
Horvath, Peter; Li, Jia; Liao, Zhipeng; Patton, Andrew J.

Article

A consistent specification test for dynamic quantile models

Quantitative Economics

Provided in Cooperation with:
The Econometric Society

Suggested Citation: Horvath, Peter; Li, Jia; Liao, Zhipeng; Patton, Andrew J. (2022) : A consistent
specification test for dynamic quantile models, Quantitative Economics, ISSN 1759-7331, The
Econometric Society, New Haven, CT, Vol. 13, Iss. 1, pp. 125-151,
https://doi.org/10.3982/QE1727

This Version is available at:
https://hdl.handle.net/10419/296271

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3982/QE1727%0A
https://hdl.handle.net/10419/296271
https://creativecommons.org/licenses/by-nc/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Quantitative Economics 13 (2022), 125–151 1759-7331/20220125

A consistent specification test for dynamic quantile models

Peter Horvath
Department of Economics, Duke University

Jia Li
Department of Economics, Duke University

Zhipeng Liao
Department of Economics, UCLA

Andrew J. Patton
Department of Economics, Duke University

Correct specification of a conditional quantile model implies that a particular
conditional moment is equal to zero. We nonparametrically estimate the condi-
tional moment function via series regression and test whether it is identically zero
using uniform functional inference. Our approach is theoretically justified via a
strong Gaussian approximation for statistics of growing dimensions in a general
time series setting. We propose a novel bootstrap method in this nonstandard
context and show that it significantly outperforms the benchmark asymptotic ap-
proximation in finite samples, especially for tail quantiles such as Value-at-Risk
(VaR). We use the proposed new test to study the VaR and CoVaR (Adrian and
Brunnermeier (2016)) of a collection of US financial institutions.

Keywords. Bootstrap, VaR, series regression, strong approximation.
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1. Introduction

Quantile models allow the researcher to learn about the location of a given variable,
when the probability level of the quantile is near one-half, or about the tails of the vari-
able, when the probability level is near zero or one. In the former case, quantiles repre-
sent a robust alternative to the mean, reducing the sensitivity to a few large observations.
In the latter case, quantiles are used to measure the risk of a variable. Given their many
uses, the literature on quantile models, which began with Koenker and Basset (1978), is
now voluminous; see Koenker (2005) and Komunjer (2013) for recent reviews. Quantiles
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that lie in the tails of profit and loss distributions are usually given the moniker “Value-
at-Risk” (VaR). This risk measure is at the center of the Basel accords (Basel Committee
(2010)) on banking supervision, which guide regulatory policies in 28 countries or ju-
risdictions around the world. Moreover, trading desks and regulators monitor daily risk
exposures using VaR, and it has become a mainstay of the risk management industry;
see McNeil, Frey, and Embrechts (2015) for example. The results presented in this paper
apply to all dynamic quantile models, but they are particularly relevant for dynamic VaR
models.

The use of parametric models for conditional quantiles naturally leads to a need for
specification tests for these models, as a misspecified model can lead to erroneous pol-
icy decisions or suboptimal predictions. Denoting the variable of interest Yt+1 and the
information set Ft , the conditional q-quantile of Yt+1 given Ft , henceforth denoted as
ft , satisfies P(Yt+1 ≤ ft|Ft ) = q, which is equivalent to the conditional moment restric-
tion:

E[1{Yt+1≤ft } − q|Ft ] = 0.

In applications, researchers are often interested in some specific conditioning variable
Xt , which may be a vector, in the information set. For any Xt adapted to Ft , the above
equation implies

E[1{Yt+1≤ft } − q|Xt = x] = 0, for all x ∈ X , (1.1)

where X is the support of Xt . A consistent specification test can be obtained by esti-
mating the conditional expectation function on the left-hand side of equation (1.1) and
testing whether it is identically zero. This inference problem is nontrivial because it con-
cerns the global, instead of local, behavior of the conditional expectation function. In a
recent paper, Li and Liao (2020) proposed a uniform nonparametric inference method
based on series regression for general time-series data. Under this approach, one can
estimate the conditional moment function by regressing 1{Yt+1≤ft } − q on an asymptoti-
cally growing number of approximating functions ofXt . Because of the growing dimen-
sion, the asymptotic problem is non-Donsker, that is, the functional estimator does not
admit a functional central limit theorem. The approach of Li and Liao (2020) instead re-
lies on a strong Gaussian approximation theory, which can be used to characterize the
asymptotic properties of the test statistic; also see Chernozhukov, Lee, and Rosen (2013)
and Belloni, Chernozhukov, Chetverikov, and Kato (2015) for applications of the strong
approximation technique in microeconometric contexts.

