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Appendix A: Proofs and additional theoretical analysis

In the subsequent analysis, we omit the subscript i when referring to any student.

A.1 Proof of Proposition 4

The proof of Proposition 4, as well as several subsequent results, will use the follow-
ing lemma. Suppose that λ1(x) and λ2(x) are two probability mass functions (PMFs) of
distributions over the same discrete domain Ψ , and that and �1(x) and �2(x) are their
corresponding cumulative distribution functions (CDFs). Let η(x) be the difference be-
tween these two PMFs, that is, η(x) ≡ λ1(x) − λ2(x).

Lemma 1. If there exists a threshold x̂ ∈ Ψ such that η(x) ≤ 0 for x ≤ x̂ and η(x) > 0
otherwise, then �1 first-order stochastically dominates �2, that is, �1(x) ≤�2(x), ∀x.

Proof. Denote the smallest and largest values in Ψ as x and x̄, respectively. Denote x+
as the smallest element in Ψ that is greater than x (for x < x̄). Given the definition of x̂,
we know that when x ≤ x̂,

�1(x) −�2(x) =
x∑

x′=x

η
(
x′) ≤ 0.

When x > x̂,

�1(x) −�2(x) =
x∑

x′=x

η
(
x′)
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=
x̂∑

x′=x

η
(
x′) +

x∑
x′=x̂+

η
(
x′)

≤
x̂∑

x′=x

η
(
x′) +

x∑
x′=x̂+

η
(
x′) +

x̄∑
x′=x+

η
(
x′)

=
x̄∑

x′=x

η
(
x′)

= 0.

The last step is due to the definition of η(x). Therefore, we have �1(x) ≤ �2(x), ∀x. The

inequality holds strictly for some x as long as the two distributions are not identical.

Hence, �1 first-order stochastically dominates �2.

Now we prove Proposition 4.

Proof. We write the expected utility for those unsearched universities in C \CS as

V (0) =
m∑
j=1

f 0(j, α)uj

and the updated expected utility for the university relatively ranked γth in CS (γ =
1, � � � , α+ 1) as

V γ(α) =
m∑
j=1

f γ(j, α)uj ,

in which

f 0(j, α) = 1
m

and

f γ(j, α) =

(
j − 1
γ − 1

)(
m− j

α− γ + 1

)
(

m

α+ 1

)

are the PMFs of the distributions over the set of cardinal utilities {u1, � � � , um}; let F0(j, α)
and Fγ(j, α) be the corresponding CDFs.
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(1) We first show that V 1(α) > V (0) for any α = 1, 2, � � � , m − 1. Let g1,0(j, α) be the
difference between the two PMFs f 1(j, α) and f 0(j, α), that is,

g1,0(j, α) ≡ f 1(j, α) − f 0(j, α) =

(
m− j

α

)
(

m

α+ 1

) − 1
m

.

We can see from the above definition that (i) given α and m, g1,0(j, α) is decreasing in
j;1 (ii) g1,0(m, α) = − 1

m < 0; and (iii) g1,0(1, α) = α+1
m > 0. Therefore, there exists an in-

teger ĵ such that g1,0(j, α) ≤ 0 when ĵ ≤ j ≤ m, and g1,0(j, α) > 0 when 1 ≤ j ≤ ĵ′ − 1.

Because u1 > u2 > · · · > um, uĵ is equivalent to the threshold x̂ in Lemma 1. According
to Lemma 1, F1(j, α) first-order stochastically dominates F0(j, α), that is, V 1(α) > V (0)
for any α = 1, 2, � � � , m− 1.

Next, we show V α+1(α) < V (0) for any α = 1, 2, � � � , m − 1. Let g0,α+1(j, α) be the
difference between the two PMFs f 0(j, α) and fα+1(j, α), that is,

g0,α+1(j, α) ≡ f 0(j, α) − f α+1(j, α) = 1
m

−

(
j − 1
α

)
(

m

α+ 1

) .

We know from the above definition that (i) given α and m, g0,α+1(j, α) is decreasing in j;2

(ii) g0,α+1(m, α) = − α
m < 0; and (iii) g0,α+1(1, α) = 1

m > 0. Therefore, there exists an inte-

ger ĵ′ such that g0,α+1(j, α) ≤ 0 when ĵ′ ≤ j ≤m, and g0,α+1(j, α) > 0 when 1 ≤ j ≤ ĵ′ − 1.
Again, according to Lemma 1, F0(j, α) first-order stochastically dominates Fα+1(j, α),
that is, V α+1(α) < V (0) for any α = 1, 2, � � � , m− 1.

(2) We first show that V γ(α) > V γ+1(α) for any γ = 1, 2, � � � , α + 1 and α = 1, 2, � � � ,
m − 1. Let gγ,γ+1(j, α) be the difference between the two PMFs f γ(j, α) and f γ+1(j, α),
that is,

gγ,γ+1(j, α) ≡ f γ(j, α) − f γ+1(j, α)

=

(
j − 1
γ − 1

)(
m− j

α− γ + 1

)
(

m

α+ 1

) −

(
j − 1
γ

)(
m− j

α− γ

)
(

m

α+ 1

) .

Because f γ(j, α) = f γ+1(j, α) = 0 when j > m − α + γ or j < γ, we redefine f γ(j, α),
f γ+1(j, α), and gγ,γ+1(j, α) to be the PMFs over the set {uγ , � � � , um−α+γ }. For γ < j <

1f 1(j, α) equals zero when j >m− α and is strictly decreasing in j when j ≤m− α.
2fα+1(j, α) equals zero when j < α+ 1 and is strictly increasing in j when j ≥ α+ 1.
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m− α+ γ, f γ(j, α) > 0, f γ+1(j, α) > 0, and

gγ,γ+1(j, α) ∝ (m+ 1)γ − (α+ 1)j.

Because gγ,γ+1(γ, α) = f γ(γ, α) − 0 > 0 and gγ,γ+1(m − α + γ, α) = 0 − f γ+1(m − α +
γ, α) < 0, we know gγ,γ+1(γ, α) ≤ 0 if (m+1)γ

α+1 ≤ j ≤ m − α + γ and gγ,γ+1(γ, α) > 0 if

γ ≤ j < (m+1)γ
α+1 . According to Lemma 1, Fγ(j, α) first-order stochastically dominates

Fγ+1(j, α), that is, V γ(α) > V γ+1(α) for any α= 1, 2, � � � , m− 1.3

Now we have shown that given any α = 1, 2, � � � , m − 1, V 1(α) > V (0), V α+1(α) <
V (0), and V γ(α) > V γ+1(α), ∀γ = 1, 2, � � � , α+ 1. Therefore, by the mean value theorem,
there exists a threshold γ̂(α) at which (i) V γ(α) > V (0) for all γ ≤ γ̂(α), and (ii) V γ(α) ≤
V (0) otherwise.

