = mF (t) = m

[
1− exp{−(p1 + q1)t}

1 + q1
p1
exp{−(p1 + q1)t}

]
. (13)

In contrast to the solution of N(t)1, the derivation of solution for N(t)2 is cumber-

some and can be found in the appendix represented at the end of the paper.

3.3 Stability

Before we proceed the equilibrium points of model (11) or (12) must be identified,

and, additionally, their stability should be examined.

Proposition : Given the assumption that the partial derivatives, dN1
dt , and dN2

dt exist

and that dN1
dt and dN2

dt , hold simultaneously ∀t, system (11) has a unique steady state

vector S, which contains N∗1 and N∗2 in the long run.�

Proof : An optimal steady state vector S exists if and only if dN1
dt = dN2

dt = 0 holds.

This is realized, if

[
0

0

]
=

 [
p1 +

(
q1

N1
m1

)]
0

0
[
p2 +

(
q2

N2
(m1+m2)

)
+
(
q12

N1
(m1+m2)

)]  [
[m1 −N1]

[m2 −N2]

]
. (14)

To find the elements for the steady state vector, the first equation from the derived

system (12) has been examined first. Given dN1
dt = 0, this equation can be written

as follows:

[
p1 +

(
q1
N1

m1

)]
[m1 −N1] = 0. (15)

An equilibrium is found if dN1
dt = 0 holds. Thus, if m1 = N∗1 , then dN1

dt = 0. If

m1 = N∗1 then the number of innovators of new knowledge have realized their market

10



saturation level m1, which implies that every potential innovator has adopted the

new source of knowledge.

Second, if

N∗1 =
−m1p1

q1
< 0, (16)

equation (15) is zero again and thus dN1
dt = 0 also holds. Note that this equilibrium

can be ruled out because N1 > 0 by definition.

Let us now turn to the second equation of system (12), which can be written as[
p2 +

(
q2

N2

(m1 +m2)

)
+
(
q12

N1

(m1 +m2)

)]
[m2 −N2] = 0, (17)

given dN2
dt = 0.

Again, if m2 = N∗2 then dN2
dt = 0, which implies again, that the number of imitators

have reached their market saturation level m2. Additionally, if

N∗2 = − 1
q2

[p2m+ q12N
∗
1 ] < 0, (18)

then dN2
dt = 0 holds again. This equilibrium can be ruled out ex ante because N2 > 0

by definition.

From this discussion it is possible to derive four long run equilibria: the first equi-

librium is given by

m1 = N∗1 andm2 = N∗2 . (19)

This is the case, when both, the innovators and imitators have reached their specific

market saturation levels.

The second equilibrium is obtained if

N∗1 =
−m1p1

q1
and m2 = N∗2 . (20)

The third equilibrium is characterised by

N∗1 =
−m1p1

q1
and N∗2 = − 1

q2
[p2m+ q12N

∗
1 ] . (21)

Noting the fact, thatN∗1 = −m1p1
q1

and inserting this expression inN∗2 = − 1
q2

[p2m+ q12N
∗
1 ]

yields N∗2 = m1(q12p1−p2q1)−p2m2q1
q2q1

.

11



Obviously, the sign of N∗2 for the latter case is not clearly determined. For a given

value of N∗1 , N∗2 can be positive or negative.

The last equilibrium is defined by

N∗1 = m1 and N∗2 = − 1
q2

[m1(p2 + q12) +m2p2] .� (22)

Next, system (12) is linearised around the steady state values to establish the sta-

bility of the obtained equilibria. After linearising the entire system, the Jacobian

matrix for each equilibrium of system (12) has been evaluated. Table 1 provides

a summary of the obtained equilibria and further reports the equilibrium specific

Eigenvalues with their corresponding signs.

