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Informative tests in signaling environments

Ran Weksler
Department of Economics, University of Haifa

Boaz Zik
Institute for Microeconomics, University of Bonn

We study a receiver’s learning problem of choosing an informative test in a sig-
naling environment. Each test induces a signaling subgame. Thus, in addition to
its direct effect on the receiver’s information, a test has an indirect effect through
the sender’s signaling strategy. We show that the informativeness of signaling in
the equilibrium that a test induces depends on the relative informativeness of the
test’s high and low grades. Consequently, we find that the receiver’s preference re-
lation over tests needs not comply with Blackwell’s (1951) order. Our findings may
shed light on phenomena such as grade inflation and information coarsening.

Keywords. Signaling games, information design, strategic learning, strategic in-
formation transmission.

JEL classification. D82, D83, C72.

1. Introduction

When decision-makers gather information, they need to decide what kind of informa-
tion to learn, i.e., which test to choose from their set of available tests.1 Often, the
decision-maker (henceforth the receiver) makes the learning decision in a signaling en-
vironment where an informed agent (henceforth the sender) can take observable costly
actions. For example, when public certifiers, such as safety and environmental organi-
zations, test how firms perform in a particular area, firms can signal by spending money
on unproductive channels such as advertising or donations. When job market recruiters
test potential candidates to evaluate their competence for the job, candidates can signal
by indicating they would accept a low wage offer for their initial employment period.
When academic institutions test students to identify their qualities, students can sig-
nal by participating in extracurricular activities. In this paper, we analyze the receiver’s
preferences over tests in such a signaling environment.
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1Our notion of a test is identical to the notion of an experiment in Blackwell (1951).
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We consider the following model. There is a sender who is fully informed about the
state of the world, which is either low or high. There is a receiver who is initially unin-
formed about the state. The receiver wants to choose an action that matches the state.
In the first stage of the game, the receiver chooses an informative test from a given set
of feasible tests. The second stage of the game is a signaling stage à la Spence (1973),
except for the following two features. First, the sender’s cost of signaling does not de-
pend on the state;2 we thus simply say that the sender chooses a signaling cost. Second,
the sender observes the test choice of the receiver but not the realization of the test
(henceforth grade) before choosing his signaling cost. In the last stage of the game, after
observing the test’s grade and the sender’s signaling cost, the receiver chooses an action.
The sender’s payoff is equal to the receiver’s action minus his signaling cost.

In our model, since the sender’s cost of signaling does not depend on the state, if
the receiver does not observe a grade of an informative test about the state, then in the
unique perfect sequential equilibrium Grossman and Perry (1986), the sender chooses
not to signal, and the receiver does not learn any information.3 However, if the receiver
privately observes a grade of an informative test about the sender’s type, then the differ-
ent types of the sender face different subjective probabilities regarding the test’s grades.
Therefore, although the sender’s payoff is independent of his type, his expected payoff
depends on his type. In this case, there exists a unique equilibrium that satisfies the
D1 criterion (Bank and Sobel (1987), and Cho and Kreps (1987)); see Daley and Green
(2014). In this equilibrium, the low and high types of the sender may choose different
signaling costs;4 i.e., the equilibrium signaling strategy of the sender discloses informa-
tion about the state. Therefore, in our model, the receiver’s test choice affects the in-
formation that the receiver obtains in equilibrium in two ways. The first is through the
test’s intrinsic informativeness level. The second is through the informativeness level of
the signaling strategy in the equilibrium that the test induces. We analyze how these two
effects influence the receiver’s preference relation over tests.

We start by characterizing the unique equilibrium that satisfies the D1 criterion for
a given test. Depending on the prior on the state, two kinds of equilibria can emerge:
one is the fully pooling equilibrium, where both types of the sender choose not to sig-
nal; the other is a semi-pooling equilibrium in which the high type selects one signaling
cost while the low type mixes between selecting this cost and not signaling at all. Addi-
tionally, we find that in the latter equilibrium, the belief that the receiver develops after
observing the pooling signaling cost is the belief that utilizes the test optimally in the
sense that it maximizes the difference between the expected posteriors of the high type

2If the sender’s signaling costs depend on the state and satisfy the single-crossing condition, then the
case where the receiver is uninformed corresponds to Spence’s (1973) signaling model. In Spence’s model
the fully separating equilibrium, in which the state is perfectly revealed, is the unique equilibrium that
satisfies stability-based refinements. Therefore, the receiver’s optimal learning strategy is not to learn in-
formation independently.

3In this degenerate environment, all the sender’s types share the same preferences over pairs of receiver’s
beliefs and actions. Therefore, multiple equilibria satisfy the D1 criterion; in each of them, the sender’s
types are indifferent between the equilibrium actions. These equilibria are ranked in terms of efficiency.
Grossman and Perry’s refinement selects the efficient fully pooling equilibrium.

4The high (low) type corresponds to the realization of the high (low) state.



Theoretical Economics 17 (2022) Informative tests in signaling 979

and the low type. This belief determines the informativeness level of the sender’s sig-
naling strategy in equilibrium: the higher this belief is, the more separation there is in
equilibrium, and the more informative the sender’s equilibrium signaling strategy is.

We identify the main property that determines the informativeness level of the
sender’s signaling strategy in the equilibrium that a test induces. Call a high (low) grade
a grade that the high (low) type receives with a higher probability than the low (high)
type. Our novel insight is that what matters is not the informativeness level of the test
per se, but rather the relative informativeness of the test’s high and low grades. Specif-
ically, we argue that the more informative the test’s low grades are relative to its high
grades, the higher is the belief that the signaling cost induces, and the more informative
the sender’s signaling is. The intuition for this insight is that a test whose low grades are
more informative than its high grades is essentially better at identifying the low type.
Intuitively, such a test is used optimally when the interim belief is high, i.e., when the
belief assigns a low probability to the event that the sender’s type is low, as it manifests
the test’s relative advantage.

We present a series of formal results that establish this insight and study its implica-
tions for the receiver’s preference relation over tests. In Lemma 4, we identify conditions
under which a test that is derived from another test by increasing the informativeness of
its low (high) grades induces more (less) informative signaling in equilibrium. A direct
implication of this lemma is that a more informative test in the sense of Blackwell (1951)
does not necessarily induce a more informative signaling strategy than a less informa-
tive test.5 We present a sufficient condition for a test to be both intrinsically more infor-
mative and more informative in terms of the signaling strategy it induces than another
test, and we show that the receiver prefers the former test to the latter independently of
the prior. We then show that because more informative tests do not necessarily induce
more informative signaling strategies, the receiver’s preference relation over tests does
not comply with Blackwell’s partial order. Specifically, there are cases where the receiver
prefers a less informative test to a more informative test independently of the prior.

We next analyze the receiver’s preference relation over pairs of symmetric tests,6 one
whose low grades are more informative than its high grades and one whose high grades
are more informative than its low grades. We show that in the absence of signaling, the
receiver’s preferences over these tests depend on the prior. However, when the sender
can signal, we show that since the former test induces a more informative equilibrium
signaling strategy than the latter, the receiver always prefers the former test to the latter,
independently of the prior.

Our model corresponds to a learning problem in signaling environments with two
key features. First, the sender’s signaling costs are independent of the property that is

5In the paper, we say that a test/signal is more informative than another test/signal if and only if it dom-
inates it in the sense of Blackwell (1951).

6Two tests are symmetric if, for every grade, the probability of the low (high) type to observe the grade
under the first test is equal to the probability of the high (low) type to observe this grade under the second
test.
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the subject of interest. Second, the receiver can commit to the test.7 The applications we
mention at the beginning of this section seem to include these features, and our results
may help shed light on several phenomena in the context of these applications.8 For ex-
ample, grade inflation in schools, where the vast majority of the students receive grades
A and B, and only a small fraction of the students receive lower marks, is criticized for
not providing sufficient information to the market about the students’ qualities.9 How-
ever, our results show that because a grade inflation policy may include low grades that
are more informative than high grades, such a policy may provide more information to
the market than other grading policies that are intrinsically more informative. Our re-
sults may also help explain why public certifiers deliberately coarsen the information
they reveal to the public Harbaugh and Rasmusen (2018) or why employers delegate
their hiring decisions to human resources companies which may be relatively less well
equipped to assess the quality of job candidates.10 The explanation we offer is that the
receiver may intentionally choose a less informative test because it induces a more in-
formative signaling strategy.

Related literature

In Spence’s (1973) seminal paper about signaling, as in many subsequent signaling
papers, the sender’s signaling costs satisfy a single-crossing condition, such that the
unique equilibrium under stability-based refinements is fully separating where the re-
ceiver gains full information. Daley and Green (2014) and Frankel and Kartik (2019)
consider signaling environments with information loss. Daley and Green (2014) study
a signaling environment à la Spence, where the receiver observes an exogenous test.
They show that if the receiver’s test is sufficiently informative, then the unique equilib-
rium that satisfies the D1 criterion involves some pooling.11

 Frankel and Kartik (2019)
consider a signaling environment where a sender’s type is two-dimensional, such that

7Additionally, if the realization of the grade of the test were public, then the signaling of the sender should
take place before the realization of the grade. Note that in our model in which the receiver privately ob-
serves the grade, there is no restriction on the order of the signaling action and the realization of the grade.

8These applications include a certifier and a firm, schools and students, and an employer and a potential
candidate. In these applications, it seems natural that the receiver can commit to the test but not to her
action. Moreover, in many cases, it is natural to presume that the signaling cost of the sender is independent
of the property that is the subject of interest. That is, that the monetary loss of a firm on advertising or
donation does not depend on its quality, that a candidate’s disutility from a lower salary is not related to
his competence level, and that the cost of participation in extracurricular activities is independent of a
student’s academic level.

9The phenomenon of grade inflation is well documented. Several papers present models that predict
grade inflation as the outcome of strategic interaction between competing universities; see, e.g., Chan,
Hao, and Suen (2007), Popov and Bernhardt (2013), and Boleslavsky and Cotton (2015).