A.2 Information acquisition under DirSD

In this section, we discuss the role of information and students’ information acquisition
strategy under DirSD in a one-tier market.

Proposition 5. In a one-tier market under DirSD, the marginal benefit of additional
information is nonnegative and can be nonmonotonic.

The proof of Proposition 5 will use the following two lemmas.

Lemma 2. For any α = 2, � � � , m− 1 and γ = 1, 2, � � � , α+ 1, V γ(α) > V γ(α− 1).

Proof. Suppose a student has completed (α− 1) steps of searching and is considering
the benefit of step α, α = 2, � � � , m − 1. When this additional search step is conducted,
the change in the expected value is given by

V γ(α) − V γ(α− 1) =
m∑
j=1

f γ(j, α)uj −
m∑
j=1

f γ(j, α− 1)uj

=
m−α+γ−1∑

j=γ

(
j − 1
γ − 1

)(
m− j

α− γ + 1

)
(

m

α+ 1

) uj −
m−α+γ∑
j=γ

(
j − 1
γ − 1

)(
m− j

α− γ

)
(
m

α

) uj .

Let h(j) be the difference between the two PMFs f γ(j, α) and f γ(j, α− 1), that is,

h(j) ≡ f γ(j, α) − f γ(j, α− 1)

3Since (m+1)γ
α+1 is not necessarily an integer, the threshold in Lemma 1 can be considered as u[ (m+1)γ

α+1 ],

where [ (m+1)γ
α+1 ] is the ceiling of (m+1)γ

α+1 , that is, the smallest integer greater than (m+1)γ
α+1 .
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=

(
j − 1
γ − 1

)(
m− j

α− γ + 1

)
(

m

α+ 1

) −

(
j − 1
γ − 1

)(
m− j

α− γ

)
(
m

α

) .

When j =m− α+ γ, h(m− α+ γ) = 0 − (
m−α+γ−1

γ−1 )

(
m
α )

< 0. When j ≤m− α+ γ − 1,

h(j) ∝ (m+ 1)γ − (α+ 1)j.

We can see that h(j) ≤ 0 if (m+1)γ
α+1 ≤ j ≤ m− α+ γ and h(j) > 0 if γ ≤ j < (m+1)γ

α+1 . Accord-
ing to Lemma 1, Fγ(j, α) first-order stochastically dominates distribution Fγ(j, α − 1).
Hence, V γ(α) > V γ(α− 1) for any α= 2, � � � , m− 1 and γ = 1, 2, � � � , α+ 1.

Lemma 3. For any α = 2, � � � , m− 1 and γ = 1, 2, � � � , α, V γ(α− 1) > V γ+1(α).

Proof. The proof of this lemma is similar to the proof of Lemma 3. Given α= 2, � � � , m−
1 and γ = 1, 2, � � � , α,

V γ(α− 1) − V γ+1(α) =
m∑
j=1

f γ(j, α− 1)uj −
m∑
j=1

f γ+1(j, α)uj

=
m−α+γ∑
j=γ

(
j − 1
γ − 1

)(
m− j

α− γ

)
(
m

α

) uj −
m−α+γ∑
j=γ+1

(
j − 1
γ

)(
m− j

α− γ

)
(

m

α+ 1

) uj .

Let h′(j) be the difference between the two PMFs f γ(j, α− 1) and f γ+1(j, α), that is,

h′(j) ≡ f γ(j, α− 1) − f γ+1(j, α)

=

(
j − 1
γ − 1

)(
m− j

α− γ

)
(
m

α

) −

(
j − 1
γ

)(
m− j

α− γ

)
(

m

α+ 1

) .

When j = γ, h′(γ) = (
m−γ
α−γ )

(
m
α )

− 0 > 0. When j ≥ γ + 1,

h′(j) ∝ (m+ 1)γ − (α+ 1)j.

Therefore, h′(j) ≤ 0 if (m+1)γ
α+1 ≤ j ≤m−α+γ and h′(j) > 0 if γ ≤ j < (m+1)γ

α+1 . According to
Lemma 1, Fγ(j, α−1) first-order stochastically dominates Fγ+1(j, α). Thus, V γ(α−1) >
V γ+1(α) for any α = 2, � � � , m− 1, and γ = 1, 2, � � � , α.
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Now we move to prove Proposition 5: under DirSD, the marginal benefit of additional
information (1) is nonnegative, and (2) can be nonmonotonic.

Proof. (1) Suppose the student submits a list 	̂i under DirSD. Let Qθ
i be the probability

that she will be accepted by the θth ranked university in 	̂i. Recall that in each step of
DirSD, the student whose turn it is is assigned to the highest-ranked university in her
submitted list from those that still have vacant seats. Thus, for any probability distribu-
tion over one’s budget set, DirSD ensures that Qθ ≥Qθ′

if θ < θ′, that is, a student is more
likely to be admitted by a university if it is ranked higher in her submitted list.

A student who stops searching at step α and chooses the optimal strategy of truth-
telling under DirSD, according to Propositions 4 and 1, would rank the unsearched
universities below the γ̂(α)th-ranked searched university, but above the (γ̂(α) + 1)th-
ranked searched university, and would rank the searched universities according to the
discovered relative preferences. Hence, her expected utility is given by

uDirSD(α) =
γ̂(α)∑
θ=1

QθV θ(α) +
γ̂(α)+m−α−1∑
θ=γ̂(α)+1

QθV (0) +
m∑

θ=γ̂(α)+m−α

QθV θ−m+α+1(α) − αk,

in which αk is the total cost of information. For any α = 2, � � � , m− 1, the benefit of con-
ducting an additional search step under DirSD is given by A(α) −A(α− 1), where

A(α) ≡
γ̂(α)∑
θ=1

QθV θ(α) +
γ̂(α)+m−α−1∑
θ=γ̂(α)+1

QθV (0) +
m∑

θ=γ̂(α)+m−α

QθV θ−m+α+1(α),

and thus

A(α− 1) =
γ̂(α−1)∑
θ=1

QθV θ(α− 1) +
γ̂(α−1)+m−α∑
θ=γ̂(α−1)+1

QθV (0)

+
m∑

θ=γ̂(α−1)+m−α+1

QθV θ−m+α(α− 1).

Recall that γ̂(α) is the threshold at which V γ(α) > V (0) for all γ ≤ γ̂(α) and V γ(α) ≤
V (0) otherwise. From Lemma 2, we know that V γ(α) > V γ(α−1), ∀γ, therefore, we have
γ̂(α− 1) ≤ γ̂(α).