It is obvious that the first equilibrium is a stable nod. The stability of the remaining

equilibria is not of importance, because from an economic point of view only the

first equilibrium ensures a plausible result, which means that both N∗1 and N∗2 are

positive, given the parameter definition above. These result can be fleshed out also

graphically in figure 1 for positive values of N∗1 > 0 and N∗2 > 0.

From figure 1 we can once again conclude that only for the first equilibrium an

economic interpretation is possible. In the long run, the market saturation level will

be reached for both groups of adopters. Moreover, this equilibrium is stable. The

third equilibrium is ex ante not clearly determined, because for a given parameter

constellation, positive as well as negative values for N2 are possible. Theoretically,

the Ṅ2 = 0 straight line, the slope and location of which is determined by E3 and

E4, can result in another feasible solution. But if we take a closer look at our model,

we can rule out this possibility. If we refer again to figure 1, we observe that both,

−p2m
q2

and −p2m2

q12
determine the location of Ṅ2 = 0 straight line, N2 = − q12

q2
N1− p2m

q2
.

The maximum limit expression of Ṅ2 = 0 straight line is given by: N2 = q12
q2
N1,

which is graphically replicated by a dashed straight line through the origin, as can

be seen in figure 1. This is the maximum limit because, −p2m
q2

cannot be positive

by definition, as all parameters in expression p2m
q2

are positive. This is also true

for −p2m2

q12
. Note also that the Ṅ2 = 0 straight line will not be translated parallel,

because the upper limit for N2 is given by Ñ2 = q12m1p1
q2q1

and hence the difference

between the upper limit of Ñ2 and N2 is given by ∆N2 = q1p2m1

q2q1
+ p2m2

q2
= q1p2m1

q2q1
+

12



∆+N2 which is by expression on modulus greater as ∆+N2 = p2m2

q2
> 0 if we refer

to equilibrium four.

From this discussion it can be concluded that E3 cannot be a possible candidate for

a relevant economic equilibrium. Again, from an economic point of view we only

focus on the first equilibrium which is given by: N∗1 = m1 andN∗2 = m2. Thus from

any given and feasible starting point within the rectangular area bounded by the

parallel Ṅ2 = 0 line to the hypotenuse and the parallel Ṅ1 = 0 line to the ordinate we

can always realize the equilibrium point E1 for given starting values, N(0)1 ≥ 0 and

N(0)2 ≥ 0. Referring again to figure 1, a steady state path for given but arbitrary

starting values, N(0)1 > 0 and N(0)2 > 0, has been drawn.

Model (11) derived so far has to be criticised as it assumes a short and long run

deterministic behaviour of the adoption process, which means that once being on the

S-shaped diffusion path, no deviations from this path are possible, even in the short

run. The implication is that uncertainty regarding the adoption process should not

be treated as constant over time or even totally neglected, as the Bass (1969) model

does. Particularly, at the beginning or in the middle of the diffusion process, say

around the inflection point, uncertainty should be much more higher than at the

end, which implies that fluctuations of the adoption curve should be largest around

the inflection point. From this point of view, a stochastic expansion of system (11)

is required which will be derived in the next section.

4 Stochastic knowledge diffusion model

4.1 Setup

In this section a stochastic expansion of system (11) will be derived. I follow Boswijk

and Franses (2005) and Boswijk et al. (2006) who derived a stochastic counterpart

of the Bass (1969) model by assuming short-run deviations from the deterministic

diffusion process in a one-dimensional model. To arrive at our stochastic counterpart

of system (11) it has to pointed out first that the cumulative numbers of innovators

13



and imitators are both random variables with

N̄(t)k = E[N(t)k] = mF (t), k = {1, 2}, (23)

where k = 1 stands for the innovators, and k = 2 for imitators, and t is measured

still in continuous time.

Defining dÑ(t)k
dt = n̄(t) for k = {1, 2} we can theoretically derive two different sys-

tems: the first system assumes that mean reverting takes place from the mean

number n̄(t) or from the actual number of adoptions ñ(t). The difference is that the

mean number of adoptions n̄(t), is treated as an exogenous variable, whereas ñ(t) is

endogenous. For this reason, we should prefer to work with ñ(t).

