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Estimating large-dimensional connectedness tables: The great
moderation through the lens of sectoral spillovers

Felix Brunner
Nova School of Business and Economics

Ruben Hipp
Financial Stability Department, Bank of Canada

We estimate sectoral spillovers around the Great Moderation with the help of fore-
cast error variance decomposition tables. Obtaining such tables in high dimen-
sions is challenging because they are functions of the estimated vector autore-
gressive coefficients and the residual covariance matrix. In a simulation study, we
compare various regularization methods on both and conduct a comprehensive
analysis of their performance. We show that standard estimators of large connect-
edness tables lead to biased results and high estimation uncertainty, both of which
are mitigated by regularization. To explore possible causes for the Great Mod-
eration, we apply a cross-validated estimator on sectoral spillovers of industrial
production in the US from 1972 to 2019. We find that the spillover network has
considerably weakened, which hints at structural change, for example, through
improved inventory management, as a critical explanation for the Great Modera-
tion.
Keywords. VAR models, shrinkage, networks, industrial production.

JEL classification. C32, C52, E23, E27.

1. Introduction

With the onset of the Great Moderation, around 1984, key macroeconomic time series
exhibit sharp decreases in growth rate volatility. Whether this shift in fluctuations is due
to a structural change in the economy, improved economic policies, or just good luck
has been extensively studied using a variety of approaches. In particular, for industrial
production (IP), the literature provides manifold narratives, often using contemporane-
ous correlations between sectors to approximate dependencies. Recent advancements
further allow econometricians to describe directional dependencies in the form of fore-
cast error variance decompositions (FEVDs) (see Diebold and Yılmaz (2014)). Namely,
FEVDs measure how much the variation of one sector can explain the variation of an-
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other. They do so by condensing contemporaneous and lagged dependencies into a sin-
gle connectedness table based on vector autoregressions (VARs). These tables, however,
inherit the VAR’s estimation uncertainty in high dimensions: the estimation error blows
up when the number of variables (N) approaches the number of time observations (T ).

The goal of this paper is to examine sectoral spillovers as a potential driver of the de-
cline in volatility during the Great Moderation. It consists of two parts: First, we explore
regularization methods for estimating large networks from time-series observations and
detail the properties of different approaches in an extensive Monte Carlo (MC) simula-
tion. Second, we investigate the structural change hypothesis of the Great Moderation
by applying this methodology to sectoral spillovers of IP.

Econometricians typically face a high-dimensional setup when estimating FEVDs.
For one thing, networks must include all relevant variables to have a unified and pre-
cise interpretation; that is, N is large. In addition, time variation in the parameters—for
example, a structural break or rolling windows—reduces the number of observations;
that is, T is often small. With large N and small T , standard estimation methods pro-
duce poor estimates and bad forecasts due to overfitting. Regularization methods for
regressions and covariance matrices counteract these ramifications. Yet, it remains un-
clear which ones to choose. Thus, we provide an extensive MC study of regularization
techniques combined with FEVDs to guide researchers in large-dimensional network
estimations.

While there are successful applications of FEVDs in high dimensions (e.g., see
Demirer, Diebold, Liu, and Yilmaz (2017)), two questions remain unanswered. First, how
does estimation uncertainty affect the overall results of FEVDs? Second, would an addi-
tional regularization of the innovation covariance matrix improve the results? Our MC
simulation results demonstrate the performance gain of each regularization step in the
estimation of the overall FEVD network. We show that regularization of both the coef-
ficients and the covariance matrix not only trade off bias for variance by reducing the
estimation uncertainty of the FEVD, but also mitigates a positive bias in the entries. To
the best of our knowledge, this result is novel in the literature and highlights the im-
portance of regularization in the context of FEVDs. Perhaps surprisingly, a horse race of
regularization methods applied to FEVDs yields similar results among estimators, with
the winner being conditional on the setting.

In our application, we investigate changes to the sectoral dependency structure of IP
around the Great Moderation. The central question is whether the large volatility of the
aggregate IP index originated from amplifications of sectoral fluctuations by the network
in the spirit of Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012). That is, we ad-
dress the gap in the literature on how structural change in sectoral interconnectedness
affects aggregate index volatility. The directed nature of FEVDs allows us to investigate
linkages that were previously hidden under the rationale of correlations as a result of
common exposure to aggregate shocks. Thus, we motivate our application by the fact
that a strong intersectoral network of idiosyncratic shocks is observationally equivalent
to the prevalence of aggregate shocks, if connectedness is ignored.

We apply FEVDs to scrutinize IP spillovers between 88 sectors in the US from 1972
to 2019. The estimation is challenging since the split into pre- and post-Great Modera-
tion periods reduces the effective sample size. We use cross-validated regularization to
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tackle this challenge. The estimates provide time-varying spillover networks that un-
cover the corresponding directed dependency structure among sectors. We find that
sectors that were initially influential decreased their outgoing links after 1984, reducing
the importance of spillover effects overall. An analysis of contributions to the aggregate
index suggests that inventory-heavy sectors added considerably to the high volatility
pre-Great Moderation via their spillovers. We connect individual changes in spillovers
to decreases in inventories-to-shipments ratio, which supports a narrative of structural
change through improved inventory and supply chain management. After 2007, we ob-
serve again higher levels of aggregate volatility, but without out-sized contributions of
some sectors. This observation insinuates no reversal of the Great Moderation’s struc-
tural change.

Our comparative MC study connects to the literature on the regularization of re-
gressions and covariance matrices. Regularizations have become popular not only be-
cause the increasing availability of data makes variable selection more critical, but also
because technological advances make the application of high-dimensional estimators
increasingly feasible. For the regression step, we consider shrinkage estimators, such
as ridge regression by Hoerl and Kennard (1970), variable selection methods, such as
LASSO by Tibshirani (1996), and combinations of the two, such as adaptive elastic-net
by Zou and Zhang (2009). Whereas these methods find application primarily in cross-
sectional contexts, the time-series literature has succeeded in using regularization, for
example, in the general case of VARs in Kascha and Trenkler (2015) and in the setting
of FEVDs in Demirer et al. (2017). For the regularization of covariance matrices, we ex-
amine variable selection methods for the partial correlation matrix, as in the graphical
LASSO by Friedman, Hastie, and Tibshirani (2008), optimal shrinkage estimators, as in
Ledoit and Wolf (2004), and sample covariance thresholding, as in Bickel and Levina
(2008), Rothman, Levina, and Zhu (2009), and Cai and Liu (2011). We contribute to this
diverse literature by comparing the regularized estimators’ performances in the context
of FEVDs.

Empirically, we contribute to the understanding of the decline in IP volatility that
took place during the Great Moderation. A prevalent hypothesis in the context of in-
dustrial production is the decline in aggregate shocks, as described by Foerster, Sarte,
and Watson (2011). This contrasts with the results of Gabaix (2011), who considers over-
weight index constituents as a central driver of aggregate fluctuations in industrial pro-
duction. Similarly, Carvalho and Gabaix (2013) argue that idiosyncratic shocks on the
sectoral level can account for the shift in macroeconomic volatility. Acemoglu et al.
(2012) connect to this idea and stress that strong production networks propagate sec-
toral productivity shocks to the rest of the economy and hinder diversification in the ag-
gregate index. In contrast to the fast-expanding literature that uses input–output tables
as network proxies (for a review, see Carvalho and Tahbaz-Salehi (2019)), our analysis
directly sheds light on the network implied by sectoral IP correlations. Thus, we offer a
unifying view on the two opposing explanations of Foerster, Sarte, and Watson (2011)
and Gabaix (2011) by highlighting the transition from an economy with strong intersec-
toral spillovers from a few sectors to an economy with a less transmitting network.
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Our empirical results show that the intersectoral network has changed structurally

with the Great Moderation, making idiosyncratic shocks less likely to impact the aggre-

gate. In other words, before the Great Moderation, granular shocks were able to propa-

gate through the network such that they amplified to strong aggregate fluctuations. This

finding offers a new perspective on the observation that correlations between sectors

have significantly changed with the Great Moderation, which is often attributed to the

existence of a strong factor structure, that is, shocks to multiple sectors at once. Similar

to Galí and Gambetti (2009), our findings support the notion that structural change has

abated shock transmission, for example, through improvements to supply chain and in-

ventory management as argued in Kahn, McConnell, and Perez-Quiros (2002), Summers

et al. (2005), and Davis and Kahn (2008).

The rest of the paper is organized as follows. In Section 2, we introduce the concept

of FEVDs and provide an overview of various regularization methods. We assess their

performance in a simulation study in Section 3. Section 4 applies the regularization of

FEVDs to the IP setup to answer the question of sectoral spillovers. Finally, Section 5

concludes. The Supplementary Material (Brunner and Hipp (2023)), such as mathemat-

ical details, practical illustrations, and complementary empirical graphs can be found

in the Online Appendix.

2. Methodology

This section provides a general overview of FEVDs and introduces suitable regulariza-

tion methodologies to mitigate estimation uncertainty in large-dimensional applica-

tions.

We start with anN-dimensional stable VAR(1) process,

yt = ν+Ayt−1 + ut , ut ∼ N (0, �), ∀t = 1, � � � , T . (1)

Following Pesaran and Shin (1998), we obtain the FEVD as a function of the VAR coef-

ficient matrix A and the innovation covariance matrix �.1 A detailed derivation is pre-

sented in Section 2.1.

As in many structurally motivated economic models, we want to include a broad set

of variables. However, considering many variables entails the curse of dimensionality.

Thus, to estimate high-dimensional FEVDs, we have to estimate the VAR coefficient ma-

trixA and the innovation covariance matrix � in large dimensions. For that purpose, we

assess the performance of various estimation techniques by comparing different regu-

1Note that any VAR(p) translates into a VAR(1); hence, our specification provides the companion form to
higher-order lag numbers without loss of generality. For details, see (Lütkepohl (2005, p. 15)).
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Figure 1. Estimation overview for high-dimensional forecast error variance decompositions
(FEVDs). The estimates Â and �̂ are required for the estimation of FEVDs. The lists describe
the considered regularization methods in this paper. Note that although the VAR residuals are
fed into the estimation of the covariance matrix, properties such as the degree of shrinkage and
sparsity structure are determined independently by the estimators.

larization approaches for large VARs.2 Figure 1 gives an overview of the regularization

methods considered in this paper.

The statistical learning literature contains two types of regularization techniques

that are beneficial for FEVDs: the regularization of coefficients and the regularization

of covariance matrices. Concerning the former, LASSO techniques tend to perform well

in autoregressive setups. Such techniques apply regularization to the coefficient matrix

A but do not imply any regularization for the covariance matrix �. The combination of

A and � in the FEVD, however, suggests that poor estimation of the innovation covari-

ance matrix renders the overall estimate noisy. That is, the estimation of � suffers from

a similar uncertainty induced by high dimensionality. Hence, we resort to covariance

shrinkage estimators as an alternative to the sample covariance matrix. Our approach,

therefore, is to combine regularization methods for the unknown regression coefficient

and covariance matrix to achieve the best possible estimate of the FEVD with respect to

the estimation error. We describe each method in detail in Section 2.2.