10We thank an anonymous referee for suggesting this example.
11Alós-Ferrer and Prat (2012) study a similar question. They find that in the presence of a test, pooling

equilibria can satisfy the intuitive criterion Cho and Kreps (1987). Other papers analyze signaling environ-
ments that are different from Spence (1973) where the receiver is exposed to additional information; see,
e.g., Weiss (1983) and Feltovich, Harbaugh, and To (2002).
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one dimension corresponds to the intrinsic value of the sender and the other dimen-
sion corresponds to his ability to signal. They show that, generically, there is some loss
of information in equilibrium.

Ball (2021) studies an information design problem of choosing a scoring rule, a map-
ping from the sender’s action to a distribution of scores, in a multi-feature extension of
Frankel and Kartik’s (2019) model.12 Specifically, he shows that a less informative scor-
ing rule may induce a more informative sender’s signaling strategy and so the receiver
can obtain more information in equilibrium by coarsening the scoring rule. Bonatti and
Cisternas (2020) study a scoring rule design problem in a dynamic monopolistic screen-
ing setting and find a qualitatively similar result. In this paper, we study the information
design problem of choosing an informative test in a variation of Daley and Green’s (2014)
model and find a related qualitative result: a less informative test may induce a more
informative signaling strategy and, thus, may ultimately lead to more information reve-
lation in equilibrium. However, the mechanisms by which scoring rules and tests affect
the sender’s signaling strategy are different. A scoring rule affects the sender’s signaling
strategy by altering the way the receiver observes the chosen signaling cost, whereas a
test affects the sender’s signaling strategy by modifying the sender’s types preferences
over the receiver’s interim belief, i.e., her belief following the signaling action. Specifi-
cally, in tests, unlike in scoring, different sender’s types face different expected posterior
beliefs for the same signaling cost. This property enables meaningful signaling in envi-
ronments where the sender’s payoff is state-independent.

Our work joins other papers that deal with environments where a receiver’s test
choice affects the strategic behavior of an informed sender. Rosar (2017) and Harbaugh
and Rasmusen (2018) both study a receiver’s optimal test choice in environments where
the sender can decide on whether or not to participate in the test. The information that
the receiver obtains from a test also depends on the way it affects the sender’s partici-
pation strategy. Rosar (2017) considers an environment with a risk-averse sender who
is partially informed about whether his quality is high or low. Harbaugh and Rasmusen
(2018) consider an environment where the sender is fully informed about his quality
and incurs an exogenous fixed cost from participating in the test. Both papers find that
the receiver’s optimal test uses coarse grading to increase participation. Boleslavsky and
Kim (2021) study the problem of Bayesian persuasion, where a sender chooses a test
to affect a receiver’s behavior, in environments where the underlying state is generated
by another agent’s unobservable effort. The sender’s test affects the receiver’s informa-
tion in equilibrium further by affecting the strategic behavior of the agent. Hence, the
sender’s optimal test also depends on how the test incentivizes the agent’s effort in the
equilibrium it induces.

12Frankel and Kartik (2021) consider the case where the receiver can commit to her action following each
of the sender’s signaling costs in Frankel and Kartik’s (2019) setting. They show that the receiver finds it
optimal to commit to taking a more moderate action than her best response following each of the sender’s
signaling costs. Whitmeyer (2021) compares the receiver’s payoff from the optimal scoring rule and her
maximal payoff when she can commit to her actions and characterizes conditions under which the optimal
scoring rule yields the same payoff for the receiver as in the commitment case.
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The rest of the paper is organized as follows. In Section 2, we present the model. In
Section 3, we consider the possible equilibria in the sequential subgame that a test in-
duces. In Section 4, we show how the properties of a test affect the informativeness level
of the sender’s signaling strategy in equilibrium and study the implications of this result
on the receiver’s preferences over tests. Section 5 is devoted to a discussion. Section 6
concludes. Most of the proofs are relegated to the Appendix.

2. The model

2.1 The environment

There is a sender (he) who either has a low value (henceforth the low type) or a high
value (henceforth the high type). The sender’s type is high with a prior probability of
μ0 ∈ (0, 1). For simplicity, we assume that the values of the low type and the high type are
0 and 1, respectively, and identify the sender’s type with its value.13 The sender knows
his type, ω ∈ {0, 1}, and can signal by taking a costly observable action c ∈ R+ (hence-
forth signaling cost). There is a receiver (she) who chooses a test π : {0, 1} → �S from a
finite set of feasible tests �R ⊆ �, and an action, a ∈ R.14 We assume that � is the set
of all partially informative tests; i.e., the set of all tests that are informative but not fully
informative. The receiver’s payoff as a function of the sender’s type and her action is
UR(ω, a) = −(ω − a)2. The sender’s payoff is the receiver’s action minus his signaling
cost, US(ω, a, c) = a − c. Note that the sender’s payoff does not depend directly on his
type. The receiver and both of the sender’s types act to maximize their expected payoffs.

2.2 Time line

The game consists of three periods. In the first period, the receiver chooses a test π ∈�R.
In the second period, the sender observes the receiver’s test choice and decides on a
signaling cost c ∈ R+. The receiver observes the sender’s signaling cost and forms an
interim belief about the sender’s type, denoted by μπ(c) ∈ [0, 1]. In the third period, the
receiver observes the test’s grade s ∈ S, forms a posterior belief about the sender’s type,
and takes an action a ∈R.

2.3 Notations

To simplify the exposition, we introduce a series of notations. Since the type space is
binary, we identify a belief μ ∈ �{0, 1} with a number μ ∈ [0, 1] that corresponds to the
probability that the belief μ assigns to the event that the sender’s type is 1, which is also
the expected value given the belief. We denote by posπ(s, μ) ∈ [0, 1] the posterior belief
given a test π ∈�, an initial belief μ ∈ [0, 1], and a grade s ∈ S that is derived using Bayes’s

13All our results hold for arbitrary values of the high type and the low type h and l with h> l.
14We assume without loss of generality that all tests have the same grade set S, as we can always define S

to be the union over all the possible grades in the set of feasible tests. We assume that �R is finite to ensure
the existence of an optimal test.
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rule whenever possible,15 i.e.,

posπ(s, μ) := μ ·π(s|1)
(1 −μ) ·π(s|0) +μ ·π(s|1)

.

We denote by V R
π (μ) the expected payoff of the receiver from a test π ∈ � and an initial

belief μ when she chooses her action to be equal to the expected value of the sender
given her posterior belief, i.e.,

V R
π (μ) := −

(
μ ·

∑
s∈S

π(s|1)
(
1 − posπ(s, μ)

)2 + (1 −μ) ·
∑
s∈S

π(s|0)
(−posπ(s, μ)

)2
)

.

We denote by V ω
π (μ) the expected value of the receiver’s posterior belief from the per-

spective of the sender of type ω, ω ∈ {0, 1}, from a test π ∈ � and an initial belief μ,
i.e.,

V ω
π (μ) :=

∑
s∈S

π(s|ω) · posπ(s, μ).

We denote by Uω
π (μ, c) the expected payoff of the sender of type ω, ω ∈ {0, 1}, from a test

π ∈ �, an initial belief μ, and a signaling cost c when the receiver chooses her action to
be equal to the expected value of the sender given her posterior belief, i.e.,

Uω
π (μ, c) ≡ V ω

π (μ) − c.

2.4 Strategies and equilibrium

We now define the players’ strategies and the equilibrium concept we use.

Definition 1. A strategy for the sender is a mapping σ : {0, 1} ×�R → �R+ that assigns
to each pair of type ω ∈ {0, 1} and test π ∈�R a probability distribution over the possible
signaling costs.

We let σπ(c|ω) denote the probability that σ(π, ω) assigns to the signaling cost c,
and supp(σ(π )) ≡ supp(σ(π, 0)) ∪ supp(σ(π, 1)).

Definition 2. The first-period strategy of the receiver is a choice of test π ∈ �R. The
third-period strategy of the receiver is a mapping a : �R × S × R+ → �R that assigns to
each tuple of test π ∈�R, grade s ∈ S, and signaling cost c ∈R+ a probability distribution
over the receiver’s possible actions. A strategy for the receiver is a pair {π, a(·, ·, ·)}.

Every test π ∈ �R induces a signaling subgame. Our equilibrium concept requires
that the sender’s strategy, the receiver’s third-period strategy, and the receiver’s interim

15The only cases where posπ (s, μπ (c)) cannot be obtained using Bayes’ rule is when π(s|1) = 0 (π(s|0) =
0), π(s|0) > 0 (π(s|1) > 0), and μ = 1 (μ = 0). That is, cases where the receiver observes a grade that only
one of the types can get when the receiver’s initial belief is that the sender’s type is the other type with
certainty. In this case, the only reasonable conclusion is that the initial belief is incorrect, i.e., posπ (s, 1) = 0
(posπ (s, 0) = 1).
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beliefs must form a perfect Bayesian equilibrium (henceforth PBE) that satisfies the D1
criterion (Bank and Sobel (1987), Cho and Kreps (1987)) in every subgame that is in-
duced by any test π ∈ �R. Specifically, since the receiver’s loss function is quadratic,
then, in equilibrium, the unique action that the receiver selects is equal to the sender’s
expected value given her posterior belief from observing the signaling cost and the test’s
realized grade, which is derived using Bayes’ rule. The receiver’s first-period strategy
must choose a test π∗ ∈ �R that induces a subgame whose equilibrium outcome maxi-
mizes the receiver’s expected payoff.

Definition 3. We say that a pair of strategies {σ∗(·, ·), {π∗, a∗(·, ·, ·)}} and a system of
interim beliefs {μπ(c)}π∈�R,c∈R+ form an equilibrium if and only if the following condi-
tions hold:

(i) If c ∈ supp(σ∗(π )), then the receiver’s interim belief μπ(c) is obtained from μ0

using Bayes’ rule, i.e.,

μπ(c) = μ0 · σπ(c | 1)
μ0 · σπ(c | 1) + (1 −μ0 ) · σπ(c | 0)

.

