
Aristodemou, Eleni; Rosen, Adam M.

Article

A discrete choice model for partially ordered alternatives

Quantitative Economics

Provided in Cooperation with:
The Econometric Society

Suggested Citation: Aristodemou, Eleni; Rosen, Adam M. (2022) : A discrete choice model for partially
ordered alternatives, Quantitative Economics, ISSN 1759-7331, The Econometric Society, New
Haven, CT, Vol. 13, Iss. 3, pp. 863-906,
https://doi.org/10.3982/QE1497

This Version is available at:
https://hdl.handle.net/10419/296290

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3982/QE1497%0A
https://hdl.handle.net/10419/296290
https://creativecommons.org/licenses/by-nc/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Quantitative Economics 13 (2022), 863–906 1759-7331/20220863

A discrete choice model for partially ordered alternatives

Eleni Aristodemou
Department of Economics, University of Cyprus

Adam M. Rosen
Department of Economics, Duke University, CeMMAP, and Institute for Fiscal Studies

In this paper, we analyze a discrete choice model for partially ordered alternatives.

The alternatives are differentiated along two dimensions: the first an unordered

“horizontal” dimension, and the second an ordered “vertical” dimension. The

model can be used in circumstances in which individuals choose among prod-

ucts of different brands, wherein each brand offers an ordered choice menu, for

example, by offering products of varying quality. The unordered–ordered nature of

the discrete choice problem is used to characterize the identified set of model pa-

rameters. Following an initial nonparametric analysis that relies on shape restric-

tions inherent in the ordered dimension of the problem, we then provide a spe-

cialized analysis for parametric specifications that generalize common ordered

choice models. We characterize conditional choice probabilities as a function of

model primitives with particular analysis focusing on cases in which unobserv-

able taste for quality of each brand offering is multivariate normally distributed.

We provide explicit formulae used for estimation and inference via maximum like-

lihood, and we consider inference based on Wald and quasi-likelihood ratio statis-

tics, the latter of which can be robust to a possible lack of point identification. An

empirical illustration is conducted using data on razor blade purchases in which

each brand has product offerings vertically differentiated by quality.
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1. Introduction

In this paper, we study a discrete choice model in which alternatives are distinguished
by two dimensions. The alternatives are first horizontally differentiated according to one
of a number of unordered categories. In the context of a consumer choice problem, the
alternatives could be products differentiated by brands b = 1, � � � , b̄. Within each such
category, alternatives are vertically differentiated by quality y = 1, 2, � � � , yb. Individuals
are assumed to have ordered preferences over the vertical quality dimension, within
each horizontally differentiated category, but preferences across horizontal categories
are unordered.

There are several real-world examples of product markets that feature multiple firms
competing to sell vertically differentiated alternatives to consumers. For example, air-
lines sell seat tickets for routes that are vertically differentiated by travel class. Cable and
streaming television packages offered by different providers are often vertically differen-
tiated, with more expensive offerings providing more viewing options or live channels.
Cellular phone providers offer vertically differentiated data and cellular plans. Compet-
ing ride-share companies offer regular and premium transportation services. Automo-
bile dealers sell quality differentiated cars, for example, luxury versus economy, offered
by horizontally differentiated manufacturers. These can all lead to the type of vertically
and horizontally differentiated choice menus that our model aims to capture.

As initially set out by McFadden (1974), and as is now standard in the discrete choice
literature, we assume that each consumer chooses the brand-quality combination that
maximizes her latent utility. Our model differs from standard models of discrete choice
by explicitly incorporating both the horizontal and vertical dimensions of differentia-
tion. Models that consider choice among unordered discrete alternatives, such as those
of McFadden (1974) and Hausman and Wise (1978), allow for horizontal differentiation
by brand but do not incorporate vertical differentiation. Models for choice among to-
tally ordered alternatives can be used to estimate demand for vertically differentiated
products, as in Bresnahan (1987). Nested choice models such as that of Goldberg (1995)
allow flexible substitution patterns across nests, but feature unordered (e.g., logit) dif-
ferentiation within nests.

Our goal here is to combine features of models for ordered and unordered choice
in order to incorporate both horizontal and vertical aspects of differentiation. Relative
to existing methods, this approach allows the model to reflect the unordered–ordered
nature of the choice problem when both kinds of differentiation are present. This may
be useful for accurately estimating important features of substitution patterns in such
scenarios.

A related line of research, and an important area of potential application, is the mod-
eling of consumer choice in oligopoly markets in which competing firms each offer ver-
tically differentiated products. Some empirical work in this area includes Davies, Wad-
dams, and Wilson (2009) and Song (2015). Davies, Waddams, and Wilson (2009) focus
on two-part tariffs and bundling in the British gas and electricity markets, and use lin-
ear panel data regression and instrumental variables to investigate whether the mar-
ket operates in accord with economic theory. Song (2015) develops an explicit model of
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consumer demand for vertically and horizontally differentiated products, but our model
and Song’s model are quite distinct and suited for different contexts. Song’s (2015) model
is a hybrid of those of Berry, Levinsohn, and Pakes (1995) and Berry and Pakes (2007)
and is well suited to settings where products span multiple markets. Moreover, Song
(2015) models demand for attributes in characteristics space, and is thus capable of han-
dling a large product space. Our model is instead focused at the consumer level, requir-
ing individual-specific choice data, and is best suited to competition among relatively
few brands, or firms, with vertically differentiated product offerings, where demand de-
pends on individual characteristics as well as on product attributes.

In our model, if attention is restricted to any single brand b, the quality of the utility-
maximizing option offered by that brand for a given consumer is determined by a stan-
dard ordered choice structure. That is, the shape of the latent utility function results in
an ordered choice model, for example, ordered probit or logit, when consumers’ choices
are restricted to brand b. From a modeling standpoint, this can be used to recover an in-
direct utility function for each brand b. The solution to the problem of choosing the best
brand-quality offering from among all products can then be recovered as the brand that
maximizes the indirect utility function, and the quality level that maximizes the corre-
sponding brand-specific utility.

The structure of the problem is thus analogous to that of the mixed discrete-
continuous choice model of Dubin and McFadden (1984). However, due to the discrete
nature of both dimensions of choice, one cannot use differential arguments and in par-
ticular Roy’s identity to characterize the optimal choice of either dimension. Nonethe-
less, the model is complete in that conditional on any value of the exogenous variables,
there is a unique solution to the consumer choice problem with probability one. This is
because the model is for a single-agent decision problem, rather than a simultaneous
move game with strategic interactions and multiple equilibria, as encountered for in-
stance in the simultaneous equations model for ordered actions considered by Aradillas-
Lopez and Rosen (2022).

The paper proceeds as follows. In Section 2, we lay out our econometric model for a
partially ordered response in its most general form, providing shape restrictions on indi-
viduals’ underlying utility functions that deliver the within-brand ordered choice struc-
ture. In Section 3, we characterize conditional choice probabilities (CCPs) and provide
identification analysis. The most general formulation of these restrictions offers mini-
mal requirements for this structure but will in general yield set identification, where the
identified set of model primitives can be characterized as the set of maximizers of the ex-
pected log-likelihood. In Section 4, we consider additional parametric restrictions that
preserve the unordered–ordered nature of the underlying choice problem. These lend
tractability to the log-likelihood and narrow the size of the identified set, and may result
in point identification. Section 5 develops a tractable characterization of CCPs in a para-
metric partially ordered probit model with two brands, each having two quality tiers,
as encountered in our application. This characterization aids in computation, as it can
be used to avoid simulation or explicit numerical integration for computing CCPs. Sec-
tion 6 presents an application to the market for women’s razor blades using consumer
data from Britain in the early 2000s. Here, we describe our empirical implementation
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and present confidence intervals employing both Wald and QLR tests, the latter hav-
ing been shown to be robust to partial identification by Chen, Christensen, and Tamer
(2018) under certain conditions not formally verified here.1 Section 7 concludes. Addi-
tional material is provided in the Appendices and in the Online Supplementary Material
(Aristodemou and Rosen (2022)), as referenced in the paper. Proofs of propositions and
theorems are provided in Appendix A.

2. The model

Each individual in the population is characterized by observables (Y , B, Z ) and an un-
observable vector V . It is assumed that each individual chooses either an ordered al-
ternative Y ∈ Yb ≡ {1, � � � , ȳb} of some type B ∈ B ≡ {1, � � � , b̄}, or an outside alternative
denoted by (B, Y ) = (0, 0). The set MBY ≡ {(b, y ) : b ∈ B, y ∈ Yb} ∪ {(0, 0)} denotes the
joint support of (B, Y ). The set Z denotes the support of observable covariates Z, such
as individual characteristics. The vector V ≡ (V1, � � � , Vb̄ )′ ∈ R

b̄ represents unobserved
heterogeneity that affects individuals’ preferences, where Vb denotes the bth component
of V . The distribution of V is denoted G(·) so that for any set V ⊆R

b̄, G(V ) ≡ P[V ∈ V ].
The utility obtained by an individual with covariates z and unobservable v from any

choice (b, y ) ∈ MBY is given by

Uby ≡ u(b, y, z, vb ) if (b, y ) �= (0, 0), U00 ≡ 0, (2.1)

where u(b, y, z, vb ) is strictly increasing in vb for each (b, y, z) and the utility from the
outside alternative is normalized to zero.

We assume that each individual chooses the alternative that maximizes her utility.2

For any b ∈ B, define Ȳb ≡ Yb ∪ {0} and Ub0 ≡ 0, and let

U∗
b ≡ max

y∈Ȳb

Uby , Y ∗
b ≡ argmax

y∈Ȳb

Uby ,

denote the indirect utility and optimal choice of Y , respectively, if the individual’s alter-
natives were limited to only those of type b or the outside alternative. The structure of the
model will be such that for any fixed b, the choice of the ordered outcome Y produces
a standard model of ordered response, in the sense that this choice is weakly increasing
in Vb. For example, if Vb is normally distributed, independent of Z, and the consumer
may only purchase from brand b, then we have an ordered probit model. A consumer
who has the option to choose any quality level from any brand then chooses

B = 1
[
max
b∈B

U∗
b > 0

]
· argmax

b∈B
U∗
b , Y = 1

[
max
b∈B

U∗
b > 0

]
·Y ∗

B. (2.2)

1Further results on the distribution of likelihood ratio statistics when point identification fails include
those of Liu and Shao (2003) for parametric likelihood models and Chen, Tamer, and Torgovitsky (2011) for
semiparametric models.

2Under Restriction A3 below, ties in the utility obtained from different alternatives occur with zero prob-
ability conditional on any realization of z. How ties are handled is therefore of no consequence in the de-
termination of conditional choice probabilities, but to simplify notation we adopt the convention that if
alternatives (b, y ) and (b, y ′ ), y < y ′, achieve the same utility, then (b, y ) is chosen, and if (b, y ) �= (b′, y ′ ),
b < b′ achieve the same utility, then (b′, y ′ ) is chosen.
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Restriction A1 (Probability space). (B, Y , Z, V ) are defined on a probability space
(�, F , P), where F contains the Borel sets. The support of (Z, V ) is Z × R

b̄, where Z
is a lattice, and the support of (B, Y ) is MBY ≡ {(b, y ) : b ∈ B, y ∈ Yb} ∪ {(0, 0)}.

Restriction A2 (Identification of f 0
z (b, y )). For each value z ∈ Z , there is a proper con-

ditional distribution of (B, Y ) given Z = z and f 0
z (b, y ) ≡ P[(B, Y ) = (b, y )|Z = z] is point

identified over the support of (B, Y ) for almost every z ∈ Z .

Restriction A3 (Distribution of unobserved heterogeneity). The distribution of V is
absolutely continuous with respect to Lebesgue measure with everywhere positive den-
sity on R

b̄.

Restriction A4 (Independence). Z and V are stochastically independent.

Restriction A5 (Admissible structures). Structure S ≡ (u, G) belongs to a known col-
lection S of pairs of utility functions and distributions of unobserved heterogeneity,
(u, G).

Restriction A6 (Utility maximization). Given (Z, V ), (B, Y ) are chosen to maxi-
mize u(B, Y , Z, VB ), where u belongs to a known class of functions U satisfying (i)
u(0, 0, z, vb ) = 0 for all (z, vb ), (ii) for all (b, y ) �= (0, 0) and all z, u(b, y, z, vb ) is strictly
increasing and continuous in vb, and (iii) for each (b, z) ∈ B × Z , {u(b, y, z, vb ) : vb ∈ R}
satisfies the single-crossing property in (y, vb ), namely that if v′

b > vb and y ′ > y, then

u
(
b, y ′, z, vb

)− u(b, y, z, vb ) ≥ (>)0 ⇒ u
(
b, y ′, z, v′

b

)− u
(
b, y, z, v′

b

)≥ (>)0.

Restrictions A1–A3 are standard. Restriction A1 defines the underlying probability
space and notation for the support of random variables (B, Y , Z, V ). Restriction A2 stip-
ulates that the conditional distribution of (B, Y ) given covariates z is point identified for
almost every z ∈ Z , as is the case for example under random sampling. Restriction A3 re-
quires that unobserved heterogeneity V is absolutely continuously distributed with full
support in Euclidean space.

Restriction A4 imposes independence of Z and V . This is an important restriction.
If Z includes prices, then it requires that prices are exogenous, ruling out the possibility
that unobserved components of individual utility are correlated with prices. This could
be violated if different sellers offer different prices for the products being sold and if
some individuals choose where to shop based on these prices. This assumption may
still be appropriate, however, if the price of the product makes up only a small fraction
of total expenditure—as is the case in our application to razor blade purchases—such
that individuals are unlikely to choose where to shop for a basket of many goods (e.g.,
groceries and household products) based on this one product’s price. In applications
with individual level variation in which prices are thought to be endogenous, one could
instead use an instrumental variable approach applicable to models of discrete choice
such as those of Chesher, Rosen, and Smolinski (2013) and Chesher and Rosen (2017).
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This precludes the likelihood approach to inference employed here, resulting in mo-
ment inequality characterizations of identified sets, such as those used in applications
to IV models for ordered response and models of interdependent binary outcomes in
Chesher, Rosen, and Siddique (2019) and Chesher and Rosen (2020), respectively.