Keeping this in mind, the following stochastic expansion of system (11) is defined:

 dn(t)1

dn(t)2

 =

 ζ[ñ(t)1 − n(t)1]dt+ σn(t)γ1 0

0 ζ[ñ(t)2 − n(t)2]dt+ σn(t)γ2

  dW (t)1

dW (t)2

 ,

(24)

where W (t)k is the standard Wiener process, and ζ > 0 is the adjustment speed.

Please note that W (t)1 and W (t)2 are eventually correlated. Furthermore, it is

assumed that σ > 0 and γ ≥ 0.5. Therefore, the speed of mean reversion depends

on the value of ζ. System (24) is a generalised stochastic version of system (11),

because it contains an error term in continuous time with a standard deviation

which equals to σn(t)γk . As n(t)k → 0, the error term σn(t)γk → 0, and thus it is

guaranteed that n(t) takes non negative values. It should be clear that system (11)

is obtained if ζ → ∞ and σ → 0. For γ = 1 it can be shown that n(t)k is strictly

positive. As a degree of freedom γ = 1 has been set. In this work, the examination

of system (24) dynamic behaviour is done on the basis of simulation experiments.

Alternatively, one can show formally the existence and solution of system (24). One

aspect which can be easily seen from system (24) is that, given the starting value

N(0)k = 0, N(t)k increases monotonically to N(t)k = m for t → large T . Please

additionally note that the speed of adjustment, ζ, is assumed to be the same for

both the innovators and imitators. That is also the case for σ.
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Embedding system (11) in system(24) yields the following system of stochastic dif-

ferential equations (SDE):

 dn(t)1

dn(t)2

 =

 A 0

0 B

  dW (t)1

dW (t)2

 , (25)

with

A ≡ ζ {Θ1 − n(t)1} dt+ σn(t)1, (26)

and

B ≡ ζ {Θ2 − n(t)2} dt+ σn(t)2, (27)

and

Θ1 ≡
[
p1 +

(
q1
N(t)1

m1

)]
, (28)

and

Θ2 ≡ p2 +
[(
q2

N(t)2

(m1 +m2)

)
+
(
q12

N(t)1

(m1 +m2)

)]
. (29)

For simulation purpose, system (24), which is a continuous time model has to be

translated into a discrete time model with discrete observations Ni,k = N(ti)k for

i = 1, 2, ..., T and k = {1, 2}. Thus, adoption of new knowledge over the interval

(ti−1,k, ti,k] is given by Ψ(i,k) ≡ Ni,k − Ni−1,k. Therefore, Ψ(i,k) can be interpreted

as the discrete approximation of n(t)k.

4.2 Euler-Maruyama approximation

The discretisation of model (25) is based on the so called Euler-Maruyama approxi-

mation14. On a given interval [t0, T ] and for a given discretisation t0 < t1 < ... < ti <

14Refer to for Kloeden and Platen (1992), p. 305.
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... < tN = T of [t0, T ], an Euler-Maruyama approximation of an one-dimensional

Ito SDE dXt = f(Xt, θ) + g(Xt, θ)dWt is a so called time stochastic process which

satisfies the proposed iterative scheme

yi+1 = yi + hif(yi) + g(yn)∆Wi, (30)

with y0 = x0 for i = 0, 1, ..., N − 1, where yi = y(ti), ξi = [ti − ti−1] is the step size

and ∆Wi = W (ti)−W (ti−1) ∼ N (0, ξi) with W (t0) = 0.

The last follows because due to the definition of a Wiener process we conclude

that these increments are independent Gaussian random variables with mean 0 and

variance hi. The increments ∆Wn can be computed as ∆W =
∫ ti+1

ti
dWt = W (ti+1)−

W (ti). It is straightforward that the proposed Euler-Maruyama approximation still

holds for systems like (25).