If c /∈ supp(σ∗(π )), then the interim belief μπ(c) must satisfy the D1 criterion,
as defined below.

(ii) For every π ∈�, s ∈ S, and c ∈R+ we have that

a∗(π, s, c) = posπ
(
s, μπ(c)

)
.

(iii) If c ∈ supp(σ∗(π, ω)), then

c ∈ argmax
c′∈R+

Uω
π

(
μπ

(
c′), c′).

(iv) The test π∗ satisfies

π∗ ∈ argmax
π∈�R

∑
c∈supp(σ∗(π ))

(
μ0 · σ∗

π(c|1) + (1 −μ0 ) · σ∗
π(c|0)

) · V R
π

(
μπ(c)

)
.

In condition (iv) of the definition we implicitly assume that | supp(σ∗(π ))| <∞. This
assumption is valid because, as we show in the following section, for every π ∈ � in any
D1 equilibrium, it holds that | supp(σ∗(π ))| < ∞. The D1 criterion that is mentioned in
condition (i) of the definition is defined as follows.

Definition 4. Consider a PBE of the subgame that is induced by some π ∈ � with
equilibrium strategies {σ∗(π, ·), a∗(π, ··)}. For each ω ∈ {0, 1}, consider some cω ∈
supp(σ∗(π, ω)). For every c /∈ supp(σ∗(π )) and ω ∈ {0, 1}, define Bω(c) := {μ|Uω

π (μ, c) >
Uω
π (μπ(cω ), cω )}. The D1 criterion requires that if Bω′

(c) ⊂ Bω(c), then μπ(c) = ω.

The intuition behind the widely used D1 criterion is the following. Given an equilib-
rium, once the receiver observes a signaling cost that is not an element of the support of
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each of the types’ equilibrium strategies, she cannot use Bayes’ rule to infer her belief.
Instead, the receiver develops her belief as follows. For each type, the receiver computes
the set of beliefs that would keep this type’s expected payoff given the cost higher than
its equilibrium expected payoff. If some type’s set is contained in another type’s set, then
the D1 criterion requires that this type would not be an element in the belief’s support.
The economic interpretation is that the posterior belief after observing the cost excludes
types that are dominated by other types in terms of their motivation to deviate to this
cost.

3. The second-period subgame

In this section, we analyze the equilibria in the subgame that is induced by a test π ∈ �.
We start with a preliminary stage in which we show that for every test π ∈ �, there exists
a unique initial belief that maximizes the difference between the expected values of the
receiver’s posterior beliefs from the perspective of the sender’s high type and low type.

Lemma 1. For every π ∈ �, there exists a unique initial belief μ∗
π ∈ [0, 1] such that for

every μ ∈ [0, 1] with μ �= μ∗
π , it holds that V 1

π (μ∗
π ) − V 0

π (μ∗
π ) > V 1

π (μ) − V 0
π (μ).

We prove the lemma by exploiting general properties of Bayesian updating that allow
us to show that the difference between the expected posteriors of the high type and the
low type is strictly concave in the initial belief. Henceforth, we will refer to μ∗

π as the
“dividing belief of test π,” as it maximally separates the expected posteriors of the high
type and low type. In Section 4, we analyze which properties of the test are linked to its
dividing belief. In this section, we establish a connection between a test’s dividing belief
and the set of equilibria in the subgame it induces. First, we restate a result of Daley
and Green (2014) that shows that, generically, for any informative test, there exists a
unique PBE that satisfies the D1 criterion in the subgame that this test induces. This
result allows us to identify each test π ∈� with a unique equilibrium outcome.

Proposition 1 (Daley and Green (2014)). Consider a test π ∈ �. There exists a unique
interim belief μπ ∈ [0, 1] such that in the subgame that the test π induces, the following is
true:

(i) If μ0 <μπ , then there exists a unique equilibrium. In equilibrium, type 0 selects the
signaling cost 0 with probability α := (μπ−μ0 )

(μπ (1−μ0 )) and the signaling cost c = V 0
π (μπ )

with probability 1 − α, and type 1 selects the signaling cost c = V 0
π (μπ ) with prob-

ability 1.

(ii) If μ0 >μπ , then there exists a unique equilibrium. In equilibrium, both types pool
and select the signaling cost 0.

(iii) If μ0 = μπ , then the set of equilibria are the fully pooling equilibria in which
both types select the same signaling cost, and this cost is an element of the set
[0, V 0

π (μπ )].
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As Proposition 1 shows, when μ0 �= μπ , there exists a unique equilibrium in the sub-
game that the test π induces. When μ0 = μπ , there are multiple fully pooling equilibria,
and the receiver’s expected payoff is the same in all these equilibria. Since we are fo-
cusing on the test choice of the receiver, we identify an equilibrium outcome with the
expected payoff it provides to the receiver. Accordingly, we say that a test π induces a
subgame with a unique equilibrium outcome even in the case where μ0 = μπ . The next
lemma shows that given a test π ∈�, there is a clear connection between the character-
ization of equilibria (Proposition 1) and the dividing belief μ∗

π .

Lemma 2. For every π ∈�, it holds that μπ = μ∗
π .

We give here a short sketch of the proof to convey the mechanics of the model. As-
sume by way of contradiction that the dividing belief is feasible, i.e., that μ∗

π ≥ μ0, and
that the high type selects with positive probability some signaling cost that induces, in
equilibrium, an interim belief lower than the dividing belief. First, it must be that the
low type also selects this signaling cost with positive probability, as otherwise, the belief
given this signaling cost in equilibrium would be 1. Now consider a higher signaling cost
such that given the dividing belief, the low type’s payoff is the same as its payoff from se-
lecting the original signaling cost. By the definition of the dividing belief, it must be that
the high type’s payoff given this cost and the dividing belief is higher than its payoff un-
der the original signaling cost. It follows from the D1 criterion that the belief after such
a deviation must be that the type that deviated is the high type. Clearly, this means that
such a deviation is profitable (at least for the high type); thus, we get a contradiction. An
analogous argument proves that no signaling cost that induces an interim belief that is
higher than the dividing belief satisfies the D1 criterion.

Lemma 2 and Proposition 1 provide us with the following characterization of the
equilibria in the subgame that a test π ∈� induces: if μ∗

π ≥ μ0, then in the unique equi-
librium, the high type selects a pure strategy of choosing a signaling cost that induces, in
equilibrium, the dividing belief, μ∗

π . This equilibrium maximizes the high type’s payoff
among all equilibria in which the low type’s payoff is zero.16 This characterization allows
us to frame the equilibrium analysis in the subgame that a test induces in the following
way: When the dividing belief is strictly larger than the prior, the good type is choosing
a signaling cost to implement the equilibrium that, from its perspective, optimally uses
the test.

4. Receiver’s preferences over tests

We now study how the sender’s ability to signal affects the receiver preferences over tests.
In a signaling environment, the receiver’s preference relation over tests depends not only

16This equilibrium need not necessarily be the optimal equilibrium for the high type if we do not restrict
the equilibrium payoff of the low type to be zero. It could be the case that the fully pooling PBE in which
both types do not signal provides the high type with a higher payoff than the equilibrium that D1 selects.
The reason is that D1 selects the equilibrium that maximizes the difference between the equilibrium payoffs
of the high type and the low type. However, while the payoff of the low type is zero whenever the equilibrium
that D1 selects involves some separation, it is greater than zero in the fully pooling equilibrium with no
signaling.
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on the intrinsic informativeness of the tests, but also on how tests incentivize the sender
to signal. Our results in the previous section imply that the informativeness level of
the sender’s signaling strategy in the equilibrium that a test induces depends on its di-
viding belief: the higher the test’s dividing belief is, the more informative the signaling
strategy is. In this section, we present the main insight of the paper: the key property
that determines the test’s dividing belief is the relative informativeness of its low and
high grades.17 Specifically, the more informative the low grades are relative to the high
grades, the higher the dividing belief is and the more information arises through the sig-
naling channel. Intuitively, a test whose low grades are more informative than its high
grades is better at identifying the low type. Therefore, to use such a test optimally, the
high type chooses a signaling cost that induces a belief that places a small probability
on the low type to manifest the test’s relative advantage.

We establish this idea through a series of formal results. These results also illustrate
the tendency of the receiver to prefer tests whose low grades are relatively more infor-
mative than their high grades, as such tests incentivize more aggressive signaling by the
sender. We start with the following lemma that presents a condition that determines the
test’s dividing belief.

Lemma 3. Let π ∈� and let μ ∈ [0, 1] be an initial belief. Then μ∗
π � μ if and only if

∑
s∈S

π(s|0) ·
(

1
2

− posπ(s, μ)

)2

�
∑
s∈S

π(s|1) ·
(

1
2

− posπ(s, μ)

)2

.

To deduce the condition in Lemma 3, we exploit the property established in
Lemma 1 and Lemma 2 that V 1

π (μ) − V 1
π (μ) is maximized when μ = μ∗

π . The condi-
tion in Lemma 3 is general in the sense that it applies to every possible test. Thus, it is
not straightforward to interpret. Nonetheless, one can interpret it in a way that is con-
sistent with our main idea. To see this, note that if the prior is equal to 1

2 , then the sum
of the right-hand side and the left-hand side of the inequality is equal to the variance of
the posteriors’ distribution. It follows from the condition in Lemma 3 that the dividing
belief is above (below) 1

2 if and only if the low (high) type contributes to the variance
more than the high (low) type. Roughly speaking, since the low (high) type is more ex-
posed to the low (high) grades, its contribution to the variance is greater when the low
(high) grades are more informative. In what follows, we use this rather technical condi-
tion to establish our main idea in a starker way. To this end, we first introduce the family
of binary tests.

Definition 5. We say that a test π is binary if it has only two grades. We denote by h

the grade that the high type is more exposed to, i.e., π(h|1) >π(h|0), and by l the grade
that the low type is more exposed to, i.e., π(l|0) >π(l|1).