2We address the most prominent examples, but we are aware that there are additional approaches that

are beyond the scope of this paper. L0 penalties in high-dimensional regressions are computationally in-

feasible for classical machines: the nonconvexity of the L0 penalty creates a combinatorial problem, which

is NP-hard. Notable examples of variable selection are the information criteria AIC/BIC and the Variational

Garotte in Kappen and Gómez (2014). We experimented with the latter approach in small scale simulations,

which turned out to be computationally too expensive and did not yield any improvement. The covariance

matrix estimation literature also deals with the regularization of the eigenvalues; for example, in Lam et al.

(2016).
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2.1 Generalized forecast error variance decompositions

Due to the stability assumption, the VAR process in (1) can be written in moving average
(MA) representation

yt = μ+
∞∑
k=0

�kut−k, (2)

where the MA parameters are defined as �k =Ak, ∀k ≥ 0, and μ represents the mean
term. Note that the components of ut are generally not orthogonal such that structural
interpretations are economically meaningless. Koop, Hashem Pesaran, and Potter (1996)
and Pesaran and Shin (1998) define the (unscaled) generalized impulse response (IR)
function at horizon h to an impulse �j on the jth entry of the reduced form innova-
tion ut . They do so by integrating out the effect of all of the remaining impulses in the
innovation vector:

IR(h, �j , j) =E[yt+h|uj,t = �j ] −E[yt+h|uj,t = 0]. (3)

Under a Gaussian assumption, we can use

E[ut|uj,t = �j ] = (σ1j , � � � , σNj )σ−1
jj �j = �ejσ−1

jj �j ,

with σij being the ijth entry in � and ej as the jth column of the identity matrix. Substi-
tuting this expression in (3), the impulse response function can be rewritten as

IR(h, �j , j) =�h�ejσ−1
jj �j .

It is customary to set �j = √
σjj , which yields the scaled generalized impulse response

functions IR(h, √
σjj , j). We assemble the scaled IRs in the (N ×N ) matrix

�g(h) = [
ψ
g
ij(h)

] = [
IR(h,

√
σ11, 1), � � � , IR(h,

√
σNN ,N )

] =�h�diag(�)−
1
2 , (4)

where diag(M ) denotes a diagonal matrix with the diagonal values of the square ma-
trixM .

Analogously to standard impulse response analysis, we gain further insights rewrit-
ing yt as a vector-valued impulse response function multiplied by an innovation vector.
Let P = �diag(�)−

1
2 and define the generalized shock ugt as

u
g
t := P−1ut ∼ N (0N×1,
),

where 
= diag(�)
1
2�−1 diag(�)

1
2 . Then it is possible to express (2) as

yt = μ+
∞∑
k=0

�g(k)u
g
t−k. (5)

Henceforth, we can interpret ugt as the innovation vector in the generalized impulse re-
sponse analysis, where a single element receives a unity shock and all others remain at
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zero. Implicitly, we assume that ugt is an orthogonal and exogenous shock vector. How-
ever, due to the distribution of ugt with the inverse correlation matrix 
, this step results
in an approximation error. The approximation error can be linked to the partial correla-
tion matrix of ut , and it is generally bigger when more entries are partially correlated.3

Note that the h-period forecast error variance of variable i explained by innovations
in variable j is (ψ

g
ij(h))2. Then the effect of a generalized impulse of variable j at time t

on theH-step-ahead forecast error variance of variable i is

MSE
[
yi,t+H−1|

{
u
g
t+h = ej

}H−1
h=0

] =
H−1∑
h=0

(
ψ
g
ij(h)

)2
. (6)

The H-step-ahead forecast error variance contributions from all variables to i is just its
mean squared error (MSE):

MSE[yi,t+H−1] =
(
H−1∑
h=0

(
�h��

′
h

))
ii

. (7)

Pesaran and Shin (1998) divide (6) by (7) and get a table showing the contributions from
innovations in variable j to the H-step-ahead forecast error variance of variable i. Like
Diebold and Yılmaz (2014), we denote the H-step-ahead generalized FEVD as DgH =
[d
gH
ij ] with entries

d
gH
ij = MSE

[
yi,t+H−1|

{
u
g
t+h = ej

}H−1
h=0

]
MSE[yi,t+H−1]

. (8)

Note that the numerator implicitly shocks single entries of ugt and the denominator
shocks single entries of ut . In other words, the “generalized” FEVD approximates shocks
with ugt and is only accurate if 
 = IN ; that is, if � is diagonal. Optionally, Diebold and
Yılmaz (2014) row-normalize these tables for a cleaner network interpretation. However,
row normalization distorts the entries and further complicates estimation errors. Thus,
if not explicitly stated, we do not perform this step.

At this point, it is worth mentioning that for clean calculations of variance decom-
positions, we require the model in (1) to be identified. The literature on structural VARs
contains many identification approaches that are suitable for meeting this objective in
various circumstances. Yet, most restrictions such as exclusion restrictions (see Sims
(1980)) dissent from the motivation of detecting links between variables. Some other
schemes, such as heteroskedasticity identification (see Rigobon and Sack (2003)), are
less restrictive on the directionality of effects and also have been successfully applied to
FEVDs (see Hipp (2020)). However, in the high-dimensional context, such identification
schemes are practically infeasible. Thus, we opt for the generalized version with imper-
fectly orthogonalized shocks to avoid stricter assumptions about the process, allowing
us to interpret results more neutrally. Nevertheless, we acknowledge the drawbacks of
using “generalized identification,” and address the resulting imprecision by testing de-
viations from orthogonality in the empirical section.

3For a discussion of 
, see Raveh (1985).
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2.2 Estimating large forecast error variance decompositions

2.2.1 Regularizing vector autoregressive coefficients First, we follow the notation of
Kascha and Trenkler (2015) for p = 1 lags and transform the VAR(1) such that the co-
efficient matrixA can be estimated in vector form. That is,

y = (
Z′ ⊗ IN

)
β+ u, (9)

where y = vec([y1, � � � , yT ]), Zt−1 = (1, y ′
t−1 )′, Z = [Z0, � � � , ZT−1], β = vec([ν,A]) and

u = vec([u1, � � � , uT ]). We set X := (Z′ ⊗ IN ) to obtain the general regression form. The
ordinary least squares (unpenalized) estimator for the general regression form reads

β̂OLS = argmin
β

‖y −Xβ‖2.

Here, ‖ · ‖2 denotes the square of the Frobenius norm. Based on this objective function,
we aim to regularize the coefficient matrix A. On this account, we consider elastic-net
regularization, which comprises the extreme cases of LASSO and ridge regression. Addi-
tionally, we introduce a new regularization target that enforces sparsity on the long-run
dependencies.

(Adaptive) elastic-net, LASSO, and ridge regression We outline the most general con-
cept following Zou and Zhang’s (2009) adaptive elastic-net. This penalized estimator is
a compound of the general concepts of elastic-net and adaptive LASSO. In particular,
it simultaneously shrinks and selects entries in the coefficient matrices and, moreover,
has the oracle property, which ensures optimal large-sample performance. A compris-
ing definition of the adaptive elastic-net estimator class is

β̂AEnet = argmin
β

[
‖y −Xβ‖2 + λNET

N2+N∑
i=1

wi

(
α|βi| + (1 − α)

1
2
β2
i

)]
, (10)

where wi = |β̂i,ini|−γ is an initial guess with γ > 0 and λNET is a tuning parameter that
controls the strength of the elastic-net penalty, and must be chosen by the researcher.
Note that the original paper proposed to only use the weights on the LASSO penalty.
However, similar to Demirer et al. (2017), we put the weight before the shrinkage penalty
and use the glmnet routine from Friedman, Hastie, and Tibshirani (2010).4

The regression in (10) is an enhanced version of the penalty regression, and thus,
generalizes a family of regularized estimators. For example, the elastic-net penalty with
α ∈ (0, 1) combines the LASSO and the ridge estimator and inherits the desirable prop-
erties of both; for example, it removes the degeneracy of the LASSO estimator caused
by extreme correlations while still performing variable selection. Moreover, the absolute
penalty term automatically selects variables while the quadratic penalty shrinks entries
and stabilizes the solution paths (see Zou and Zhang (2009)).

4The glmnet routine is available for many programming languages. We employ the implementation in
MATLAB by Qian, Hastie, Friedman, Tibshirani, and Simon (2013).
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Now, choosing wi = 1 gives the naive elastic-net,5 with the nested cases of ridge re-
gression (α = 0) and classical LASSO (α = 1). By imposing different wi, we obtain the
adaptive elastic-net, with the special case of the adaptive LASSO (α= 1) from Zou (2006).
In Section 3, we compare the performances of LASSO, ridge regression, and adaptive
elastic-net in a simulation of FEVDs. If not stated differently, we standardize observa-
tions y and X and use wi = |β̂i,OLS|−1 for the regularization and hyperparameter selec-
tion.

Regularizing long-run effects While most regularization methods assume sparsity in
either the regression coefficients or the covariance matrix, economic setups sometimes
motivate independence between variables at all time horizons. As FEVDs represent the
overall dependency with different response times between variables, the idea of sparsity
may also apply here. In this subsection, we briefly introduce a novel method that models
sparsity in the long-run dependency.

For example, take the moving average matrices of a VAR(1), �k = Ak. If economic
theory implies that only a few variables affect each other, we ideally also presume spar-
sity in the lagged responses. For example, if we assume sparsity in the long-run re-
sponses, then we should regularize all �k’s. This regularization proves to be difficult
since the power of a matrix is a complex function of the coefficient matrixA.

To overcome this issue, we take the forecast error, that is, the response to a one-
standard-deviation impulse. The long-run (lagged) response of an impulse is

FE(H ) =
H−1∑
h=0

�h =
H−1∑
h=0

Ah,

lim
H→∞

FE(H ) =
∞∑
h=0

Ah = (IN −A)−1,

(11)

where the last equation holds due to the stability condition and is the result of the ge-
ometric series. If there is no spillover of one variable to another, we assume that the
respective entry in FE(∞) = (IN −A)−1 is zero.

It is evident that zeros in the forecast error most likely imply that the respective fore-
cast error variance—that is, the elementwise squared version—is also zero. Thus, to im-
pose sparsity on the spillover network, this matrix is a potential regularization target.
Take (11) and plug it into the model (1):

yt = ν+ (
IN − FE(∞)−1)yt−1 + ut ,

�yt = yt − yt−1 = ν− FE(∞)−1yt−1 + ut , (12)

yt−1 = FE(∞)ν+ FE(∞)(−�yt ) + FE(∞)ut

Estimating (12) as a penalized regression permits us to regularize FE(∞) and with
A = IN − FE(∞)−1 we can back out the autoregressive coefficients. To the best of our

5Zou and Zhang (2009) rescale the naive estimator by (1 + (1 − α)λNET/T ). Similar to Friedman, Hastie,
and Tibshirani (2010), we drop this distinction.
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knowledge, this representation is novel to the literature and we investigate its perfor-
mance for sparse FEVDs in the succeeding simulation. Note that even though this rep-
resentation is most likely not suited for general applications, it may prove valuable for
specific analyses with long-run dependencies. Henceforth, we denote the LASSO regu-
larization on this target as the geometric regularization.