Restriction A5 defines a structure S as a utility function and distribution of unob-
served heterogeneity, assumed to belong to some class of admissible pairs S . Note that
any given structure S gives rise to a collection of conditional distributions f 0

z (b, y ) for
almost every z ∈ Z . The identification problem is to determine the set of structures that
can generate the observed distributions f 0

z (b, y ). The set of structures S admitted by the
model can be restricted to a parametric, semiparametric, or nonparametric class.

The underlying structure S maps to conditional distributions f 0
z (b, y ) through the

specification of the individual choice problem. Restriction A6 specifies that individu-
als choose (B, Y ) to maximize utility u(B, Y , Z, VB ), on which we impose some condi-
tions. First, the specification (2.1) requires that there is a single, separate component
of unobserved heterogeneity for each brand b, and through Restriction A6(ii) that util-
ity from each product of this brand is weakly increasing in the associated unobserv-
able. The components of V may, however, be jointly dependent, allowing for potential
correlation across brand preferences, and quality tastes across brands. With Restriction
A6(i), we normalize the utility from the outside option to zero. Restriction A6(iii) requires
that the utility function satisfies the single-crossing property in (y, vb ). By Milgrom and
Shannon (1994) Theorem 4, this guarantees that for all consumers and all b ∈ B, the op-
timal choice within brand b, Y ∗

b , is nondecreasing in vb, so that quality choice within
any brand b assumes the structure of an ordered choice problem. Thus, this restric-
tion ensures the alternatives are partially ordered, because there is an ordered response
structure to the choice problem within (but not across) brands. The following section
provides a characterization of conditional choice probabilities and subsequent identifi-
cation analysis under these restrictions.

3. Identification

We begin this section by characterizing in Section 3.1 the form of the multivariate in-
tegral delivering conditional choice probabilities as a function of the underlying struc-
ture S. In Section 3.2, we then provide a general characterization of the identified set
of structures compatible with Restrictions A1–A6, and we show that if the model is cor-
rectly specified, the identified set can be written as the maximizers of the expected log-
likelihood. In Section 4, we then provide specialized identification results for a class of
parametric models.

3.1 Conditional choice probabilities

The utility maximization hypothesis together with the shape restrictions in Restriction
A6 enable concise characterization of the conditional choice probabilities

℘by(z; S) ≡G
(
Vby(z; u)

)
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for brand-quality pair (b, y ) given Z = z, considered as a function of any structure S =
(u, G), where

Vby(z; u) ≡ {v ∈ V : ∀(b̃, ỹ ) �= (b, y ), u(b, y, z, vb ) ≥ u(b̃, ỹ, z, v
b̃ )
}

(3.1)

denotes the set of values for unobserved heterogeneity V on which (b, y ) maximizes
utility given z and v. Without parametric restrictions on u, the monotonicity and single-
crossing conditions suffice to establish the representation of each choice probabil-
ity ℘by(z; S) as a particular form of a b̄-variate integral. Thus, given a specific (u, G),
℘by(z; S) can be computed by either numerical integration or simulation. The formal
result follows.

Theorem 1. Let Restriction A6 hold. Then for each (b, y, z) ∈ MBY × Z , the region
Vby(z; u) is a convex polytope in R

b̄ defined by the inequalities:

Vb ∈ (gb(y ), gb(y + 1)
]
, (3.2)

∀k < b, Vk ≤ hb,k(y ), and (3.3)

∀k > b, Vk < hb,k(y ), (3.4)

and additionally under Restriction A4 the conditional choice probability ℘by(z; S) takes
the form

℘by(z; S) =
∫ gb(y+1)

gb(y )

(∫
H(b,y )

dGV−b|Vb(v−b|vb )

)
dGVb(vb ), (3.5)

where

H(b, y ) ≡ {r ∈R
b̄−1 : r1 ≤ hb,1(y ), � � � , rb−1 ≤ hb,b−1(y ), rb ≤ hb,b+1(y ), � � � , rb̄−1 ≤ hb, b̄(y )

}
with {hb,k(y ) : k �= b} cross-brand threshold functions, and {gb(y ) : y = (0, � � � , ȳb + 1)}
within-brand threshold functions satisfying gb(0) ≡ −∞ and gb(ȳb + 1) ≡ ∞. Here,
GV−b|Vb(·|vb ) and GVb(·) denote the conditional distribution of V−b given Vb = vb and the
marginal distribution of Vb, respectively. The threshold function gb(·) may depend on z

and each function hb,k(·) : k �= b, may depend on both vb and z.

3.2 General characterization of the identified set

Before adding further restrictions, we first characterize the identified set of structures S

under Restrictions A1–A6, denoted S0, and defined as

S0 ≡ {(u, G) ∈ S : ∀(b, y ) ∈ MBY , G
(
Vby(z; u)

)= f 0
z (b, y ) a.e. z ∈ Z

}
, (3.6)

where Vby(z; u) denotes the set of values of V defined by (3.2)–(3.4) in Theorem 1. In
words, S0 is the set of admissible structures (u, G) that generate identified conditional
choice probabilities f 0

z (b, y ) for all (b, y ) and almost every z ∈ Z . Given the absolute con-
tinuity of the distribution of V and the continuity of utility in unobserved heterogene-
ity, the intersection of sets Vby(z; u) and V

b̃ỹ(z; u), (b̃, ỹ ) �= (b, y ) has Lebesgue measure
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zero, so that there is a unique utility maximizing pair (b, y ) with probability one given
any z ∈ Z . Hence G(Vby(z; u)) is the conditional probability of observing (b, y ) given
Z = z when the utility function is u and V ∼ G. Structures (u, G) that do not belong in
the identified set S0 in (3.6) are those such that the set

Z∗(u, G) ≡ {z ∈ Z : ∃(b, y ) ∈ MBY s.t. G
(
Vby(z; u)

) �= f 0
z (b, y )

}
, (3.7)

has positive measure PZ .
Given the representation of the identified set through the equalities G(Vby(z; u)) =

f 0
z (b, y ), we can equivalently characterize the identified set as those structures that max-

imize the log-likelihood. For this, we require that the model is correctly specified, for-
malized with the following additional assumption.

Restriction A7 (Correct specification). ∃S∗ ∈ S , S∗ ≡ (u∗, G∗ ) such that ∀(b, y ) ∈ MBY

G∗(Vby(z; u∗ )) = f 0
z (b, y ) a.e. z ∈ Z .

Consider the expected log-likelihood function

Q(u, G) ≡ E
[
lnG

(
VBY (Z; u)

)]
,

where the expectation is taken with respect to population measure P. It follows by ar-
guments identical to those with singleton S0 that Q(u, G) attains its maximum at all

(u, G) ∈ S0, since by definition these all produce the same probabilities G(Vby(z; u)) for
almost every z. The general observation that when point identification is lacking the set
of maximizers of the expected log-likelihood are precisely those observationally equiv-
alent to the population data generating structure has been made previously; see, for ex-
ample, Bowden (1973) and Redner (1981). The formal statement in the present setting,
a proof of which is included in the Appendix for completeness, is made in the following
proposition.

Proposition 1. Let Restrictions A1–A7 hold. Then S0 = argmax(u,G)∈S Q(u, G).

Unless sufficiently strong parametric restrictions on S are imposed, S0 may not be
a singleton, so that there may not be point identification. When sufficiently strong re-
strictions for point identification do hold, estimation and inference can proceed under
the classical maximum likelihood paradigm. When these restrictions do not hold, the
classical results do not apply. But the characterization of S0 as the (set of) maximizers of
the expected log-likelihood enables us to apply inference techniques for maximum like-
lihood estimators when point identification is lacking. The subsequent characterization
of choice probabilities G(Vby(z; u)) under parametric restrictions facilitates derivation
of some sufficient conditions for point identification, as well as computation of set esti-
mates and inferential statistics when point identification fails.
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4. Identification under parametric restrictions

In this section, we consider a parametric restriction on the underlying utility functions
with b̄ firms b ∈ B ≡ {1, 2, � � � , b̄}, each selling a low-quality product offering (Y = 1) and
a high-quality product offering (Y = 2), so that for all b ∈ B, Yb ≡ {1, 2}.3 We denote co-
variates Z ≡ (Z1, � � � , Zb̄ ) with Zb ≡ (Xb, Pb ) comprising covariates that affect the utility

of choosing a brand b offering, allowing for the possibility that Zb and Z
b̃

, b �= b̃, contain
common components. We specify

u(b, y, z, vb ) ≡ y × (xbβb + vb ) − αby , α00 ≡ 0, (4.1)

for each (b, y ) ∈ MBY , z ∈ Z , and vb ∈ R. Realizations of covariates Xb contribute to the
linear index xbβb + vb, while Pb are covariates that may enter in the determination of
αby . The specification of xbβb + vb entering utility multiplicatively in y is a paramet-
ric restriction that results in the optimal choice restricted to any fixed b ∈ B taking a
parametric linear index form familiar from parametric ordered response models, such
as ordered probit and logit. The parameters αby capture that component of utility from
choice (b, y ) not restricted to scale linearly with y. These in turn determine thresholds
λby for individuals’ within-brand ordered choice preferences as described in (4.2) below.
We consider variants of our model in which αby are fixed parameters for each (b, y ), as
well as cases where they may be parametrically specified functions of observable covari-
ates, such as prices. This will lead to generalizations of ordered choice models in which
threshold parameters may or may not depend on observable exogenous variables.

This model generalizes a three-choice ordered response model, such as ordered pro-
bit or logit, in that for any fixed b ∈ B we have

Y ∗
b = 0 ⇔ λb0 < Vb ≤ λb1 −Xbβb,

Y ∗
b = 1 ⇔ λb1 −Xbβb < Vb ≤ λb2 −Xbβb, (4.2)

Y ∗
b = 2 ⇔ λb2 −Xbβb < Vb,

where

λb0 ≡ −∞, λb1 ≡ min
{
αb1,

αb2

2

}
, λb2 ≡ max

{
αb2 − αb1,

αb2

2

}
. (4.3)

denote threshold parameters. Some algebra reveals that

αb2 > 2αb1 ⇒ λb1 = αb1, and λb2 = αb2 − αb1, (4.4)

while

αb2 ≤ 2αb1 ⇒ λb1 = λb2 = αb2

2
. (4.5)

3Extension of the analysis to the case where firms sell more than two product offerings is conceptually
straightforward. We focus on the case where each brand has two ordered product offerings to economize
on notation and also because this is the setting encountered in our application.
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The inequality on the left-hand side of (4.4) ensures that for each b,

P[αb1 −Xbβb < Vb ≤ αb2 − αb1 −Xbβb|X = x] > 0,

or equivalently that some randomly chosen individuals prefer Y = 1 to both the other al-
ternatives of type b and the outside alternative. When instead the inequality on the left-
hand side of (4.5) holds, then the probability of this event is zero. In this case, if one were
to imagine taking a randomly selected individual and increasing their unobservable Vb
continuously from −∞ to ∞, that individual would choose the outside alternative for
values of Vb up to αb2

2 −Xbβb, and then switch to Y = 2 for all Vb >
αb2

2 −Xbβb, respect-
ing the ordered nature of the quality dimension y, but skipping over the lower-quality
alternative Y = 1.

Given the parametric specification (4.1) for u, the resulting regions of unobserved
variables Vby defined by (3.2)–(3.4) in Theorem 1 take the form of convex polytopes in

R
b̄. Figure 1 provides an example illustrating these regions for a case in which b̄ = 2 for

given values of β1, β2, α11, α12, α21, α22, and a given value of the conditioning variables
z, in which the inequality αb2 > 2αb1 on the left-hand side of (4.4) holds.

The specification considered so far has implicitly treated (α11, α12, � � � , αb̄1, αb̄2 ) as
fixed parameters to be estimated. Fixed-threshold specifications for ordered response
models are common, but it is straightforward to allow thresholds to be functions of ob-
servable variables Pb. This is important in our application, where observed prices may
affect the utility of purchasing each product.

Here, and in our application for each b ∈ B and y ∈ {1, 2}, αby is specified by

αby = δb + k(Pby , γb ), k(Pby , γb ) = γbPby , (4.6)

Figure 1. Regions of unobservables V resulting in each choice of (b, y ) ∈ MBY with utility as
specified in (4.1).
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where the observed variable Pby ∈ R denotes the price of alternative (b, y ), and δb and
γb denote parameters on the real line. More generally, Pby could be used to denote any
vector of observable variables thought to influence αby . As before, the utility of the out-
side alternative is normalized to zero. The optimal choice Y ∗

b for fixed brand b is still
determined by (4.2) and (4.3), but with each αby determined by (4.6).4

With price now entering the utility function, the possibility of values of exoge-
nous variables that imply that consumers never choose quality offering Y = 1 for a
given brand B = b becomes particularly relevant. This is because unlike covariates
Xb, brand b prices Pb ≡ (Pb1, Pb2 ) vary across the vertical dimension y within each
brand.5 In contrast to a fixed-threshold specification, it is possible that there are val-
ues of the conditioning variables Z = z such that the conditional choice probability
P[(B, Y ) = (b, 1)|Z = z] equals zero for either b, while conditional on other values Z = z̃,
P[(B, Y ) = (b, 1)|Z = z̃] > 0. This is practically relevant because there may be consumers
who face prices such that the higher-quality product offering will always be more desir-
able than the lower-quality offering no matter their realization of unobservables V , as
could happen when a firm introduces a sale for the higher-quality offering in order to
induce consumers to try it. Thus both cases (4.4) and (4.5) are allowed in all that follows,
depending on the value of conditioning variables Z.

We now specialize the characterization of the set S0 from Proposition 1 and the form
of the conditional choice probabilities given in Theorem 1 to models in which utilities
satisfy (4.1) such that formally S ≡ U × G, where

U ≡
{
u : B ×Y ×Z ×R

b̄ → R : u(b, y, z, v; θ) ≡ y(xbβb + vb ) − δb − γbpby

for some θ ≡ {(δb, γb, βb ) : b ∈ B
} ∈�.

}
, (4.7)

where � is a compact subset of Euclidean space and G denotes a collection of distribu-
tion functions for V indexed by parameters �, belonging to compact parameter space
�. We define ζ ≡ (θ, �) to denote the full parameter vector. The utility function and
distribution pair (u, G) is completely specified given ζ, so under this parametric specifi-
cation we use ζ to denote the corresponding structure (u, G) ∈ S , with G(·; �) denoting
the distribution G indicated by parameter �. Then by definition the identified set for ζ
is

S0 ≡ {ζ ∈�×� : ∀(b, y ) ∈ MBY , ℘by(z; ζ ) = f 0
z (b, y ) a.e. z ∈ Z

}
,

where f 0
z (b, y ) is the population probability that B = b and Y = y conditional on Z = z.