Two theoretical extensions of existing work are required for the analysis in this pa-
per. First, the inference procedure proposed by Li and Liao (2020) is directly based on an
asymptotic Gaussian approximation. However, in a realistically calibrated Monte Carlo
experiment (see Section 3) we find that such an asymptotic approximation works well
only for quantiles near the middle of the distribution, while it suffers from substantial
size distortion for quantiles in the tails. As VaR-type applications often involve proba-
bility levels of 95% or above, this is problematic. We overcome this issue by proposing
a novel bootstrap method for computing the critical values for our test statistic, and we
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establish its asymptotic validity. This bootstrap theory is nonstandard because it con-
cerns uniform inference on the nonparametric series estimator, which appears to be
new in time-series analysis; in particular, the non-Donsker issue in the original problem
also manifests in the “bootstrap world.” The proposed bootstrap procedure is easy to
implement, and our Monte Carlo analysis shows that the bootstrap has satisfactory size
control in realistic scenarios.

The second theoretical extension required for our analysis pertains to the pres-
ence of generated variables. First, note that the variable 1{Yt+1≤ft } − q in the conditional
moment restriction (1.1) depends in a nondifferentiable way on estimated parameters
through the conditional quantile ft . To address this, we provide sufficient conditions
under which the preliminary estimation error is asymptotically negligible for our non-
parametric testing problem. Intuitively, the estimated parameters typically converge at
a parametric rate, and hence, the resulting error is negligible compared with the statis-
tical noise in our uniform nonparametric inference. Although the intuition is straight-
forward, the formal theoretical justification is nontrivial due to the technical interaction
between the nonsmoothness of the indicator function and the growing dimension of the
series regressors. We carry out the theoretical analysis by developing a bracketing-based
chaining argument in the growing-dimensional time-series setting, which is new to the
literature and notably more complicated than the theory presented in Li and Liao (2020)
for smooth transformations.1 In addition, we allow the conditioning variable Xt to be
a generated variable (e.g., volatility estimates from GARCH models, or the quantile es-
timate itself), which is not considered in Li and Liao (2020), either. This latter problem
is distinct from the presence of estimation error in ft because the generatedXt variable
enters into a growing number of regressors in the series estimation.

The third contribution of this paper, beyond the theoretical contributions described
above, is our empirical analysis of the well-known CoVaR originally proposed by Adrian
and Brunnermeier (2016). CoVaR is a measure of the systemic risk of a firm, obtained
via quantile regressions of returns on a firm and a market index. We apply the proposed
new test to the models presented in Adrian and Brunnermeier (2016) and draw two main
conclusions. First, we find that the conditional quantile specification for the market loss
is broadly supported by our tests, while the specification for individual firms’ losses ap-
pears to have room for improvement. Second, we find that the critical covariate in the
CoVaR specification is the market volatility measure; the remaining six covariates con-
sidered by Adrian and Brunnermeier (2016) do not appear to affect the results of our
model specification tests.

Given their widespread use, numerous methods for testing conditional quantile re-
strictions in dynamic models have been proposed in the literature; see Komunjer (2013)
for a summary. Specifically, Christoffersen (1998) noted that if the quantile model is cor-
rect, then the indicator variable 1{Yt+1≤ft } is i.i.d. Bernoulli with success probability q.
He proposes a test of this implication against the alternative that the indicator follows a
first-order Markov process. Engle and Manganelli (2004) instead used a linear regression

1Our analysis is also distinct from prior work in microeconometric settings, because the latter often relies
on symmetrization-based empirical process theory that is specific to the i.i.d. setting.
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to test whether the indicator variable is predictable using Ft-measurable instruments.

Both of these approaches have power against specific parametric alternatives, and can

be thought of as testing a fixed number of unconditional moments implied by the con-

ditional moment restriction (1.1). Our nonparametric method complements these para-

metric approaches by permitting the detection of a priori unknown forms of model mis-

specification. It is also possible to carry out a nonparametric test using Bierens’s test;

see, for example, Bierens (1982, 1990), Bierens and Ploberger (1997), Bierens and Ginther

(2001), and Escanciano and Velasco (2010). Our test is distinct from the Bierens test be-

cause we directly examine the conditional expectation function estimated by series re-

gression, whereas the Bierens test examines the (Donsker-type) empirical process of a

continuum of instrumented unconditional moments. These two approaches are gen-

erally deemed complementary to each other; see, for example, the discussion in Cher-

nozhukov, Lee, and Rosen (2013).