It is known that the Euler-Maruyama method converges with strong order (γ = 1)

for additive noise, and for a constant diffusion term g the Euler-Maruyama method

should provide a reasonable approximation.15 For other cases, however, the method

provides eventually a poor estimate of the solution, especially if the coefficients of

interest have to be treated as non-linear, a fact, which is known from the deter-

ministic Euler-approximation. In this case, higher order schemes, like the Milstein

scheme should be consulted to obtain a satisfying approximation in terms of higher

accuracy. It has to be pointed out that the order of the Euler-Maruyama scheme

is only satisfactory regarding approximation results if a fine time span ξi = H
T is

used.16

Applying the Euler-Maruyama approximation for system (25) and using n(ti)k −

n(ti−1)k, the following expression is obtained:

[
n(ti)1 − n(ti−1)1

n(ti)2 − n(ti−1)2

]
≈

 ζ
{[
p1 +

(
q1
N(ti−1)1

m1

)]
− n(ti−1)1

}
ξ + ϑ1

ζ
{
p2 +

[(
q2

N(ti−1)2
(m1+m2)

)
+
(
q12

N(ti−1)1
(m1+m2)

)]
− n(ti−1)2

}
ξ + ϑ2

 ,
(31)

15On general, the Euler-Maruyama method has strong order of convergence γ = 0.5 and for weak

order of convergence γ = 1.
16Refer to Kloeden and Platen (1992), p. 345.
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with ξ = [ti − ti−1] and ϑk = σ[W (ti)k −W (ti−1)k] ∼ i.i.d.N (0, σ2ξ).

The approximation of adopting new knowledge Ψi,k over the time interval (ti−1, ti]

can be written as

Ψi,k = N(ti)k −N(ti−1)k =
∫ ti

ti−1

n(t)kdt ≈ n(ti)k(ti − ti−1) = n(ti)kξ. (32)

Thus the alteration rate of adopting new knowledge is given by ∆Ψi,k ≡ Ψi,k−Ψi−1,k,

or

∆Ψi,k ≡ Ψi,k −Ψi−1,k ≈ ξ[n(ti)k − n(ti−1)k]. (33)

Using model (33) together with model (24) and model (12) or model (25) we derive

at

[
∆Ψi,1

∆Ψi,2

]
≈

 ξζ
{[
p1 +

(
q1
N(ti−1)1

m1

)]
− Ψi−1,1

ξ

}
ξ + ξ

Ψi−1,1
ξ ϑi,1

ξζ
{[
p2 +

(
q2

N(ti−1)2
(m1+m2)

)
+
(
q12

N(ti−1)1
(m1+m2)

)]
− Ψi−1,2

ξ

}
ξ + ξ

Ψi−1,2
ξ ϑi,2

 ,
(34)

or

 ∆Ψi,1

∆Ψi,2

 ≈
≈
[

ζξ2p1(m1 −N(i−1),1) + ξ2 q1
m1

N(i−1),1(m1 −N(i−1),1)− ζξΨi−1,1 + Ψi−1,1ϑi,1

ζξ2p2(m2 −N(i−1),2) + ξ2 q2
(m1+m2)

N(i−1),2(m2 −N(i−1),2) + ς − ζξΨi−1,2 + Ψi−1,2ϑi,2

]
, (35)

with

ς ≡ ξ2ζ
q12

(m1 +m2)
N(i−1),2(m2 −N(i−1),2), (36)

or

[
∆Ψi,1

∆Ψi,2

]
≈
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≈

[
φ0,1 + φ1,1N(i−1),1 + φ2,1N2

(i−1),1
+ φ3,1Ψi−1,1 + Ψi,1ϑi,1

φ0,2 + φ1,2N(i−1),2 + φ2,2N2
(i−1),2

+ φ3,2N(i−1),1 + φ4,2N(i−1),1N(i−1),2 + φ5,2Ψi−1,2 + Ψi,2ϑi,2

]
,

(37)

with ϑ ∼ i.i.d.N (0, σ2ξ) and

φ0,1 = p1m1ζξ
2, (38)