2.2.2 Regularizing the covariance matrix Recall that FEVDs are functions of the coeffi-
cient and covariance estimates. Since the covariance matrix estimate also suffers under
high dimensionality, we regularize the covariance matrix to obtain better inputs for the
FEVDs. A variety of methods originated from the literature on the regularization of co-
variance matrices; we introduce three of them. The following overview is formulated in
terms of the mean zero random vector u. Hence, before applying any of the following
methods, it is advisable to demean the variables. In our simulation and application, ob-
servations of u will be the innovation series ut corresponding to the regression residuals
ût in the first stage.

Adaptive thresholding Thresholding methods are designed to mimic the ideas of
shrinkage and selection of entries for sparse covariance matrices. Let u = (u1, � � � , uN )′
be aN-variate random vector with covariance matrix �= [σij ]N×N , and assume an i.i.d.
random sample {u1, � � � , uT } from the distribution of u. Our goal is to estimate the co-
variance matrix � with bigN and small T . Start with the sample covariance matrix

�̂= [σ̂ij ]N×N := 1
T − 1

T∑
t=1

utu
′
t .

Further, define the variance of the sample covariance’s entries as

θij := Var(uiuj ) =E[
(uiuj − σij )2].

We can now interpret the sparse covariance estimation as a mean vector estimation.
That is, an individual entry, σ̂ij , without the Bessel correction can be described as

1
T

T∑
t=1

ui,tuj,t = σij +
√
θij

T
zij ,

with zij asymptotically standard normal. On this basis, it is straightforward to cre-
ate an individual threshold for each entry of the covariance matrix. Yet, the variabil-
ity of an individual entry, θij , needs to be estimated by its sample counterpart θ̂ij =
T−1 ∑T

t=1[ui,tuj,t − σ̂ij ]2. Cai and Liu (2011) propose calculating entrywise thresholds
by

λij := λij
(
δAT) = δAT

√
θ̂ij logN
T

, (13)

where δAT is a strictly positive regularization parameter that determines the degree of
the penalization. This hyperparameter has to be selected by the econometrician, or as
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the authors suggest, can be set to 2. Finally, the adaptive (entry dependent) threshold
estimator

�̂AT = [
σ̂AT
ij

]
N×N = [

sλij (σ̂ij )
]
N×N (14)

allows for different threshold levels for the entries and incorporates the variability of the
entries, where the function sλ(·) describes the thresholding rule applied to the entries of
the sample covariance.

Note that the researcher can choose the thresholding functions sλ(·) to deter-
mine the type of the penalty. In particular, we consider the adaptive-thresholding rule
sλ(σ̂ij ) = σ̂ij(1 − |λij/σ̂ij|η )+, with (·)+ = max{·, 0}.6 Unlike in the case of the adaptive
elastic-net estimator, λij is a function described by (13), and thus, is not freely selectable
in the adaptive-threshold estimator. With the adaptive-thresholding rule, the estimator
achieves optimal convergence and performs better than the universal thresholding esti-
mator that uses the same threshold for all entries. More generally, any rule that satisfies
the conditions described in Appendix A achieves optimal convergence.

Cai and Liu (2011) suggest a thresholding rule that applies to all entries in the covari-
ance matrix. In simulations, we experienced zero entries on the diagonal of the thresh-
old estimates. Since this behavior contradicts the idea of covariances, we regularize only
the off-diagonals entries.

Ledoit and Wolf ’s shrinkage estimator The estimator of Ledoit and Wolf (2004) is well
conditioned (inverting it does not amplify estimation errors) and more accurate than the
sample covariance matrix. In particular, it is the optimal convex linear combination of
the sample covariance and the identity. The Ledoit–Wolf shrinkage estimator optimizes

�̂LW = δLWmIN + (
1 − δLW)

�̂, (15)

where �̂ denotes the sample covariance matrix,m=N−1 tr(�̂) is the average of the diag-
onal values of the sample covariance matrix, and δLW is a predefined shrinkage weight.
In contrast to Ledoit and Wolf (2004), we stick to the scaled sample covariance matrix
for �̂; that is, we divide the sum of squared residuals by T − 1 instead of T . This scaling
is negligible for sufficiently large T .

To achieve asymptotic optimality, the authors introduce a bona fide version, that is,
one that does not require additional knowledge:

δLW = b2

d2 ,

d2 = ‖�̂−mIN‖2,

b2 = min

[
T−2

T∑
t=1

∥∥utu′
t − �̂

∥∥2
, d2

]
.

6This rule incorporates soft thresholding for η = 1: sλ(σ̂ij ) = sgn(σ̂ij )(|σ̂ij| − λ)+. Cai and Liu (2011) de-
scribe this rule for η ≥ 1. We will relax this condition and include values between zero and one in later
steps.
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The estimator is a linear shrinkage estimator, which optimally mixes the “all-bias no-
variance” estimator mIN with the “all-variance no-bias” estimator �̂. Similar to (13) in
the adaptive threshold case, the term δLW = b2/d2 automatically assigns more weight to
mIN if the sample’s second-order variance, measured by b2, is large.

GLASSO Friedman, Hastie, and Tibshirani (2008) propose estimating sparse graphs by
penalizing the inverse covariance matrix. That is, they estimate the inverse covariance
with a LASSO penalty. Let �= �−1 and optimize

�̂GLASSO = argmax
�≥0

{
logdet�− tr(�̂�) − δGL‖�‖1

}
(16)

over all nonnegative definite matrices �, where ‖ · ‖1 denotes the L1 norm, that is, the
sum of the absolute values of the entries. As before, �̂ is the sample covariance. The first
two terms describe the multivariate Gaussian likelihood, and the latter is the LASSO
penalty, which selects entries in � and sets others to zero. The matrix �̂, which mini-
mizes this objective function, is the corresponding estimator of the inverse covariance
matrix. Since the approach intends to estimate undirected graphical models, they call
this estimation the graphical LASSO, or in short, GLASSO.

The fact that the penalization is on the inverse covariance makes this approach par-
ticularly appealing in the setup of FEVDs. For example, Barigozzi and Brownlees (2013)
highlight the relation of the inverse covariance (concentration matrix) to partial correla-
tions. In particular, if entry [�−1]ij in the inverse covariance is zero, then variables i and j
are conditionally uncorrelated. In economic setups, it is often plausible to assume spar-
sity in the partial correlations rather than in the overall correlation structure. In other
words, it is easier to rule out direct than indirect effects. In order to have more homoge-
neous penalization weights, we adapt this version for standardized observations without
penalizing the diagonal.

2.3 Data-driven choice of regularization parameters

Except for the bona fide Ledoit–Wolf shrinkage estimator, all of the above estimators
require the choice of regularization parameters.7 In particular, techniques related to the
elastic-net require the choice of λNET and α, and the regularized covariance estimators
require the choice of δAT,η, δLW, and δGL. Each choice of regularization parameters then
results in a different set of parameter estimates and, therefore, a different model. Except
for Ledoit and Wolf’s (2004) optimized value for the shrinkage weight δLW, we need to
manually determine optimal levels of regularization. To validate the goodness-of-fit of
the fitted candidate models, we resort to statistical learning methods. Specifically, we
use cross-validation (CV) in our application.

In general terms, model validation procedures divide the sample into training and
test data.8 Given fixed hyperparameters, these methods estimate the remaining param-

7The literature often refers to such parameters as hyperparameters as they must be fixed before estimat-
ing the other parameters.

8The statistical learning literature uses the term “validation set” to denote the hold-out sample in each
CV fold. In econometric applications, however, it is common to denote the subset of the data used for hy-
perparameter tuning as the “test data.” We stick to the latter terminology throughout our paper.
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eters from the training data and validate their performance on the test data. That is,
the quality of the estimate from the training data set is assessed by its ability to explain
the test data set. The model selected after validation is the version that best explains
the test sample. A common practice for small data sets is K-fold CV, which partitions
the sample into K equally sized test samples.9 For each of these K samples, CV trains
the estimator on the remaining training data and then validates the test sample perfor-
mance through a metric such as the MSE or the negative log-likelihood. In the context
of time-series data, it is advisable to use (nonrandom) block sampling, as described by
Figure B.1 in Appendix B. The validity of this approach is shown in Bergmeir, Hyndman,
and Koo (2018) and we consequently stick toK-fold CV with block sampling.

CV for the coefficients commonly uses the MSE to select the best fitting model. That
is, the MSE serves both as the optimization loss in the training sample and as the valida-
tion metric in the test sample. In comparison, there exists no convention for evaluating
covariance estimators because there is no observed target for the residual covariance
matrix. Cai and Liu (2011) propose using the sample covariance estimate of the kth test
sample to validate the goodness-of-fit. By the motivation of our paper, however, this loss
function is imprecise since the sample covariance is a bad estimate of the test sample.
Thus, we prefer to validate the trained estimate �̂{1:T }\κ(δ) directly on the squared ob-
servations utu′

t in the kth test sample κ,

�k(δ) = 1
Tk

∑
t∈κ

∥∥�̂{1:T }\κ(δ) − utu′
t

∥∥2
, for k= {1, � � � ,K},

where the first term of the difference is the training data estimate of � with penaliza-
tion parameter δ, and Tk denotes the sample size of κ. In contrast to the version of Cai
and Liu (2011), this loss function shows the mean of the distance between the squared
observations and the trained estimate.

For computational reasons, econometricians are limited to a small grid of candidate
hyperparameters, as there areK estimations for each combination. Thus, we aim to pro-
duce a set of candidate hyperparameters in a neighborhood of the presumed minimum
loss to then perform a grid search. Similar to Kascha and Trenkler (2015), we increase the
candidate hyperparameters linearly on a log scale between data-driven minimum and
maximum values.10

At this point, it is worth mentioning an obvious extension. Since CV selects penalty
terms on predefined sample splits, we can also plug in different regularization tech-
niques for the estimators. CV then selects the estimator with the best predictive power.
Alternatively, information criteria such as the Akaike Information Criterion (AIC) pro-
vide another way to choose among substantially different methods. We apply the latter
procedure to our empirical setting in Section 4.

9Common choices forK range from 5 to 12, where larger values increase the computational burden and
small values entail higher estimation uncertainty (Chapter 7.12, Hastie, Tibshirani, Friedman, and Fried-
man (2009)). The special case of leave-one-out CV sets K equal to the sample size, validating the estimator
on a single observation.