First, when γ̂(α− 1) = γ̂(α),

A(α) −A(α− 1)

=
γ̂(α)∑
θ=1

Qθ
[
V θ(α) − V θ(α− 1)︸ ︷︷ ︸

>0

] +
γ̂(α)+m−α−1∑
θ=γ̂(α)+1

Qθ
[
V (0) − V (0)︸ ︷︷ ︸

=0

]

+Qγ̂(α)+m−α
[
V γ̂(α)+1(α) − V (0)︸ ︷︷ ︸

≤0

]
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+
m∑

θ=γ̂(α)+m−α+1

Qθ
[
V θ−m+α+1(α) − V θ−m+α(α− 1)︸ ︷︷ ︸

<0

]
.

In the above equation, [V θ(α) −V θ(α− 1)] is positive according to Lemma 2, the second
term is zero, [V γ̂(α)+1(α) − V (0)] is nonpositive according to the definition of γ̂(α), and
[V θ−m+α+1(α) − V θ−m+α(α − 1)] is negative according to Lemma 3. Since for any α the
total expected value of all universities is a constant equal to

∑m
j=1 u

j , we have

γ̂(α)∑
θ=1

[
V θ(α) − V θ(α− 1)

]

= −
{[

V γ̂(α)+1(α) − V (0)
] +

m∑
θ=γ̂(α)+m−α+1

[
V θ−m+α+1(α) − V θ−m+α(α− 1)

]}
.

Because Qθ weakly increases as θ decreases, the positive term outweighs the negative,
that is,

γ̂(α)∑
θ=1

Qθ
[
V θ(α) − V θ(α− 1)

]

≥ −
{
Qγ̂(α)+m−α

[
V γ̂(α)+1(α) − V (0)

]

+
m∑

θ=γ̂(α)+m−α+1

Qθ
[
V θ−m+α+1(α) − V θ−m+α(α− 1)

]}
.

Therefore, we can conclude that A(α) ≥A(α− 1) for any α= 2, � � � , m− 1.
Next, when γ̂(α− 1) < γ̂(α),

A(α) −A(α− 1)

=
γ̂(α−1)∑
θ=1

Qθ
[
V θ(α) − V θ(α− 1)︸ ︷︷ ︸

>0

] +
γ̂(α)∑

θ=γ̂(α−1)+1

Qθ
[
V θ(α) − V (0)︸ ︷︷ ︸

>0

]

+
γ̂(α−1)+m−α∑
θ=γ̂(α)+1

Qθ
[
V (0) − V (0)︸ ︷︷ ︸

=0

] +
γ̂(α)+m−α−1∑

θ=γ̂(α−1)+m−α+1

Qθ
[
V (0) − V θ−m+α(α− 1)︸ ︷︷ ︸

≥0

]

+
m∑

θ=γ̂(α)+m−α

Qθ
[
V θ−m+α+1(α) − V θ−m+α(α− 1)︸ ︷︷ ︸

<0

]
.

In the above equation, [V θ(α) − V θ(α − 1)] is positive according to Lemma 2, [V θ(α) −
V (0)] is positive according to the definition of γ̂(α), the third term is zero, [V (0) −
V θ−m+α(α − 1)] is nonnegative according to the definition of γ̂(α − 1), and



8 Hakimov, Kübler, and Pan Supplementary Material

[V θ−m+α+1(α) − V θ−m+α(α − 1)] is negative according to Lemma 3. Similar to the pre-
vious case, since the positive difference equals the absolute value of the negative dif-
ference but has more weight, we can again conclude that A(α) ≥ A(α− 1) for any
α = 2, � � � , m− 1.

Lastly, when α= 1, we know from Proposition 4 that V 1(1) > V (0) and V 2(1) < V (0).
Thus,

A(1) = Q1V 1(1) +
m−1∑
θ=2

QθV (0) +QmV 2(1)

≥Q1V (0) +
m−1∑
θ=2

QθV (0) +QmV (0)

= V (0) ≡A(0).

Again, the inequality is due to the fact that V 1(1)−V (0) = −[V 2(1)−V (0)] and Q1 ≥Qm.
Therefore, we can conclude that A(α) ≥ A(α′ ) for any α > α′. That is, the marginal

benefit of additional information is nonnegative under DirSD.
(2) Under DirSD, the benefit of information is rescaled by the probabilities Qθ’s.

Therefore, depending on the ex ante probability distribution of a student’s budget set,
the marginal benefit of additional information is not necessarily decreasing.

With Assumption 1 and uniform within-tier priors, each student knows that the
rank-order list submitted by any other student is equally likely to be any ranking in 
.
Thus, from the perspective of student i, she always has an equal chance at every univer-
sity, and this chance is given by {Pi(B̃)}B̃⊆C . This makes the “name” of a university irrel-
evant to the student. Let {pi(β)}β=1,2, ���,m be the probability distribution of the number
of universities in student i’s budget set, that is, pi(β) = Pr[|Bi| = β], β = 1, 2, � � � , m.4

We thus have Pi(B̃) = Pi(B̃′ ) = pi(β)/(
m
β ) for all |B̃| = |B̃′| = β. That is, only the num-

ber of universities in a student’s budget set but not its specific composition matters
for her decisions under DirSD. For instance, consider a market with three universities
C = {c1, c2, c3}, each of which has two seats. The budget set of the student ranked third
in the exam depends on the submitted rank-order lists of the two students ranked above
her. If, for example, they both place university c3 at the top of their lists, which occurs
with probability 1

3 × 1
3 = 1

9 , then the budget set of the student ranked third contains only
c1 and c2. The same probability 1

9 should be assigned to all possible two-university com-
positions of her budget set: {c1, c2}, {c1, c3}, and {c2, c3}.

Suppose a student submits a list 	̂ under DirSD. Then, given {p(β)}β=1,2, ���,m, the
probability that she is accepted by the θth ranked university in 	̂ is given by

Qθ =
m−θ+1∑
β=1

(
m− θ

β− 1

)
(
m

β

) p(β).

4A student has at least one university in her budget set because we assume the total number of seats
exceeds the total number of students. This assumption simplifies our analysis, but is not crucial.
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If a student is assigned to her θth choice, her budget set B has to include her θth choice
and exclude the (θ − 1) universities listed above it. With probability p(β), B includes
β universities. One of them has to be her θth choice and the remaining (β − 1) ones
cannot be her top θ choices, which means ( m−θ

β−1 ) out of the (
m
β ) possible compositions

can occur. Thus, Qθ sums up, for all possible values of β, the probability that the student
will be accepted by her θth choice. We can see that for any probability distribution over
one’s budget set, DirSD ensures that Qθ ≥ Qθ′

if θ < θ′, that is, a student is more likely to
be admitted by a university if it is ranked higher in her submitted list. This, again, proves
the optimality of the truth-telling strategy stated in Proposition 1.

Now, consider our experimental market with one tier. There are six universities and
each one has two seats. The cardinal utilities of every student are determined by the
experimental payments {u1, u2, u3, u4, u5, u6} = {40, 34, 28, 22, 16, 10}.