The rest of the paper is organized as follows. Section 2 describes our specification

test and establishes its theoretical properties. Section 3 reports the finite-sample proper-

ties of the test via Monte Carlo experiments. Section 4 provides an empirical illustration

of the proposed method. Section 5 concludes. The Appendix contains all proofs, with

technical lemmas collected in the Online Supplementary Material (Horvath, Li, Liao,

Patton (2022)).

2. A consistent specification test for dynamic quantile models

2.1 The setting and motivating examples

Consider a univariate time series (Yt )t≥0 adapted to a filtration (Ft )t≥0. We focus on

the conditional q-quantile of Yt+1 given Ft-information for some q ∈ (0, 1), denoted

as Qq(Yt+1|Ft ). Our econometric goal is to nonparametrically test whether a candidate

model for Qq(Yt+1|Ft ) is correctly specified. Arguably the most prominent application

of conditional quantile models is estimating VaR and related quantities (e.g., expected

shortfall). In that context, Yt is the loss of an asset portfolio and the conditional quantile

Qq(Yt+1|Ft ) is the one-period-ahead VaR at confidence level q. Below, we focus our dis-

cussion on the VaR for ease of exposition, while noting that our theory is applicable for

any generic conditional quantile model.

The candidate VaR model involves a process ft(θ), where θ is a finite-dimensional

parameter taking values in Rdθ , such that for a given θ the model reports ft(θ) as the

Ft-conditional q-quantile. The VaR model is completed by the empirical researcher’s

choice of an estimator θ̂n, yielding ft(θ̂n ) as the estimated VaR. We call the candidate

VaR model, summarized by the pair (ft(·), θ̂n ) correctly specified if

Qq(Yt+1|Ft ) = ft
(
θ�

)
, for all t ≥ 1, (2.1)
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where θ� is the probability limit of θ̂n.2 To anticipate results below, we note that we are
agnostic about how θ̂n is constructed: for example, it may be computed via quantile
regressions, GMM, maximum likelihood, factor models, or even Bayesian methods. In-
stead, we only assume that θ̂n approaches the limit θ� in large samples with n1/2-rate
of convergence. In our asymptotic analysis, this formalizes the notion that the estima-
tion of this finite-dimensional parameter is “relatively easy” in that it converges at the
parametric rate. The following two examples further clarify the empirical context.

Example 1 (GARCH VaR). VaR estimation is often based on volatility models such as
GARCH. For example, in a Gaussian GARCH(1,1) model, asset return Yt and its volatility
vt follow

Yt+1 = vt+1εt+1, v2
t+1 =ω+βv2

t + γY 2
t , εt ∼ i.i.d. N (0, 1).

We collect the model parameters by setting θ = (ω, β, γ). Given θ, the volatility can
be computed subsequently, which we denote by vt+1(θ). The conditional q-quantile is
given by ft(θ) = zqvt+1(θ), where zq is the q-quantile of the standard normal distribu-
tion.

Example 2 (CoVaR). Adrian and Brunnermeier (2016) proposed a CoVaR model to mea-
sure systematic risk of financial institutions. The key component is a linear conditional
quantile model of the market portfolio’s loss given the loss of a financial firm and other
macroeconomic states, which is given by

Qq
(
Ymarket
t+1 |Ct , Yfirm

t+1

) = α+β�Ct + γYfirm
t+1 ,

where Ymarket
t+1 and Yfirm

t+1 are the losses of the market portfolio and the firm, respectively,
and Ct collects risk-relevant covariates such as the TED spread and market volatility. It
is useful to note that, in this example, the conditioning information set Ft contains not
only the predetermined macroeconomic states (i.e., Ct ) but also the contemporaneous
firm asset loss (i.e., Yfirm

t+1 ), although the information set Ft is indexed by t under our
notational convention.3

2.2 Testing VaR implied conditional moment restrictions

The conditional quantile restriction (2.1) can be equivalently written as a conditional
moment restriction as follows:

E
[
Z�t+1|Ft

] = 0, whereZ�t+1 ≡ 1{Yt+1≤ft (θ� )} − q. (2.2)

2Note that the VaR component of a given model can be correctly specified in the sense of equation (2.1)
even if the complete model is misspecified. For example, a researcher may construct a fully parametric
model that misspecifies some part of the joint distribution of the data, but is correct for the conditional
quantile. In this scenario, if θ̂n is the maximum likelihood estimator, then θ� is the corresponding pseudo-
true parameter from quasi-maximum likelihood estimation (see Komunjer (2005)).