φ1,1 = ζξ2(q1 − p1), (39)

φ2,1 =
−q1ζξ

2

m1
, (40)

φ3,1 = −ζξ, (41)

φ0,2 = p2m2ζξ
2, (42)

φ1,2 = ζξ2

[(
m2

m1 +m2
q1

)
− p2

]
, (43)

φ2,2 =
−q2ζξ

2

m1 +m2
, (44)

φ3,2 =
m2

m1 +m2
ζξ2q12, (45)

φ4,2 =
−q12ζξ

2

m1 +m2
, (46)

φ5,1 = −ζξ. (47)

In this notational form we can interpret φ3,2 as the knowledge transfer parameter

function, which depends among other values on q12. If q12 → 0, then φ3,2 → 0, and

thus, no knowledge transfer from innovators to imitators takes place.

5 Simulation

5.1 Simulation of deterministic knowledge diffusion model

In this section the adoption curves of model (11) are simulated. For simulation

purposes we first have to assign a set of parameters. The values of the external

knowledge transfer coefficients p1 and p2 are set to p1 = 0.13 and p2 = 0.01, which

means that the innovators are more influenced by external knowledge transfer than

the imitators. The values for the internal knowledge transfer coefficients, q1 and q2,
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are determined at q1 = 0.75 and q2 = 0.50, which means that internal knowledge

transfer matters more for the group of innovators.17 For the meanwhile, the knowl-

edge transfer coefficient q12 is set to q12 = 0.07. Later on in this paper a sensitivity

analysis regarding parameter variations of q12 for the stochastic knowledge diffusion

model is performed to determine the effect on the overall adoption curve for different

parameter constellations of q12. Table 3 summarises the calibrated values for the

simulation study.

The simulation of model (11) has been conducted with Matlab 6.5.0 with cross

checks performed with Mathematica 5.2. Simulation results have been graphically

represented in figure 3. In the left upper figure, the adoption curves for N(t)1, N(t)2

and the overall market N(t)all have been drawn with solid, dash-dotted and dashed

lines respectively. As a result we can observe that the knowledge diffusion process of

the innovators comes to an end after around 6 periods, because the entire population

of innovators has adopted new knowledge, which means that m1 = N(6)1 = 1, and

thus, Ṅ(t)1 = 0. On the contrary, the knowledge diffusion process of the imitator

group stops after around 20 periods of time with m2 = N(20)2 = 1, and thus,

Ṅ(t)2 = 0. Using the results from our stability analysis, we have realized a stable

equilibrium at m∗1 = m∗2 = 1. Figure 2 gives a graphical representation of the

equilibrium path for the simulated model based on parameter values in table 3 and

with arbitrary starting values N(0)1 = N(0)2 = 0. Furthermore, figure 3 shows that

the unique equilibrium m∗1 = m∗2 = 1 is stable.

The left lower figure contains the same information as the left upper figure, but

in relative numbers related to the market potential m1 and m2, respectively. The

inflection points of the innovators and imitators are realized at around 2 periods for

the innovators and at around 9 periods for the imitators. The upper right figure

depicts the diffusion process of the new knowledge, whereas the lower right panel

shows the relative diffusion process. It is easy to see that for m1 = 1 and m2 = 1

the upper right and the lower right figures must coincide.

17As unreported simulation experiments have shown, the exact choice of pk and qk for k = {1, 2}

do not influence the general result of unimodal and bimodal diffusion patterns.
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What impression can we get from figure 3 regarding the overall diffusion process

n(t)all? First, the knowledge diffusion process does not exhibit a bell shaped pattern,

as in the original Bass (1969) model, but is unimodal with dent towards right. This

is because the innovators still have adopted the entire knowledge and have realized

the inflection point, whereas the imitators just start to adopt. Please note that we

do not observe the typically bimodal chasm pattern because cross sectional external

knowledge transfer (q12 > 0) takes place. As shown later, the typical chasm pattern

of the knowledge diffusion process is only realized if q12 → 018.