Application of Proposition 1 gives the likelihood characterization of the identified
set

S0 ≡ argmax
ζ∈�×�

E
[
ln℘BY (Z; ζ )

]= argmax
ζ∈�×�

EZ

[
E
[
ln℘BY (Z; ζ )|Z

]]
.

4We focus here on a linear specification for k(pby , γb ), but alternative specifications are possible. For

instance, one could use the CRRA or isoelastic utility specification k(pby , γb ) = (1−γb )−1p
1−γb
by with γb > 0,

or the exponential utility specification k(pby , γb ) = 1 − exp(−γbpby ) for some γb ∈ R.
5Following the notation introduced at the beginning of this section, covariates that affect the utility from

brand b offerings are thus Zb ≡ (Xb, Pb1, Pb2 ), where Z ≡ (Z1, � � � , Zb ).
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Using the parametric structure set out above together with Theorem 1, we have

℘by(z; ζ ) =
∫ gb(y+1;z,θ)

gb(y;z,θ)

(∫
H(b,y,z,vb,θ)

dGV−b|Vb(v−b|vb; �)

)
dGVb(vb; �),

where

gb(y; z, θ) ≡ λby −Xbβb, (4.8)

with each λby as defined by (4.3) and (4.6), and where the region of integration

H(b, y, z, vb, θ) in the inner integral is the set of r ∈R
b̄−1 such that

r1 ≤ hb,1(y, z, vb, θ), � � � , rb−1 ≤ hb,b−1(y, z, vb, θ),

rb ≤ hb,b+1(y, z, vb, θ), � � � , rb̄−1 ≤ hb, b̄(y, z, vb, θ),

where for all d �= b and v ∈R,

hb,d(y, z, v, θ) ≡ min
ỹ∈{1, ���, ȳd }

1
ỹ

[
y(xbβb + v) − (αby − αdỹ )

]− xdβd , (4.9)

with αby as specified in (4.6). Thus each ℘by(z; ζ ) takes the form of an integral over a
region defined by inequalities that are linear in θ. Written in this form, it is straightfor-
ward to verify that ℘by(z; ζ ) = ℘by(z; (θ, �)) is log-concave in θ for any fixed � and each
value (b, y, z) if G is a known log-concave distribution with density fV (·, �). This in turn
implies that the maximizers of L(ζ ) for any fixed � comprise a convex set.

Theorem 2. Suppose that Restrictions A1–A7 hold, that u ∈ U defined in (4.7), and that
G(·) = G(·; �) with known � such that G(·; �) has log-concave density fV (·, �). Then the
identified set for θ is

�∗(�) ≡ argmax
θ∈�

L(θ, �),

with the expected log-likelihood

L(θ, �) ≡
∑

(b,y )∈MBY

f 0
z (b, y ) ln

∫
Rb̄

fV (v, �)1
[
v ∈ Vby(z; θ)

]
dv,

concave in θ.

Many commonly used distributions are log-concave, with the multivariate normal
distribution a leading example. If the distribution G is not known, but the elements of
the admissible set of distributions G are all log-concave, for example, if all such distribu-
tions are multivariate normal but with different variances, then it follows that the iden-
tified set for θ is contained in a union of convex sets, namely the union of sets delivered
by Theorem 2 for each G ∈ G.

Under some additional conditions on the variation in observable variables Z,
a known G can deliver point identification, as stated in Theorem 3 below. The theo-
rem is a generalization of a result in Theorem 2 of Aradillas-Lopez and Rosen (2022),
up to minor changes in notation, allowing for b̄ > 2 and also focusing on regions of the
parameter space in which for all b αb2 > 2αb1, equivalently ℘b1(z; ζ ) > 0. Accordingly,
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define this region as

Z∗ ≡ {z ∈ Z : ∀b ∈ B, ℘b1(z; ζ ) > 0
}

.

The reason the result from Aradillas-Lopez and Rosen (2022) applies with b̄ = 2 is the
equivalence of the conditional probability of consumers choosing not to purchase, that
is, ℘0(z; ζ ) in the present model, to the conditional probability that (0, 0) is an equi-
librium in the ordered outcome simultaneous equations model studied by Aradillas-
Lopez and Rosen (2022). While both models feature the same conditional probabilities
for these outcomes, the rest of their observable implications differ. The simultaneous
equations model of Aradillas-Lopez and Rosen (2022) produces inequalities on the con-
ditional probabilities of other outcomes, due to the presence of strategic interactions
and multiple equilibria. These inequalities are combined with the conditional moment
equality from the probability of outcome (0, 0) to produce a test statistic for inference.
In the single agent decision problem studied here, the model delivers equalities for the
conditional probabilities of all outcomes. The formal result is now provided, wherein �b

is used to denote the projection of the parameter space for θ onto the space of admissi-
ble (δb, γb, βb ).

Theorem 3. Suppose that Restrictions A1–A7 hold, that P{Z ∈ Z∗} > 0, and that we have
the parametric structure S = U × G given in (4.7) with singleton G so that � is known.
Then if (i) conditional on Z ∈ Z∗ for each b ∈ B, there exists no proper linear subspace of
the support of Z̃b ≡ (1, Pb1, −Xb ) that contains Z̃b with probability one, and (ii) for all
conformable column vectors c1, � � � , cb̄ satisfying cb ∈ {θb − θ̃b : θb ∈ �b, θ̃b ∈ �b} for each
b, with cb �= 0 for some b, we have that at least one of

P
{
Z̃1c1 ≤ 0, � � � , Z̃b̄cb̄ ≤ 0|Z̃bcb < 0, Z ∈ Z∗}> 0 with P

{
Z̃bcb < 0, Z ∈ Z∗}> 0, (4.10)

or

P
{
Z̃1c1 ≥ 0, � � � , Z̃b̄cb̄ ≥ 0|Z̃bcb > 0, Z ∈ Z∗}> 0 with P

{
Z̃bcb > 0, Z ∈ Z∗}> 0 (4.11)

holds, then θ is point identified.

The theorem above shows that under conditions that guarantee sufficient variation
in exogenous variables, θ is point identified. The first requirement is that P{Z ∈ Z∗} > 0,
that is, there is positive probability of values of exogenous variables such that P[B =
b, Y = 1|Z = z] > 0 for all b. The subsequent statements (i) and (ii) are then made condi-
tional on Z ∈ Z∗. Condition (i), is standard. Note that this requires that each Xb contains
no constant components. Condition (ii) implies that conditional on Z̃bcb negative (posi-
tive), each Z̃dcd , d �= b takes nonpositive (nonnegative) values with nonzero probability.
This condition helps to achieve identification because it ensures that for any θ̃ �= θ there
exist values of z such that as a function of θ̃ the indices that define the cutoffs for the
outside option are all either above or below the corresponding indices at θ, with the
comparison being strict for at least one index. This implies that the implied conditional
probabilities of choosing the outside alternative for the two values θ̃ and θ differ for such
values of Z.
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The support requirement of condition (ii) will in general depend on the specifica-
tion of the parameter space �. If the parameter space is an arbitrary compact subset of
Euclidean space with no restrictions imposed on θb = (δb, γb, βb ) across b, it will hold
under standard large support assumptions requiring each Zb to have a component tak-
ing arbitrarily large values with positive probability conditional on Z ∈ Z∗. In this case,
it appears difficult to come up with general weaker support conditions that will imply
(ii). However, in models in which there are restrictions involving both θb and θb′ , b �= b′,
weaker conditions can suffice. For example, if the parameters θb relevant to the V00(z; θ)
region are restricted to be the same for all b, as is the case in the application of Aradillas-
Lopez and Rosen (2022) in which b̄ = 2, then this condition can be satisfied even if each
Z̃b has a discrete distribution. In this case θb = θ for all b, so we can also write cb = c

for each b. Condition (4.10) then becomes P{Z̃1c ≤ 0, � � � , Z̃b̄c ≤ 0|Z̃bc < 0, Z ∈ Z∗} > 0,
which is easier to satisfy. It is trivial for instance if Z̃b = Z̃ for all b.

Notably, the theorem hinges only on implied differences in the conditional prob-
ability of Y = 0 given Z, and exploits no additional information from the conditional
probabilities of other brand-quality combinations. The conditions are shown to be suf-
ficient, but are not shown to be necessary, so point identification may hold under weaker
conditions.

Although the conditions of Theorem 3 are not directly applicable to specifications
in which G is restricted to belong to a family of admissible distributions G, it still carries
meaningful implications in such contexts, and it is useful for understanding what type of
variation is helpful for identification. Under the other conditions of the theorem, associ-
ated with each possible G′ ∈ G there can be only a singleton identified set for θ, say θ(G′ ).
Thus the identified set can only consist of parameter values for θ that are θ(G′ ) for some
G′ ∈ G. This implies that with a parametric specification in which G is parameterized by
�, each element of the identified set for θ must maximize L(ζ ) = L(θ, �) for some �.

A leading example of a model for which this theorem is applicable is a partially or-
dered logit model in which unobservable variables V1, � � � , Vb̄ are assumed to be i.i.d.
logit variates. This restriction would simplify computation, but at the cost of imposing
that unobservable taste for the vertical dimension is independent of unobservable taste
in the horizontal dimension. While this may be reasonable in some settings, in our appli-
cation this would require unobserved preference for quality to be independent of brand
preferences. Thus we employ a specification in which the unobservables are restricted
to be multivariate normal, with variance governed by parameters to be estimated. When
allowance for potential correlation among unobservables is desired other parametric
specifications for their joint distribution could also be used, such as the Farlie–Gumbel–
Morgenstern copula in conjunction with logit marginals employed by Aradillas-Lopez
and Rosen (2022).6

5. CCPs for the partially ordered probit model

In this section, ζ will be used to denote the full vector of model parameters of a bivari-
ate probit model with b̄ = ȳ = 2 and utility function as specified by (4.7), and G(·; �)

6This would retain the convenience of logit marginals while allowing unobservables to be correlated, but
only to a limited extent relative to the bivariate normal specification employed in our application.
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corresponding to a bivariate normal distribution with variance matrix � with �11 nor-
malized to one, �22 = σ and �12 = �21 = ρσ , where ρ, σ are unknown parameters. Thus
ζ ≡ (γ1, γ2, δ1, δ2, β1, β2, ρ, σ ), where each βb is a vector of coefficients on variables Xb

that affect utility from alternatives from brand b. This is the specification used in our
application in Section 6. The parameter space for ζ is denoted ϒ, the parameter space
for ζk is denoted ϒk, and ϒ coincides with the product of ϒk across k = 1, � � � , dim(ζ ).
We focus attention on the partially ordered probit model, but other specifications for
the distribution of unobservable heterogeneity could be used as alternatives, such as
the partially ordered logit specification discussed at the end of the previous section.

The choice probabilities ℘by(z, ζ ) implied by the partially ordered probit model
must be computed in order to compute the likelihood. These are of the form set out in
(3.5), which with b̄= 2 take the form of a bivariate integral and can thus be computed us-
ing numerical integration or simulation for any given (ζ, zi ). Although we experimented
with implementing both approaches, maximization of the log-likelihood was found to
perform relatively slowly using these methods. With (ρ, σ ) unknown, the log-likelihood
is generally not concave in parameters.

To compute the choice probabilities (and therefore the log-likelihood) more quickly,
we used results from Owen (1980) that allow us to show equivalence of the choice prob-
abilities to a closed-form expression that does not involve integration. This alternative
formulation involves univariate and bivariate normal CDFs evaluated at functions of
parameters and observable variables. Software was used that vectorizes function evalu-
ation to compute the CDF at each value of zi in one function call.7 This enabled com-
puting likelihood contributions significantly more quickly than performing numerical
integration or computing simulated probabilities separately for each observation. The
details of how the conditional choice probabilities were manipulated to bypass the need
for explicitly computing or simulating integrals are now set out. Section 6.2 then ex-
plains how inference was implemented. The finite sample performance of inference
methods using both Wald and quasi-likelihood ratio (QLR) statistics is investigated in
Monte Carlo experiments reported in Appendix D.

In the partially ordered probit model in which G(·; �) is the bivariate normal distri-
bution, application of (3.5) gives the following representation for the conditional choice
probabilities:

∀(b, y ) ∈ MBY , ℘by(z; ζ ) = 1
σb

∫ gb(y+1;z,θ)

gb(y;z,θ)
�

⎛⎜⎝hb(y, z, v, θ) − ρ
σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv, (5.1)

hb(y, z, v, θ) ≡ min
ỹ∈{1, ���, ȳd }

1
ỹ

[
y(xbβb + v) − (αby − αdỹ )

]− xdβd , (5.2)

where d = 3 − b denotes the brand other than b.8

7We used the pbivnorm R package Kenkel (2015), which is based on Azzalini and Genz (2016).
8Here, hb(y, z, v, θ) is equal to hb,d(y, z, v, θ) defined in (4.9) with d = 3−b since there are only two firms.
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To remove the need to simulate or numerically approximate the above integral, con-
ditional choice probabilities ℘by(z; ζ ) can be further simplified using formulas for inte-
grals of normal densities and distribution functions collected in Owen (1980). The rep-
resentation so obtained is given in the following proposition.