For the student ranked first in the exam, {p(1), p(2), p(3), p(4), p(5), p(6)} =
{0, 0, 0, 0, 0, 1} and the marginal benefit of each additional step of searching is A(1) −
A(0) = 7, A(2) − A(1) = 3.5, A(3) − A(2) = 2.1, A(4) − A(3) = 1.4, A(5) − A(4) = 1,
which is decreasing.

However, for the student ranked 10th in the exam, {p(1), p(2), p(3), p(4), p(5),
p(6)} ≈ {0, 0.57, 0.43, 0, 0, 0} and the marginal benefit of each additional step of search-
ing is approximately A(1) − A(0) ≈ 2.84, A(2) − A(1) ≈ 1.42, A(3) − A(2) ≈ 1.87,
A(4) −A(3) ≈ 1.25, A(5) −A(4) ≈ 1.14, which is clearly nonmonotonic.

This implies that under DirSD, the optimal information acquisition strategy is not
necessarily unique in the general setting. However, we ensure the uniqueness for every
student in each treatment of our experimental design.

A.3 Information acquisition under SeqSD

In this section, we discuss the role of information and students’ information acquisition
strategy under SeqSD in a one-tier market.

Proposition 6. In a one-tier market under SeqSD,
(1) the marginal benefit of an additional step of searching among available universi-

ties is non-negative and decreasing;
(2) the optimal stopping point αSeqSD in a student’s search process is characterized

as (i) αSeqSD = 0 if V 1(1) − V (0) < k; (ii) αSeqSD = 1 if V 1(1) − V (0) > k and V 1(2) −
V 1(1) ≤ k; and (iii) αSeqSD solves [V 1(αSeqSD ) − V 1(αSeqSD − 1)] > k and [V 1(αSeqSD +
1) − V 1(αSeqSD )] ≤ k otherwise.

Proof. (1) First, we show that the marginal benefit of an additional step of searching is
non-negative.

Under SeqSD, each student, when being considered, is asked to select from all uni-
versities that still have vacant seats, that is, from all universities in her budget set B.
Obviously, a student would not search outside her budget set because the information
about unavailable universities cannot affect her selection. When searching within B, a
student who stops at step α and chooses the optimal strategy of truth-telling under Se-
qSD, according to Proposition 4, would choose the university with the highest expected
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utility. Hence, her expected utility at this point is given by V 1(α) −αk, in which αk is the
total cost of information.

Suppose that when a student is considered by SeqSD, there is only one university
left available, that is, her budget set includes only one university (|B| = 1). Thus, she
obviously has no incentive to invest in any information and the marginal benefit of ad-
ditional information is constantly zero.

Suppose a student is asked by SeqSD to choose from multiple universities (|B| > 1).
According to Proposition 1, it is an optimal strategy for her to choose the university with
the highest expected utility. Then the marginal benefit of conducting the first step of
searching is V 1(1) − V (0) and the marginal benefit of conducting an additional sub-
sequent search step is given by V 1(α) − V 1(α − 1), α = {2, � � � , |B| − 1}. According to
Lemma 2, we know that V 1(α) > V 1(α− 1) for any α = 2, � � � , m− 1, and we have already
shown that V 1(1) > V (0) in Proposition 4. Therefore, V 1(α) > V 1(α′ ) for any α > α′
when |B| > 1.

Combining the cases of |B| = 1 and |B| > 1, we can conclude the marginal benefit of
additional information is nonnegative under SeqSD.

Next, we consider the change in marginal benefit during a student’s search process
under SeqSD.

We only consider a student with |B| > 2 because one with |B| ≤ 2 would not conduct
multiple search steps. The difference in marginal benefits between an increase from (α−
1) to α and an increase from α to (α+ 1), α = 2, � � � , |B| − 2 is given by[

V 1(α) − V 1(α− 1)
] − [

V 1(α+ 1) − V 1(α)
]

= 2V 1(α) − V 1(α+ 1) − V 1(α− 1)

= 2
m−α∑
j=1

f 1(j, α)uj −
m−α−1∑
j=1

f 1(j, α+ 1)uj −
m−α+1∑
j=1

f 1(j, α− 1)uj .

Define χ(j) as the corresponding difference in PMFs:

χ(j) ≡ 2f 1(j, α) − f 1(j, α+ 1) − f 1(j, α− 1).

= 2

(
m− j

α

)
(

m

α+ 1

) −

(
m− j

α+ 1

)
(

m

α+ 2

) −

(
m− j

α− 1

)
(
m

α

) .

We can calculate that χ(m− α+ 1) = − 1
(
m
α )

< 0, χ(m− α) = 2 1
(

m
α+1 )

− α

(
m
α )

, and thus

χ(m− α+ 1) +χ(m− α) = 2(
m

α+ 1

) − α+ 1(
m

α

)

∝ α+ 2 −m≤ 0.
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Therefore, the difference in CDFs is non-positive when j ≥m− α. For 1 ≤ j ≤m− α− 1,

χ(j) ∝ (j − 1)
[
2(m+ 1) − (α+ 2)j

]
.

We can see that χ(j) < 0 if 2(m+1)
α+2 < j ≤ m − α − 1 and χ(j) ≥ 0 if 1 ≤ j ≤ 2(m+1)

α+2 .
According to Lemma 1, the difference in CDFs are nonpositive at any j, which indi-
cates first-order stochastic dominance. Hence, we conclude that [V 1(α) − V 1(α − 1)] >
[V 1(α+ 1) − V 1(α)] for any α = 2, � � � , |B| − 2.

When α= 1, the difference in marginal benefits between an increase from (α− 1) to
α and an increase from α to (α+ 1) is given by[

V 1(1) − V (0)
] − [

V 1(2) − V 1(1)
]

= 2
m−1∑
j=1

f 1(j, 1)uj −
m−2∑
j=1

f 1(j, 2)uj − 1
m

m∑
j=1

uj .

Define χ1(j) as the corresponding difference in PMFs:

χ1(j) ≡ 2f 1(j, 1) − f 1(j, 2) − 1
m

= 2
m− j(
m

2

) −

(
m− j

2

)
(
m

3

) − 1
m

.

When j ≤m− 2,

χ1(j) = (j − 1)
(
2(m+ 1) − 3j

)
m(m− 1)(m− 2)

.