3This convention is adopted to emphasize the fact that the dependent variable, say Ymarket
t+1 , can enter Ft

only through its lagged values, that is, Ymarket
s for s ≤ t. Otherwise, if Ft were also spanned by Ymarket

t+1 , the
conditional quantile model would be degenerate.
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To make further progress, we consider a finite-dimensional Ft-adapted “instrument”
processX�

t taking values in a compact set X . Equation (2.2) then implies

h(x) = 0, for all x ∈ X , (2.3)

where h(x) = E[Z�t+1|X�
t = x] denotes the conditional expectation function ofZ�t+1 given

X�
t . We note that Z�t+1 is not directly observable because it depends on the pseudo-true

parameter θ�. As suggested by our notation, we also allow X�
t to (possibly) depend on

θ�.
We propose a nonparametric test that takes (2.3) as the null hypothesis. Note that

(2.3) is generally an implication of (2.2), because the σ-field spanned by X�
t is a sub-

set of Ft . But there is an interesting exception: if the dynamic model is Markovian with
state variable X�

t , as is often assumed in economic models, then these two conditions
coincide.

Looking at the condition (2.3), we see clearly that the testing problem is functional
in nature, because it concerns the global, instead of local, behavior of the h(·) function.
In other words, the inference must be uniform across all x ∈ X . The difficulty of doing so
stems from the fact that it is a non-Donsker problem (for which the conventional weak-
convergence-based inference is not applicable). In a recent paper, Li and Liao (2020)
developed a Yurinskii-type strong approximation to address this issue in a general time
series context.4 Under their approach, we can nonparametrically regress Z�t+1 on the
conditioning variable X�

t using the series method, and then invoke the strong approx-
imation theory to show that the nonparametric estimation error function can be ap-
proximated, or “coupled,” by a diverging sequence of Gaussian processes. The Gaussian
approximation then permits feasible uniform inference.

The problem of evaluating conditional quantile models leads to two complications
that are not considered in Li and Liao (2020). First, the variables (Z�t+1,X�

t ) depend on

θ�, which needs to be replaced by θ̂n in a feasible procedure. The technical challenge
here is that Z�t+1 depends on θ� in a nonsmooth way because of the presence of the
indicator function; this issue is further complicated by the fact that the nonparametric
series regression involves a growing number of series approximation functions.

Second, the finite-sample performance of the strong Gaussian coupling is found to
be poor for quantiles in the tails (details are presented in the next section). VaR and
related quantities, like CoVaR, invariably focus on quantiles with q ≥ 0.95, and so an
alternative inference procedure is needed. We propose a novel bootstrap procedure to
compute critical values, and justify its theoretical validity in the current nonstandard
(non-Donsker) context for uniform functional inference.

2.3 The test and its asymptotic properties

We now provide details on our test and prove its asymptotic validity, namely that it con-
trols size under the null hypothesis and is consistent against fixed alternatives. We first

4Yurinskii coupling has also been used by Chernozhukov, Lee, and Rosen (2013) and Belloni et al. (2015)
for constructing uniform inference in a microeconometric context with i.i.d. data.
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define the test statistic. To capture more explicitly how the (Z�t+1,X�
t ) variables are re-

lated to the pseudo-true parameter θ�, we introduce two functions, Zt+1(θ) and Xt(θ),
such that

Z�t+1 =Zt+1
(
θ�

)
, X�

t =Xt
(
θ�

)
. (2.4)

Note that Zt+1(θ) = 1{Yt+1≤ft (θ)} − q, while the form of Xt(θ) depends on the specific
application. As mentioned above, we assume that θ̂n is a n1/2-consistent estimator for
θ�.5 The feasible analogues of the quantities in (2.4) are then given by

Ẑt+1 ≡Zt+1(θ̂n ), X̂t ≡Xt(θ̂n ).