We now introduce a way to decompose a test π into three tests:

17A high (low) grade is a grade that the high (low) type receives with a higher probability than the low
(high) type.
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• π̃β(π ) : {0, 1} → �{h, l}, where π̃β(π )(h|1) ≥ π̃β(π )(h|0)

• π̃h(π ) : {0, 1} → �S+
π , where S+

π := {s ∈ supp(π ) | π(s|1) >π(s|0)}

• π̃l(π ) : {0, 1} → �S−
π , where S−

π := {s ∈ supp(π ) | π(s|1) <π(s|0)}.

It is useful to think of the decomposition of a test π as a sequential procedure that works
as follows: First we apply the binary test π̃β(π ) and then, if the grade is h, we apply the
test π̃h(π ) and if the grade is l, we apply the test π̃l(π ).18 In the rest of the analysis, we
denote Blackwell’s partial order over tests by B and the receiver’s preference relation
over tests by R. Note that the receiver’s preference relation depends, in principle, on
the prior μ0.

The next lemma uses our decomposition and Lemma 3 to directly establish a con-
nection between a test’s dividing belief and the relative informativeness of its high and
low grades.

Lemma 4. Consider a test π and a test π ′ such that π̃β(π ) = π̃β(π ′ ):

(i) If μ∗
π > 1

2 , π̃l(π ) = π̃l(π ′ ), and π̃h(π ′ ) B π̃h(π ), then μ∗
π′ <μ∗

π .

(ii) If μ∗
π < 1

2 , π̃h(π ) = π̃h(π ′ ), and π̃l(π ′ ) B π̃l(π ), then μ∗
π′ >μ∗

π .

Lemma 4 shows that the value of a test’s dividing belief depends not on the informa-
tiveness of the test, but rather on the relative informativeness of its high and low grades.
To see this, note that the test π ′ is more informative than the test π. Condition (i) shows
that when the test π’s dividing belief is high and when the test π ′ increases the rela-
tive informativeness of the high grades, we get that μ∗

π′ < μ∗
π ; i.e., the signaling strategy

is less informative under the more informative test π′. On the other hand, condition
(ii) shows that when the test π’s dividing belief is low and when π ′ increases the rela-
tive informativeness of the low grades, we get that μ∗

π′ > μ∗
π ; i.e., the signaling strategy

is more informative under the more informative test π′. The next proposition formal-
izes the subtle positive connection that condition (ii) captures by providing a sufficient
condition for the receiver to prefer the more informative test for every prior.

18For clarity we give here the formal definition of each test:

π̃β(π )(h|1) =
∑
s∈S+

π

π(s|1) π̃β(π )(l|1) =
∑
s∈S−

π

π(s|1)

π̃β(π )(h|0) =
∑
s∈S+

π

π(s|0) π̃β(π )(l|0) =
∑
s∈S−

π

π(s|0)

π̃h(π )
(
ŝ ∈ S+

π |1
) = π

(
ŝ ∈ S+

π |1
)

∑
s∈S+

π

π(s|1)
π̃h(π )

(
ŝ ∈ S+

π |0
) = π

(
ŝ ∈ S+

π |0
)

∑
s∈S+

π

π(s|0)

π̃l(π )
(
ŝ ∈ S−

π |1
) = π

(
ŝ ∈ S−

π |1
)

∑
s∈S−

pi

π(s|1)
π̃l(π )

(
ŝ ∈ S−

π |0
) = π

(
ŝ ∈ S−

π |0
)

∑
s∈S−

π

π(s|0)
.



Theoretical Economics 17 (2022) Informative tests in signaling 989

Proposition 2. Assume that π and π′ satisfy condition (ii) of Lemma 4; then for any
prior μ0 ∈ (0, 1), it holds that π′ R π.

In the proof, we show that for every prior, the effective signal that π ′ induces, i.e.,
the signal that incorporates the information that arises from both the signaling channel
and the test, is more informative than the effective signal that π induces. This rela-
tion implies that any receiver would prefer π ′ to π, independently of her loss function.
Specifically, it is true for our receiver, whose loss function is quadratic. To prove the
above order in the informativeness level of the effective signals, we use Lemma 4, which
implies that for every prior, the signal that arises from the signaling channel under π ′ is
(weakly) more informative than the one that arises from the signaling channel under π.
We complete the proof by combining this result with the fact that under the conditions
of the proposition, the test π ′ is more informative than the test π.

4.1 Incompliance with Blackwell’s order

Condition (i) of Lemma 4 shows that a test that is more informative in the sense of Black-
well (1951) may induce an equilibrium with a less informative signaling strategy. Thus, a
natural question that arises is whether or not the receiver’s preference relation complies
with Blackwell’s partial order. That is, if two tests are ranked according to Blackwell’s
order, is it true that the receiver prefers the more informative test to the less informa-
tive test for every prior? In this subsection, we show that this is not the case. Moreover,
we construct an example with two tests that are ranked according to Blackwell’s order
where, due to signaling considerations, the receiver prefers the less informative test to
the more informative test independently of the prior. To construct the example, we first
introduce two special subsets of binary tests. The first subset consists of binary tests
that do not admit false negatives and the second subset consists of binary tests that do
not admit false positives. The following lemma shows that each test in the first subset
induces a fully separating equilibrium, while each test in the second subset induces a
fully pooling equilibrium. Besides their role in the example we construct, these sub-
sets of tests are yet another manifestation of our main idea as the low (high) grade is
more informative than the high (low) grade in tests that do not admit false negatives
(positives).

Lemma 5. Let π ∈� be a binary test:

• μ∗
π = 1 if and only if π(h|1) = 1

• μ∗
π = 0 if and only if π(l|0) = 1.

The main argument in the proof is the following. In a binary test π that does not ad-
mit false negatives (positives), the posterior belief of the low (high) grade identifies type
0 (1) with certainty. Hence, the only posterior that depends on the initial belief μ is that
of the high (low) grade, which type 1 (0) is more likely to receive. Therefore, we get that
V 1
π (μ) (V 0

π (μ)) is more sensitive to an increase in the initial belief than V 0
π (μ) (V 1

π (μ)) for
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every μ ∈ [0, 1). This implies that V 1
π (μ) −V 0

π (μ) is an increasing (a decreasing) function
in [0, 1], which implies that μ∗

π = 1 (μ∗
π = 0).

Lemma 5 shows that each binary test that does not admit false negatives induces
an equilibrium with a fully informative signaling strategy and so it is optimal for the
receiver independently of the prior. Note that there exist binary tests that do not admit
false negatives that are almost not informative at all.

Equipped with Lemma 5, we return to the relationship between the receiver’s pref-
erences and Blackwell’s order. The following proposition shows that the receiver’s pref-
erence relation does not comply with Blackwell’s order.

Proposition 3. There exist two tests π and π′ such that π ′ B π and for every prior
μ0 ∈ (0, 1), it holds that π R π ′.

Proof. We construct an example that proves the proposition. Consider a test π′ with
grades {l, hL, hH} and the probability functions

π ′(l|1) = 0 π ′(l|0) = 1 −β

π ′(hL|1) = γ π ′(hL|0) = β

π ′(hH|1) = 1 − γ π ′(hH|0) = 0,

where β> γ > 0. In this test, only the grade hL is partially informative; i.e., it is the only
grade that is affected by the value of μ. Now, β > γ, i.e., type 0 is more likely to receive
the grade hL than type 1. Therefore, the function V 1

π′(μ) − V 0
π′(μ) is strictly decreasing

in [0, 1], which implies that μ∗
π′ = 0. Now consider a binary test π with the grades {l, h}

and the probability functions

π(l|1) = 0 π(l|0) = 1 −β

π(h|1) = 1 π(h|0) = β.

The test π is binary and does not admit false negatives. Therefore, by Lemma 5, we get
that μ∗

π = 1. Since the test π induces a fully separating equilibrium, the effective signal
it induces, i.e., the signal that includes the information that arises through both the sig-
naling channel and the test, is fully informative. On the other hand μ∗

π′ = 0 implies that
μ∗
π′ <μ0 for every prior μ0 ∈ (0, 1). Therefore, the effective signal that the test π′ induces

is identical to applying the test π′ on the prior μ0. Since the test π ′ includes a partially
informative grade, we get that for every prior μ0 ∈ (0, 1), the effective signal that the test
π ′ induces is not fully informative. We conclude that for every prior μ0 ∈ (0, 1), the test
π ′ provides a strictly lower payoff to the receiver than the test π. Moreover, the effective
signal that is induced by the test π Blackwell dominates the effective signal that is in-
duced by the test π ′. Now we show that the test π ′ is more informative than the test π in
the sense of Blackwell. To see this, note that the test π ′ is constructed by activating the
test π and then, conditional on the realization of the grade h, activating a binary test π′′



Theoretical Economics 17 (2022) Informative tests in signaling 991

with grades {L,H} and probability functions

π ′′(L|1) = γ π ′′(L|0) = 1

π ′′(H|1) = 1 − γ π ′′(H|0) = 0.

4.2 Symmetric tests

In this subsection, we want to further establish the point that the receiver tends to prefer
tests whose low grades are more informative to tests whose high grades are more infor-
mative. To do so, we compare the receiver’s preferences over pairs of symmetric tests,
one whose low grades are more informative than its high grades and one whose high
grades are more informative than its low grades. We show that in the absence of signal-
ing, the receiver prefers the latter test to the former when the prior is smaller than 1

2 and
the former test to the latter when the prior is greater than 1

2 . However, in a signaling en-
vironment, the receiver prefers the former test to the latter, independently of the prior.
In our analysis, we concentrate on a subset of tests that consist of tests that are convex
combinations of binary tests. We use the following definitions and notations.

Definition 6. Tests π and π ′ are symmetric if for every s ∈ S, we have that π(s|1) =
π ′(s|0) and π(s|0) = π ′(s|1). We denote by π̂ the symmetric test of π.