Therefore, χ1(j) < 0 when 2(m+1)
3 < j ≤ m − 2, and χ1(j) ≥ 0 when 1 ≤ j ≤ 2(m+1)

3 . We
can also calculate that χ1(m) = − 1

m < 0 and χ1(m − 1) = 4
m(m−1) − 1

m . When m > 4,

χ1(m− 1) ≤ 0, and thus χ1(j) ≤ 0 for 2(m+1)
3 < j ≤m and χ1(j) ≥ 0 for 1 ≤ j ≤ 2(m+1)

3 . Ac-
cording to Lemma 1, the difference in CDFs is nonpositive at any j, which indicates first-
order stochastic dominance, and thus [V 1(1)−V (0)] > [V 1(2)−V 1(1)]. When m= 3, we
know V (0) = 1

3 (u1 +u2 + u3 ), V 1(1) = 2
3u

1 + 1
3u

2, V 1(2) = u1, and thus [V 1(1) − V (0)] >
[V 1(2) − V 1(1)] as u1 > u2 > u3. When m = 4, we know V (0) = 1

4 (u1 + u2 + u3 + u4 ),
V 1(1) = 1

2u
1 + 1

3u
2 + 1

6u
3, V 1(2) = 3

4u
1 + 1

4u
2, and thus [V 1(1) −V (0)] > [V 1(2) − V 1(1)]

as u1 > u2 > u3 > u4. Therefore, [V 1(1) − V (0)] > [V 1(2) − V 1(1)] holds for any m> 2.
To sum up, we can conclude that the marginal benefit of information acquisition

within one’s budget set decreases under SeqSD.
(2) Since the marginal benefit of an additional search step within B decreases and

the marginal cost is constantly k, it is optimal for a student to adopt another search step
as long as the marginal benefit exceeds the marginal cost, and stop searching otherwise.
Specifically, the optimal stopping point αSeqSD in the search process is characterized as:
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(i) αSeqSD = 0 if V 1(1) − V (0) <k;
(ii) αSeqSD = 1 if V 1(1) − V (0) > k and V 1(2) − V 1(1) ≤ k; and
(iii) αSeqSD solves [V 1(αSeqSD ) − V 1(αSeqSD − 1)] > k and [V 1(αSeqSD + 1) −

V 1(αSeqSD )] ≤ k otherwise.
Due to the discreteness of the problem, under some parameters a student may be in-

different between two optimal stopping points if the marginal benefit of the last search
step equals k; here, we assume the student chooses the smaller one. Otherwise, the op-
timal stopping point is unique.

A.4 Proof of Theorem 1

Proof. This proof does not rely on a particular search technology. We define student i’s
search decision as a choice si from the set Si and denote its cost as di(si ). For the search
technology specified in Section 2.3, student i’s search decision si represents her stopping
point αi ∈ {0, 1, � � � , m− 1} and its cost is di(si ) = αiki.

According to Proposition 1, a student who adopts the optimal strategy of truth-
telling ranks universities according to the expected utilities from high to low under
DirSD and chooses the university with the highest expected utility under SeqSD. In both
cases, the student bases her submission strategy on her updated beliefs about her pref-
erences after search and is accepted by the university with the highest expected utility
in her budget set. The expected utility of this university, denoted as EU(s, B̃), is thus de-
termined by the student’s search decision and her budget set. With Assumption 1 and
uniform within-tier priors, the ex ante probability distribution of a student’s budget set
{P(B̃)}B̃⊆C does not depend on the search strategies of others and is the same under
DirSD and SeqSD.

Under DirSD, all students simultaneously submit their rank-order lists. A student
takes her search decision s based on the ex ante probability distribution of her budget set
{P(B̃)}B̃⊆C and needs to pay the information cost d(s). Thus, the optimization problem
under DirSD is given by

UDirSD = max
s∈S

[(∑
B̃⊆C

P(B̃)EU(s, B̃)

)
− d(s)

]
.

Under SeqSD, a student selects the preferred university after the higher-ranked students
have made their choices. She therefore observes the realization of her budget set before
she makes her search decision. Thus, the optimization problem under SeqSD is given by

USeqSD =
∑
B̃⊆C

P(B̃) max
s∈S

[
EU(s, B̃) − d(s)

]
.

Therefore, we have

UDirSD = max
s∈S

[(∑
B̃⊆C

P(B̃)EU(s, B̃)

)
− d(s)

]
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= max
s∈S

[∑
B̃⊆C

P(B̃)
(
EU(s, B̃) − d(s)

)]

≤
∑
B̃⊆C

P(B̃) max
s∈S

[
EU(s, B̃) − d(s)

]

=USeqSD.

Hence, we conclude that a student with any probability distribution for her budget set
is weakly better off under SeqSD than under DirSD.

A.5 Alternative search strategy: Information acquisition under SeqSD

The optimal search strategy under SeqSD can be generally characterized as a stopping
rule in the proposition below.

Proposition 7. In a one-tier market under SeqSD, student i’s optimal search strategy is
as follows:

(1) Suppose ki ≥ b−a
8 . The student does not acquire any information and randomly

selects a school from her budget set Bi.
(2) Suppose ki <

b−a
8 and there is more than one unsearched university remaining in

Bi. The student stops only if ūSi ≥ b−√
2(b− a)ki, and selects university c̄Si . Otherwise, she

keeps searching by randomly choosing an unsearched university to investigate.
(3) Suppose ki <

b−a
8 and only one unsearched university remains in Bi. If ūSi ≥ b −√

2(b− a)ki, the student stops and selects c̄Si . If a + √
2(b− a)ki < ūSi < b − √

2(b− a)ki,
the student investigates that remaining university and selects the university with the high-
est utility among all universities in Bi. If ūSi ≤ a + √

2(b− a)ki, the student selects that
remaining university without investigating it.

Proof. We omit the subscript i when referring to any student. A student observes her
budget set B before conducting a search under SeqSD. For exposition purposes, let us
assume |B| ≥ 3.

Let U(α) be the utility of the student after she has conducted α steps of the search.
If the student does not acquire any information, she randomly selects a university and
receives the expected utility of

E
[
U(0)

] = a+ b

2
.

With a cost of k, she can conduct the first search step by randomly choosing a uni-
versity in B to investigate. Suppose that she investigates c1 ∈ B and discovers uc1 . Then
she would select c1 if uc1 > a+b

2 and select an unsearched university otherwise. Thus, the
expected utility after the first search step is given by

E
[
U(1)

] = E

[
max

{
uc1 ,

a+ b

2

}
− k

]
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= Pr
[
uc1 >

a+ b

2

]
E

[
uc1 | uc1 >

a+ b

2

]
+ Pr

[
uc1 ≤ a+ b

2

]
a+ b

2
− k

= 1
2

×
a+ b

2
+ b

2
+ 1

2
× a+ b

2
− k

= 3a+ 5b
8

− k.

Therefore, the student will conduct the first search step if E[U(1)] > a+b
2 , which solves

k<
b− a

8
.

Suppose k < b−a
8 . With another cost of k, she can conduct the second step of her

search. Suppose that she investigates c2 ∈ B and discovers uc2 . Then the expected utility
after the second search step is given by

E
[
U(2)

] =E

[
max

{
uc2 , max

{
uc1 ,

a+ b

2

}}
− 2k

]

= Pr
[
uc2 > max

{
uc1 ,

a+ b

2

}]
E

[
uc2 | uc2 > max

{
uc1 ,

a+ b

2

}]

+ Pr
[
uc2 ≤ max

{
uc1 ,

a+ b

2

}]
max

{
uc1 ,

a+ b

2

}
− 2k

=
b− max

{
uc1 ,

a+ b

2

}
b− a

×
max

{
uc1 ,

a+ b

2

}
+ b

2

+
max

{
uc1 ,

a+ b

2

}
− a

b− a
× max

{
uc1 ,

a+ b

2

}
− 2k

=
b2 − 2amax

{
uc1 ,

a+ b

2

}
+

(
max

{
uc1 ,

a+ b

2

})2

2(b− a)
− 2k.