We nonparametrically regress Ẑt+1 on X̂t using the series method. To do so, we con-
sidermn approximating basis functions P(x) = (p1(x), 
 
 
 , pmn(x))�. By convention, we
assume that the constant term is always included by setting p1(·) = 1. The nonparamet-
ric interpretation of the series estimation relies on taking mn → ∞ so that the condi-
tional expectation function h(·) can be approximated sufficiently well by a linear com-
bination of the approximating functions. Commonly-used basis functions include poly-
nomials, Fourier series, splines, and wavelets; see Chen (2007) for additional details.

We conduct least-squares regression of Ẑt+1 on P(X̂t ) and obtain the regression co-
efficient as

b̂n ≡
(

n∑
t=1

P(X̂t )P(X̂t )�
)−1( n∑

t=1

P(X̂t )Ẑt+1

)
.

The estimator of the conditional expectation function h(·) is ĥn(·) ≡ P(·)�b̂n. The asso-
ciated standard error function is estimated by

σ̂n(·) ≡ (
P(·)��̂nP(·))1/2

,

where, with ût ≡ Ẑt+1 − ĥn(X̂t ), we set

Q̂n ≡ n−1
n∑
t=1

P(X̂t )P(X̂t )�, Ân ≡ n−1
n∑
t=1

û2
t P(X̂t )P(X̂t )�, �̂n ≡ Q̂−1

n ÂnQ̂
−1
n .

Finally, we define the “sup-t” test statistic, T̂n, as

T̂n ≡ sup
x∈X

n1/2
∣∣ĥn(x)

∣∣
σ̂n(x)

.

5For in-sample specification tests, the θ̂n estimator is typically estimated using the full sample with size

n. This framework also accommodates (pseudo) “out-of-sample”test when θ̂n is estimated using a fixed
window provided that the size of the estimation sample is nondegenerate relative to n. If the estimation
is performed under a recursive or rolling scheme, we would have a more complicated situation with a se-
quence of estimators, say (θ̂n,t )1≤t≤n. In that case, we need to strengthen the rate requirement to a uniform
version, that is, max1≤t≤n ‖θ̂n,t − θ�‖ =Op(n−1/2 ). This condition may be justified using a functional central
limit theorem for the estimator process θ̂n,�n·� for the recursive setting, as well as the rolling setting pro-
vided that the rolling window size is nondegenerate with respect to n. If the rolling window is of fixed size as
considered in Giacomini and White (2006), one may follow that prior work and treat the estimates for θ as
an observed sequence, and the issue of estimation error becomes irrelevant for the asymptotic inference.
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The first part of our analysis is to establish a strong approximation for the sup-t
statistic T̂n using the supremum of a Gaussian process. In the infeasible case with θ�

known, such an approximation could be obtained by directly using the theory of Li
and Liao (2020). The key complication here is to analyze the effect of replacing θ� with
the estimator θ̂n. We aim to provide sufficient conditions under which such an effect
is asymptotically negligible. The theoretical message is easy to understand. Intuitively,
the estimation error of the finite-dimensional estimator θ̂n is relatively small (as it con-
verges at the parametric n1/2-rate) compared with the statistical noise in the second-
stage nonparametric inference with slower rate of convergence. This theory justifies a
least-squares procedure that is very easy to implement, and sets a useful benchmark for
further refinement in future work.

The technical formalization of this simple intuition turns out to be nontrivial. The
main source of complication is thatZ�t+1 depends on θ� in a nonsmooth manner. In prior
literature on M-estimation and GMM, the standard approach for addressing the lack of
smoothness relies on the concept of stochastic equicontinuity from empirical process
theory. Under stochastic equicontinuity, the nonsmooth sample moment function can
be effectively replaced with its limiting version, which is typically smooth (i.e., twice
differentiable); see, for example, Andrews (1994) and van der Vaart (1998).

This “off-the-shelf” empirical-process approach, however, is insufficient for our
analysis. The reason is that our nonparametric series estimation involves a growing
number of regressors (i.e., mn → ∞). Consequently, the behavior of the regression co-
efficient b̂n relies on a growing number of moments that are nonsmooth in the θ param-
eter. While the usual stochastic equicontinuity argument can be used to deal with a fixed
number of nonsmooth sample moments, it does not guarantee a uniform approxima-
tion when the dimension grows to infinity, which is exactly the technical challenge here.
To address this issue, we start from first principles and use a bracketing-based chain-
ing argument to characterize the local modulus of continuity of a growing-dimensional
empirical process for time series data.6 This analysis appears to be new to the literature,
and should be generally useful in future work involving nonsmoothness and growing
dimensions in time series econometrics.