10Friedman, Hastie, and Tibshirani (2010) provide formulas to set the minimum and maximum hyper-
parameters for general elastic-nets.
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3. Simulation study

3.1 Data generating processes

In the context of FEVDs, we believe that sparsity emerges with increasing dimensionN .
However, it remains unclear whether sparsity appears in the VAR coefficients, the inno-
vation covariance matrix, the FEVD, or in all of them. Thus, we introduce various data
generating processes (DGPs) and hope to address the most relevant issues. Although
this simulation study is limited to VAR(1) models, it also extends to higher lag orders in
companion form. Estimating models with additional lags will, however, aggravate the
high-dimensionality problem. To resemble real-world observational data, the DGPs in-
clude sparse coefficients in the VAR matrixA and innovation covariance �.

DGP 1: Diagonal VAR coefficient (autocorrelation without spillovers)
A= 0.5IN .

�= IN .

DGP 2: Diminishing-diagonal VAR coefficient (approximately sparse FEVD)
A is a banded diagonal matrix with entries aij = 0.3|i−j|+1.

�= IN .

DGP 3: Random graph (potentially dense FEVD)
A is a random sparse matrix. That is, it has entries with probability P(aij �= 0) = τ.
τ = 1/

√
N denotes the degree of density. We set nonzero entries to one and rescale them

uniformly such thatA’s maximum eigenvalue is 0.5 in modulus.

�= SDS′. Here, S = (IN − B)−1 where B is an upper triangular matrix with entries bij = τ

if aij �= 0, ∀i > j.D= diag(1, � � � , 2) is anN×N diagonal matrix with values spaced equally
between 1 and 2. Put differently, the 0-period impact is a directed acyclical graph defined
by the upper triangular matrix B.

DGP 4: Block-diagonal FEVD (sparse FEVD)
A has a block-diagonal structure with 1/τ equal-sized quadratic blocks. τ = 1/

√
N de-

notes the degree of density. We set nonzero entries to one and rescale uniformly them
such thatA’s maximum eigenvalue is 0.5 in modulus.

� = SDS′. Here, S is the long-run dependency spanned by A, that is, S = (IN − A)−1.
D= diag(1, � � � , 2) is anN ×N diagonal matrix with values increasing from 1 to 2.

Note that DGPs 1 and 4 always produce a sparse FEVD while DGPs 2 and 3 do not.
Moreover, all but DGP 3 are deterministic and DGPs 1-2 have the identity as the covari-
ance matrix. DGP 3 has 25 different random realizations in the simulation. We compare
the methods’ performances for FEVDs with forecast horizon 10.

3.2 Comparison of different regularization methods

This section analyzes the relative performance gain of using regularization methods to
estimate FEVDs. That is, we compare the estimation errors of the various regularization
methods to the case of OLS plus the sample covariance. In particular, we run simula-
tions for the aforementioned DGPs and calculate the Frobenius norm of the regular-
ized versus the nonregularized version: ‖D̂gHreg − DgH‖/‖D̂gHOLS − DgH‖, where H = 10.
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Table 1. Simulation results for the regularization of A paired with the sample covariance
matrix estimate of �. Values represent the relative Frobenius norm of the FEVD estimates to
the true generalized connectedness tables, when compared to the OLS estimates as ‖D̂gHreg −
DgH‖/‖D̂gHOLS −DgH‖. This number states the relative sizes of the estimation errors when com-
pared to the OLS estimate. For example, a value of 20% signifies that the estimator makes only
20% of the error of the OLS estimates. We present such values for various Ns and T s with 500
Monte Carlo repetitions. DGP 3 has 25 different random realizations of A and �. Ridge denotes
the ridge regression and AENET denotes the adaptive elastic-net.

Ridge LASSO AENET Geometric

N\T 75 175 500 75 175 500 75 175 500 75 175 500

DGP1
50 21.5% 22.5% 22.6% 21.6% 22.7% 22.6% 21.5% 22.6% 22.6% 22.4% 23.1% 22.8%

150 12.3% 13.8% 12.3% 13.8% 12.3% 13.8% 12.6% 13.9%
250 10.8% 10.8% 10.7% 10.9%
DGP2

50 23.6% 23% 23.9% 23.3% 22.9% 25.0% 23.6% 23.0% 24.5% 29.8% 29.9% 35.4%
150 13.7% 14.5% 13% 14.1% 13.6% 14.2% 17.2% 19.2%
250 11.7% 11.1% 11.2% 15.2%
DGP3

50 27.9% 36% 49.1% 27.8% 35.8% 49.7% 27.6% 35.6% 48.9% 33.2% 45.5% 77.5%
150 14.2% 18.6% 14% 18.4% 13.9% 18.5% 15.5% 22.7%
250 12.7% 12.6% 12.6% 14.1%
DGP4

50 30.7% 39.2% 55.7% 30.5% 39.6% 57.8% 30.3% 39.3% 57.5% 43.3% 62.7% 111.5%
150 16.7% 24.7% 16.4% 24.9% 16.4% 24.8% 24.5% 45.3%
250 12.4% 12.3% 12.3% 15.1%

We compare the performance gains overN = {50, 150, 250} and T = {75, 175, 500}. Note
that OLS breaks down for N > T such that we are not able to calculate any value for
these cases.11 Since the estimation is a two-step procedure, we split the simulation into
two parts. First, we regularize A paired with the sample covariance for �. We compare
the ridge, LASSO, adaptive elastic-net, and geometric long-run regularization. The latter
uses the LASSO penalty to perform variable selection. We choose the penalty parame-
ters λNET such that they minimize the respective norm λ∗ = argminλ ‖D̂gHreg (λ) −DgH‖.
Thus, the values show the best possible performance gain.

Table 1 contains the simulation results for the regularization of A for 500 Monte
Carlo repetitions. First, it is evident that regularization achieves a large overall effi-
ciency gain. The largest performance gain for all DGPs and regularization methods is
at N = 250. However, for N = 50 and T = 500 we still observe a remarkable efficiency
gain. That is, the best regularized estimators achieve reductions in the norms to the true
values to 10.7−23.9% for DGPs 1-2, and to 12.3−55.7% for DGPs 3-4. Surprisingly, ridge,
LASSO and adaptive elastic-net perform similarly well. There is no clear winner among
the estimators since the differences in performance are marginal. If at all, the variable

11In general, regularization methods are not limited toN <T .
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Table 2. Simulation results for the regularization of�, paired with the best-performing adaptive
elastic-net estimator for A. Values report the relative Frobenius norm of the FEVD estimates to
the true connectedness tables, when compared to the OLS estimator with the sample covariance
matrix as ‖D̂gHreg −DgH‖/‖D̂gHOLS −DgH‖. This number states the relative sizes of the estimation
errors when compared to the OLS and sample covariance estimate. For example, a value of 20%
signifies that the estimates make only 20% of the error of the unregularized estimates. We present
such values for variousNs and T s with 500 Monte Carlo repetitions. DGP 3 has 25 different ran-
dom realizations ofA and �.

Sample-Cov Threshold Ledoit–Wolf GLASSO

N\T 75 175 500 75 175 500 75 175 500 75 175 500

DGP1
50 26.1% 18.7% 15.4% 5.2% 4.7% 0.5% 6.9% 4.9% 0.6% 5.3% 4.7% 13.2%

150 14.9% 10.8% 3.8% 1.0% 4.3% 1% 3.8% 1.0%
250 9.5% 1.1% 1.1% 1.1%
DGP2

50 24.3% 23.1% 27.4% 3.4% 8.4% 19.8% 3.6% 8.5% 19.9% 3.4% 8.6% 25.6%
150 14.4% 14.8% 2.8% 7.7% 2.8% 7.7% 2.8% 7.7%
250 11.5% 4.6% 4.6% 4.6%
DGP3

50 28.7% 39.2% 59.4% 14.6% 29.7% 59.2% 14.1% 29.9% 62.4% 14.5% 28.8% 59.8%
150 14.4% 20.4% 4.8% 13.4% 4.6% 13.9% 4.7% 13.5%
250 13.2% 6.1% 6.1% 6.1%
DGP4

50 32.3% 41.5% 61.9% 23.8% 38.4% 60.0% 25.5% 46.9% 84.6% 23.4% 38.4% 62.3%
150 18.1% 28.8% 12.5% 26.4% 14.5% 34.9% 12.1% 26.3%
250 12.8% 5.9% 6.2% 5.8%

selection capabilities of LASSO and adaptive elastic-net provide a slight performance
advantage over the pure shrinkage of ridge regression for simulations where T is close
to N . Finally, the geometric regularization of long-run effects underperforms other reg-
ularization methods for all DGPs, and does worse than the unregularized estimation for
N = 50 and T = 500.

As a second step, we compare regularization methods for �. That is, we calculate the
residuals using the adaptive elastic-net estimate and construct the FEVD with the (reg-
ularized) estimate of �. We choose the adaptive elastic-net penalty parameter to mini-
mize the Frobenius norm of the difference between the estimate matrix Â and the true
parameter matrix A: λNET∗ = argminλ ‖Â(λ) − A‖. Additionally, we set the respective

penalty parameter for the covariance regularization such that δ∗ = argminδ ‖D̂gHreg (δ) −
DgH‖.

Table 2 shows the simulation results for the different regularizations. The first esti-
mator is the sample covariance matrix and sets the benchmark. Again, we measure the
performance of the regularization methods with the norm of the estimated FEVD to the
true values relative to the unregularized estimates. For DGP1 with the identity as the
data generating covariance matrix, the regularization methods provide a near perfect
approximation of the FEVD as they favor diagonal entries. When DGP 2 adds autocorre-
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lation, all regularization methods perform similarly, with the exception of the GLASSO
estimator for N = 50 and T = 500. In contrast, DGPs 3 and 4 have nondiagonal covari-
ance matrices. In DGP 3, the estimators perform similarly, with each of them outper-
forming others for two combinations. We believe this result is due to chance, and thus,
we do not declare a winner. Finally, the GLASSO estimator outperforms the other regu-
larization techniques in DGP 4 by a small margin. The only exception is for N = 50 and
T = 500, where only the adaptive-threshold estimator surpasses the sample covariance.

3.3 Bias, variance, and edge detection

Next, we investigate the mean of the entries and the norms for regularized and unreg-
ularized FEVDs. For this purpose, we simulate time series with DGP 4, N = 100 and
T ∈ [100, 500]. The analysis compares OLS and the sample covariance to the adaptive
elastic-net in combination with the sample covariance matrix, GLASSO, and the adap-
tive threshold estimator, respectively. We select the hyperparameters based on the best
performance (minimization of the Frobenius norm to the true FEVD). Note that this pro-
cedure requires knowledge about the true parameters, such that it is applicable only in
a simulation exercise. The left-hand panel in Figure 2 shows the average mean distance,
N−2 ∑N

i=1
∑N
j=1 mean(D̂

gH
ij −DgHij ), which reflects the biases of the FEVD estimates. The

right-hand panel of Figure 2 then shows the average variance N−2 ∑N
i=1

∑N
j=1 var(D̂

gH
ij ).

Note that this analysis relates to the “bias-variance” trade-off for estimators as regular-
ization methods generally sacrifice unbiasedness to achieve a lower variance and, there-
fore, a reduction in prediction errors overall.