As mentioned before, one of the drawbacks of this model is that the adoption curves

N(t)1 and N(t)2 still both exhibit the typical deterministic S-shaped pattern, as one

can see from the upper left and lower left pictures of figure 3. This assumption seems

to be to strict. Thus, this strict pattern structure has been relaxed by assuming that

the diffusion process is a mean reverting event and hence, short term deviation from

a deterministic sigmoid adoption path should be allowed. The simulation of this

stochastic model is performed in the next subsection.

5.2 Simulation of stochastic knowledge diffusion model

In this section a simulation study of model (25) has been conducted. Inserting the

calibrated values from table 3 in equations (38) to (47) leads to

18It is referred to the sensitivity analysis in section 5.2.
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φ0,1 = p1m1ζξ
2 = 1.625× 10−3, (48)

φ1,1 = ζξ2(q1 − p1) = 7.75× 10−3, (49)

φ2,1 =
−q1ζξ

2

m1
= −9.375× 10−3, (50)

φ3,1 = −ζξ = −0.25, (51)

φ0,2 = p2m2ζξ
2 = 1.625× 10−3, (52)

φ1,2 = ζξ2

[(
m2

m1 +m2
q1

)
− p2

]
= 3.000× 10−3, (53)

φ2,2 =
−q2ζξ

2

m1 +m2
= −3.125× 10−3, (54)

φ3,2 =
m2

m1 +m2
ζξ2q12 = 4.375× 10−4, (55)

φ4,2 =
−q12ζξ

2

m1 +m2
= −4.375× 10−4, (56)

φ5,1 = −ζξ = −0.25. (57)

As mentioned above, the simulation of the system of stochastic differential equations

(25) has been performed with Matlab 6.5.0. The corresponding simulation results

have been depicted in figures 4, 5 and 6. If we refer to figure 4, on the upper

picture we can find the distribution functions F (t)1 and F (t)2 for the adoption

process for innovators and imitators. Additionally, the discrete approximation of

the distribution functions expressed by N(t)1
m1

for the innovators and N(t)2
m2

for the

imitators have been plotted. The overall distribution function F (t)all exhibits a dint

pattern which commemorates slightly on a S-Shaped pattern. This is also the case for

the discrete approximation N(t)all
mall

in the same subpicture 5. Furthermore, the density

functions f(t)1 and f(t)2 for the adoption process for innovators and imitators and

the corresponding approximations n(t)1
m1

and n(t)2
m2

have been plotted in the middle

placed picture of figure 4. In the lower figure we find the approximation of the

density function f(t)k denoted as Ψ(i,k)

mk
for k = {1, 2}. Also, for the entire population

N(t)all we observe a S-shaped mean reverting behaviour with the largest deviation

from the mean around the inflection point, as we should expect. Additionally, overall

adoptions Ψ(i,all) exhibit a mean reverting behaviour with the largest fluctuations

around the peak for both innovators and imitators.
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The interesting point is how changes of the knowledge transfer parameter q12 affects

system (25) and how variations of knowledge transfer affect the cumulative and

adoption curves of the model (25) for both groups. For this purpose, a sensitivity

analysis for three scenarios has been performed: in the first scenario it is assumed

that knowledge transfer from the group of innovators to the group of imitators is

nearly prohibited, which coincides with q12 → 019. Please note again, that the

knowledge transfer process is asymmetric, which means that knowledge transfer

goes from the group of innovators to the group of imitators and not vice versa. The

second scenario is characterised by a limited knowledge transfer, with q12 = 0.07,

which corresponds to the already performed simulation. The last scenario assumes

nearly complete knowledge transfer, which implicitly means that strong network

effects are in place. For this simulation scenario, q12 → 120.