Proposition 2. Let Restrictions A1–A7 hold with b̄= 2, ȳb = 2 for each b, and

u(b, y, z, vb ) ≡ y × (xbβb + vb ) − αby ,

as in (4.1) with α00 ≡ 0 and V = (V1, V2 ) normally distributed with mean zero and vari-

ance matrix � =
(

1 ρσ

ρσ σ2

)
with unknown parameters ρ ∈ [−1, 1] and σ > 0. Then the con-

ditional choice probabilities for each b= 1, 2 and y = 1, 2 can be expressed as

℘by(z; ζ ) =

⎛⎜⎜⎜⎝
1
[
z∗
by < gb(y + 1; z, θ)

]
×�

(
σ−1
b max

{
z∗
by , gb(y; z, θ)

}
, σ−1

b gb(y + 1; z, θ), m+
1 , m+

2

)
+ 1
[
z∗
by > gb(y; z, θ)

]
×�

(
σ−1
b gb(y; z, θ), σ−1

b min
{
z∗
by , gb(y + 1; z, θ)

}
, m−

1 , m−
2

)
⎞⎟⎟⎟⎠ , (5.3)

where gb(·; z, θ) is as defined in (4.8) and for any h, k, m1, m2,

�(h, k, m1, m2 ) ≡ �2(k, m1; m2 ) −�2(h, m1; m2 ), (5.4)

where �2(·, ·, ρ) denotes the CDF of a bivariate normal random vector Z with mean zero
and unit variance components with correlation ρ, and for d = 3 − b,

z∗
by ≡ αd2 + αby − 2αd1

y
− xbβb,

and

m+
1 ≡ yxbβb + αd2 − αby − 2xdβd√

σ2
by

2 − 4ρσbσdy + 4σ2
d

, m+
2 ≡ 2ρσd − σby√

σ2
by

2 − 4ρσbσdy + 4σ2
d

, (5.5)

m−
1 ≡ yxbβb + αd1 − αby − xdβd√

σ2
by

2 − 2ρσbσdy + σ2
d

, m−
2 ≡ ρσd − σby√

σ2
by

2 − 2ρσbσdy + σ2
d

. (5.6)

6. Application to razor blade purchases

This section presents an application of the parametric bivariate probit model in Sec-
tion 5 to the market for women’s razor blades using consumer data from Great Britain.
We discuss the data, computational details, and empirical results in turn.

6.1 Data

We use purchase data for a rolling panel of households from the Kantar FMCG Purchase
Panel. The data comprise a representative sample of households observed making re-
peated purchases, obtained by a handheld scanner used to record all household grocery
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Table 1. 2004–2005 market shares.

Razor blade type Market share

Gillette blades 29.82%
Wilkinson Sword blades 10.93%
Disposable razors 59.25%

purchases at the UPC level. Data on razor blade purchases is used for the years 2004–
2005.9 In particular, we focus on consumers’ decisions to buy a double- or triple-blade
cartridge from one of the two leading razor blade brands, Gillette and Wilkinson Sword.

In our application, we consider households observed purchasing either razor blade
cartridges for a reusable nonelectric women’s razor (which we refer to as “system
blades”) or disposable women’s razors, where the main shopper of the household is a
female between the age of 18 and 50 years old. The outside alternative is the purchase
of a disposable razor. The sample thus employed consists of a cross-section of 4842 ob-
servations. Table 1 shows the observed market shares of Gillette and Wilkinson Sword
system blades and disposable razors. Out of the 4842 observations, 1973 observations
correspond to system blade purchases and Table 2 shows the observed market shares
conditional on buying either double- or triple-blade cartridges from either Gillette or
Wilkinson Sword.

The covariates used for each household are indicators for age of the main shopper
being 31–40 and 41–50, indicators for the main shopper’s marital and employment sta-
tus, and an indicator specifying the presence of more than one female in the household.
Table 3 provides descriptive statistics. Further details are provided in Appendix B.

For each observation in the sample the brand (b)-quality (y ) combination of car-
tridges purchased is observed, in addition to the individual characteristics. For each
purchase, we observe the amount spent (w), the quantity purchased (q) and the spe-
cific pack size (v), as well as the month (m) and store (s) of purchase. For the observed
purchases, the average unit price per cartridge pbymsv, defined as the total amount spent
divided by the total quantity purchased in a specific month and store, for each specific

Table 2. Market shares conditional on purchasing double- or triple-blade cartridges from
Gillette or Wilkinson Sword in 2004–2005.

Trading company

Blade type

TotalDouble-blade Triple-blade

Gillette 17.74% 55.45% 73.19%
Wilkinson Sword 9.22% 17.59% 26.81%
Total 26.96% 73.04% 100.00%

9Razor blades can be purchased in three forms: as disposable razors, as reusable razors sold with razor
blade cartridges, or as razor blade cartridges for use with a previously purchased handle.
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Table 3. Main shopper characteristics for 2004–2005.

Age group Marital status Employment status Number of females

18–30 34.30% Married 61.83% Employed 70.76% One female 43.04%
31–40 40.75% Other 38.17% Unemployed 29.24% More than one 56.96%
41–50 24.95%

brand-quality combination and each pack size was computed as

pbymsv =

Nbymsv∑
i=1

wbymsv,i

Nbymsv∑
i=1

qbymsv,i

, (6.1)

where i = 1, � � � , Nbymsv and Nbymsv is the number of observations for each bymsv com-
bination. Regarding the unit prices faced by the consumers of the cartridges not bought,
since these are not observed, we estimated them using the best linear predictor (BLP)
under two different specifications,

pbymsv = β0 + 1[b= 2]β1 + 1[y = 2]β2 +
24∑

m̃=2

1[m= m̃]κm

+
15∑
s̃=2

1[s = s̃]τs +
3∑

ṽ=2

1[v = ṽ]μv + ε, (6.2)

pbymsv = β0 + 1[b= 2]β1 + 1[y = 2]β2 +
24∑

m̃=2

1[m= m̃]κm +
15∑
s̃=2

1[s = s̃]τs + ε, (6.3)

where ε denotes the residual of the BLP regression, b = 2 corresponds to Wilkinson
Sword system blades, and y = 2 corresponds to triple-blade cartridges. The intercept,
β0, corresponds to the price of a Gillette double-blade cartridge sold in January 2004 in
the store group category “All other” and for specification (6.2) in the small pack size. All of
the other Greek letters denote BLP coefficients. These were estimated using all 1973 ob-
servations of cartridge purchases in our data for the 24 months spanning 2004–2005, 15
stores, and three different pack sizes. To impute counterfactual prices for brand-quality
combinations of system blades not purchased, the best linear predictors were matched
to each observation according to the actual month, store and (in the case of specifica-
tion (6.2)) pack size purchased.10 The difference in specification (6.2) and specification
(6.3) is that in the former we also control for pack size. We chose to differentiate between
the two specifications as not all the blade-types and/or brands are observed offering all
pack sizes. For example, double-blade razors were only offered in five cartridge packs. In

10The imputed prices are treated as observed variables; sample variation from the BLP regressions by
which they were obtained is not taken into account in the subsequent analysis.
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order to deal with this, pack size was categorized according to small, medium, and large.
See Appendix B for further details and descriptive statistics.

Using this data, our application employs the partially ordered probit specification
with b̄ = 2 and ȳb = 2 for each b considered in Section 5 with

Uby ≡ y × (Xβb + Vb ) − δb − γbPby if (b, y ) �= (0, 0), U00 ≡ 0,

where X are the individual specific indicators for the household’s main shopper’s age
categories, marital status, employment, and the presence of multiple females in the
household as previously described, and which here do not vary across brand.11 Prices
Pby on the other hand vary at both the product and individual level. The index Xβb + Vb
captures the marginal effect on utility from an increase in quality Y when choosing
brand b. All else equal, a higher value of this index increases both the utility of choosing
the higher-quality option (Y = 2) relative to the lower-quality option (Y = 1) of brand
b, and it also increases the relative utility of brand b’s offerings relative to those of its ri-
val. The distribution of V ≡ (V1, V2 ) is multivariate normal with parameters as indicated
in Proposition 2. Thus a positive value of the correlation parameter ρ indicates posi-
tive correlation in the taste for higher-quality cartridges across the different brands, as
would be expected if individuals who have higher unobserved taste for Gillette’s triple-
blade cartridges also have higher unobserved taste for Wilkinson Sword’s triple-blade
cartridges.

6.2 Empirical implementation

Estimation and inference were carried out by maximum likelihood. Specifically, we re-
port point estimates obtained by maximizing the likelihood

Ln(ζ ) ≡
n∑

i=1

[
ln℘biyi(zi; ζ )

]
(6.4)

with respect to ζ, and 95% confidence intervals for each parameter component ζk ob-
tained using both Wald and QLR statistics. Wald confidence intervals are computed as
those values that come within 1.96 estimated standard deviations of the point estimate,
where the Hessian form of the information matrix was used to estimate the asymptotic
variance. The QLR confidence intervals are more time-consuming to compute, but can
be robust to a possible lack of point identification under certain conditions as shown by
Chen, Christensen, and Tamer (2018), which are not verified here.12 With point identifi-
cation, both approaches are valid under standard conditions. In Appendix D, we report
the results of several Monte Carlo experiments comparing the two approaches.

11It is straightforward to use specifications with a common price coefficient γ = γ1 = γ2. See Section 6.3
for further discussion in the context of the present application.

12See Chen, Christensen, and Tamer (2018) for sufficient conditions for asymptotic validity of profile
QLR confidence intervals for the identified set of parameter components ζk, each k, when ζk is not point
identified. Note that a confidence interval that guarantees coverage of the entire identified set for ζk with
prespecified probability asymptotically is also guaranteed to contain the parameter ζk itself with at least
the same probability asymptotically. This ensures that the confidence sets are asymptotically valid for ζk,
although for coverage of the true parameter value only, it may in principle be possible to establish either
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The steps taken to compute the QLR confidence intervals CLRα,k were as follows, for
each k = 1, � � � , dim(ζ ) with α = 0.95. First, the unconstrained maximum of the log-
likelihood denoted L∗

n and the quasi-likelihood ratio statistic

Qk,n(μ) ≡ inf
ζ∈ϒ:ζk=μ

2n
[
L∗
n −Ln(ζ )

]
, (6.5)

was computed at values of μ over a grid of values M.13 The values

μ0 ≡ min
{
μ ∈ M : Qk,n(μ) ≤ χ2

1,α
}

, μ0 ≡ max{μ ∈ M : μ<μ0},

μ1 ≡ max
{
μ ∈ M : Qk,n(μ) ≤ χ2

1,α
}

, μ1 ≡ min{μ ∈ M : μ>μ1},

were recorded, with χ2
1,α the α quantile of the chi-square distribution with one degree of

freedom. Here, μ0 and μ1 are the lowest and greatest values of μ on the grid M that pass
the criterion Qk,n(μ) ≤ χ2

1,α required for μ ∈ CLRα,k. The value μ0 is the next lowest value to
μ0 on M while μ1 is the next highest value to μ1 on the grid. Then a minimal tolerance
ε > 0 was set for the desired precision within which to compute each endpoint of CLRα,k
and the following steps were iterated:

1. Set μ̃ ≡ (μ0 +μ0 )/2 the halfway point between μ0 and μ0. Compute Qk,n(μ̃).

2. If Qk,n(μ̃) ≤ χ2
1,α, then set μ0 ≡ μ̃; otherwise, set μ0 ≡ μ̃.

3. If |μ0 −μ0| > ε, then return to step 1 and continue; otherwise, set the terminal value
μ0 ≡ μ0 and stop iterating.

Then the same steps were carried out for the upper bound of CLRα,k by setting μ̃ ≡
(μ1 + μ1 )/2 and replacing μ0 with μ1 and μ0 with μ1 in the subsequent step. Here, we
let the terminal value be denoted μ1. When the procedure is done, μ0 and μ1 serve as
lower and upper bounds for CLRα,k.

6.3 Empirical results

Tables 4 and 5 report maximum likelihood point estimates and confidence intervals con-
structed as described above using specifications (6.2) and (6.3), respectively, for counter-
factual prices. The results in Table 4 lead to several observations. The coefficients γ1 and
γ2 on price are positive, so that utility is measured to be decreasing in price. The coeffi-
cient γ1 on price for Gillette is considerably smaller than the coefficient γ2 for Wilkinson
Sword, even after scaling by the estimate of σ2.14 The coefficient on the dummy variables

weaker sufficient conditions or strictly smaller confidence intervals. Furthermore, while Chen, Christensen,
and Tamer (2018) provide sufficient conditions for profile QLR confidence intervals to achieve at least the
desired asymptotic coverage for identified sets of univariate components of the structural parameter, one
could consider using the likelihood ratio statistic for inference on other objects, such as partial effects or
various counterfactuals, although we are unaware of sufficient conditions for this to achieve valid inference
under partial identification. These are questions we leave open to future research.

13The likelihood Ln(ζ ) is as defined in (6.4) with ℘by (zi; ζ ) defined in (5.3).
14As noted previously, it is straightforward to impose that γ = γ1 = γ2. This was tried in the present ap-

plication, but produced estimates implying essentially zero variance in V2. Thus, results are reported using
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Table 4. 95% confidence intervals with prices as specified in (6.2).

Parameter ML point estimate QLR 95% CI

γ1 0.0613 [−0.0380, 0.1736]
γ2 4.2811 [3.4006, 5.8717]
δ1 −0.2019 [−0.2485, −0.1611]
δ2 −4.0530 [−5.3888, −3.3035]
β1Age31–40 −0.1567 [−0.2359, −0.0772]
β1Age41–50 −0.2261 [−0.3208, −0.1323]
β1Married −0.0445 [−0.1092, 0.0202]
β1Employed −0.0381 [−0.1072, 0.0320]
β1Females −0.2238 [−0.2920, −0.1560]
β2Age31–40 −0.2394 [−0.4837, 0.0042]
β2Age41–50 −0.3626 [−0.6418, −0.0869]
β2Married −0.1859 [−0.3859, 0.0128]
β2Employed −0.1138 [−0.3316, 0.0915]
β2Females −0.6102 [−0.8768, −0.4079]
ρ 1.0000 [0.9994, 1.0000]
σ2 2.6938 [2.3475, 3.3302]

Table 5. 95% confidence intervals with prices as specified in (6.3).