The left-hand panel depicts the magnitude of the bias for small T (approaching
N = 100 from the right). We see that on average all estimators are positively biased,
with the nonregularized estimator (solid line) profoundly overestimating entries in the
FEVDs. That is, this estimator faces a strong positive bias the closer T is to N . Perhaps
surprisingly, the adaptive elastic-net (dotted curve) already diminishes the bias for small
T by a margin (almost by a factor of 100 for T = 100). While we expected that regu-
larization methods trade off bias for variance in FEVD tables, adaptive elastic-net also
improves with respect to the bias for T < 200. Similarly, when using regularizations on
the covariance matrix, we see a consistent improvement with respect to the bias. The
threshold estimate improves strongly and the GLASSO estimate improves slightly over
its sample covariance counterpart, even for larger T .

The right-hand panel plots each estimator’s variance, indicating the precision of
the estimation. The nonregularized version not only faces heavy inaccuracies follow-
ing from its bias but also shows an extremely large variance for T < 150. Its variance
lessens with increasing T but still underperforms compared to the regularized versions.
For all regularization methods, we see gains in the variance, likely stemming from the
“bias-variance” trade-off. The combination of coefficient and covariance regularization
therefore dominates for all T s. Pairing this finding with the findings of the left-hand
panel, there appears to be no trade-off for T < 200 but an overall improvement in bias
and variance. Summing up, it is advisable to combine the regularizations for the coef-
ficient and the covariance matrices as this combination provides a lower variance, and
for most sample sizes, also comes with a lower bias.
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Figure 2. Simulation results for 500 Monte Carlo repetitions of DGP 4 and N = 100. The
left-hand panel shows the average mean difference of the estimates to the true values
N−2 ∑N

i=1
∑N
j=1 mean(D̂

gH
ij −DgHij ). The right-hand panel shows the respective average variance

N−2 ∑N
i=1

∑N
j=1 var(D̂

gH
ij ). The sample size T is on the x-axis.

Next, in the context of networks, we explicitly care about the diagnostic ability of
the estimator. That is, we are interested in how well the classification into zero and
nonzero entries performs in the network matrix. For that purpose, we summarize the
performance in terms of the correct detection of zero and nonzero entries in the three
panels of Figure 3. A value is considered true positive (TP) in the case of a hit and false
positive (FP) in the case of a false alarm (Type I error). Likewise, a true negative (TN) is
given if the FEVD is correctly estimated to be sparse at a given edge, and there is a false-
negative (FN) when an existing edge is not found (Type II error). First, the probability
of correct classification is summarized by the accuracy metric. Accuracy is defined as
the fraction of correct predictions: accuracy = (TP + TN)/N2. We compare this metric
of the estimators for increasing T in Figure 3. The left panel shows that using the adap-
tive elastic-net estimator instead of OLS unlocks a big improvement in small samples. A
small but additional gain can be achieved through the usage of GLASSO instead of the
sample covariance matrix, while the adaptive threshold estimator does not show any
improvements.

The receiver operating characteristic (ROC) plots the false–positive rate FPR =
FP/(FP + TN) against the true-positive rate TPR = TP/(TP + FN) while varying the dis-
crimination threshold of setting values to zero. More precisely, the threshold varies from
the lowest to the highest entry in the FEVD, and thus, sets increasingly more values to
zero. For each threshold, the ROC plots the respective FPR and TPR in a diagram rang-
ing from 0 to 1. A perfect estimator—that is, one that correctly classifies all edges no
matter the threshold—would result in a line starting at (x, y ) = (0, 1) and ending at
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Figure 3. Simulation results for 500 Monte Carlo repetitions of DGP 4 and N = 100. The first
panel shows the accuracy for increasing sample size T on the x-axis. The center panel shows the
receiver operating characteristic (ROC) for T = 200, which has FPR on the x-axis and TPR on the
y-axis. The diagonal thin black line is the equivalent of a random estimate. The right-hand panel
shows the area under the ROC (AUROC) for increasing sample size T .

(x, y ) = (1, 1). Conversely, a completely random guess would be shown as a 45◦ diag-
onal line. We plot the ROC curve for T = 150 in the center Panel of Figure 3. Again, the
regularized estimators clearly improve the performance when it comes to classification,
with the combination of adaptive elastic-net and GLASSO providing the best diagnostic
capabilities.

Finally, the right panel plots the area under the ROC curve (AUROC). The values
range from 0.5 to 1, where 0.5 is a completely random guess and 1 is the perfect clas-
sification. This metric summarizes an estimate’s performance in detecting edges in a
single number and lets us compare estimators for different T s. The regularized estima-
tors display high confidence in their classifications and achieve better performance, in
particular for T close to N . While the gains over the unregularized version mainly orig-
inate from the regression stage of the estimation, the results improve even further after
regularizing the covariance matrix with GLASSO.

To sum up, our simulations demonstrate that the regularization of both estimation
steps leads to a substantial improvement in the estimation of FEVDs. This is evident
when comparing estimation errors as well as when using entrywise classification met-
rics. For large N and small T , our results indicate that it is critical to regularize not only
the coefficient but also the covariance matrix. Perhaps surprisingly, there are no trade-
offs when N approaches T with performance gains in all metrics. However, the use of
regularization also shows improvements when estimating large-dimensional networks
from large-T data sets and, therefore, we advise researchers to apply regularization tech-
niques when faced with large-dimensional estimation problems. Comparing the covari-
ance estimators, the adaptive threshold estimator appears to best reduce the estimation
bias, while GLASSO mainly excels in its diagnostic ability. Thus, we advise researchers
to pick the method based on the desired properties for the specific research question.
Alternatively, model selection techniques such as out-of-sample CV or in-sample infor-
mation criteria may help to validate the methods’ performances on specific data.
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4. Empirical application: Production volatility spillovers and the great

moderation

The period known as the Great Moderation, starting in the mid-1980s, is character-
ized as a period with reduced fluctuations in many macroeconomic time series, such as
real growth rates, industrial production (IP), and unemployment. The question whether
the Great Moderation happened due to good luck, better monetary policy or any other
structural change is vital for policymakers as they need to understand the impact of their
actions on macroeconomic volatility.12 The large volatility of IP is particularly puzzling
since the aggregated IP index sums over many weighted sector-level shocks. Thus, Fo-
erster, Sarte, and Watson (2011) investigate this shift by decomposing IP into sectoral
and common shocks and conclude that a decline in the volatility of common shocks in-
duced most of the break in IP’s volatility. Conversely, Carvalho and Gabaix (2013) provide
evidence that the shift in macroeconomic volatility could have originated from idiosyn-
cratic microeconomic shocks on the sectoral level, offering a contrasting explanation
that leaves the question of the origins of the Great Moderation all but conclusively an-
swered.

The estimation of sectoral connectedness tables allows us to gain a new perspective
on the source of the decline in the volatility of aggregate IP. While the findings in Foer-
ster, Sarte, and Watson (2011) are in accordance with much research that attributes the
Great Moderation to declines in the shock volatility of common exogenous factors such
as monetary policy (e.g., Leduc and Sill (2007), Justiniano and Primiceri (2008)), factor
productivity (e.g., Arias, Hansen, and Ohanian (2007)), or oil supply (e.g., Nakov and
Pescatori (2010)), an alternative explanation has emerged from the granular hypothe-
sis of Gabaix (2011). The latter paper proposes that a small number of constituents can
explain aggregate shocks if the index weight distribution is fat-tailed, an idea the find-
ings of Foerster, Sarte, and Watson (2011) refute. In our view, one needs to consider not
only sectoral weights but also directional dependencies to analyze the influence of a
particular industry on the aggregate. That is, we entertain the possibility that correla-
tions between sectors originate from a strong spillover network of sector-level innova-
tions rather than common shocks as in Foerster, Sarte, and Watson (2011). Acemoglu
et al. (2012) establish this idea based on input–output linkages and show that the diver-
sification argument does not apply in the presence of strong network structures. More
recently, Foerster, Hornstein, Sarte, and Watson (2022) give additional leeway to this hy-
pothesis by attributing much of trend GDP growth rates to sector-specific factors. In a
nutshell, we investigate if structural change of such a network has been an important
driver of the Great Moderation, which is in line with supply-chain and inventory-based
explanations presented in Kahn, McConnell, and Perez-Quiros (2002), Summers et al.
(2005) and Davis and Kahn (2008).

For insights into sectoral interconnectedness, we obtain estimates of the directional
dependencies. In contrast to a fast-expanding literature on production networks that

12For early discussions of the potential drivers of the Great Moderation, see Stock and Watson (2003) and
Bernanke (2004).
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exploits input–output tables as network proxies (for a review, see Carvalho and Tahbaz-
Salehi (2019)), our methodology directly sheds light on the network implied by sectoral
IP correlations. Our approach is in line with the finding of Carvalho (2014) showing
that pairwise correlations between two sectors are also bigger for stronger input–output
links. An advantage of inferring the network directly from the output data is the ability
to capture not only the supply–demand relationships of economic sectors but also alter-
native channels of transmission. For example, the propagation of production volatility
between two sectors goes beyond existing input–output relations if they compete for
the same resources, if their outputs are substitutes or complements, or if poor inven-
tory management amplifies demand shocks and their propagation up the supply chain.
Thus, by estimating FEVD tables, our application is agnostic about the channel of prop-
agation and adds to the understanding of sectoral spillovers and their contribution to
aggregate fluctuations.

We examine pre- and post-1984 periods in detail to give a comparison of how
spillovers have changed. To address the possibility of exogenous macroeconomic
shocks, we analyze the spillover networks while factoring out macroeconomic varia-
tion. Our findings provide novel empirical evidence and offer a unifying view on the
otherwise opposing narratives of Foerster, Sarte, and Watson (2011), Gabaix (2011) and
Acemoglu et al. (2012). We conjecture that sizeable spillovers from a handful of sec-
tors initially generated strong sectoral comovements, which appear in other analysis
as large aggregate shocks. With the Great Moderation, the structure of the spillover net-
work changed such that sectoral shocks are less likely to amplify into aggregate volatility.
Hence, our findings raise an alternative explanation in which structural change largely
contributed to the Great Moderation. Finally, an analysis of the increase in production
volatility around the Great Recession does not reveal a reversal of the initial structural
change, but rather attributes a growing contribution share to macroeconomic factors.

4.1 Data

Similar to Foerster, Sarte, and Watson (2011), we use sectoral data on IP throughout the
period 1972–2020. We mainly analyze the three-digit industry classification of the North
American Industry Classification System (NAICS) withN = 88 sectors, whereas the data
spans up to N = 138 sectors corresponding to the five-digit industry classification. The
sectoral indices are available on a monthly basis. Since the pre- and post-Great Modera-
tion periods have different sample sizes, they face distinct degrees of estimation uncer-
tainty. Hence, we split the whole sample into four equally sized subsamples of T = 144
months. The subsamples span from 03/1972 to 02/1984, from 03/1984 to 02/1996, from
03/1996 to 02/2008, and from 03/2008 to 02/2020. In our analysis, the boundary between
the first and second samples marks the onset of the Great Moderation. For simplicity, we
label these samples as 1972–1983, 1984–1995, 1996–2007, and 2008–2019, respectively.