Therefore, the student will conduct the first search step if E[U(2)] >U(1), which solves

max
{
uc1 ,

a+ b

2

}
< b−

√
2(b− a)k.

We already know that k < b−a
8 and, therefore, b− √

2(b− a)k > a+b
2 . Hence, the student

will conduct the second search step if uc1 < b− √
2(b− a)k.

We can generalize the above argument as follows. Suppose the student has searched
a set of universities CS ⊂ B and discovered the highest utility ūS . Suppose further that
there is more than one unsearched university remaining in B. Then the student will con-
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duct an additional search step if

max
{
ūS ,

a+ b

2

}
< b−

√
2(b− a)k.

That is, in this case the student stops only if ūS < b− √
2(b− a)k.

Suppose now that the student has searched a set of universities CS ⊂ B and only one
unsearched university c|B| remains in B. The expected utility after the last search step is
given by

E
[
U

(|B|)] =E
[
max

{
uc|B| , ūS

} − |B|k]
= Pr

[
uc|B| > ūS

]
E

[
uc|B| | uc|B| > ūS

] + Pr
[
uc|B| ≤ ūS

]
ūS − |B|k

= b− ūS

b− a
× ūS + b

2
+ ūS − a

b− a
× ūS − |B|k

= b2 − 2aūS + (
ūS

)2

2(b− a)
− |B|k.

Therefore, the student will conduct the last search step if E[U(|B|)] > U(|B| − 1). Be-
cause

E
[
A

(|B|)] −A
(|B| − 1

)
=

(
b2 − 2aūS + (

ūS
)2

2(b− a)
− |B|k

)
−

(
max

{
ūS ,

a+ b

2

}
− (|B| − 1

)
k

)

= b2 − 2aūS + (
ūS

)2

2(b− a)
− max

{
ūS ,

a+ b

2

}
− k

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
b− ūS

)2

2(b− a)
− k if ūS >

a+ b

2
,(

a− ūS
)2

2(b− a)
− k if ūS ≤ a+ b

2
,

we know that (i) if a + √
2(b− a)k < ūS < b − √

2(b− a)k, the student investigates c|B|
and selects the university with the highest utility among all universities in B; (ii) if ūS ≥
b− √

2(b− a)k, the student stops before the last step and selects c̄S (the university with
the highest utility among the searched universities in CS); and (iii) if ūS ≤ a+√

2(b− a)k,
the student selects c|B| without investigating it.

A.6 Alternative search strategy: Information acquisition under DirSD

As explained in the main text, instead of generally characterizing the optimal search
strategy under DirSD, we numerically calculate it for every student in our experimental
setup and illustrate the calculation process below. In our experimental market with one
tier, there are 12 students and six universities {c1, c2, c3, c4, c5, c6}; each university has
two seats.
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Under DirSD, student i chooses her search strategy based on ki and the ex ante
probability distribution of her budget set {Pi(B̃)}B̃⊆C . This can be used to calculate

{Qθ
i }θ=1,2, ���,m, in which Qθ

i is the probability that i is accepted by the θth ranked univer-
sity in her submitted rank-order list. The first simple case is that for a student in ranks 1
and 2, we know that {Q1, Q2, Q3, Q4, Q5, Q6} = {1, 0, 0, 0, 0, 0}. They know for sure that
their budget set consists of all universities. Thus, only their first choice matters and they
search just like a student in SeqSD with B = {c1, c2, c3, c4, c5, c6}. The second simple case
is for the student in rank 12, {Q1, Q2, Q3, Q4, Q5, Q6} = { 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 }. That is, her bud-

get set only contains one school and she is equally likely to be accepted by any school
on her list. Therefore, she does not have an incentive to acquire any information.

Now consider a student in ranks 3 to 11. If the student does not acquire any infor-
mation, she ranks the six universities randomly and has an expected utility of

E
[
U(0)

] = a+ b

2
.

With a cost of k, she can conduct the first step of her search by randomly choosing a
university to investigate. Different from SeqSD, under DirSD the student does not ob-
serve her budget set and can therefore investigate any university in C. Suppose that
she investigates c1 and discovers uc1 . If uc1 > a+b

2 , she would rank c1 above all the un-
searched universities. If uc1 < a+b

2 , she would rank c1 below all the unsearched universi-
ties. If uc1 = a+b

2 , she would randomly rank the six universities. Thus, the expected utility
after the first search step is given by

E
[
U(1)

] = Pr
[
uc1 >

a+ b

2

]
E

[
Q1uc1 +

6∑
θ=2

Qθ × a+ b

2
| uc1 >

a+ b

2

]

+ Pr
[
uc1 ≤ a+ b

2

]
E

[
5∑

θ=1

Qθ × a+ b

2
+Q6uc1 | uc1 ≤ a+ b

2

]
− k

= 1
2

(
Q1

a+ b

2
+ b

2
+

6∑
θ=2

Qθ × a+ b

2

)
+ 1

2

(
5∑

θ=1

Qθ × a+ b

2
+Q6

a+ a+ b

2
2

)
− k.

Given the values of k and Qθ’s, the student conducts the first search step if E[U(1)] −
U(0) > 0.

Suppose that E[U(1)] −U(0) > 0 holds for this student and she indeed conducts the
first step of her search.

• If the student investigates c1 and discovers uc1 > a+b
2 . With an additional cost of k,

she can conduct the second step of search. Suppose that she investigates c2 and
discovers uc2 . If uc2 ∈ [a, a+b

2 ], she would rank c1 the first and c2 the last, with the
unseached universities in between. If uc2 ∈ ( a+b

2 , uc1 ], she would rank c1 the first and
c2 the second, followed by the unsearched universities. If uc2 ∈ (uc1 , b], she would
rank c2 the first and c1 the second, followed by the unsearched universities. Thus,
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the expected utility after the second search step is given by

E
[
U(2)

] = 1
2

(
Q1uc1 +

5∑
θ=2

Qθ × a+ b

2
+Q6

a+ a+ b

2
2

)

+
(uc1 − a+ b

2
b− a

)(
Q1uc1 +Q2

a+ b

2
+ uc1

2
+

6∑
θ=3

Qθ × a+ b

2

)

+
(
b− uc1

b− a

)(
Q1u

c1 + b

2
+Q2uc1 +

6∑
θ=3

Qθ × a+ b

2

)
− 2k.