Definition 7. We say that a binary test is L-informative (H-informative) if π(h|1) >
π(l|0) (π(h|1) <π(l|0)) and that it is N-informative if π(h|1) = π(l|0).

We now introduce the notion of a convex combination of binary tests: given a set of
binary tests {π1, 
 
 
 , πk} and a set of real numbers {p1, 
 
 
 , pk} such that pi > 0 for every
i ∈ {1, 
 
 
 , k} and

∑k
i=1 pi = 1, we denote by ⊕k

i=1piπi the test such that with probability
pi, the receiver observes a realization of the test πi.

Definition 8. We say that a test
⊕k

i=1 piπi is L-informative (H-informative) if πi is ei-
ther L-informative (H-informative) or N-informative for every i ∈ {1, 
 
 
 , k}, and there
exists j ∈ {1, 
 
 
 , k} for which the test πj is L-informative (H-informative). We say that
the test π is N-informative if πi is N-informative for every i ∈ {1, 
 
 
 , k}. We denote the
union over all tests that are L-informative, N-informative, and H-informative by �d .

We are now ready to formulate a lemma that describes a connection between L-
informative/H-informative tests and their dividing beliefs.

Lemma 6. If π ∈ �d is an L-informative (H-informative) test, then μ∗
π > 1

2 (μ∗
π < 1

2 ), and
if π ∈�d is an N-informative test, then μ∗

π = 1
2 .

We prove the lemma by directly using Lemma 3. Intuitively, since an L-informative
(H-informative) test has an advantage at identifying the low (high) type, the high type
sets the initial probability of the low (high) type to be lower than 1

2 to utilize the test
optimally.
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It is easy to see that if a test is L-informative, then its symmetric test is H-informative
and vice versa. In the following proposition, we compare the receiver’s preferences over
such pairs of L-informative and H-informative symmetric tests in environments with
and without signaling.

Proposition 4. Consider an L-informative test π and its symmetric (H-informative)
test π̂.

• In an environment without signaling, if μ0 < 1
2 , then π̂ R π, and if μ0 > 1

2 , then
π R π̂.

• In an environment with signaling, for every μ0 ∈ (0, 1), we have that π R π̂.

Proposition 4 shows that in an environment without signaling, the receiver prefers
the H-informative (L-informative) test if the prior is lower (greater) than 1

2 ; i.e., the re-
ceiver’s preference over symmetric tests is symmetric. The intuition for this result is
the same intuition that accompanies Lemma 6. An H-informative (L-informative) test
is better at identifying the high (low) type. Therefore, it provides more information to
the receiver when the initial probability of the high (low) type is low. However, in a sig-
naling environment, the symmetry breaks, i.e., the receiver prefers the L-informative
test independently of the prior. The intuition for this result is that although the tests
are symmetric in terms of the direct information they provide, they are not symmetric
in terms of the information they provide through the signaling channel, where the L-
informative test has an advantage over the H-informative test. Specifically, consider a
low prior in which without the signaling stage, the receiver prefers the H-informative
test to the L-informative test. The key point is that when there is signaling, under the
L-informative test, the signaling cost effectively moves the prior to a prior that is greater
than 1

2 , in which the L-informative test is better, and the action of no signaling, which
perfectly reveals that the sender’s type is low, is selected with a higher probability than
under the H-informative test.

To further explain this last point, we present a sketch of the proof of the second part
of the proposition. Let μ0 ∈ (0, 1). Assume first that μ0 ≤ μ∗

π̂
. Consider the equilib-

rium under π and π̂. Since π and π̂ are symmetric, we get that conditional on ob-
serving a positive signaling cost, the equilibrium payoff of the receiver is the same, i.e.,
V R
π̂ (μ∗

π̂ ) = V R
π (μ∗

π ). When the receiver observes a signaling cost of 0, then she learns that
the sender is of type 0 with certainty. Now, since μ∗

π̂
< μ∗

π , the ex ante probability that the
receiver would observe the signaling cost 0 is greater under π than under π̂. Therefore,
the expected payoff of the receiver is greater under π than under π̂. The proof in the
case when μ∗

π̂
< μ0 <μ∗

π relies on a similar but a more subtle argument. If 1
2 <μ∗

π ≤ μ0,
then under both π̂ and π, we get a fully pooling equilibrium, and the receiver’s payoff is
V R
π̂ (μ0 ) and V R

π (μ0 ), respectively. Since 1
2 <μ0, we have that V R

π̂ (μ0 ) < V R
π (μ0 ).

5. Discussion

5.1 The receiver’s commitment power

A natural question that arises in our model is whether the receiver benefits from her abil-
ity to commit to the test. It is straightforward to see that this is indeed the case. A more
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informative test induces more information for every signaling strategy of the sender.
Therefore, if the receiver cannot commit to the test, then, in equilibrium, the receiver
chooses a more informative test over a less informative test. Hence, the property that
in our setting the receiver’s preference relation does not comply with Blackwell’s partial
order implies that the receiver strictly benefits from her commitment power.

5.2 Signaling costs

Another natural question that arises concerns the connection between the receiver’s test
choice and the expected signaling cost. At first glance, this connection is negative; i.e.,
a higher informativeness level of a test leads to a lower expected signaling cost. The
intuition for this connection is the following. As the test becomes more informative, the
high type chooses to differentiate itself more through the test and less through costly
signaling. This insight is established in Daley and Green (2014), who analyze the effect
of the informativeness level of binary symmetric tests on the expected signaling cost in
equilibrium. However, our results show that it could be the case that a less informative
test’s dividing belief is smaller than the prior, while the more informative test’s dividing
belief is higher than the prior. In such a case, the less informative test induces a fully
pooling equilibrium with a signaling cost of 0, while the more informative test induces
a separating equilibrium with a positive signaling cost. That is, our results show that in
some cases, the negative connection between the test’s informativeness level and the
expected signaling cost breaks.

6. Conclusion

We have studied the receiver’s learning problem in a signaling model à la Spence with
type-independent signaling costs. Our main insight is that tests whose low grades
are more informative than their high grades induce more information to be conveyed
through the channel of the sender’s signaling costs. We established this insight through
a series of formal results. We showed that because of this property, the receiver tends to
prefer tests whose low grades are more informative.

Appendix

Proof of Lemma 1 Consider the difference in the expected posteriors of the high type
and the low type as a function of the initial belief:

V 1
π (μ) − V 0

π (μ) =
∑
s∈S

(
π(s|1) −π(s|0)

) · μ ·π(s|1)
(1 −μ) ·π(s|0) +μ ·π(s|1)

.

Define Rπ(s) := π(s|1)
π(s|0) and rewriting we get

V 1
π (μ) − V 0

π (μ) =
∑
s∈S

π(s|0)
(
Rπ(s) − 1

) · μ ·Rπ(s)
1 −μ+μ ·Rπ(s)

.
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Now

posπ(s, μ) = μ ·Rπ(s)
1 −μ+μ ·Rπ(s)

and

∂2 posπ(s, μ)

∂μ2 = 2 · (1 −Rπ(s)
) ·Rπ(s)(

1 −μ+μ ·Rπ(s)
)3

so we get that

if ∞ >Rπ(s) > 1, then
∂2[posπ(s, μ)

]
∂μ2 < 0,

i.e., posπ(s, μ) is a strictly concave function of μ;

if 0 <Rπ(s) < 1, then
∂2[posπ(s, μ)

]
∂μ2 > 0,

i.e., posπ(s, μ) is a strictly convex function of μ.

Therefore, for every grade s ∈ S that satisfies that Rπ(s) �= 1, we get that (Rπ(s) − 1) ·
(μ·Rπ (s))

(1−μ+μ·Rπ (s)) is a strictly concave function. Since π ∈ � is informative, we get that there

exists s ∈ S for which Rπ(s) �= 1. Therefore, we get that V 1
π (μ)−V 0

π (μ) is a sum of concave
and strictly concave functions, and, therefore, it is a strictly concave function. Since
V 1
π (μ) − V 0

π (μ) is strictly concave and defined on a closed interval, we get that it has a
unique maximizer.

Proof of Proposition 1 Given a test π ∈ �, our model is a special case of Daley and
Green’s (2014) model in which the signaling cost is type-independent. Therefore, our
characterization of equilibria in the second-period subgame stems from their charac-
terization (see Proposition 3.8 in Daley and Green (2014)).

Proof of Lemma 2 Assume by contradiction that the lemma is not true; i.e., there exists
a test π ∈ � such that μπ �= μ∗

π . Assume first that there exists π ∈ � such that μπ < μ∗
π .

Consider a prior μ̂ with μπ < μ̂ < μ∗
π . From Proposition 1, we have that for such a prior

the unique equilibrium is fully pooling without any signaling. The payoff of the low type
in this equilibrium is V 0

π (μ̂). Define ĉ := V 0
π (μ∗

π )−V 0
π (μ̂) > 0, and consider a deviation to

the signaling cost ĉ. The receiver observes the deviation and forms a belief regarding the
type of sender that deviated. Assume that the belief of the receiver given this deviation
is μ∗

π . Given this belief, we can see that the expected payoff of the low type from such a
deviation is

V 0
π

(
μ∗
π

) − ĉ = V 0
π (μ̂).

It follows that given this belief, the low type is indifferent between its equilibrium payoff
and its payoff from this deviation. Let us compute now the expected payoff of the high
type from this deviation given the same belief μ∗

π :

V 1
π

(
μ∗
π

) − ĉ = V 1
π

(
μ∗
π

) − (
V 0
π

(
μ∗
π

) − V 0
π (μ̂)

)
.
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It follows that the difference between the payoff of the high type given this deviation
(when the belief is μ∗

π ) and its equilibrium payoff is

V 1
π

(
μ∗
π

) − (
V 0
π

(
μ∗
π

) − V 0
π (μ̂)

) − V 1
π (μ̂) = (

V 1
π

(
μ∗
π

) − V 0
π

(
μ∗
π

)) − (
V 1
π (μ̂) − V 0

π (μ̂)
)
.