Let IPi,t denote the value of IP of sector i at date t. We take monthly growth rates
and annualize the respective percentage points, gi,t = 1200× ln(IPi,t/IPi,t−1 ). The aggre-
gate level of IP growth is the weighted average over the sectors, gt = ∑N

i=1wi,tgi,t , with
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weights wi,t . Our first subsample, from 1972 to 1983, coincides with the pre-Great Mod-
eration period and the other three subsamples are post-Great Moderation. The subsam-
ple IP volatilities of 11.67%, 5.85%, 6.36%, and 8.79% illustrate that the average monthly
volatility of aggregate IP diminished with the Great Moderation and stayed fairly con-
stant thereafter with the exception of the Great Recession of 2007–2009.13

To account for the possibility of exogenous factors affecting all sectors simultane-
ously and thereby inducing the illusion of a strong spillover network, we condition on
three contemporaneous and lagged factors that the literature has brought forward as
possible explanations for the Great Moderation. First, we include the monthly monetary
policy shock series gMP

t of Wieland and Yang (2020) based on Romer and Romer (2004)
for the first three subsamples and a similar version of Bauer and Swanson (2022) for the
most recent subsample. Second, we consider the possibility of exogenous productivity
shocks through the inclusion of the updated interpolated utilization-adjusted TFP series
gTFP
t of Fernald (2014). And third, we account for commodity supply shocks by adding

percentage changes of the S&P GSCI Commodity Index gCOM
t to our data.

4.2 Estimation

We interpret the spillover constituent in the data as a VAR(1) model and infer connect-
edness from monthly cross-autocorrelations of gi,t . The higher frequency allows setting
the forecast horizon to 3 months, which corresponds to the (undirected) covariance
matrix of the quarterly data. This connection between monthly and quarterly frequen-
cies provides insights into the contagion within a quarter. In particular, Foerster, Sarte,
and Watson’s (2011) average pairwise correlations and aggregate shocks may be better
understood if we break up quarterly volatilities into three serially correlated monthly
volatilities. Hence, the central regression specification is as follows:

yt = μ+Ayt−1 +
12∑
l=0

Blxt−l + ut , ∀t = 1, � � � , T ,

yt = [g1,t , � � � , gN ,t ]
′,

xt =
[
gMP
t , gTFP

t , gCOM
t

]′
,

ut ∼ N (0, �).

While Foerster, Sarte, and Watson (2011) test hypotheses about correlations through
common factors, our framework aims to see correlations through the lens of intersec-
toral spillovers in A and �. Nevertheless, we include the factors xt in our analysis to
account for the original authors’ results concerning common variation. As control vari-
ables, they serve as a means to rule out that the estimated connectedness tables falsely
ground on common innovations that the literature has investigated as explanatory for
the Great Moderation.14

13See Figure D.1 in Appendix D for a visual display of the growth rates of IP on an aggregate level.
14Note that confirmatory factor analysis with observable factors aids us in answering our main research

question, whereas latent factor techniques like principal components would not allow to distinguish be-
tween factor narratives and the granular network story.
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Table 3. Summary of the model selection and with cross-validated hyperparameters. MSE is the
out-of-sample CV loss, denoted as a percentage of the respective unregularized candidate model
(OLS and sample covariance). AIC is the Akaike information criterion for the dynamic model fit
with scale 105. Panel A reports values for candidate models of the coefficient matrix and using
the sample covariance matrix as the innovation covariance matrix. OLS overfits, such that the
log-determinant of the residual covariance matrix is 0, yielding infinity in the AIC column. Panel
B contains the same comparison for the residual covariance matrix estimators.

MSE AIC

1972–1983 1984–1995 1996–2007 2008–2019 1972–2019

Panel A: Model selection for regression
OLS 100% 100% 100% 100% Inf
Elastic-Net 7.87% 7.40% 7.51% 6.74% 4.863
Adaptive Elastic-Net (OLS init.) 7.71% 7.34% 7.36% 6.58% 4.956
Adaptive Elastic-Net (ENet init.) 6.13% 6.12% 6.22% 5.33% 4.649

Panel B: Model selection for covariance matrix
Sample Covariance 100% 100% 100% 100% 4.649
GLASSO 99.70% 99.49% 99.56% 99.55% 4.592
Ledoit–Wolf 99.81% 99.85% 99.85% 99.80% 4.812
Adaptive Threshold 99.73% 99.51% 99.57% 99.58% 4.613

We regularize A, {Bl}12
l=0, and � with the techniques mentioned in the previous sec-

tions. Since the simulations did not point toward a consistent winner throughout all
settings, we validate all regularization methods on the data. Namely, we run a 12-fold
CV as in Section 2.3 to select the hyperparameters α and λNET in the regularized regres-
sions, and δ and η in the covariance estimation. Here, the best estimate of A from the
regression stage serves to obtain the residuals for the estimation of�. Note that although
the regression residuals are fed into the estimation of the covariance matrix, the two es-
timation steps are independent, such that sparsity can emerge at different positions in
the coefficient and covariance matrix. Then, similar to the model comparisons of Sims
and Zha (2006), we choose among the optimized candidate models based on Akaike’s
information criterion (AIC) over the full sample.15

Table 3 shows the out-of-sample MSEs and in-sample AICs for all optimized can-
didate estimators. First, Panel A reports the results for the regression stage of the esti-
mation. Unsurprisingly, the adaptive elastic-net with initial elastic-net weights domi-
nates all other estimation schemes. In our large-N-small-T setting, the OLS estimator
even overfits the data to an extend that the log-likelihood is not defined with the resid-
ual covariance matrix being noninvertible. Second, Panel B reports the same statistics
for the estimation of the residual covariance matrix after the first-step model selection.
Here, regularized estimation methods again consistently outperform the sample covari-
ance matrix in terms of MSE, while GLASSO provides the best model fit in terms of AIC

15As pointed out in Hurvich and Tsai (1989), AIC needs a second-order correction for small samples,
that is, the large-N-small-T setting we operate in. We explored robustness with respect to outcomes of a
corrected AIC as in Bedrick and Tsai (1994). More precisely, the correction term in the corrected AIC is
bigger for dense models such that the model selection criterion more clearly favors sparse models.
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Table 4. Comparison between static and dynamic model choices evaluated for the Akaike in-
formation criterion (AIC). Dynamic refers to the sample being split into four equally-sized sub-
samples 1972–1983, 1984–1995, 1996–2007, and 2008–2019, each of size T = 144. Static refers to
the full sample 1972–2019 with size T = 576. All modeling choices are 12-fold cross-validated
and the best predictor model is selected according to the methods described in the main text.
Values have scale 105.

A

AIC Static Dynamic

�
static 4.6900 4.6417
dynamic 4.6444 4.5920

throughout. For all subsequent analysis, we focus only on the selected estimator, that is,
the one that achieves the lowest AIC.16

Similar to Sims and Zha (2006), we additionally investigate whether the break in the
sample is due to the coefficient matrix A or to the contemporaneous matrix � in Ta-
ble 4. That is, we compare specifications that use static matrices estimated for the whole
sample from 1972 to 2019 instead of dynamically allowing them to change per subsam-
ple. Naturally, dynamic specifications achieve better goodness-of-fit, but AIC penalizes
them more strongly because of the higher use of degrees of freedom. Nevertheless, dy-
namic specifications for both A and � indeed improve the model quality. We see this
finding as support for a change in the coefficient as well as the covariance matrix with
the onset of the Great Moderation.

As structural identification of two-way causality in ut proves difficult in the presence
of high dimensionality, we rely on “generalized identification” to offer neutral insight
into the connectedness of variables. With the inclusion of all production sectors in yt
and potential sources of common variation in xt , the covariance of the innovation vec-
tor ut becomes more sparse. Thus, the generalized approach gets more precise at ap-
proximating exogenous variability such that the generalized-shock covariance matrix 

is indeed close to the identity. To support the hypothesis that we are not missing out on
significant sources of exogenous variations, we will additionally conduct a formal test
for 
 being statistically distinguishable from the identity matrix.

Finally, taking the estimates for A and � as inputs, we calculate the FEVDs with the
forecast horizon H = 3. We row-normalize DgH in (8) to show the percentage contribu-
tion to the variance. Additionally, we present key figures related to the network literature.
In particular, we use the same measures as Diebold and Yılmaz (2014): in-, out-, and av-
erage connectedness. These measures are defined as the row sum, column sum, and the
average row sum without the diagonal entries, respectively,17

Ci←·
(
DgH

) =
∑
j �=i
d
gH
ij (in-connectedness to i),

16Stone (1977) establishes the asymptotic equivalence of CV and AIC in terms of model choice.
17To facilitate intuition, we slightly deviate from the original authors’ terminology and use the terms in-

and out-connectedness for what they call from- and to-connectedness.
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C·←j

(
DgH

) =
∑
i �=j
d
gH
ij (out-connectedness from j),

C
(
DgH

) = 1
N

∑
i

∑
j �=i
d
gH
ij (average connectedness).

The former two measures are sector-specific measures, while the latter summarizes the
overall explanatory power of connectedness as the average amount of sectoral variation
that our model links to spillovers. Note that we are mainly interested in the distribution
of the outgoing spillovers of the sectors measured by the out-connectedness. Precisely,
if a handful of large sectors had a high out-connectedness, the volatility of those sectors’
IPs would not average out in the aggregate IP index.

4.3 Results

Table 5 shows selected estimation statistics for our main specification alongside other
levels of disaggregation for robustness. Two results on sectoral connectedness are ev-
ident in this table. First, the nonregularized version has a significantly higher average
connectedness and stays remarkably constant over the subsamples. That is, it does not
detect any change with the onset of the Great Moderation. In contrast, the regularized
versions capture a clear difference between the pre- and post-Great Moderation sub-
samples with average spillovers of 46.4%, 28.0%, 25.8%, and 25.4% at the three-digit
level, respectively. Second, the average results of the regularized versions are robust over
different levels of disaggregation. The nonregularized estimators, however, have higher
average connectedness when we increase the dimensions. This observation emphasizes
the need of regularization in this context and exemplifies the bias that can occur in
FEVDs (see Section 3).

Moreover, we want to emphasize the decreased usage of the degrees of freedom
of the regularized estimators in Table 5. That is, the regularized estimators optimally
choose to include only between 9.9% and 15.6% of the free parameters to fit the data.
We read this as a clear sign that standard methods overfit, failing to provide viable
insights. In particular, most of the drop in df usage stems from the coefficient ma-
trix A. Moreover, standard methods lead to a clear rejection of the null hypothesis
H0 : 
 = I, whereas regularized estimates cannot. That is, regularization methods are
able to recover the sparsity emerging from the large number of variables, such that the
generalized-shock covariance matrix
 is statistically not distinguishable from the iden-
tity. Finally, we report partial R2 coefficients for the competing explanations. In our reg-
ularized specifications, the factors are able to explain 5% to 16.9% of the variation with
almost no change between the first and second subsamples, but a visible increase in the
most recent episode. Complementary, spillovers capture 25% to 40.3% of the nonfactor
variation in the first subsample with a decrease of approximately 10 percentage points
post-1984. This result is robust at all levels of disaggregation. For the remainder of our
analysis, we focus again on the three-digit sectoral disaggregation data with 88 sectors.