Parameter ML point estimate Wald 95% CI QLR 95% CI

γ1 −0.0643 [−0.1250, −0.0037] [−0.1157, −0.0037]
γ2 2.6258 [2.3509, 2.9006] [2.3448, 2.9130]
δ1 −0.1650 [−0.1855, −0.1445] [−0.1850, −0.1467]
δ2 −2.5891 [−2.7745, −2.4037] [−2.7805, −2.3872]
β1Age31–40 −0.1595 [−0.2381, −0.0810] [−0.2369, −0.0822]
β1Age41–50 −0.2163 [−0.3107, −0.1218] [−0.3087, −0.1240]
β1Married −0.0814 [−0.1439, −0.0190] [−0.1435, −0.0192]
β1Employed −0.0585 [−0.1323, 0.0154] [−0.1266, 0.0098]
β1Females −0.2378 [−0.3078, −0.1678] [−0.3045, −0.1710]
β2Age31–40 −0.3057 [−0.4811, −0.1303] [−0.4763, −0.1361]
β2Age41–50 −0.4181 [−0.6270, −0.2092] [−0.6209, −0.2171]
β2Married −0.1937 [−0.3360, −0.0514] [−0.3319, −0.0553]
β2Employed −0.1127 [−0.2741, 0.0488] [−0.2620, 0.0368]
β2Females −0.5249 [−0.6803, −0.3694] [−0.6720, −0.3800]
ρ 0.9998 [0.9996, 1.0000] [0.9996, 1.0000]
σ2 2.1580 [2.0518, 2.2641] [2.0334, 2.2734]

the more flexible specification in which γ1 and γ2 may differ, which appears to better fit the data. This may
be down to several factors, such as unobservable factors in brand-quality offerings or heterogeneity in con-
sumer consideration sets (see, e.g., Barseghyan, Coughlin, Molinari, and Teitelbaum (2021)) possibly due to
the need to have previously purchased a compatible handle, or lack of availability of certain combinations
of products in all stores. Such issues are further discussed at the end of this section. A potentially worth-
while generalization, not attempted here, could also be to specify γ as a brand-constant random coefficient
that varies across consumers.
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for both age groups 31–40 and 41–50 are negative, as are their associated confidence in-
tervals, with the exception of the coefficient on the 31–40 age group for Wilkinson Sword.
This indicates a lower utility of system blade purchases of these age groups relative to
the 18–30 age group. Likewise, the estimated coefficient on the more females indicator
for both brands is negative. Coefficient estimates for employment and married dummy
variables are negative and statistically indistinguishable from zero for both brands.

The estimated correlation coefficient between brand-specific unobservables is ef-
fectively one, indicating perfect correlation in unobserved preference for quality as re-
flected by blades per cartridge across the two different brands.15 This indicates that con-
sumers who have higher unobservable taste for the higher-quality product of one brand
have higher unobservable taste for the higher-quality product of the other brand, too.
This reflects choice patterns delivered by our fitted conditional choice probabilities with
respect to variations in price, and is consistent with a setting in which consumers pur-
chasing the higher-quality offering of one brand would likely choose the higher-quality
offering of the rival brand if their chosen brand’s product was not available or was pro-
hibitively high-priced. While a high correlation in unobserved taste in the quality di-
mension thus seems reasonable in this application, a value of ρ̂ ≈ 1 indicates roughly
perfect correlation in unobserved taste for quality across brands. It also suggests that
the population parameter ρ may be on the boundary of the parameter space, which can
be problematic for inference. Indeed, the Hessian of the log-likelihood computed at the
maximizing parameter vector was singular. Consequently, Wald confidence intervals are
not reported for this specification. The QLR statistic can still be computed and the con-
fidence intervals reported here use the χ2

1 critical value, which is valid if the parameter
is on the interior of the parameter space.16 The QLR confidence interval obtained for ρ
is very tightly concentrated around 1.

Table 5 reports results obtained using specification (6.3) for counterfactual prices.
The estimate of the correlation coefficient ρ between brand-specific unobservables
is again very close to one, again indicating near perfect correlation in preference for
quality (blades per cartridge) across the two different brands. However, the likelihood-
maximizing value of ρ was slightly lower than was found using specification (6.2) for
counterfactual prices. The Hessian was nonsingular and both Wald and QLR confidence
intervals for each parameter are reported.17 The point estimate for γ1, the price coef-
ficient for Gillette, is negative, indicating that utility is increasing in price, although its
magnitude is small and the confidence intervals indicate it is nearly statistically indistin-
guishable from zero. The coefficient estimate on price for Wilkinson Sword is positive,
and statistically significantly different from zero, indicating that utility from purchasing
these products is decreasing in price. For the most part, the signs of coefficient estimates
and confidence intervals for other variables accord qualitatively with those of the prior
specification. Two slight exceptions are that although β2Age31–40 and β2married are again

15The maximum likelihood estimate was 0.99999992, effectively indistinguishable from 1.
16If in fact the population value of ρ is one, alternative critical values are needed; see, for example, Self

and Liang (1987) and Andrews (1999).
17Small perturbations of ρ near the maximizing parameter vector were investigated and confirmed to

result in a decrease in the log-likelihood.
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Table 6. Estimated means and 0.2, 0.5, and 0.8 quantiles of household elasticities.

∂ log℘by

∂ logpk�

Price elasticities

p11 p12 p21 p22

℘11

Mean −0.528 0.398 0.902 0.001
Quantiles −0.596 −0.543 −0.422 0.362 0.421 0.455 0.000 0.000 0.000 0.000 0.000 0.000

℘12

Mean 0.187 −0.658 20.549 1.142
Quantiles 0.061 0.072 0.080 −0.152 −0.134 −0.116 0.000 0.000 0.000 0.000 1.332 1.629

℘21

Mean 0.000 0.801 −64.979 19.384
Quantiles 0.000 0.000 0.000 0.000 0.000 0.000 −2.136 0.000 0.000 0.000 0.000 1.003

℘22

Mean 0.000 0.033 0.564 −3.887
Quantiles 0.000 0.000 0.000 0.000 0.040 0.045 0.000 0.000 2.245 −4.243 −3.848 −3.446

℘0

Mean 0.033 0.000 0.025 0.000
Quantiles 0.028 0.033 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

estimated to be negative, their associated confidence intervals now lie fully below zero.
The estimate of σ2 is slightly smaller than it was using the previous specification, but of
similar magnitude.

Table 6 reports features of the estimated own- and cross-price elasticities

ηbykl(zi; ζ ) ≡ ∂℘by(zi; ζ )

∂pk�
· pk�

℘by(zi; ζ )
(6.6)

for each (b, y ) product combination and for the outside good implied by the parameter
estimates reported in Table 4. For each household i, the corresponding elasticity of the
choice probability with respect to each price was computed.18 Table 6 displays the re-
sulting means and 0.2, 0.5, and 0.8 quantiles of these elasticities.19 Relative to the means,
the quantiles illustrate considerable heterogeneity in household substitution patterns.
Focusing first on mean own-price elasticities, sales of Gillette cartridges (B = 1) appear
to be less sensitive to changes in own-price than Wilkinson Sword cartridges (B = 2).
However, shifting focus to the quantiles of elasticities shows a more nuanced picture.
For example, the estimated mean own-price elasticity for alternative (2, 1) is roughly
−65, which is extremely high, but the estimated median elasticity is zero and the es-
timated 0.2 quantile is −2.136. In addition, the 0.1 and 0.05 quantiles (not reported in

18Note that elasticities were computed conditional on individual household covariates zi . They are not
elasticities of an aggregate demand function. Mean estimates are sensitive to the presence of zi with very
small estimated conditional choice probabilities ℘by (zi; ζ̂ ).

19Fitted shares less than 10−8 were rounded to zero, and corresponding elasticity estimates were likewise
set to zero to avoid approximation error. An online web supplement provides derivations of the expressions
that were used to compute the elasticities.
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the table) are roughly −32 and −67, respectively. The estimates suggest that the major-
ity of households are not considering this product at the margin. For these households,
℘21(zi; ζ ) is unaffected by a local change in price. However, there is a small subset of
households that in fact are quite sensitive to a change in the price of this product. In-
deed this is consistent with this product offering having by far the smallest market share
in our data. A small price increase that leads to even a handful of households no longer
purchasing can produce a large percentage change in the share purchasing. That said,
elasticities featuring extremely small conditional choice probabilities ℘by(zi; ζ ) in the
denominator in (6.6) may be especially sensitive to sampling variation and should thus
be interpreted with caution.

A qualitatively similar observation holds for η2122; the purchase probability ℘21 is
insensitive to a change in p22 for households not locally considering product (2, 1),
but purchase probabilities for the segment of households that are purchasing or are
locally close to purchasing this product respond considerably to changes in p22. For
these households, product (2, 2) appears to be the closest substitute. The large esti-
mated mean own-price elasticity of −3.887 for ℘22 presents a more uniform level of
sensitivity to price changes, as the quantiles are much less disperse. This product has
nearly double the market share of product (2, 1) and is generally the most expensive
product available.

Cross-price elasticity estimates reflect various additional substitution patterns. For
instance, the elasticity estimates for Gillette’s double-blade offering (1, 1) with respect
to Wilkinson blade cartridges (B = 2) are zero for most consumers, up to at least the
0.8 quantile. However, the substantially higher mean estimate with respect to p21 illus-
trates that there is a segment of consumers who are locally sensitive to price changes
in Wilkinson’s double-blade razors; in this sense product (2, 1) is a closer substitute for
(1, 1) than is product (2, 2). On the other hand, for Gillette’s triple-blade razors, product
(1, 2), there are more consumers sensitive to price changes in Wilkinson’s triple-blade
cartridges (2, 2) than Wilkinson’s double-blade cartridges (2, 1). Given the ordered na-
ture of the product offerings, the probability of purchasing the outside good, disposable
razors, is somewhat sensitive to changes in the price of double-blade razors (Y = 1), but
is insensitive to changes in the price of triple-blade razors (Y = 2).

Before concluding, it should be noted that these observations come with at least two
important caveats. First of all, our model is static. We do not model consumers’ purchase
or prior possession of handle for any brand-quality offering. Ownership of a handle for
product (b, y ) that is not compatible with other products may be an important factor in
consumer demand and observed substitution patterns. Addressing this would require a
dynamic model and data on handle purchases that may have occurred well in the past,
which we do not have. Second, we do not actually observe the menu of products each
consumer faces when making their purchase. Even if we were able to accurately im-
pute counterfactual prices based on prices paid by other consumers in a given store and
month, it is possible that products a consumer did not purchase were actually not avail-
able in the store at the time the consumer was shopping. This could be problematic if
some stores regularly did not carry or sold out of certain products, rendering imputed
prices invalid.
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Despite these caveats, the application illustrates the ability of the partially ordered
response model to produce consumer substitution patterns that accord with the dual
horizontal and vertical dimensions of product differentiation. To illustrate this point, for
the sake of comparison we report in Table 15 in Appendix C elasticities instead obtained
using the alternative specific conditional logit model of McFadden (1974), implemented
as the asclogit command in Stata, using price specification (6.2). Relative to our model,
this model ignores the vertical dimension of differentiation, thus treating all products
as horizontally differentiated. In comparison to the average elasticities in Table 6, the
magnitude of the average own-price elasticities for Gillette products (B = 1) in Table 15
is larger, indicating a greater average substitution effect following an increase in own-
price, while the reverse is true for Wilkson products (B = 2). Comparing the quantiles,
the picture is also quite different. An implication of the logit model is that no matter
what the value of zi for a household, there is a strictly positive probability that a marginal
change in the price of the product it purchases will induce it to switch to any one of the
other alternatives. Consequently, at each quantile of price elasticities, there is a nonzero
proportion of households considering each product. An even more striking difference is
with respect to the cross-price elasticities. While in our model the cross-price elasticities
are different, the cross-price elasticities for product (b, y ) with respect to pk� implied by
the alternative specific conditional logit model are the same regardless of (b, y ). For ex-
ample, the mean cross-price elasticity of product (b, y ) induced by a change in the price
of the Gillette double-blade cartridge (product (1, 1)) reported in Table 15 is estimated
as 0.0874, across all (b, y ) �= (1, 1). This is restrictive, as we would expect individuals to
respond to price changes of a given product (e.g., (1, 1)) differently depending on which
product they are currently purchasing.20 Our model allows this, as the first column of
Table 6 indicates that the share of (1, 2) and the outside alternative are both locally sen-
sitive to changes in p11, although the corresponding cross-price elasticities differ. Fur-
thermore, Table 6 indicates consumers choosing the shares of (2, 1) and (2, 2) are locally
insensitive to changes in p11. More generally, it is easy to see from the columns of Table 6
that cross-price elasticities reported with respect to any given product price may vary.

The estimated elasticities further indicate interesting substitution patterns within
and across brands. Looking at the rows for ℘11 and ℘12, we generally see nonzero cross-
price elasticities for consumers choosing Gillette’s alternative product offering, but zero
quantiles of many of the cross-price elasticities with respect to Wilkinson’s products.
This suggests most consumers who purchase Gillette cartridges are more responsive to
local changes in the price of Gillette’s other product than they are to local changes in
Wilkinson’s prices. Considering the rows for ℘21 and ℘22, we instead see that consumers
purchasing Wilkinson’s products are comparatively insensitive to changes in the prices
of other products, with exceptions at some quantiles of estimated cross-price elastici-
ties.

20This issue as well as other implications of the logit elasticities have been previously discussed in the
literature, for example, in Nevo (2000).
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7. Conclusion

In this paper, we proposed a new discrete choice model for partially ordered alterna-
tives, applicable when discrete choices are differentiated along both vertical and hori-
zontal dimensions. We provided general characterizations of the identified set of struc-
tures admitted by the model and conditional choice probabilities under mild shape re-
strictions that induce an ordered (i.e., vertically differentiated) choice problem hold-
ing the horizontal dimension of choice fixed. We considered specialized results for a
partially ordered probit model in which brand-specific unobservables are restricted to
be multivariate normal with parameterized covariance matrix. Closed-form expressions
for choice probabilities were obtained in a duopoly (two-brand) setting, useful for com-
puting the log-likelihood. An empirical illustration was provided using data on razor
blade cartridge purchases in a setting that features two dominant competing firms with
vertically differentiated products. The application demonstrated the model’s ability to
capture interesting substitution patterns commensurate with the two levels of differen-
tiation, and which reflect underlying heterogeneity in preferences.

Estimating such patterns as accurately as possible can be important for measuring
welfare, predicting reactions to the introduction of new products, and for modeling firm
competition. Indeed, future analysis combining demand modeled by way of a vertically
and horizontally ordered choice model with a model of equilibrium firm behavior could
be useful for estimating such quantities. In this way, the choice model developed here
could potentially be applied to study equilibrium pricing by multiproduct firms engag-
ing in second-degree price discrimination. This could in turn be used to empirically
measure the direction and magnitude of welfare effects of competition in markets with
nonlinear pricing, for which the incorporation of both horizontal and vertical differen-
tiation is important.