From the definition of μ∗
π as the unique belief that maximizes the difference V 1

π (μ) −
V 0
π (μ) and the last equation, we get that the expected payoff of the high type given this

deviation when the belief is μ∗
π is higher than its equilibrium payoff. Now, from the

fact that the expected payoff from this deviation is strictly increasing in the belief of the
receiver given the deviation, we get that the set of beliefs that satisfy that the payoff of
the high type is strictly larger than its equilibrium payoff is a superset of the set of beliefs
that satisfy that the payoff of the low type is strictly larger than its equilibrium payoff.
From the definition of the D1 criterion, we get that the belief after such a deviation must
be that the type that deviated is the high type. Clearly, under this belief, this deviation is
a profitable one at least for the high type. It follows that the equilibrium we considered
is not an equilibrium in contradiction to Proposition 1.

Assume now that there exists a test π ∈� such that μπ > μ∗
π . Consider a prior μ̂ with

μπ > μ̂ > μ∗
π . From Proposition 1, we have that under this prior the unique equilibrium

is the following: The high type chooses the signaling cost c := V 0
π (μπ ) and the low type

mixes between the same signaling cost c and zero, such that the equilibrium interim
belief after the receiver observes the signaling cost c is μπ . Consider now a deviation
to the signaling cost ĉ := V 0

π (μ∗
π ). Notice that because μπ > μ∗

π , we have that V 0
π (μπ ) >

V 0
π (μ∗

π ), it follows that c > ĉ. Assume that the belief of the receiver after observing a
deviation to the signaling cost ĉ is μ∗

π . From the definition of ĉ it is clear that the payoff
of the low type after this deviation and given the interim belief μ∗

π is zero, which is equal
to its equilibrium payoff. The payoff of the high type from this deviation given the belief
μ∗
π is

V 1
π

(
μ∗
π

) − ĉ = V 1
π

(
μ∗
π

) − V 0
π

(
μ∗
π

)
.

Notice that the equilibrium payoff of the high type is

V 1
π (μπ ) − c = V 1

π (μπ ) − V 0
π (μπ ).

From the definition of μ∗
π as the unique belief that maximizes the difference V 1

π (μ) −
V 0
π (μ), we get that the deviation given the interim belief μ∗

π strictly improves the high
type’s payoff relative to its equilibrium payoff. Now, from the fact that the expected pay-
off from this deviation is strictly increasing in the belief of the receiver given the devia-
tion, we get that the set of beliefs such that the payoff of the high type is strictly larger
than its equilibrium payoff is a superset of the set of beliefs such that the payoff of the
low type is strictly larger than its equilibrium payoff. From the definition of the D1 cri-
terion, we get that the belief after such a deviation must be that the type that deviated is
the high type. Clearly, under this belief, this deviation is a profitable one for both types.
It follows that the equilibrium we considered is not an equilibrium in contradiction to
Proposition 1.
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Proof of Lemma 3 To analyze whether some belief μ is greater than, less than, or equal

to μ∗
π , we develop the expression ∂[V 1

π (μ)−V 0
π (μ)]

∂μ . First, we develop the expression

∂posπ(s, μ)
∂μ

= π(s|1)
(
(1 −μ)π(s|0) +μπ(s|1)

) − (
π(s|1) −π(s|0)

)
π(s|1)(

(1 −μ)π(s|0) +μπ(s|1)
)2 .

Rearranging the expression, we get that

∂posπ(s, μ)
∂μ

= π(s|1)π(s|0)(
(1 −μ)π(s|0) +μπ(s|1)

)2 .

After further development, we get that

∂posπ(s, μ)
∂μ

= 1
μ(1 −μ)

(
posπ(s, μ) − posπ(s, μ)2)

and so

∂
[
V 1
π (μ) − V 0

π (μ)
]

∂μ
=

∑
s∈S

(
π(s|1) −π(s|0)

) · 1
μ(1 −μ)

· (posπ(s, μ) − posπ(s, μ)2).

Given μ, we want to see whether

∑
s∈S

(
π(s|1) −π(s|0)

) · 1
μ(1 −μ)

· (posπ(s, μ) − posπ(s, μ)2)� 0,

which is equivalent to

∑
s∈S

π(s|0) ·
(

1
2

− posπ(s, μ)

)2

�
∑
s∈S

π(s|1) ·
(

1
2

− posπ(s, μ)

)2

.

Proof of Lemma 4 We prove part (i) of the lemma; part (ii) can be proved analogously.
Consider μ = μ∗

π > 1
2 . From Lemma 3, we have that

∑
s∈supp(π )

π(s|0) ·
(

1
2

− posπ(s, μ)

)2

=
∑

s∈supp(π )

π(s|1) ·
(

1
2

− posπ(s, μ)

)2

. (1)

We can write this equation in an equivalent way:

∑
s∈S−

π

(
π(s|0) −π(s|1)

) ·
(

1
2

− posπ(s, μ)

)2

=
∑
s∈S+

π

(
π(s|1) −π(s|0)

) ·
(

1
2

− posπ(s, μ)

)2

. (2)
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We now use the conditions in the lemma to show that

∑
s∈S−

π′

(
π ′(s|0) −π ′(s|1)

) ·
(

1
2

− posπ′(s, μ)

)2

<
∑
s∈S+

π′

(
π ′(s|1) −π ′(s|0)

) ·
(

1
2

− posπ′(s, μ)

)2

. (3)

This will end the proof, because according to Lemma 3, if the right-hand side is bigger
than the left-hand side, then μ∗

π′ <μ= μ∗
π .

Because we have that π̃l(π ′ ) = π̃l(π ) and that π̃β(π ) = π̃β(π ′ ), we can deduce that
the left-hand side of (2) is equal to the left-hand side of (3), so it is sufficient to show that

∑
s∈S+

π

(
π(s|1) −π(s|0)

) ·
(

1
2

− posπ(s, μ)

)2

<
∑
s∈S+

π′

(
π ′(s|1) −π ′(s|0)

) ·
(

1
2

− posπ′(s, μ)

)2

. (4)

From the fact that π̃h(π ′ ) B π̃h(π ), we can deduce that there exists a set of tests {π̂s}s∈S+
π

such that the test π̃h(π ′ ) is equivalent to a test that is defined according to the next se-
quential procedure: first the test π̃h(π ) is activated and then after every possible result
s ∈ S+

π , the test π̂s is activated. This equivalence allows as to write (4) in the following
equivalent way:

∑
s∈S+

π

(
π(s|1) −π(s|0)

) ·
(

1
2

− posπ(s, μ)

)2

<
∑
s∈S+

π

∑
ŝ∈Sπ̂s

(
π(s|1)π̂s( ŝ|1) −π(s|0)π̂s( ŝ|0)

) ·
(

1
2

− pos(s, ŝ, μ)

)2

. (5)

We prove that (5) is true case by case. That is, for every s ∈ S+
π , we prove that

(
π(s|1) −π(s|0)

) ·
(

1
2

− pos(s, μ)

)2

<
∑
ŝ∈Sπ̂s

(
π(s|1)π̂s( ŝ|1) −π(s|0)π̂s( ŝ|0)

) ·
(

1
2

− pos(s, ŝ, μ)

)2

. (6)

To see why this is true, first notice that clearly we have that

(
π(s|1) −π(s|0)

) =
∑
ŝ∈Sπ̂s

(
π(s|1)π̂s( ŝ|1) −π(s|0)π̂s( ŝ|0)

)
. (7)
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It follows that

1 =
∑
ŝ∈Sπ̂s

(
π(s|1)π̂s( ŝ|1) −π(s|0)π̂s( ŝ|0)

)
(
π(s|1) −π(s|0)

) . (8)

From this it follows that we can write (6) in the following equivalent way:

(
1
2

− pos(s, μ)

)2

<
∑
ŝ∈Sπ̂s

(
π(s|1)π̂s( ŝ|1) −π(s|0)π̂s( ŝ|0)

)
(
π(s|1) −π(s|0)

) ·
(

1
2

− pos(s, ŝ, μ)

)2

. (9)

Now notice that because we have that π̃β(π ) = π̃β(π ′ ) and because s ∈ S+
π , it must

be that pos(s, μ) > μ > 1
2 and also for every ŝ ∈ Sπ̂s

we have that pos(s, ŝ, μ) > μ > 1
2 .

Additionally, notice that the function ( 1
2 − x)2 is concave and increasing when x > 1

2 .
Last, notice that by construction the distribution of posteriors that corresponds to
{pos(s, ŝ, μ)}ŝ∈Sπ̂s is a mean preserving spread of pos(s, μ); that is, we have that

pos(s, μ) =
∑
ŝ∈Sπ̂s

(
π(s|1)π̂s( ŝ|1) +π(s|0)π̂s( ŝ|0)

)
(
π(s|1) +π(s|0)

) · pos(s, ŝ, μ). (10)

From the concavity of the function ( 1
2 − x)2, we get that

(
1
2

− pos(s, μ)

)2

<
∑
ŝ∈Sπ̂s

(
π(s|1)π̂s( ŝ|1) +π(s|0)π̂s( ŝ|0)

)
(
π(s|1) +π(s|0)

) ·
(

1
2

− pos(s, ŝ, μ)

)2

. (11)

In the last part of the proof we will establish that

∑
ŝ∈Sπ̂s

(
π(s|1)π̂s( ŝ|1) +π(s|0)π̂s( ŝ|0)

)
(
π(s|1) +π(s|0)

) ·
(

1
2

− pos(s, ŝ, μ)

)2

<
∑
ŝ∈Sπ̂s

(
π(s|1)π̂s( ŝ|1) −π(s|0)π̂s( ŝ|0)

)
(
π(s|1) −π(s|0)

) ·
(

1
2

− pos(s, ŝ, μ)

)2

. (12)

To do this we will prove the next lemma.