To give a holistic view of the network, we summarize the estimated row-normalized
connectedness tables in Figure 4. From eye-balling, it is evident that the network sig-
nificantly changed after 1984. Whereas the pre-Great Moderation subsample shows
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Table 5. Summary of the estimation results for different levels of sectoral disaggregation. The
rows labeled C(DgH ) show the estimated average connectedness. Rows denoted partial R2 re-
port the partial coefficients of determination for the factor loadings and the spillovers weighted
by sectoral weight. The row labeled df additionally indicates the nonzero values in the autore-
gression coefficient matrix A and the covariance matrix � together, corresponding to the total
degrees of freedom. The row labeled LW test displays the p-value of testing the null hypothesis of
the generalized innovation covariance matrix being equal to the identityH0 :
= I using Ledoit
and Wolf’s (2002) test statistic (see Appendix C).

Standard Regularized

1972–
1983

1984–
1995

1996–
2007

2008–
2019

1972–
1983

1984–
1995

1996–
2007

2008–
2019

Three-digit (88 sectors)
C(DgH ) 93.9% 94.3% 93.6% 93.3% 46.4% 28.0% 25.8% 25.4%
df (A) 11264 11264 11264 11264 1520 848 840 1185
df (�) 3916 3916 3916 3916 849 668 802 840
LW test (p-value) 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
Partial R2 (Factors) 93.6% 93.6% 94.9% 95.4% 8.6% 6.0% 6.6% 12.4%
Partial R2 (Spillovers) 95.6% 95.3% 96.0% 96.3% 35.3% 23.8% 23.3% 28.6%

Two-digit (26 sectors)
C(DgH ) 61.5% 55.3% 52.3% 54.5% 41.8% 36.4% 21.4% 29.5%
df (A) 1716 1716 1716 1716 302 221 210 346
df (�) 351 351 351 351 155 227 124 178
LW test (p-value) 0.00 0.00 0.00 0.00 0.70 0.50 1.00 1.00
Partial R2 (Factors) 43.8% 40.3% 46.7% 51.5% 8.6% 9.8% 8.8% 16.9%
Partial R2 (Spillovers) 51.3% 42.3% 44.7% 54.1% 25.0% 15.6% 16.9% 22.2%

Four-digit (117 sectors)
C(DgH ) 99.1% 99.1% 99.1% 99.4% 41.4% 31.9% 28.9% 27.0%
df (A) 18369 18369 18369 18369 2089 1128 1395 1724
df (�) 6903 6903 6903 6903 1059 1160 1342 1178
LW test (p-value) 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
Partial R2 (Factors) 100% 100% 100% 100% 7.4% 5.0% 6.9% 12.2%
Partial R2 (Spillovers) 100% 100% 100% 100% 38.0% 25.8% 29.7% 31.2%

Five-digit (138 sectors)
C(DgH ) 99.3% 99.4% 99.2% 99.2% 43.3% 33.5% 30.9% 27.6%
df (A) 24564 24564 24564 24564 2555 1638 1927 2313
df (�) 9591 9591 9591 9591 3883 2587 2962 2623
LW test (p-value) 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
Partial R2 (Factors) 100% 100% 100% 100% 6.9% 5.6% 7.2% 12.4%
Partial R2 (Spillovers) 100% 100% 100% 100% 40.3% 29.6% 32.9% 35.8%

a closely connected graph with a handful of powerful nodes in the center, the three
consecutive subsamples have more widespread graphs with less concentration and
lower average connectedness C(DgH ).18 For deeper insights, we investigate the sectoral
in- and out-connectedness. As mentioned earlier, a plausible explanation for the high
volatility in the aggregate index is that a handful of sectors spilled a lot of volatility be-

18In Appendix D, the corresponding nonregularized estimates (Figure D.4) fail to provide similar insight.
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Figure 4. Connectedness networks for the respective periods. The force-directed graph draw-
ing algorithm arranges the nodes. That is, two nodes appear closer in the graph if they have
stronger connections to each other. Although we initialize the subgraphs on the same scale, the
algorithm cannot guarantee that the graphs are comparable in size. The size of the node relates
to the respective average weight w̄i,t of the sector in the IP index. The colors depict the out-con-
nectedness. For the sake of the visualization, we cap the color scale at 1. The sectors with the
highest out-connectedness are labeled.

fore the Great Moderation and decreased contributions afterwards. As a first observation
from Figure 4, large values for out-connectedness (lighter nodes) become less frequent
after 1984.

Although more spillovers do not necessarily result in higher aggregate volatil-
ity, the root may be in the concentration of outgoing spillovers. In that regard, out-
connectedness measures how much a single sector’s volatility explains the volatility of
all other sectors. If a handful of sectors have high levels of out-connectedness, then their
volatility determines the volatility of other sectors to a large extent. Consequently, the
volatility of the aggregate IP index is also indirectly affected by innovations to those sec-
tors and their shocks do not average out.

Figure 5 displays the complementary cumulative distribution functions (CCDFs) of
the out-connectedness measure for the four subsamples. Notably, the distribution in
the pre-Great Moderation subsample from 1972 to 1983 shows a characteristic bump
for approximately half of the sectors with high levels of out-connectedness and expands
much further to the right than in subsequent subsamples. The pronounced right tail for
this subsample is an indication of a heightened network concentration, supporting the
hypothesis of network-induced underdiversification of the aggregate IP index. Roughly
10% of the sectors have an out-connectedness higher than 1, meaning that each explains
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Figure 5. Estimated complementary cumulative distribution functions (CCDFs) of the out–
connectedness of the 88 three-digit-level sectors. This function is the equivalent to survival func-
tions in the time domain.

more than 100% of the volatility of the other sectors in total.19 Therefore, their shock
volatilities would show up more than twofold in an aggregate index with equal weights
and variances. Finally, the fat tail mostly disappears with the Great Moderation, that is,
the subsamples after 1983 have more diversified production networks.

Figure 6 tracks the dynamics of the out-connectedness for individual sectors. Sec-
tors above the 45◦ line have decreased their effect on other sectors and vice versa. The
shift in distribution is immediately evident as most sectors appear in the top left of
the graph. However, this graph clearly shows a strong decrease for a number of sec-
tors (above the diagonal), whereas for the majority of sectors the out-connectedness
stays relatively constant (close to the diagonal). Remarkably, it seems that only a few
sectors increased in out-connectedness (below the diagonal). Overall, we observe a shift
of impactful sectors to less systemically relevant positions in the network. This finding
supports the hypothesis of structural change as a contributor to the Great Moderation.
Focusing on the sectors with the biggest drops in out-connectedness, we see mainly in-
termediate goods sectors that use outputs from and provide inputs to other sectors. As
sectoral input–output relations have unlikely ceased, this observation gives rise to the
idea that sectors were less exposed to disruptions in down or upstream sectors.

These findings connect to a strand of literature on inventory-based explanations of
the Great Moderation (see Kahn, McConnell, and Perez-Quiros (2002), Summers et al.
(2005), Davis and Kahn (2008)). In this literature, the adoption of improved inventory
management techniques and information technology has led to a reduction in supply
chain disruptions, effectively leading to a decrease in output volatility. Davis and Kahn

19Supporting histograms of the in- and out-connectedness measures (Figures D.5 and D.7) are available
in Appendix D. Here, the 25% strongest sectors by pre-Great Moderation out-connectedness increasingly
blend into the distribution in subsequent subsamples.
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Figure 6. Out-connectedness scatter plot of the 88 three-digit-level sectors pre- versus post-
Great Moderation. Each dot in the plot corresponds to a sector, with the position along the y-
and x-axes according to their out-connectedness before and after the Great Moderation, respec-
tively. The sizes of the markers correspond to the weight of the sectors in the IP index. The colors
show how far away the sectors are from the diagonal line, that is, how much their out-connect-
edness changed relative to the pre-Great Moderation subsample. The sectors with the largest
decreases and increases in out-connectedness are labeled.

(2008) argue that, before the Great Moderation, firms carry higher stocks of inventory to
avoid foregone profits in times of uncertain demand. With the onset of the Great Mod-
eration, the average inventories-to-shipments ratio has dropped significantly. To under-
stand how this affected output volatility, consider, for example, an adverse and persis-
tent demand shock. With higher inventories, firms not only are stuck with excess inven-
tories, but also face reduced sales forecasts due to the persistence of the shock. Thus,
large inventory holdings amplify production volatility as firms reduce their production
by more than the size of the demand shock—a phenomenon the operations research
literature knows as the “bullwhip effect” (see Forrester (1961), Lee, Padmanabhan, and
Whang (1997)). The amplification of demand shocks may contribute to excessively low
demand in input-supplying sectors, and thus, intensify input–output dependencies.

Empirically, Chen, Frank, and Wu (2005) document a strong decline in inventories
of US manufacturing companies from 1981, and Bray and Mendelson (2012) provide
evidence that the amplifying effect of supply chains has faded between 1974 and 2008.
To validate the connection of our findings to sectoral inventories, we run a regression
attempting to explain the changes in out-connectedness with percentage changes in
inventories-to-shipments ratios. A stronger adaptation to new inventory management
standards should coincide with a stronger change in out-connectedness. In Appendix D,
Figure D.8 shows the relation between the change in inventories-to-shipments ratio to
the change in out-connectedness. We observe a clear positive relationship with a p-value
around 1%. Paired with the preceding analysis, this observation suggests that previously
influential sectors profited more from improved inventory management.

In addition to sectoral out-connectedness, the distribution of in-connectedness may
have played a critical role in the structural change that emerged during the Great Mod-
eration. However, we find its role in amplifying volatility to be ambiguous because of two
channels. First, big values of in-connectedness make it more likely that a small sector’s
volatility spills over to sectors with bigger weights. That is, if we see a handful of sectors
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with large weights having very strong in-connectedness, the spillovers might skew the
weighting scheme of the aggregate index toward smaller and more volatile sectors. Sec-
ond, higher values of in-connectedness signify a higher degree of diversification, which
in return would wash out the intrinsic volatility contribution. Paired with an unfortu-
nate distribution of weights—for example, sectors with big weights might have received
more spillovers after 1984—this could lead to more diversification after the Great Moder-
ation. Both channels are in line with the argument of Gabaix (2011) that a small number
of constituents with large index weights can explain aggregate shocks. We analyze both
conjectures in Figures D.5 and D.6 in Appendix D, respectively, but do not find support
for any of the aforementioned.