Appendix A: Proofs

Proof of Proposition 1. First, consider any (u0, G0 ) ∈ S0. By the same argument as
when there is point identification, we have for almost every z ∈ Z ,

E
[
lnG0

(
VBY (z; u0 )

)
|Z = z

]≥E
[
lnG

(
VBY (z; u)

)
|Z = z

]
(A.1)

for all (u, G) ∈ S . Thus S0 is contained in the set of maximizers of Q(u, G). Consider now
(ũ, G̃) /∈ S0. Then for some (b, y ) ∈ MBY there exists a positive measure set Z∗(ũ, G̃) as
defined in (3.7) on which G̃(Vby(z; ũ)) �= G0(VBY (z; u0 )) = f 0

z (b, y ) for at least one (b, y )
pair. We therefore have

∀z ∈ Z∗(ũ, G̃), E
[
lnG0

(
VBY (z; u0 )

)
|Z = z

]
>E

[
ln G̃

(
VBY (z; ũ)

)
|Z = z

]
.

Combining this with (A.1), it follows that Q(u0, G0 ) >Q(ũ, G̃), completing the proof.

Proof of Theorem 1. From the utility maximization hypothesis, (b, y ) is chosen if and
only if it maximizes u(b, y, z, vb ). This is so if and only if (i) (b, y ) provides higher util-
ity than that delivered by all within-brand options {u(b, ỹ , z, vb ) : ỹ �= y}, and (ii) (b, y )
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provides higher utility than that delivered by all alternative brand options {u(b̃, ỹ, z, v
b̃ ) :

(b̃, ỹ ) �= (b, y )}.
Condition (i) requires that y maximizes u(b, ·, z, vb ) for the stated brand b, that is,

Y ∗
b = y. Given the single-crossing property of Restriction A6(iii), we can apply Theorem

4 of Milgrom and Shannon (1994), implying that Y ∗
b is nondecreasing in vb. It follows

that for each y ∈ {0, � � � , ȳb + 1}, there is a nondecreasing sequence of thresholds {gb(y ) :
y = (0, � � � , ȳb + 1)} such that Y ∗

b = y if and only if vb ∈ (gb(y ), gb(y + 1)], where possibly
gb(y ) = gb(y + 1) if alternative (b, y ) is never chosen. That gb(0) ≡ −∞ and gb(ȳb + 1) ≡
∞ follows from 0 and ȳb being the lowest and highest feasible values of y.

Condition (ii) stems from Restriction A6(ii), strict monotonicity of u(b, y, z, vb ) in vb
for each b. The consumer will choose brand b if and only if for any other brand d, the
utility from choosing (b, Y ∗

b ) exceeds that from choosing (d, Y ∗
d ), that is, if

u
(
b, Y ∗

b , z, vb
)
> max

y∈Yd

u(d, y, z, vd ), if b < d, (A.2)

u
(
b, Y ∗

b , z, vb
) ≥ max

y∈Yd

u(d, y, z, vd ), if b > d. (A.3)

By A6(ii), it follows that

u∗
d(z, vd ) ≡ max

y∈Yd

u(d, y, z, vd )

is strictly monotone and thus invertible in vd . Inequalities (A.2) and (A.3) thus simplify
to

qd
{
u
(
b, Y ∗

b , z, vb
)
; z
}
> vd , if b < d,

qd
{
u
(
b, Y ∗

b , z, vb
)
; z
} ≥ vd , if b > d,

where qd(·; z) denotes the inverse of u∗
d(z, vd ) with respect to vd , that is, for any (z, vd ),

qd
(
u∗
d(z, vd ); z

)= vd .

Then we have the inequalities (3.3) and (3.4) with

hb,d(y ) ≡ qd
{
u
(
b, Y ∗

b , z, vb
)
; z
}

,

for each pair b �= d. The integral (3.5) for the conditional choice probabilities then follows
immediately from their definition ℘by(z; S ) ≡G(Vby(z; u)).

Proof of Theorem 2. It is straightforward to verify that the function

h(v, θ) ≡ fV (v; �)1
[
v ∈ Vby(z; θ)

]
is log-concave in (v, θ). This follows from log-concavity of fV (v; �) in v and log-
concavity of 1[v ∈ Vby(z; θ)] in (v, θ), which is easy to establish given Vby(z; θ) comprises
a system of linear inequalities in (v, θ). By Theorem 6 of Prekopa (1973), it then follows
that ∫

h(v, θ)dv
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is log-concave in θ and concavity of L(θ, G) follows.

Proof of Theorem 3. Let θ̃ �= θ and for each b ∈ B, let θb ≡ (δb, γb, β′
b )′ and θ̃b ≡

(δ̃b, γ̃b, β̃′
b )′, θ−b ≡ (θ′

1, � � � , θ′
b−1, θ′

b+1, � � � , θ′̄
b

)′, and likewise for θ̃−b. Let kb denote the
number of components of θb.

Let

z ≡

⎛⎜⎜⎜⎜⎜⎝
z̃1,1 · · · z̃1,k1 0 · · · · · · · · · · · · · · · 0

0 · · · 0 z̃2,1 · · · z̃2,k2 0 · · · 0
...

0 · · · · · · · · · · · · 0
. . . 0 · · · 0

0 · · · · · · · · · · · · · · · 0 z̃b̄,1 · · · z̃b̄,kb̄

⎞⎟⎟⎟⎟⎟⎠
and let z−b denote the matrix z with the bth row removed. Let zb denote the bth row of
z excluding zero entries. As in the main text, z (not in bold font) is used to denote a
realization of all exogenous variables excluding repetitions.

Define the sets

S+
b ≡ {z ∈ Z∗ : zb(θ̃b − θb ) > 0 and z−b(θ̃−b − θ−b ) ≥ 0

}
,

S−
b ≡ {z ∈ Z∗ : zb(θ̃b − θb ) < 0 and z−b(θ̃−b − θ−b ) ≤ 0

}
.

Let �b̄(zθ; �) denote the cumulative distribution function for the b̄-variate distribution
G(·, �) evaluated at zθ. For any z ∈ S+

b , we have that

�b̄(zθ̃; �) >�b̄(zθ; �) = f 0
z (0, 0), (A.4)

and likewise for any z ∈ S−
b ,

�b̄(zθ̃; �) <�b̄(zθ; �) = f 0
z (0, 0), (A.5)

where f 0
z (0, 0) = P{(B, Y ) = (0, 0)|Z = z}. The probability that Z ∈ Sb ≡ S+

b ∪ S−
b is

P{Z ∈ Sb} = P
{
Z ∈ S+

b

}+ P
{
Z ∈ S−

b

}

=

⎛⎜⎜⎜⎝
P
{

Z−b(θ̃−b − θ−b ) ≥ 0|Zb(θ̃b − θb ) > 0, Z ∈ Z∗}
× P

{
Zb(θ̃b − θb ) > 0, Z ∈ Z∗}

+ P
{

Z−b(θ̃−b − θ−b ) ≤ 0|Zb(θ̃b − θb ) < 0, Z ∈ Z∗}
× P

{
Zb(θ̃b − θb ) < 0, Z ∈ Z∗}

⎞⎟⎟⎟⎠ .

At least one of P{Zb(θ̃b − θb ) > 0, Z ∈ Z∗} and P{Zb(θ̃b − θb ) < 0, Z ∈ Z∗} are strictly
positive because of condition (i), and P{Z ∈ Z∗} > 0, and it follows that at least one of

P
{

Z−b(θ̃−b − θ−b ) ≥ 0|Zb(θ̃b − θb ) > 0, Z ∈ Z∗}
P
{

Zb(θ̃b − θb ) > 0, Z ∈ Z∗},

P
{

Z−b(θ̃−b − θ−b ) ≤ 0|Zb(θ̃b − θb ) < 0, Z ∈ Z∗}
P
{

Zb(θ̃b − θb ) < 0, Z ∈ Z∗},

or both must be strictly positive by condition (ii). Therefore, P{Z ∈ Sb} > 0, implying that
θ̃ is observationally distinct from θ since for each z ∈ Sb, f 0

z (0, 0) �= �b̄(zθ̃; �).
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Before proving Proposition 2, the following lemma is first proven.

Lemma 1. When ȳb = 2 for each b, then (5.2) can be simplified to

hb(y, z, v, θ) = 1
[
v < z∗

by

]
m−

by(z, v, θ) + 1
[
v ≥ z∗

by

]
m+

by(z, v, θ), (A.6)

where

m−
by(z, v, θ) ≡ y(xbβb + v) + αd1 − αby − xdβd , (A.7)

m+
by(z, v, θ) ≡ 1

2

[
y(xbβb + v) + αd2 − αby

]− xdβd , (A.8)

Proof. Since ȳb = 2, (5.2) simplifies to

hb(y, z, v, θ) = min
ỹ∈{1, ���, ȳd }

1
ỹ

[
y(xbβb + v) − (αby − αdỹ )

]− xdβd (A.9)

= min
{
m−

by(z, v, θ), m+
by(z, v, θ)

}
. (A.10)

Both m−
by(z, v, θ) and m+

by(z, v, θ) are linear and strictly increasing in v. Setting m−
by(z, v,

θ) =m+
by(z, v, θ) reveals that the two functions are equal at

v = z∗
by ≡ αd2 + αby − 2αd1

y
− xbβb,

and since m−
by(z, v, θ) has a larger slope with respect to v, it follows that for all v < z∗

by ,

m−
by(z, v, θ) < m+

by(z, v, θ), while for all v > z∗
by , m−

by(z, v, θ) > m+
by(z, v, θ). Thus (A.10)

simplifies to (A.6), completing the proof.

Proof of Proposition 2. The starting point is (5.1):

℘by(z; ζ ) = 1
σb

∫ gb(y+1;z,θ)

gb(y;z,θ)
�

⎛⎜⎝hb(y, z, v, θ) − ρ
σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv,

which is broken into three cases, depending on whether z∗
by lies below, inside, or above

the interval [gb(y; z, θ), gb(y + 1; z, θ)] on which the integral is to be evaluated:

1. gb(y; z, θ) < z∗
by < gb(y + 1; z, θ).

℘by(z; ζ ) = σ−1
b

∫ z∗
by

gb(y;z,θ)
�

⎛⎜⎝m−
by(z, v, θ) − ρ

σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv

+ σ−1
b

∫ gb(y+1;z,θ)

z∗
by

�

⎛⎜⎝m+
by(z, v, θ) − ρ

σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv. (A.11)
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2. gb(y; z, θ) ≤ gb(y + 1; z, θ) ≤ z∗
by .

℘by(z; ζ ) = σ−1
b

∫ gb(y+1;z,θ)

gb(y;z,θ)
�

⎛⎜⎝m−
by(z, v, θ) − ρ

σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv. (A.12)

3. z∗
by ≤ gb(y; z, θ) ≤ gb(y + 1; z, θ).

℘by(z; ζ ) = σ−1
b

∫ gb(y+1;z,θ)

gb(y;z,θ)
�

⎛⎜⎝m+
by(z, v, θ) − ρ

σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv. (A.13)

The expressions in each case simplify as follows, using (A.7) and (A.8) and a change
of variables substitution for v

σb
:

σ−1
b

∫ z∗
by

gb(y;z,θ)
�

⎛⎜⎝m−
by(z, v, θ) − ρ

σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv

=
∫ σ−1

b z∗
by

σ−1
b gb(y;z,θ)

�

(
yxbβb + αd1 − αby − xdβd + (σby − ρσd )v

σd

√
1 − ρ2

)
φ(v)dv, (A.14)

σ−1
b

∫ gb(y+1;z,θ)

z∗
by

�

⎛⎜⎝m+
by(z, v, θ) − ρ

σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv

=
∫ σ−1

b gb(y+1;z,θ)

σ−1
b z∗

by

�

⎛⎜⎜⎝
1
2

[yxbβb + αd2 − αby ] − xdβd +
(

1
2
σby − ρσd

)
v

σd

√
1 − ρ2

⎞⎟⎟⎠
×φ(v)dv, (A.15)

σ−1
b

∫ gb(y+1;z,θ)

gb(y;z,θ)
�

⎛⎜⎝m−
by(z, v, θ) − ρ

σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv

=
∫ σ−1

b gb(y+1;z,θ)

σ−1
b gb(y;z,θ)

�

(
yxbβb + αd1 − αby − xdβd + (σby − ρσd )v

σd

√
1 − ρ2

)
φ(v)dv, (A.16)

σ−1
b

∫ gb(y+1;z,θ)

gb(y;z,θ)
�

⎛⎜⎝m+
by(z, v, θ) − ρ

σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv

=
∫ σ−1

b gb(y+1;z,θ)

σ−1
b gb(y;z,θ)

�

⎛⎜⎜⎝
1
2

[yxβb + αd2 − αby ] − xdβd +
(

1
2
σby − ρσd

)
v

σd

√
1 − ρ2

⎞⎟⎟⎠
×φ(v)dv. (A.17)
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Page 403 of Owen (1980) gives us formula 10,010.4:

∫ k

h
�(c1 + c2z)φ(z)dz = �(k, c1, c2 ) −�(h, c1, c2 ), (A.18)

where the function �(·, ·, ·) is given by

�(k, c1, c2 ) =
∫ c1√

c2
2+1

−∞
φ(z)�

(
k
√
c2

2 + 1 + c2z
)
dz. (A.19)

Formula 10,010.1 on page 402 of Owen (1980) is

∫ y

−∞
φ(z)�(a+ bz)dz =�2

(
a√

1 + b2
, y;

−b√
1 + b2

)
. (A.20)

Applying this formula to (A.19) with

y = c1√
c2

2 + 1
, a = k

√
c2

2 + 1, b = c2

gives

�(k, c1, c2 ) = �2

(
k,

c1√
c2

2 + 1
;

−c2√
1 + c2

2

)
. (A.21)

Define now

c−
1 ≡ yxbβb + αd1 − αby − xdβd

σd

√
1 − ρ2

, c−
2 ≡ σby − ρσd

σd

√
1 − ρ2

,

c+
1 ≡ yxbβb + αd2 − αby − 2xdβd

2σd

√
1 − ρ2

, c+
2 ≡ σby − 2ρσd

2σd

√
1 − ρ2

as well as

�̃(h, k, c1, c2 ) ≡ �(k, c1, c2 ) −�(h, c1, c2 ). (A.22)

Referring back to (A.18), substitution of c2 with those coefficients multiplying v and

substitution of c1 with those terms not multiplying v in the integrands on the right-

hand side of (A.14)–(A.17) combined with (A.11)–(A.13) gives the following expression

for conditional choice probabilities according to where z∗
by lies with respect to the inter-

val [gb(y; z, θ), gb(y + 1; z, θ)]:
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1. gb(y; z, θ) < z∗
by < gb(y + 1; z, θ).