Lemma 7. For every ŝ ∈ Sπ̂s
,

• if pos(s, ŝ, μ) > pos(s, μ), then (π(s|1)π̂s( ŝ|1)−π(s|0)π̂s( ŝ|0))
(π(s|1)−π(s|0)) > (π(s|1)π̂s( ŝ|1)+π(s|0)π̂s( ŝ|0))

(π(s|1)+π(s|0)) ;

• if pos(s, ŝ, μ) < pos(s, μ), then (π(s|1)π̂s( ŝ|1)−π(s|0)π̂s( ŝ|0))
(π(s|1)−π(s|0)) < (π(s|1)π̂s( ŝ|1)+π(s|0)π̂s( ŝ|0))

(π(s|1)+π(s|0)) .

Proof. We will prove the first claim of the lemma; the proof of the second claim is anal-
ogous. We start with rewriting the inequality in the lemma:

(
π(s|1)π̂s( ŝ|1) −π(s|0)π̂s( ŝ|0)

)
(
π(s|1)π̂s( ŝ|1) +π(s|0)π̂s( ŝ|0)

) >

(
π(s|1) −π(s|0)

)
(
π(s|1) +π(s|0)

) . (13)
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Rewriting again we get

π(s|1)π̂s( ŝ|1)(
π(s|1)π̂s( ŝ|1) +π(s|0)π̂s( ŝ|0)

) − π(s|0)π̂s( ŝ|0)(
π(s|1)π̂s( ŝ|1) +π(s|0)π̂s( ŝ|0)

)

>
π(s|1)(

π(s|1) +π(s|0)
) − π(s|0)(

π(s|1) +π(s|0)
) , (14)

and again,

pos
(
s, ŝ,

1
2

)
−

(
1 − pos

(
s, ŝ,

1
2

))
> pos

(
s,

1
2

)
−

(
1 − pos

(
s,

1
2

))
. (15)

This is true if and only if

pos
(
s, ŝ,

1
2

)
> pos

(
s,

1
2

)
. (16)

This is clearly true because we have that pos(s, ŝ, μ) > pos(s, μ).

Combining this lemma and the fact that the function ( 1
2 −x)2 is increasing when x >

1
2 , we get that (12) is true. To see this, notice that both the left-hand side and the right-
hand side of (12) are convex combinations over the same numbers. From the lemma
and the fact that the function ( 1

2 − x)2 is increasing when x > 1
2 , we can deduce that

the right-hand side puts larger weights on large numbers, i.e., ( 1
2 − pos(s, ŝ, μ))2 when

pos(s, ŝ, μ) > pos(s, μ) > 1
2 , and lower weights on small numbers, i.e., ( 1

2 − pos(s, ŝ, μ))2

when 1
2 < pos(s, ŝ, μ) < pos(s, μ). This ends the proof.

Proof of Proposition 2 We first partition the set of possible priors (0, 1) into three
regions: (0, μ∗

π ], (μ∗
π , μ∗

π′ ), [μ∗
π′ , 1).

If μ0 ∈ (μ∗
π′ , 1], then we have, according to Proposition 1 and Lemma 2, that under

both tests the unique equilibrium is the fully pooling equilibrium. It follows that under
such priors, the fact that the sender can signal plays no role and, therefore, the receiver
would prefer the more informative test π′.19

If μ0 ∈ [μ∗
π , μ∗

π′ ), then we have that under the test π the unique equilibrium is a
fully pooling equilibrium, while under the test π ′ the unique equilibrium is a semi-
pooling equilibrium. That is, under the test π ′ the receiver first gets an informative sig-
nal through the signaling channel and then she gets another signal directly from the test.
Clearly, the effective signal that the receiver observes through this procedure is more in-
formative than π ′ and we know that π ′ is more informative than π. The proof follows
from the transitivity of the Blackwell relation.

If μ0 ∈ (0, μ∗
π ), then we have that under both tests the unique equilibrium is a semi-

pooling equilibrium. We first want to show that the informative signal that the receiver
observes through the signaling strategy is more informative under the test π ′ than under
the test π. Denote by sigπ and sigπ′ the test that corresponds to the informative signal

19Recall that when we say that a test/signal is more informative than another test/signal, we mean that
in the sense of Blackwell (1951).
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that the receiver gets through the signaling strategy under π and π′, respectively. After
the signaling stage under π′ the prior is spread into two posteriors 0 and μ∗

π′ while under
the test π the prior is spread into the posteriors 0 and μ∗

π . Because we have that μ∗
π′ >

μ∗
π , it follows that the posteriors distribution under π ′ is a mean preserving spread of the

posteriors distribution under π. Now, because we are in a binary state environment, it
follows that sigπ′ B sigπ . The effective signal that the receiver observes in equilibrium
under the test π′ (π ) is the result of a procedure in which first the receiver observes sigπ′
(sigπ ) and then for each posterior (interim belief) the test π ′ (π ) is activated. Note that
we have that π ′ B π and also that sigπ′ B sigπ . It follows that both the first stage and
the second stage of the procedure are more informative under π ′ than under π and,
therefore, the receiver prefers π′ also under priors in the set (0, μ∗

π ).

Proof of Lemma 5 Applying the condition of Lemma 3 to binary tests, we get the fol-
lowing result. Let π be a binary test, and let μ ∈ [0, 1] be an initial distribution, μ∗

π � μ if
and only if ∣∣∣∣1

2
− posπ(l, μ)

∣∣∣∣ �
∣∣∣∣posπ(h, μ) − 1

2

∣∣∣∣.
Now if π(h|1) = 1, then posπ(l, μ) = 0, which implies that the left-hand side is equal to 1

2 .
Since π is partially informative (as we assume in the model), we get that posπ(h, μ) < 1
for every μ< 1 and posπ(h, μ) = 1 only if μ= 1. Therefore, we get that the left-hand side
is equal to the right-hand side if and only if μ= 1, and so μ∗

π = 1.
If π(l|0) = 1, then posπ(h, μ) = 1, which implies that the right-hand side is equal

to 1
2 . Since π is partially informative (as we assume in the model), we get that

posπ(l, μ) > 0 for every μ > 0 and posπ(h, μ) = 0 if and only if μ = 0. Therefore, we get
that the left-hand side is equal to the right-hand side if and only if μ= 0, and so μ∗

π = 0.
To complete the proof we show that if π ∈ � does not include a fully informative

grade, i.e., a grade that some type receives with probability 0, then μ∗
π ∈ (0, 1). The ar-

gument is the following. If a grade s ∈ S is partially informative, i.e., both type 0 and type
1 receive it with positive probabilities, then posπ(s, 0) = 0 and posπ(s, 1) = 1. Since both
grades in the support of π are partially informative, we get that V 1

π (0) = V 0
π (0) = 0 and

V 1
π (1) = V 0

π (1) = 0. Hence, we get that the function V 1
π (μ) − V 0

π (μ) is strictly concave
with V 1

π (0) − V 0
π (0) = V 1

π (1) − V 0
π (1) = 0. Therefore, μ∗

π = arg maxμ∈[0,1] V
1
π (μ) − V 0

π (μ) ∈
(0, 1).

Proof of Lemma 6 Again, from Lemma 3 we have that for binary test π we have that
μ∗
π � μ if and only if

∣∣∣∣1
2

− posπ(l, μ)

∣∣∣∣ �
∣∣∣∣posπ(h, μ) − 1

2

∣∣∣∣.
A test π has a μ∗

π � 1
2 if and only if

1
2

− 1 −π(h|1)
1 −π(h|1) +π(l|0)

� π(h|1)
π(h|1) + 1 −π(l|0)

− 1
2

,
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which is equivalent to

π(h|1) � π(l|0),

so we derived the result for binary tests. Consider an L-informative test π. This test cor-
responds to a probability distribution of L-informative and N-informative binary tests
with at least one L-informative binary test in its support. We denote the binary tests in
the support of the L-informative test π by {π1, 
 
 
 , πk} with a probability distribution

{pi}ki=1. Now V 1
π (μ) − V 0

π (μ) = ∑k
i=1 pi[V 1

πi
(μ) − V 0

πi
(μ)] and

∂[V 1
πi

( 1
2 )−V 0

πi
( 1

2 )]
∂μ ≥ 0 for all

i ∈ {1, 
 
 
 , k} with at least one j ∈ {1, 
 
 
 , k} for which
∂[V 1

πj
( 1

2 )−V 0
πj

( 1
2 )]

∂μ > 0. This implies

that
∂[V 1

π ( 1
2 )−V 0

π ( 1
2 )]

∂μ > 0, which implies that μ∗
π > 1

2 . An analogous argument proves the
results for H-informative and N-informative tests.

Proof of Proposition 4 To prove the proposition, we first present three lemmas.

Lemma 8. Consider an initial belief μ ∈ (0, 1). Let π and π′ be two tests such that
π, π ′ ∈�:

V 1
π (μ) − V 0

π (μ) � V 1
π′(μ) − V 0

π′(μ) if and only if V R
π (μ) � V R

π′ (μ).

Proof. Consider a belief μ and a test π. Recall that the receiver’s payoff is equal to:

V R
π (μ) = −(

∑
s∈S

μ ·π(s|1) · (1 − posπ(s, μ)
)2 + (1 −μ) ·π(s|0) · (−posπ(s, μ)

)2
)

we denote by π(s) the probability of a signal s ∈ S, i.e.,

π(s) := μ ·π(s|1) + (1 −μ) ·π(s|0)

so we get that

−V R
π (μ) =

∑
s∈S

π(s) · [posπ(s, μ) · (1 − posπ(s, μ)
)2 + (

1 − posπ(s, μ)
) · posπ(s, μ)2]

=
∑
s∈S

π(s) · posπ(s, μ) · (1 − posπ(s, μ)
)

=
∑
s∈S

π(s) · posπ(s, μ) −
∑
s∈S

π(s) · posπ(s, μ)2

= μ−
∑
s∈S

π(s) · posπ(s, μ)2

= μ−
∑
s∈S

μ ·π(s|1) · posπ(s, μ)

= μ ·
(

1 −
∑
s∈S

π(s|1) · posπ(s, μ)

)

= μ · (1 − V 1
π (μ)

)
.
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Therefore, we get that

V R
π (μ) = μ · (V 1

π (μ) − 1
)
,

that is, the receiver’s payoff is greater whenever V 1
π (μ) is greater. Now, Bayes’ plausibility

implies that

μ · V 1
π (μ) + (1 −μ) · V 0

π (μ) = μ,

which implies that V 1
π (μ) � V 1

π′(μ) if and only if V 1
π (μ)−V 0

π (μ) � V 1
π′(μ)−V 0

π′(μ). There-

fore, V 1
π (μ) − V 0

π (μ) � V 1
π′(μ) − V 0

π′(μ) if and only if V R
π (μ) � V R

π′ (μ).