• If the student investigates c1 and discovers uc1 ≤ a+b
2 . With an additional cost of k,

she can conduct the second step of her search. Suppose that she investigates c2 and
discovers uc2 . If uc2 ∈ [a, uc1 ], she would first rank the unsearched universities, and
then rank c1 the fifth and c2 the last. If uc2 ∈ (uc1 , a+b

2 ], she would first rank the un-
searched universities, and then rank c2 the fifth and c1 the last. If uc2 ∈ ( a+b

2 , b], she
would rank c2 the first and c1 the last, with the unsearched universities in between.
Thus, the expected utility after the second step of the search is given by

E
[
U(2)

] =
(
uc1 − a

b− a

)(
4∑

θ=1

Qθ × a+ b

2
+Q5uc1 +Q6 a+ uc1

2

)

+
( a+ b

2
− uc1

b− a

)(
4∑

θ=1

Qθ × a+ b

2
+Q5

uc1 + a+ b

2
2

+Q6uc1

)

+ 1
2

(
Q1

a+ b

2
+ b

2
+

5∑
θ=2

Qθ × a+ b

2
+Q6uc1

)
− 2k.

Given the values of k and Qθ’s, the student conducts the second search step if E[U(2)] −
U(1) > 0.

Suppose that E[U(2)] − U(1) > 0 holds for this student and she indeed investigates
c2. To determine whether the student would continue searching, we need to discuss dif-
ferent contingencies in terms of how uc2 compares to uc1 and a+b

2 . When calculating
E[U(3)] in each of these contingencies, we need to consider different cases in terms of
how the realization of uc3 compares to uc2 , uc1 , and a+b

2 .
As we can see from the above analysis, information acquisition under DirSD is heav-

ily history-dependent. That is, whether a student should stop searching under DirSD
may depend on the utilities of all the universities she has searched (instead of only the
highest discovered utility ūSi under SeqSD). As a result, the number of contingencies
grows rapidly as the student conducts each additional search step and it is much more
challenging to derive the optimal search strategy under DirSD than under SeqSD.
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Appendix B: Additional experimental results

B.1 Details on individual search strategies

We consider each environment separately, since optimal search strategies depend on
search costs and whether the preferences are tiered.5 Figure 7 presents the average cost
of information acquisition by treatments when the cost is low at $0.5. The left panel of
Figure 7 presents optimal and actual search strategies for the two-tier environment. In
DirSD under low information costs, the optimal search strategy for all subjects (except
for subjects ranked 6th and 12th) is to invest $1 to obtain full certainty about their own
preferences in the respective tier. Note that subjects with score ranks 1–5 should only
consider the universities in tier A while subjects with score ranks 7–11 should only con-
sider universities in tier B. On average, we observe that subjects search too little, except
for rank 7 subjects who, on average, oversearch by investing in information about uni-
versities in both tiers. The excessive search by rank 7 subjects may be driven by optimism
that some of the subjects ranked 1 to 6 will be assigned to a tier B university, due to sub-
optimal preference submission.6 In Cutoff, the behavior is similar to DirSD (p-value for
the test of difference is 0.32). Thus, the cutoff provision does not have a significant effect
on search strategies in the two-tier markets with low costs. On the one hand, the cut-
offs are informative due to the full uncertainty resolution in the equilibrium of DirSD.
On the other hand, the benefit of relying on cutoff information is relatively small, as the
total cost of optimal information acquisition is just $1. Thus, subjects might not risk sav-
ing $1 by relying on cutoff information. As for subjects with ranks 6 and 12, they should
not invest in information at all, as they both get the only free seat of the corresponding
tier in equilibrium. However, we observe a high degree of oversearch by these subjects.7

As for SeqSD, the actual search behavior of subjects is, on average, remarkably in line
with the theoretical predictions. The actual search costs are significantly lower than in
DirSD and Cutoff (the p-value for the test of difference is < 0.01 for both comparisons).
Thus, the optimal search strategy in SeqSD is more straightforward for subjects than in
DirSD. This is not surprising, as the optimal strategy consists of full investment in re-
solving uncertainty about one’s available universities, and the only deviation could be
undersearch or searching prior to the start of the allocation procedure, that is, before
one learns which universities are available to them.

The right panel of Figure 7 presents the predictions and actual search strategies for
the one-tier environment with low costs. In DirSD, the optimal search strategy for all
subjects (except rank 12 subjects) is to invest $2.50 to obtain full certainty about their
preferences. We observe that rank 1 to 11 subjects search too little, which is even more
pronounced for subjects with ranks 6 to 11 than for subjects with ranks 1 to 5. Note that

5As explained in Section 3.5, we do not derive point predictions for optimal search strategies in the Cutoff
treatment.

6In total, a rank-7 participant had the potential choice between universities in the top tier due to subop-
timal strategies of higher-ranked participants in only 1 out of 48 rounds of DirSD.

7Note that in our experimental setup all students had to submit the full rank-order list of universities
in DirSD and Cutoff, or had to choose one university in SeqSD, thus making it impossible to remain unas-
signed. Therefore, not searching is an optimal strategy for rank-12 students.
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Figure 7. Average costs of information acquisition with low costs by treatments.

the relative benefit of search decreases with the rank, thus it can be partially driven by
the risk aversion of subjects. Another possibility is that subjects perceive the preferences
as correlated, and thus overestimate the chances that the most-preferred universities
will be assigned to the higher-ranked subjects. In Cutoff, the actual search costs are sig-
nificantly lower than in DirSD for ranks 1 to 10 (p-value for the test of difference is < 0.01
for these ranks, and for all ranks). Again, cutoffs are informative due to full uncertainty
resolution in the equilibrium of DirSD. In the two-tier environment, the potential bene-
fit of relying on cutoffs for subjects is only $1. In the one-tier environment, the optimal
information cost is $2.50 and the potential benefit of cutoffs from the perspective of sav-
ing search costs is higher. As for rank 12 subjects, they should not invest in information
at all; yet, on average, they invest $1.08 in DirSD and $0.98 in Cutoff. This violates the
optimal strategy of not searching. As for SeqSD, the actual search behavior of subjects is
remarkably in line with the average theoretical predictions. The most substantial devia-
tion is the undersearch of the subjects ranked 1 to 5. Again, the optimal strategy in SeqSD
consists of obtaining full certainty about the ranking of all available universities, and the
only deviation could be undersearch or search before the allocation procedure started.
When the optimal strategy requires an investment of $2.50, and thus five search steps,
subjects often stop after four steps of the search, thus underestimating the probability
of the last university being preferred to the other five universities. This undersearch in
SeqSD is similar to the undersearch of rank 1 to 3 subjects in DirSD. Overall, the actual
search costs in SeqSD are significantly lower than in DirSD, but not significantly different
from Cutoff (p-value for the test of difference is < 0.01 and equal to 0.79, respectively).
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Figure 8. Average costs of information acquisition with high costs by treatments.