℘by(z; ζ ) = σ−1
b

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ z∗
by

gb(y;z,θ)
�

⎛⎜⎝m−
by(z, v, θ) − ρ

σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv

+
∫ gb(y+1;z,θ)

z∗
by

�

⎛⎜⎝m+
by(z, v, θ) − ρ

σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
= �̃

(
σ−1
b gb(y; z, θ), σ−1

b z∗
by , c−

1 , c−
2

)
+ �̃

(
σ−1
b z∗

by , σ−1
b gb(y + 1; z, θ), c+

1 , c+
2

)
.

2. gb(y; z, θ) ≤ gb(y + 1; z, θ) ≤ z∗
by .

℘by(z; ζ ) = σ−1
b

∫ gb(y+1;z,θ)

gb(y;z,θ)
�

⎛⎜⎝m−
by(z, v, θ) − ρ

σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv

= �̃
(
σ−1
b gb(y; z, θ), σ−1

b gb(y + 1; z, θ), c−
1 , c−

2

)
.

3. z∗
by ≤ gb(y; z, θ) ≤ gb(y + 1; z, θ).

℘by(z; ζ ) = σ−1
b

∫ gb(y+1;z,θ)

gb(y;z,θ)
�

⎛⎜⎝m+
by(z, v, θ) − ρ

σd

σb
v

σd

√
1 − ρ2

⎞⎟⎠φ

(
v

σb

)
dv

= �̃
(
σ−1
b gb(y; z, θ), σ−1

b gb(y + 1; z, θ), c+
1 , c+

2

)
.

Using indicators for whether z∗
by < gb(y + 1; z, θ) and z∗

by > gb(y; z, θ) to cover each
of these cases gives

℘by(z; ζ ) =

⎛⎜⎜⎜⎝
1
[
z∗
by < gb(y + 1; z, θ)

]
× �̃

(
σ−1
b max

{
z∗
by , gb(y; z, θ)

}
, σ−1

b gb(y + 1; z, θ), c+
1 , c+

2

)
+ 1
[
z∗
by > gb(y; z, θ)

]
× �̃

(
σ−1
b gb(y; z, θ), σ−1

b min
{
z∗
by , gb(y + 1; z, θ)

}
, c−

1 , c−
2

)
⎞⎟⎟⎟⎠ . (A.23)

This produces (5.3) by noting that the variables defined in (5.5) and (5.6) satisfy

m+
1 = c+

1√(
c+

2

)2 + 1
, m+

2 = − c+
2√(

c+
2

)2 + 1
,

m−
1 = c−

1√(
c−

2

)2 + 1
, m−

2 = − c−
2√(

c−
2

)2 + 1
,

from which it follows from (A.21) and (A.22) that ℘by(z; ζ ) in (A.23) is equal to (5.3) in the
statement of the proposition for each b and y ∈ {1, 2}.
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Appendix B: Data

In the application in Section 6, we used data on purchases of women’s razor blades for
the years 2004–2005 in Great Britain. The razor blade market is divided into three dif-
ferent sectors: cartridges bought with a razor (referred to as “system razors”), cartridges
bought alone (referred to as “system blades”), and disposable razors. The original data
consists of 7234 observations in which the main shopper was a female. Table 7 shows
the observed market share of the three sectors in 2004–2005.

For the application, we concentrate on the market for system blades, where con-
sumers buy a set of cartridges to use with a handle they already own from Gillette or
Wilkinson Sword. We define the outside option as the purchase of a disposable razor.
On average in our sample, using equation (6.1) for the per-cartridge unit price of system
blades, a double-blade cartridge costs £0.79 and a triple-blade cartridge costs £1.45. Ta-
ble 8 provides the average unit price per cartridge for each (b, y ) combination of car-
tridges in our sample as estimated using equation (6.1).

As discussed in Section 2, Restriction A4 requires the explanatory variables and the
unobservables to be stochastically independent. In our application, prices are included
as exogenous variable, so the independence assumption requires price to be indepen-
dent of unobservable heterogeneity. Given the relatively small cost of razor blades as
indicated in Table 8, it seems reasonable to assume that this cost makes up only a small
fraction of total expenditure, such that consumers are unlikely to choose where to shop
for their groceries and personal care items on the basis of razor blade prices. Thus we
think the assumption of price exogeneity is reasonable in this context.

The women’s market for reusable razors for the years 2004–2005 is dominated by
two firms, Gillette and Wilkinson Sword, each offering razors and cartridges with two
or three blades.21 Gillette’s twin-blade reusable razor, Sensor for Women, was launched
in 1992, and the first three-blade reusable razor, the original Gillette Venus, was intro-
duced in 2001. The double-edged system razor, Lady Protector, was introduced in 1994
by Wilkinson Sword, and the three-bladed razor Intuition, by Schick-Wilkinson Sword,
in 2003.22

Table 7. Market shares of the sectors system razors,
system blades, and disposable razors in 2004–2005.

Sector Total

System razors 16.80%
System blades 33.67%
Disposable razors 49.53%

21Non-Gillette or non-Wilkinson Sword cartridges for reusable razors, for example, stores’ own-label sys-
tem blades, were dropped from the sample as they accounted for only a small percentage of the market
share for system blades in our data.

22Datta (2019) and Women’s Razors, Shavers & Shaving Products UK | Wilkinson Sword (source:
www.wilkinsonsword.com/en-gb/womens/). In 1993, Schick-Wilkinson Sword was formed and the Schick
name was used in North America and elsewhere, while the Wilkinson Sword name was used in Eu-

http://www.wilkinsonsword.com/en-gb/womens/
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Table 8. Average unit prices of system blade cartridges
in 2004–2005. Standard deviations in parentheses.

Trading
company

Blade type

Double-blade Triple-blade

Gillette £0.75 £1.32
(0.0786) (0.1028)

Wilkinson Sword £0.85 £1.86
(0.0421) (0.2398)

We use observations in which the main shopper of the household is a female be-
tween 18–50 years old who is active in the labor force. This includes women who work
full-time, work part-time, are unemployed or not working, or in full-time education.23

In the analysis, we also include the marital status of the main shopper,24 and a variable
indicating whether there is more than one female in the household. The sample used in
our analysis consists of 4842 observations. Table 9 gives summary statistics of the main
shopper characteristics.

For each observation in the sample, we observe whether they purchased cartridges
for reusable razors or disposable razors and the type of blade they bought, as well as
the total amount they spent, the pack size of the product they bought, the month they
made the purchase, and the store in which the purchase was made. As shown in Table 10,
cartridges of system blades were observed in pack sizes of 3–8 cartridges, with double-
blade cartridges only offered in a pack size of 5. In the calculation of the average price
in equation (6.1) and of the counterfactual prices in equation (6.2), the pack sizes were
redefined as small (S) if they contained 3 or 4 cartridges/disposable razors, medium (M)
if they contained 5 or 6 cartridges/disposable razors, and large (L) if they contained 8 or
more cartridges/disposable razors, as shown in Table 11.

Table 9. Main shopper characteristics for 2004–2005.

Employment status Marital status No of females

Works more than 30 hours 39.20% Married 61.83% One female 43.04%
Works 8–29 hours 29.18% Single 31.50% More than one 56.96%
Works less than 8 hours 2.38% Divorced/Widowed/Separated 6.67%
Unemployed/not working 28.13%
Full-time education 1.12%

rope (History of Wilkinson Sword Ltd. – FundingUniverse, source: www.fundinguniverse.com/company-
histories/wilkinson-sword-ltd-history/.)

23Retired individuals were excluded from the sample. In our analysis, “Employed” corresponds to work-
ing some hours while “Unemployed” corresponds to either unemployed/not working or full-time educa-
tion.

24The married indicator is zero for those who indicated they were single, divorced, widowed, or sepa-
rated.

http://www.fundinguniverse.com/company-histories/wilkinson-sword-ltd-history/
http://www.fundinguniverse.com/company-histories/wilkinson-sword-ltd-history/
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Table 10. Pack sizes observed.

Pack
size

System blades

DisposablesDouble-blade Triple-blade Gillette Wilkinson Sword

3 22.00% 59.92% 0.10%
4 72.80% 72.65% 23.74%
5 100.00% 24.24% 34.40% 43.67%
6 3.05% 0.97% 5.67% 3.62%
8 2.15% 2.15% 13.21%
more than 8 15.65%

The counterfactual prices in equations (6.2) and (6.3) were calculated by condition-
ing and not conditioning on the pack size of the product purchased, respectively. As is
evident from Table 10 not all blade types and not all brands are observed being offered
in all pack sizes. Table 13 gives the estimates of regressions (6.2) and (6.3). For the calcu-
lation of the average price in equation (6.1) and of the counterfactual prices in equations
(6.2) and (6.3), the stores were grouped according to Table 12.

Appendix C: Alternative specific conditional logit model

In this Appendix, the results in Section 6.3 are compared to the standard alternative spe-
cific conditional logit (asclogit) model. Following McFadden (1974), choice probabilities
of the asclogit model are specified as

℘by(z; ζ ) = exp
(
pbyγ1 + 1[y = 2]γ2 + 1[b= 2]γ3 + xβby

)∑
(b′,y ′ )∈MBY

exp
(
pb′y ′γ1 + 1

[
y ′ = 2

]
γ2 + 1

[
b′ = 2

]
γ3 + xβb′y ′

) ,

where x denotes the same individual characteristics as in our model and pby is the price
for each of the four system blades alternatives each individual would have faced at the
time of purchase. The specification includes both brand and high-quality (triple-blade)
product-specific dummy variables 1(b = 2) and 1(y = 2), respectively.25 The mean value
of the utility of the outside good, disposable razors, is imposed to be zero by setting
the value of each of the alternative specific covariates, that is, the price and the quality
and brand dummies, for option (0, 0), to zero. The estimated coefficients using only

Table 11. Pack size grouping.

Pack size System Blades Total

S 69.23% 42.34%
M 29.19% 39.92%
L 1.57% 17.74%

25Constant terms are excluded from the alternative-specific utilities as these would not be identified with
the inclusion of the brand and quality dummy variables.
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Table 12. Store groups observed.

Store Percent of observed purchases

Asda 22.24%
Boots 8.57%
Co-op 0.50%
Kwik Save 0.56%
Morrisons 7.95%
Safeway 1.47%
Sainsbury’s 8.01%
Savacentre 0.64%
Somerfield 0.91%
Superdrug 4.03%
Tesco 25.01%
Waitrose 0.33%
Wilkinson 13.78%
Defaulta 3.61%
All other 2.40%

aBefore grouping the stores in the 15 categories in Table 12, the different store names were identified using the shop identi-
fier and/or the shop code available from the purchase data. The “Default” category in the original store data contains different
shop codes. One of these shop codes also corresponded to the shop code of some “Tesco” stores in our data. These observa-
tions were reclassified from the “Default” to the “Tesco” category. All the other shop codes in the “Default” category remained
in the category.

specification (6.2) are given in Table 14. These results were then used to calculate the
predicted own- and cross-price elasticities, which following, for example, Cameron and
Trivedi (2009) take the form:

ηibykl =
{
γ1
[
1 −℘by(zi; β, γ)

]
piby if (b, y ) = (k, l),

−γ1℘kl(zi; β, γ)pikl if (b, y ) �= (k, l).

Table 15 gives the estimates of the average and the 0.2, 0.5, and 0.8 quantiles of
household own- and cross-price elasticities. For example, the mean own-price elasticity

Table 13. OLS estimates of (6.2) and (6.3) conditional on system blade purchases.

Specification (6.2) Specification (6.3)

Wilkinson Sword 0.4048 0.3961
(0.0080) (0.0081)

Triple-blade 0.5043 0.6948
(0.0240) (0.0082)

Medium pack size −0.1988
(0.0236)

Large pack size −0.0205
(0.0277)

Constant 0.7385 0.5456
(0.0429) (0.0370)

Note: Monthly and store dummies are suppressed. Standard errors in parentheses.
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Table 14. Alternative specific conditional logit regression estimates.

Specification (6.2)

γ β11 β12 β21 β22

Price −1.2550
(0.1250)

Triple-blade 0.5209
(0.1582)

Wilkinson Sword −1.3582
(0.1651)

Age 31–40 −0.2304 −0.1440 −0.3202 0.2973
(0.1172) (0.0854) (0.1831) (0.1443)

Age 41–50 −0.6836 −0.4300 −0.1935 0.1617
(0.1567) (0.1014) (0.2013) (0.1640)

Married −0.1051 0.1680 0.1166 0.2867
(0.1066) (0.0769) (0.1589) (0.1259)

Employed −0.3358 0.3436 0.1396 0.8254
(0.1034) (0.0812) (0.1558) (0.1416)

Females −0.7164 −0.0819 0.2128 −0.2498
(0.1077) (0.0754) (0.1572) (0.1199)

Note: Standard errors in parentheses.

of a Gillette double-blade cartridge, (1, 1), is −0.8871, while the mean cross-price elas-

ticity of any other alternative with respect to the price of the Gillette double-blade is

0.0874.

Table 15. Alternative specific conditional logit mean and 0.2, 0.5, and 0.8 quantile estimates of
household elasticities.

Specification (6.2)

Own-price elasticities Cross-price elasticities

(1, 1)
Mean −0.8871 0.0874
Quantiles −1.0054 −0.9074 −0.7554 0.0514 0.0797 0.1207

(1, 2)
Mean −1.2300 0.3583
Median −1.3569 −1.2362 −1.0941 0.3131 0.3563 0.4050

(2, 1)
Mean −1.4073 0.0562
Quantiles −1.5371 −1.4531 −1.2659 0.0489 0.0546 0.0685

(2, 2)
Mean −1.9675 0.1478
Quantiles −2.1028 −1.9759 −1.8036 0.0940 0.1550 0.1952



900 Aristodemou and Rosen Quantitative Economics 13 (2022)

Appendix D: Monte Carlo experiments

In this Appendix, we report the results of Monte Carlo experiments to compare the fi-
nite sample performance of Wald and profile QLR confidence intervals. For these ex-
periments, we generated data from the partially ordered probit model, with the num-
ber of parameters matching those employed in the subsequent application. There were
five individual-specific dummy variables with corresponding coefficients βb1, � � � , βb5

for each b = 1, 2. Each product offering had a price Pby generated differently in each of
the three data generation processes (DGPs)—referred to as DGP1, DGP2, and DGP3—as
described below. The linear-in-price specification described by (4.6) was used.