The simulation results for the first and last simulation scenarios are depicted in

figures 5 and 6.

If we refer to figures 4, 5 and 6, we come to the following result: the less important

the network effects are - which coincides with parameter value of q12 → 0 - the more

realistic is the so called chasm pattern. In other words, the greater the discrepancy

between the realization of the inflection point of innovators and the beginning of

imitators’ adoption, the more realistic is a bimodal shape of the adoption curve. On

the other side, the stronger the network effects, the greater is the parameter value of

q12 and the less realistic is the so called chasm pattern, because right before innova-

tors have realized the inflection point imitators have nearly reached their inflection

point. In this way we can conclude that a bimodal pattern of overall knowledge dif-

fusion is more likely, if it is hard to establish knowledge networks, whereas unimodal

but not necessarily a bell-shaped pattern in the sense of Bass (1969) of diffusion is

more likely, if strong network effects are in place. This conclusion can be verified

by a sensitivity analysis. This has been conducted for the stochastic model for the

entire parameter range of q12 ∈ (0, 1). The parameter range q12 ∈ (0, 1), as well as

the diffusion time t, defines a grid in R2. For a given point in t and a given param-

19For the simulation study q12 is set to q12 = 0.01.
20For the simulation study q12 is set to q12 = 0.99.
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eter point q12 ∈ (0, 1), a point on the approximated density function of adopters is

located on the grid. Again, for large q12 unimodal diffusion patterns are more likely

than a bimodal diffusion pattern. The results of this study can be found in figure 7.

6 Econometric Annotations

The question which is unanswered yet is how knowledge diffusion can be measured

empirically, especially the parameter q12. First, one has to find suitable proxies for

knowledge diffusion. One possibility is to assume that new knowledge is stored in

scientific journals, and citations of specific articles could be a proxy for diffusion of

this new knowledge. Citations typically often have similarities with the diffusion

of new products. At the beginning, citations are low, then they start growing and

reach a peak before the citations tend to zero.

As one can see, system (25) can be estimated and tested directly without manipu-

lating the system itself. Obviously, a seemingly unrelated regression (SUR) seems

to be appropriate for estimating system (25), because system (25) is block recursive.

Note that this model assumes heteroscedastic errors because of the term σn(t)γk 6= 0.

This again reflects the idea that diffusion is more certain at the end of the diffusion

process.

Before performing the SUR regression, the question which should be answered is,

whether the estimated coefficients are consistent or not. Boswijk and Franses (2005)

have shown that the estimators do not exhibit the desired asymptotic normality

behaviour by estimating their one dimensional stochastic version of the Bass (1969)

model. More precisely, the authors have shown that even by increasing the sample

period the estimators φ ∈ Φ cannot be estimated consistently. This result seems to

be reasonable, because after realizing the saturation levels m1 or m2 respectively,

within sample information no longer increases which is necessary to obtain consistent

estimators of the parameter vector. On the basis of Monte Carlo simulations for

different time spans H = ξT , Boswijk and Franses (2005) have further concluded

that standard normal distribution can be consulted to approximate t-statistics of

the estimated parameter vector, provided the inflection point lies within the sample
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period. Although it is helpful to know large sample properties of the estimators

φ ∈ Φ, small sample properties are of importance because of the fact that sample

information is limited towards t. This topic is not sufficiently addressed in the

relevant literature and defines an avenue for further research.

7 Conclusion

In this paper the link between knowledge transfer, knowledge diffusion and implicit

network effects has been investigated. For this reason, a new diffusion model was put

forward which focuses on those before mentioned aspects. The relevant literature has

paid less attention investigating the link between knowledge transfer and knowledge

diffusion. Particularly, the question of how knowledge transfer has an influence on

the behavoiur of innovators and imitators within the adoption process is of interest.