Next, we want to understand how the full network structure affected aggregate in-
dex volatility and how individual sectors contributed to the aggregate. From the ag-
gregate index representation gt = ∑N

i=1wi,tgi,t , one estimate of the IP index variance is

σ̂2
IP = w̄′�̂gw̄, where w̄ is a vector of average weights in the respective subsample, and �̂g

is a covariance estimate of the index constituents. Similar to the generalized impulse re-
sponse function, we investigate the response of gi,t to innovations in other sectors uj,t−k
for k≥ 0. This way we can trace back variations of the weighted index to its originating
sector. We use the H = 12 period sum of all sectors’ covariances to the innovation vec-
tor, IRV(H ) = ∑H−1

h=0 �h� = ∑H−1
h=0 cov(yt , ut−h ). We denote this term as the innovation

response variance (IRV), and define the vector vgran
·→IP as the sectoral variance contribu-

tions to the model-implied aggregate IP index:

v
gran
·→IP = w̄·2′

IRV(H ) and vgran := vH·→IP1, (17)

where w̄·2. is a vector of squared average weights in the respective period, that is, its di-
rect weight in the aggregate index variance. This representation is particularly appealing
as, for example, entry i, j in the IRV matrix shows the response of sector i to innovations
happening in sector j. By multiplying the IRV with the squared weights, we see the ef-
fect of a sector on the aggregate index. In our framework, the IRV is complemented by
the factor response variance FRV(H ) = ∑H−1

h=0 �hB�fB
′ = ∑H−1

h=0 cov(yt , Bft−h ). Analo-
gously, the vector of sectoral contributions to the index variance induced by reactions to
factor innovations is vf = w̄·2′

FRV(H )1.
For additional insights into the channels through which granular innovations and

factor innovations contributed to the index, we further decompose the IRV representa-
tion into intrinsic and extrinsic components, where the latter comprises the entirety of
spillover contributions. Similarly, we separate the contemporaneous and lagged chan-
nels for the IRV, and the direct and indirect components for the FRV as potential drivers
of the Great Moderation in our analysis.

Table 6 documents the contributions of multiple components to variations of the
aggregate index. First, we confirm that the aggregate variations implied by our model,
vagg, follows the evolution of the data variance, vIP. While the estimated factor contri-
butions vf show little impact on the overall responses to innovations, the granular con-
tributions vgran explain the major part of the aggregate variance in our model. That is,
our model attributes most variance contributions to granular innovations. A further de-
composition into an intrinsic component, vIC, and an extrinsic component, vEC, reveals
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Table 6. Decomposition of variance contributions by channels for H = 12. 1 denotes the one
vector of respective size. Aggregate responses provide an approximation of the variance of the ag-
gregate IP index via innovation response variances. Factor innovations and granular innovations
have direct/intrinsic effects through their own variance and indirect/extrinsic effects through
intersectoral linkages on index constituents. The contemporaneous spillover contribution com-
prises all variations within the same period, and the lagged component consists of all responses
happening via the autoregressive coefficients.

1972–1983 1984–1995 1996–2007 2008–2019

Data variance vIP = var(gt ) 148.1 34.7 36.8 87.4
Aggregate response vagg = vf + vgran 149.1 23.5 25.9 85.0
Factor Contributions vf = w̄·2′

FRV 1 11.7 1.1 −0.1 17.8
of which direct vfDir = w̄·2′

B�fB
′1 2.7 1.0 −0.1 10.9

of which indirect vfInd = vf − vfDir 9.0 0.1 0.0 7.0
Granular Contributions vgran = w̄·2′

IRV 1 137.4 22.4 26.0 67.1
of which intrinsic vIC = w̄·2′

diag(IRV)1 16.7 9.4 12.1 17.1
of which extrinsic vEC = vgran − vIC 120.7 13.0 13.8 50.0
of which contemp. vcont. = w̄·2′

�1 54.5 19.7 21.0 33.7
of which lagged vlag = vgran − vcont. 82.9 2.6 5.0 33.4

Extrinsic Share vEC/vagg 0.81 0.55 0.53 0.59
Lagged Share vlag/vagg 0.56 0.11 0.19 0.39

the weakening of the spillover network as the main driver of the decline in granular con-
tributions. Similarly, strong changes happen in the lagged transmission channel as op-
posed to contemporaneous reactions, refuting the narrative of aggregate shocks as the
main explanation for the Great Moderation. On the other hand, returning to the narra-
tives of Kahn, McConnell, and Perez-Quiros (2002), Summers et al. (2005), and Davis and
Kahn (2008), the decline in extrinsic and lagged contributions is consistent with the idea
that advances in transportation, supply and distribution networks, inventory manage-
ment, and sales forecasting related to new information technologies have streamlined
intersectoral dependencies, and thus, have reduced the volatility of individual sectors.
Overall, there is a considerable share of the decline in aggregate volatility that our model
attributes to the weakening of the spillover network, remarkably after adjusting for com-
mon factor-based explanations. Hence, our findings suggest that structural change of
the network contributed to the Great Moderation.

Lastly, we care about single-sector contributions via the IRV in (17). To do so, Fig-
ure 7 tracks the sectors’ contributions to aggregate variations over the four subsamples.
We place the sectors with the highest contributions at the bottom and vice versa. In
brackets, we show the percentage of the sectors’ contributions via the extrinsic channel
as in Table 6:

v
gran
·→IP = w̄·2′

diag
(
IRV(H )

)︸ ︷︷ ︸
intrinsic component

+ w̄·2′[
IRV(H ) − diag

(
IRV(H )

)]︸ ︷︷ ︸
extrinsic component

. (18)

For example, a value of 73% signifies that 73% of the estimated contributions come via
estimated spillovers; or in other words, the network noticeably amplifies the sector’s rel-
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Figure 7. Bump chart of sectoral contributions to the variation of the aggregate IP index. Con-
tributions are calculated as in (17). Data includes IP indices for 88 three-digit-level sectors. Ad-
jacent sectors are in similar colors. The top contributors per subsample are labeled. Values in
brackets correspond to the extrinsic component of the contribution. For example, the value of
the Motor Vehicles sector in the first subsample states that 73% of this sector’s contribution is
due to spillovers (extrinsic) to other sectors and 27% is due to its intrinsic component.

evance in the aggregate index. Complementarily, Appendix D presents figures for the
intrinsic (Figure D.10) and extrinsic (Figure D.9) contributions separately.

First, note that with the Great Moderation, total contributions decrease sharply and
relative contributions of individual sectors vary in importance. While the Motor Vehi-
cles sector is the strongest contributor due to its size and outgoing linkages, the Coal
Mining sector’s effect on the aggregate is relatively small due to lower spillovers of its
large intrinsic variation documented in Figure D.10.20 In contrast to Foerster, Sarte, and
Watson’s (2011) narrative that metal-related industries are well explained by common
factors, our analysis shows that downstream sectors related to the metal industry ex-
hibit strong contributions in the form of spillovers. This finding is consistent with the
idea of shocks propagating upstream, for example, the amplification of demand shocks
through excessive inventory holdings. Considering that heavy industries are still among
the most influential sectors after 1984 (compare Figure 7) with nearly unchanged intrin-
sic contributions, we reckon that macroeconomic shocks and sectoral innovations alone
do not suffice to explain the decline in aggregate volatility. Instead, structural change in
the form of improvements to inventory management, supply chains, and information
technology offers a plausible narrative for the less volatile industrial output. Despite the

20High volatility before the Great Moderation in the Coal Mining sector mainly stems from the strikes in
1974, 1977–1978, and 1981.
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partial increase in spillover contributions in the 2008 to 2019 subsample (compare Fig-
ure D.9 in Appendix D), there is no strong indication for a reversal of the Great Moder-
ation’s structural change. High intrinsic and common-factor contributions surrounding
the Great Recession tell a more convincing story than a return of the strong spillovers.

Throughout the application, two principal findings stand out and repeat in various
analyses. First, we document a sharp decline in network connectedness after 1984 in Ta-
ble 5, which also shows in many visualizations such as Figures 4, 6, and 7. As illustrated
in Figure 5, our evidence suggests that outgoing links have weakened considerably. A
decomposition of aggregate variance in Table 6 shows that the importance of spillover
effects has particularly faded with the Great Moderation. Second, we find that sectors
demanding inputs from other sectors are among those that reduced their outgoing links
the most, which is visible in Figures 6 and 7. We see this result as indication that supply
chain improvements have played an important role with the onset of the Great Modera-
tion. More precisely, improvements to inventory management offer a potential explana-
tion as they deter demand shocks from propagating upstream (see Figure D.8). Finally,
we find no substantial evidence that a revival of sectoral spillovers drove the temporary
increase in production volatility around the Great Recession.

Our results provide novel insights into the changes observable during the Great
Moderation. Foerster, Sarte, and Watson (2011) emphasize that the decrease in aggre-
gate variance is not due to some sectors but is rooted instead in the change of aggre-
gate shocks; that is, shocks to multiple sectors at once. In contrast, our analysis reveals
that changes in the propagation of sector-specific shocks may have contributed largely
to the decline in aggregate variance. Put differently, a sector contributes to the aggre-
gate variance not only via its index weight, but also via the spillover effects it has on
other constituents. Such a reduction in spillovers supports the granular hypothesis of
Gabaix (2011) and its network refinement in Acemoglu et al. (2012). Further, we conjec-
ture that improved inventory management structurally changed the spillover network
such that its amplifying effect subsided. Thus, our findings offer a unifying perspective
to the opposing explanations of Foerster, Sarte, and Watson (2011) and Gabaix (2011)
by connecting their narratives to the inventory-based explanations of Kahn, McConnell,
and Perez-Quiros (2002), Summers et al. (2005), and Davis and Kahn (2008).

5. Conclusions

In this paper, we investigate the estimation of high-dimensional connectedness tables
via vector autoregressive models. In a simulation study, we compare different regular-
ization methods for the coefficient and the covariance matrix. We evaluate their per-
formance in the estimation of FEVDs and find that the regularization of both matrices
improves bias and variance. Since there is no one-fits-all estimator in our simulations,
we suggest validating the estimators through cross-validation in practice.

In an application to US industrial production, we are able to uncover changes in
the structure of the intersectoral spillover network around the Great Moderation. Our
results support the notion that receding network effects have largely aided the decline in
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aggregate variance by decreasing the influence of granular innovations. Specifically, the
outgoing spillovers of downstream sectors before the Great Moderation was unmatched
thereafter, suggesting that supply chains and inventory management may be important
drivers of the structural change behind the Great Moderation.

Finally, we would like to attempt to extrapolate our findings to the current macroe-
conomic environment. With the COVID-19 pandemic, disruptions in the production
process due to supply chain bottlenecks and rapid changes in the consumer product
demand have rendered lean inventory management less effective, such that many firms
adapted safeguard inventories. Although it is too early to draw conclusions due to the
lack of sufficient data, we conjecture that persistent supply chain issues and high in-
ventory levels may again result in a strengthening of the sectoral spillover network,
heralding a period of heightened macroeconomic volatility. Therefore, we encourage
future research to pick up on the narrative of supply shortages and changes in inven-
tories to explain the volatile macroeconomic environment since the onset of the pan-
demic.
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