Figure 8 presents the average cost of information acquisition by treatments when
the cost is high at $2.30. The left panel presents predictions and actual search strategies
for the two-tier environment. First, in DirSD the optimal search strategy for rank 1 to 4
and 7 to 10 subjects is to invest $2.30 in resolving uncertainty about the relative ranking
of any two universities in the respective tier. Thus, in the high-cost treatments subjects
never obtain full certainty about the university rankings. Students ranked 5, 6, 11, and
12 should not invest in search at all. Unlike in treatments with low costs, we observe
significant oversearch in DirSD for all ranks. This finding is in line with previous experi-
mental findings on information acquisition (see Chen and He (2021), for school choice,
Bhattacharya, Duffy, and Kim (2017), for voting, and Gretschko and Rajko (2015), for
auctions). In Cutoff, the actual search costs are lower than in DirSD (p-value < 0.01)
with the highest difference for the lower-ranked students. Unlike the two-tier low-cost
environment when the potential benefit of relying on cutoffs saves subjects only up to
$1, in the two-tier, high-cost environment the optimal information cost is $2.30. Thus,
the potential benefit of cutoffs for saving information costs is much higher. Subjects rely
on the cutoffs following the higher potential saving of information costs. In SeqSD with
high costs, unlike in SeqSD with low costs where the actual search behavior of subjects
is mostly in line with theoretical predictions, we observe a high degree of oversearch for
students ranked 1 to 3 and 7 to 9. The oversearch for ranks 1 to 3 is even higher than in
DirSD. As for ranks 5, 6, 11, and 12, the behavior is more in line with the theory than in
the other treatments. Overall, in the two-tier, high-cost environment, there is no signifi-
cant difference in the average actual search costs between SeqSD and DirSD (p = 0.12),
and between SeqSD and Cutoff (p = 0.16).
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Finally, the right panel of Figure 8 presents predicted and actual search strategies for
the one-tier, high-cost environment. In DirSD, the optimal search strategy for rank 1 to
4 subjects is to invest $4.60 in resolving the uncertainty about the ranking of any three
universities. Similar to the two-tier environment with high costs, students ranked 1 to
4 oversearch relative to the optimal strategy. Ranks 5 to 7 have an optimal strategy of
investing $6.90 to resolve uncertainty about the ranking of four out of six universities.
Note that this is the only case where the lower-ranked subjects search more in theory
than the higher-ranked subjects. This pattern, however, finds no support in the data, as
the students ranked 5 to 7 search less than students ranked 1 to 4. As for ranks 8 to 12,
on average, they all invest around $4 in information acquisition, despite an optimum of
$2.30 for ranks 9 and 10 and an optimum of $0 for ranks 11 and 12. In Cutoff, the actual
search costs are lower than in DirSD (p < 0.01), with larger differences for the higher-
ranked students. Just as in the two-tier environment with high costs, subjects rely on
the cutoffs leading to lower information costs than in DirSD. Yet again, they ignore the
fact that in the high-cost environments, the cutoffs are less informative about the pref-
erences of the previous cohort than in the low-cost environments, as many submissions
of the previous cohort are made without resolving preference uncertainty. Note, how-
ever, that in both high-cost environments, in DirSD subjects overinvest in information
relative to the optimal strategy. Thus, the cutoffs are more informative than in equilib-
rium. As for SeqSD, we observe a high degree of oversearch for students ranked 1 to 6.
As for ranks 7 to 12, the behavior is more in line with the theory than in the other treat-
ments. Overall, in the one-tier, high-cost environment, the average actual search costs
in SeqSD are significantly higher than in Cutoff (p< 0.01), and not significantly different
from DirSD (p= 0.52).

B.2 Normalized efficiency by environments

Table VI. Average normalized efficiency by treatments and environments.

Treatment p-value for Test of Equality

DirSD SeqSD Cutoff DirSD = SeqSD DirSD = Cutoff SeqSD = Cutoff
(1) (2) (3) (4) (5) (6)

Two tiers and low cost 74.0% 82.7% 75.6% 0.01 0.63 0.01
Two tiers and high cost 81.5% 88.1% 87.0% 0.00 0.01 0.51
One tier and low cost 83.7% 91.7% 82.3% 0.01 0.74 0.00
One tier and high cost 64.7% 76.2% 72.7% 0.00 0.00 0.08
All 75.9% 84.7% 79.4% 0.00 0.08 0.00

Note: For the tests in columns 4–6, we use the p-values for the coefficient of the treatment dummy in the OLS regression
of efficiency on this dummy with standard errors clustered at the level of matching groups and with a sample restricted to the
treatments that are of interest for the test.
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B.3 Order effects

Table VII. Order effects.

Total
Payoff

Total
Payoff

Number of
Searches

Number of
Searches

Optimal
Strategy

Optimal
Strategy

Order −0.00 −0.00 0.06 0.06 0.00 0.00
(0.41) (0.29) (0.10) (0.07) (0.06) (0.02)

SeqSD 2.05 −0.38 0.26
(0.36) (0.07) (0.02)

Cutoff 0.90 −0.47 −0.14
(0.43) (0.10) (0.02)

Tiers −3.17 −1.19 0.09
(0.49) (0.12) (0.03)

Cost of search −2.34 −0.44 −0.03
(0.12) (0.03) (0.01)

Period 0.07 0.04 0.01
(0.10) (0.03) (0.01)

Observations 3384 3384 3384 3384 3384 3384
R 0.00 0.09 0.00 0.22 0.00 0.16

Note: Results of OLS regressions with clustering of standard errors on the level of matching groups. Order is a dummy
variable equal to 0 when Low cost preceded High cost, and equal to 1 when High cost preceded Low cost. SeqSD is a dummy
for treatment SeqSD, Cutoff is a dummy for treatment Cutoff. Tier is equal to 1 in one-tier environments and equal to 2 in
two-tier environments.

B.4 Alternative search technology: Information acquisition under Cutoff

Table VIII. Probability of information acquisition about a university depending on the cutoff.

Dummy for Search (2) Dummy for Search (2)

(1) (2)

Cost of search −0.121 −0.29
(0.05) (0.05)

Higher cutoff, dummy −0.07
(0.02)

Higher cutoff, difference −0.006
(0.000)

Lower cutoff, difference −0.003
(0.000)

Observations 2304 2304

Note: Marginal effects of probit regressions regarding information acquisition about a university in Cutoff. “Higher cutoff,
dummy” is a dummy that is equal to one if the cutoff score of the university minus the student’s score is greater than zero.
“Higher cutoff, difference” is equal to the cutoff score of the university minus the student’s score if the difference is positive and
zero otherwise. “Lower cutoff, difference” is equal to the student’s score minus the cutoff score of the university if the difference
is positive and zero otherwise. Standard errors are clustered at the level of matching groups.
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