The basis for this stochastic differential equation (SDE) model is the well known

Bass (1969) model. Although Bass (1969) mentioned that communication between

innovators and imitators is relevant for adoption decision, this fact is not reflected in

his mathematical derivations. Following Kalish (1985) and assuming that innovators

need only search information to adopt new knowledge, while the latter imitators

require experience type information before adopting, a model which includes both

the adoption decisions of innovators and imitators is set up. In this way, the group

of adopters has to be treated as heterogeneous. Furthermore it was assumed that

information flows only in one direction, from innovators to imitators. Thus, the

information flow is asymmetric.

After an appropriate discretisation, in a simulation study it was shown that the shape

of the adoption pattern depends on, whether knowledge diffusion occurs or not. If

knowledge transfer occurs, the stronger the network effects, the more probable are

the so-called unimodal patterns, because right before innovators have realized their

inflection point, imitators have nearly reached themselves their inflection point. On

the contrary, the greater the discrepancy between the realization of the inflection

point of innovators and the beginning of imitators’ adoption, the less important

are network effects, and the more probable are the so called bimodal adoption phe-
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nomena. Thus chasm patterns of adoption curves occur if it is hard to establish

knowledge networks.

The advantage of this new model is twofold: from a theoretical point of view, not

only unimodal diffusion phenomena can be modelled, but also bimodal diffusion phe-

nomena can occur. From an empirical point of view, the model which incorporates

heteroscedastic errors and mean reverting can be estimated and tested directly with

a SUR approach.

So far this study suggests some avenues for further research. First, the assumption

that the market saturation level is exogenous and constant over time is very strict.

Second, from a technical point of view, mean reverting is assumed to be the same

over the entire population. Thus another source of heterogeneity can be introduced

in the model by assuming intra-group individual values for the adjustment speed to

the steady vector ζ. Third, after examining the large and small sample properties

of the derived model the forecasting ability should be of interest.
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Equilibrium Equilibrium conditions Signs of Eigenvalues

E1 N∗
1 = m1 andN∗

2 = m2 λ1 < 0, λ2 < 0

E2 N∗
1 = −m1p1

q1
and N∗

2 = m2 λ1 > 0, λ2 <> 0

E3 N∗
1 = −m1p1

q1
and N∗

2 = m1(q12p1−p2q1)−p2m2q1
q2q1

λ1 > 0, λ2 <> 0

E4 N∗
1 = m1 and N∗

2 = − 1
q2

[m1(p2 + q12) +m2p2] λ1 < 0, λ2 > 0

Table 1: Stability analysis of obtained equilibria from model (11) (I)

Equilibrium Imaginary part Stability

E1 no stable nod

E2 no saddle path or unstable nod

E3 no saddle path or unstable nod

E4 no saddle path

Table 2: Stability analysis of obtained equilibria from model (11) (II)

Parameter Value Parameter Value

p1 0.13 m1 1.00

p2 0.01 m2 1.00

q1 0.75 ξ 0.05

q2 0.50 ζ 5.00

q12 0.07 σ 0.50

Table 3: Parameter values for model (11) and model (37)
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Figure 1: Phase plot of model (11) (I)

0.2 0.4 0.6 0.8 1 1.2 1.4

N1

0.2

0.4

0.6

0.8

1

1.2

1.4

N2

N1

⋅

= 0

N2

⋅

= 0

Figure 2: Phase plot of model (11) (II)
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Figure 3: Graphical representation of simulated model (11) with q12 = 0.07
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Figure 4: Graphical representation of simulated model (37) with q12 = 0.07
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Figure 5: Graphical representation of simulated model (37) with q12 = 0.01
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Figure 6: Graphical representation of simulated model (37) with q12 = 0.99

38



Figure 7: Approximated adoption´s density function for q12 ∈ (0, 1) and correspond-

ing contour plot based on model (37)
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