To simulate data, population parameter values were set as follows:

γ1 = 1, γ2 = 0.8, δ1 = −1.5, δ2 = −1.2, ρ = 0.5, σ = 1,

β1 = (1.3, 0.3, −0.1, −0.3, 0.7)′, β2 = (1.0, 0.3, −0.1, −0.3, 0.7)′.
(D.1)

In our application, the first two components of X , X1 and X2, are dummy variables
indicating whether age of a female shopper is from 31–40, or 41–50, with 18–30 denoting
the base category. These variables were drawn such that Pr[X1 = 1] = 0.426, Pr[X2 =
1] = 0.234, and X1 + X2 ≤ 1. The remaining components of X are dummy variables for
marriage, employment, and a variable “more_females” indicating the presence of more
than one female in the household. These were generated from the Bernoulli distribution
with parameters 0.4, 0.85, and 0.554, respectively. The age variable from which X1 and
X2 were generated and the remaining dummy variables were drawn independently of
one another.

Prices (P11, P12, P21, P22 ) were generated independently of X , as follows. First, for
each DGP and for each observation a vector ε was drawn from the bivariate normal
distribution with each component having mean zero and variance one, with correla-
tion 0.25. In DGP1 prices, P11 and P21 were generated independently, and uniformly
on the intervals [1, 4] and [1.35, 2.15], respectively. Prices P12 and P22 were then set to
P12 = P11 +ε1 and P22 = P21 +ε2. In this DGP, prices P12 and P22 thus both have positive
density on all of R conditional on all other variables. This implies that there is posi-
tive probability that the price of the higher-quality product for either brand b under-
cuts the price of the lower-quality product, that is, Pb2 < Pb1, as could happen under
a promotion for the higher-quality product. In such cases, the conditional probability
of choosing the lower-quality product for the brand will be zero. Moreover, the large
support for both P12 and P22 imply that this happens with positive probability for both
brands, in which case the choice problem reduces to a simple multinomial choice set-
ting between each brand’s higher-quality product and the outside option. Thus, the large
support of these variables, artificial though it may be, demonstrates a setting in which
point identification is anticipated. This is borne out in the Monte Carlo simulations be-
low.

In practice, prices will not have support on the entire real line, and neither DGP2 nor
DGP3 have this feature. In DGP2, P11 and P21 were generated independently from the
uniform distribution on [1, 2] and [1.35, 2.15], respectively, and each Pb2 was set to Pb1 +
max{1, min{|εb|, 2}}. Thus the higher-quality product for each brand always has a higher
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price than the lower-quality product of that brand. Moreover, all prices have continuous,
but bounded support. In DGP3, P11 and P21 were generated the same way, but the term
added on to Pb1 to determine Pb2 was instead rounded to the nearest integer (which was
either one or two) before adding. In this design, prices again have bounded continuous
support, but for each b the conditional support of Pb2 given Pb1 is discrete.

With variables X and prices P = (P11, P12, P21, P22 ) generated as described above,
and unobservables V = (V1, V2 ) drawn from the bivariate normal distribution with pa-
rameters ρ and σ , data (bi, yi, xi, pi ) were generated with each (bi, yi ) solving the in-
dividual choice problem with the corresponding (xi, pi, vi ) and utility parameters as
in (D.1). The expression (5.3) obtained for choice probabilities in Proposition 2 was
used in the log-likelihood function based on n observations in each experiment, with
n ∈ {200, 500, 1000, 2000}. In preliminary investigations, choice probabilities computed
using (5.3) conditional on several values of observable variables were compared to
those obtained using the integral formula (5.1) and those obtained by simulation, and
these were all found to be in close agreement up to negligible computation differ-
ence.

In order to compare the empirical coverage frequencies of the Wald and QLR con-
fidence intervals in each repetition of our Monte Carlo simulations, we carried out the
following steps. First, the R package Ghalanos and Stefan (2015) was used to minimize
−Ln(ζ ) with respect to the full parameter vector ζ, producing an optimizing vector ζ̂ML

and an optimal value L∗
n. To ensure accuracy, 500 randomly generated starting values

were employed using the function gosolnp.26 The optimization routine also returned a
numerical approximation to the Hessian at the optimal value, and this was used to com-
pute asymptotic variance estimators v̂ar(ζ̂k ) for each component of the maximum like-
lihood estimator ζ̂ML. There is no guarantee that ζ is point identified. If it is point iden-
tified, confidence intervals for each parameter component based on the usual asymp-
totic normal approximation should be expected to perform well, but if it is not point
identified the classical theory will be invalid. Nonetheless, QLR confidence intervals can
sometimes remain valid under partial identification as shown by Chen, Christensen, and
Tamer (2018).27

In Monte Carlo experiments where the true population parameter is known, the
same routine was also used to compute the maximum likelihood estimator taking the
values of ρ and σ fixed at their population values. In our application ρ and σ are not
known, so this approach is infeasible. However, with these parameters known, the rest
of the parameters are point identified under mild conditions on the variation in observ-
able payoff shifters. Thus these confidence intervals should be expected to perform well,
and in our Monte Carlo experiments, this was indeed the case. In our reported results,

26In Monte Carlo simulations, the population parameter value was also used as an additional starting
value. The number of randomly generated starting values was chosen based on experimentation; increasing
it further was not found to be beneficial.

27All reported coverage frequencies are for individual parameters ζk. Chen, Christensen, and Tamer
(2018) provide sufficient conditions for the QLR confidence interval to achieve asymptotic coverage for
the identified set for ζk, which also guarantee at least as high a level of asymptotic coverage for ζk.
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we refer to confidence intervals for each ζk based on the maximum likelihood estimator

ζ̂k plus or minus 1.96 ×
√

v̂ar(ζ̂k ) as Wald confidence intervals, considering both cases

where maximum likelihood was carried out with ρ and σ fixed at their population val-

ues, as well as with ρ and σ as additional parameters to estimate. Only the latter ap-

proach is feasible if the population values of ρ and σ are unknown. In order to compute

Monte Carlo coverage frequencies of CLRα,k for ζk, we additionally computed Qk,n(ζk ) as

defined in (6.5) at the population value of ζk and checked whether Qk,n(μ) ≤ χ2
1,α in

each simulation.28

The empirical coverage frequency of the three different procedures for DGPs 1–3 out

of 1000 Monte Carlo repetitions for each sample size are reported in Tables 16, 17, and

18. The target coverage level in each case was 0.95. All procedures performed reasonably

well, although coverage probabilities for the distributional parameters are substantially

below the nominal level at smaller sample sizes. This is particularly so for the Wald pro-

cedure in which ρ and σ are treated as unknown parameters, while undercoverage from

the QLR procedure is less severe at smaller sample sizes.

Table 16. Monte Carlo coverage frequencies out of 1000 simulations for sample sizes n =
200, 500, 1000, 2000 for DGP1, as described in the text.

DGP 1 Realized coverage probability, n= 200, 500, 1000, 2000

Parameter Wald (ρ, σ known) Wald (ρ, σ unknown) QLR

γ1 0.935 0.938 0.954 0.950 0.952 0.951 0.950 0.944 0.929 0.941 0.947 0.935
γ2 0.944 0.954 0.950 0.961 0.934 0.956 0.951 0.937 0.938 0.949 0.947 0.934
δ1 0.927 0.952 0.951 0.958 0.937 0.960 0.963 0.954 0.943 0.955 0.953 0.950
δ2 0.940 0.949 0.954 0.957 0.907 0.945 0.947 0.939 0.932 0.948 0.941 0.937
β11 0.957 0.952 0.951 0.949 0.951 0.956 0.946 0.950 0.942 0.948 0.939 0.942
β12 0.947 0.961 0.944 0.949 0.950 0.963 0.955 0.945 0.933 0.954 0.949 0.933
β13 0.959 0.953 0.951 0.949 0.961 0.961 0.953 0.950 0.947 0.956 0.944 0.943
β14 0.954 0.948 0.959 0.952 0.962 0.950 0.960 0.953 0.942 0.941 0.959 0.946
β15 0.954 0.956 0.957 0.952 0.949 0.968 0.961 0.956 0.945 0.962 0.956 0.948
β21 0.960 0.963 0.958 0.957 0.922 0.943 0.938 0.942 0.938 0.946 0.936 0.941
β22 0.942 0.956 0.947 0.953 0.938 0.961 0.961 0.952 0.931 0.950 0.947 0.941
β23 0.953 0.949 0.961 0.959 0.969 0.955 0.964 0.963 0.951 0.946 0.951 0.951
β24 0.964 0.946 0.941 0.962 0.930 0.940 0.926 0.951 0.945 0.937 0.931 0.942
β25 0.957 0.957 0.956 0.961 0.924 0.952 0.957 0.941 0.955 0.955 0.953 0.938
ρ – 0.899 0.928 0.934 0.944 0.933 0.940 0.940 0.941
σ – 0.908 0.941 0.956 0.927 0.942 0.947 0.957 0.923

28Our implementation employed the solnp function from the package Ghalanos and Stefan (2015) to
compute supζ∈ϒ:ζk=μ Ln(ζ ). In the constrained optimizations conducted with solnp, the population value
of ζ−k was used as a starting value to speed up computations. In terms of coverage frequency for ζk, this
was found to produce the same results in a subset of the Monte Carlo iterations attempted when as many
of 500 random starting values were used.
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Table 17. Monte Carlo coverage frequencies out of 1000 simulations for sample sizes n =
200, 500, 1000, 2000 for DGP2, as described in the text.

DGP 2 Realized coverage probability, n = 200, 500, 1000, 2000

Parameter Wald (ρ, σ known) Wald (ρ, σ unknown) QLR

γ1 0.956 0.956 0.957 0.944 0.936 0.961 0.958 0.942 0.936 0.951 0.955 0.939
γ2 0.955 0.947 0.954 0.948 0.836 0.905 0.926 0.943 0.899 0.935 0.942 0.948
δ1 0.962 0.960 0.955 0.957 0.923 0.957 0.958 0.963 0.939 0.963 0.956 0.959
δ2 0.961 0.945 0.951 0.950 0.812 0.897 0.923 0.940 0.892 0.921 0.941 0.942
β11 0.942 0.962 0.953 0.955 0.928 0.947 0.942 0.952 0.939 0.958 0.946 0.959
β12 0.942 0.950 0.953 0.944 0.951 0.953 0.951 0.942 0.943 0.953 0.953 0.942
β13 0.953 0.950 0.951 0.956 0.951 0.952 0.952 0.950 0.948 0.949 0.949 0.949
β14 0.949 0.950 0.946 0.963 0.961 0.956 0.948 0.957 0.949 0.955 0.947 0.956
β15 0.940 0.958 0.938 0.957 0.927 0.938 0.934 0.949 0.934 0.952 0.938 0.948
β21 0.942 0.956 0.958 0.941 0.852 0.905 0.926 0.934 0.912 0.939 0.945 0.937
β22 0.948 0.957 0.947 0.941 0.900 0.937 0.940 0.946 0.927 0.947 0.945 0.943
β23 0.931 0.960 0.947 0.935 0.949 0.966 0.959 0.952 0.927 0.954 0.951 0.943
β24 0.946 0.939 0.947 0.962 0.894 0.933 0.932 0.962 0.925 0.947 0.940 0.953
β25 0.940 0.948 0.941 0.941 0.866 0.915 0.932 0.938 0.925 0.933 0.942 0.936
ρ – 0.710 0.840 0.885 0.904 0.899 0.929 0.938 0.942
σ – 0.843 0.910 0.928 0.955 0.896 0.929 0.940 0.950

Table 18. Monte Carlo coverage frequencies out of 1000 simulations for sample sizes n =
200, 500, 1000, 2000 for DGP3, as described in the text.

DGP 3 Realized coverage probability, n = 200, 500, 1000, 2000

Parameter Wald (ρ, σ known) Wald (ρ, σ unknown) QLR

γ1 0.948 0.958 0.939 0.952 0.954 0.964 0.948 0.950 0.947 0.958 0.947 0.947
γ2 0.949 0.955 0.945 0.943 0.911 0.930 0.951 0.950 0.929 0.946 0.944 0.952
δ1 0.954 0.950 0.950 0.956 0.955 0.959 0.956 0.958 0.951 0.963 0.956 0.960
δ2 0.960 0.944 0.948 0.948 0.907 0.932 0.953 0.953 0.923 0.931 0.957 0.941
β11 0.936 0.945 0.948 0.952 0.937 0.953 0.958 0.954 0.938 0.954 0.958 0.951
β12 0.949 0.950 0.956 0.948 0.956 0.954 0.959 0.940 0.952 0.948 0.953 0.937
β13 0.948 0.936 0.954 0.951 0.955 0.944 0.950 0.950 0.951 0.941 0.947 0.947
β14 0.939 0.953 0.954 0.956 0.940 0.950 0.954 0.960 0.935 0.950 0.951 0.955
β15 0.941 0.952 0.943 0.946 0.941 0.957 0.954 0.959 0.944 0.953 0.952 0.956
β21 0.938 0.945 0.953 0.954 0.917 0.948 0.953 0.943 0.934 0.953 0.950 0.940
β22 0.942 0.956 0.943 0.948 0.947 0.961 0.952 0.947 0.946 0.956 0.950 0.951
β23 0.945 0.959 0.942 0.944 0.968 0.965 0.959 0.946 0.931 0.953 0.942 0.944
β24 0.948 0.945 0.950 0.963 0.923 0.950 0.943 0.960 0.936 0.948 0.944 0.961
β25 0.938 0.945 0.946 0.948 0.931 0.933 0.949 0.947 0.950 0.941 0.954 0.946
ρ – 0.795 0.897 0.925 0.923 0.916 0.943 0.947 0.937
σ – 0.918 0.939 0.957 0.949 0.927 0.932 0.950 0.943
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