Lemma 9. Let π and π ′ be symmetric tests. For every μ ∈ [0, 1], we have

V 1
π (μ) − V 0

π (μ) = V 1
π′(1 −μ) − V 0

π′(1 −μ)

and

V R
π (μ) = V R

π′ (1 −μ).

Proof. We first prove that

V 1
π (μ) − V 0

π (μ) = V 1
π′(1 −μ) − V 0

π′(1 −μ).

Note that

1 − posπ(s, μ) = (1 −μ) ·π(s|0)
(1 −μ) ·π(s|0) +μ ·π(s|1)

= (1 −μ) ·π′(s|1)

(1 −μ) ·π ′(s|1) +μ ·π ′(s|0)
= posπ′(s, 1 −μ).

Now

V 1
π (μ) − V 0

π (μ) =
∑
s∈S

(
π(s|1) −π(s|0)

) · posπ(s, μ)

=
∑
s∈S

(
π ′(s|0) −π ′(s|1)

) · (1 − posπ′(s, 1 −μ)
)

=
∑
s∈S

(
π ′(s|0) −π ′(s|1)

) +
∑
s∈S

(
π ′(s|1) −π ′(s|0)

)
posπ′(s, 1 −μ)

= V 1
π′(1 −μ) − V 0

π′(1 −μ).

We now prove that

V R
π (μ) = V R

π′ (1 −μ)

V R
π (μ) = −

[∑
s∈S

π(s|1) ·μ · (1 − posπ(s, μ)
)2 +

∑
s∈S

π(s|0) · (1 −μ) · (−posπ(s, μ)
)2

]

= −
[∑
s∈S

π ′(s|0) ·μ · (posπ′(s, 1 −μ)
)2
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+
∑
s∈S

π ′(s|1) · (1 −μ) · (1 − posπ′(s, 1 −μ)
)2

]

= V R
π′ (1 −μ).

Lemma 10. For every binary test π, if there exists an initial belief 0 < μ̃ �= 1
2 such that

V 1
π (μ̃) − V 0

π (μ̃) = V 1
π (1 − μ̃) − V 0

π (1 − μ̃), then V 1
π (μ) − V 0

π (μ) = V 1
π (1 − μ) − V 0

π (1 − μ)
for every μ ∈ [0, 1

2 ].

Proof. Assume a binary test π such that there exists a belief 0 < μ �= 1
2 such that

V 1
π (μ) − V 0

π (μ) = V 1
π (1 −μ) − V 0

π (1 −μ). We denote π(h|1) ≡ p and π(h|0) ≡ q;

V 1
π (μ) − V 0

π (μ) = V 1
π (1 −μ) − V 0

π (1 −μ)

is equivalent to

(p− q)
μp

μp+ (1 −μ)q
− (p− q)

μ(1 −p)
μ(1 −p) + (1 −μ)(1 − q)

= (p− q)
(1 −μ)p

(1 −μ)p+μq
− (p− q)

(1 −μ)(1 −p)
(1 −μ)(1 −p) +μ(1 − q)

,

which is equivalent to

μp

μp+ (1 −μ)q
− μ(1 −p)

μ(1 −p) + (1 −μ)(1 − q)

= (1 −μ)p

(1 −μ)p+μq
− (1 −μ)(1 −p)

(1 −μ)(1 −p) +μ(1 − q)
,

which is equivalent to

������μ2p(1 −p) +μ(1 −μ)p(1 − q)
�������−μ2p(1 −p) −μ(1 −μ)q(1 −p)(

μp+ (1 −μ)q
)(
μ(1 −p) + (1 −μ)(1 − q)

)

=
��������(1 −μ)2p(1 −p) +μ(1 −μ)p(1 − q)

���������−(1 −μ)2p(1 −p) −μ(1 −μ)q(1 −p)(
(1 −μ)p+μq

)(
(1 −μ)(1 −p) +μ(1 − q)

) ,

which is equivalent to
(
μp+ (1 −μ)q

)(
μ(1 −p) + (1 −μ)(1 − q)

)
= (

(1 −μ)p+μq
)(

(1 −μ)(1 −p) +μ(1 − q)
)
,

which is equivalent to

μ2p(1 −p) +��������μ(1 −μ)p(1 − q) +��������(1 −μ)μq(1 −p) + (1 −μ)2q(1 − q)

= (1 −μ)2p(1 −p) +��������μ(1 −μ)p(1 − q) +��������(1 −μ)μq(1 −p) +μ2q(1 − q),

which is equivalent to

p(1 −p)
(
μ2 − (1 −μ)2) = q(1 − q)

(
μ2 − (1 −μ)2),
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which is equivalent to

p(1 −p) = q(1 − q),

which is independent of μ.

We now prove that in an environment without signaling, if μ0 < 1
2 , then π̂ R π,

and if μ0 > 1
2 , then π R π̂. Lemma 9 and Lemma 10 show that for a binary L-

informative test π and its symmetric H-informative test π̂, the functions V 1
π (μ) − V 0

π (μ)
and V 1

π̂ (μ) − V 0
π̂ (μ) are symmetric around the belief μ and that they intersects in the

segment (0,1) only at μ = 1
2 . Therefore, Lemma 6 implies that for an L-informative bi-

nary test π and its symmetric H-informative test π̂, it holds that if μ < 1
2 , then V 1

π̂ (μ) −
V 0
π̂ (μ) > V 1

π (μ) − V 0
π (μ), and if μ> 1

2 , then V 1
π̂ (μ) − V 0

π̂ (μ) < V 1
π (μ) − V 0

π (μ). Lemma 8
then implies that for an L-informative binary test π and its symmetric H-informative test
π̂, it holds that if μ0 < 1

2 , then V R
π̂ (μ0 ) > V R

π (μ0 ), and if μ0 > 1
2 then V R

π̂ (μ0 ) < V R
π (μ0 ).

From the definition of a binary N-informative test πn we get that V R
πn(μ) = V R

πn(1 − μ)
for every μ ∈ [0, 1

2 ]. Therefore, we get that for every L-informative test π and its symmet-
ric H-informative test π̂, it holds that if μ0 < 1

2 , then V R
π̂ (μ0 ) > V R

π (μ0 ), and if μ0 > 1
2 ,

then V R
π̂ (μ0 ) < V R

π (μ0 ).
We now prove that in an environment with signaling, for every μ0 ∈ (0, 1), we

have that π R π̂. Assume that μ0 ≤ μ∗
π̂
< μ∗

π . Since the tests are symmetric, we get
by Lemma 9 that μ∗

π̂
and μ∗

π are symmetric around 1
2 . Lemma 9 also implies that

V R
π̂ (μ∗

π̂ ) = V R
π (μ∗

π ), i.e., the payoff of the receiver conditional on observing the positive
signaling cost is the same under both tests. Since μ∗

π̂
< μ∗

π , the probability that type 0
selects the signaling cost 0 that fully reveals its type is greater under π than under π̂.
Hence, we get that the receiver’s payoff is strictly greater under π than under π̂. As-
sume that μ∗

π̂
< μ0 < μ∗

π . The equilibrium in the subgame that the test π̂ induces is
fully pooling and the receiver’s payoff is V R

π̂ (μ0 ). We divide into cases. Assuming that
1
2 <μ0 <μ∗

π , by the first part of Proposition 4, we get that V R
π̂ (μ0 ) < V R

π (μ0 ). Now, since
μ0 <μ∗

π , we get that the effective signal that the receiver obtains is composed of observ-
ing both an informative signal through the signaling channel and an informative signal
of the test. Hence, the equilibrium payoff of the receiver in the subgame that test π in-
duces is greater than her payoff when the test π is activated on the prior V R

π (μ0 ). Hence,
the receiver’s equilibrium payoff under π is strictly greater than V R

π̂ (μ0 ). Assume that
μ∗
π̂
< μ0 <

1
2 < 1 −μ0 <μ∗

π . The information that the receiver obtains in the equilibrium
of the subgame that test π induces can be presented as follows. The prior is μ0. In the
first stage, the receiver observes a binary test with two grades that produce the beliefs 0
and 1−μ0. In the second stage, conditional on the test’s grade that produces the interim
belief 1 −μ0, the receiver observes another binary test with two grades that produce the
beliefs 0 and μ∗

π . Finally the receiver observes the grade of the test π. Lemma 9 implies
that V R

π̂ (μ0 ) = V R
π (1 − μ0 ). Therefore, the information that the receiver obtains in the

case where the receiver first observes the binary test of the first stage and then the grade
of the test π provides a strictly greater payoff than V R

π̂ (μ0 ). This implies that the infor-
mation that the receiver obtains in the equilibrium in the subgame that test π induces,
where the receiver observes the grade of the test π after both stages, provides a strictly
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greater payoff than V R
π̂ (μ0 ). Assume that μ∗

π̂
< 1

2 <μ∗
π < μ0. Then the receiver’s payoffs

from π̂ and π are V R
π̂ (μ0 ) and V R

π (μ0 ), respectively, and we have proved that in that case
V R
π̂ (μ0 ) < V R

π (μ0 ).
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