We now introduce the regularity conditions for our asymptotic theory. Since θ̂n is
assumed to be a n1/2-consistent estimator of θ�, our analysis regarding the plug-in effect
concentrates on n−1/2-neighborhoods of θ� of the form

Bn(R) ≡ {
θ ∈� : n1/2

∥∥θ− θ�∥∥ ≤R}
, for R> 0.

That is,Bn(R) is a closed ball centered at θ� with radiusRn−1/2. We denote byFt+1|t(·) the
Ft-conditional distribution function ofYt+1, and write the Ft-conditional expectation of
Zt+1(θ) as

Z̄t+1(θ) ≡ E[1{Yt+1≤ft (θ)} − q|Ft ] = Ft+1|t
(
ft(θ)

) − q.

6In microeconometric settings with i.i.d. data, empirical-process arguments are mostly based on sym-
metrization. Symmetrization relies crucially on the independence assumption, and is not applicable in our
time-series setting.
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In addition, let ∂θZ̄t+1(·) denote the gradient of Z̄t+1(·) with respect to θ, and further set

g(x) ≡ E
[
∂θZ̄t+1

(
θ�

)
|X�

t = x], ηt ≡ ∂θZ̄t+1
(
θ�

) − g(X�
t

)
.

Assumption 1. (i) θ̂n − θ� = Op(n−1/2 ); (ii) there exist some Ft-measurable variables
(Lt , LX ,t ) such that, for all y1, y2 ∈R,∣∣Ft+1|t(y1 ) − Ft+1|t(y2 )

∣∣ ≤Lt |y1 − y2|,

and, for any R> 0 and all θ1, θ2 ∈ Bn(R),∣∣ft(θ1 ) − ft(θ2 )
∣∣ ≤Lt‖θ1 − θ2‖,

∥∥Xt(θ1 ) −Xt(θ2 )
∥∥ ≤LX ,t‖θ1 − θ2‖.

(iii) Z̄t(·) is continuously differentiable at θ� and, for some Ft-measurable variable L̄t ,∣∣Z̄t(θ) − Z̄t
(
θ�

) − ∂θZ̄t
(
θ�

)�(
θ− θ�)∣∣ ≤ L̄t

∥∥θ− θ�∥∥2

for any θ ∈ Bn(R); (iv) Lt , LX ,t , and LtLX ,t are Lp-bounded for some p > 2dθ, and
∂θZ̄t(θ� ) and L̄t are L2-bounded; (v) g(·) is a continuously differentiable function and,
for each j ∈ {1, 
 
 
 , dθ}, there exists γj,n ∈Rmn such that

sup
x∈X

∣∣gj(x) − P(x)�γj,n
∣∣ = o((logn)−1/2);

(vi) for each j ∈ {1, 
 
 
 , dθ}, the largest eigenvalue of the matrix Var(n−1/2 ∑n
t=1 P(X�

t )ηj,t )
is bounded; (vii) supx∈X ‖P(x)‖−1 = o((logn)−1/2 ).

Assumption 1 collects regularity conditions that we use to control the effect of plug-
ging in the θ̂n estimator. We make a few remarks on the roles that these conditions play
in our theory. Condition (i) imposes, as mentioned above, the n1/2-consistency of θ̂n;
this is quite natural for parametric (e.g., the maximum likelihood) or semiparametric
(e.g., least-squares, quantile regression, GMM, etc.) estimators typically used in prac-
tice. Conditions (ii)–(iv) impose smoothness conditions on Ft+1|t(·), ft(·), andXt(·) over
local neighborhoods around θ�. Based on an empirical-process type argument, we can
exploit the smoothness in Ft+1|t(·) and Z̄t+1(θ) to bypass the issue of nonsmoothness
in Zt+1(·). Also note that in some applications the instrument X�

t does not depend on
θ�, so we can take LX ,t = 0. Conditions (v) and (vi) impose additional regularities on
∂θZ̄t+1(θ� ), which in turn measures the sensitivity of the second-stage regression with
respect to the estimation error in θ̂n. These conditions are relatively mild. Finally, con-
dition (vii) states that the growing-dimensional vector ‖P(x)‖ diverges no slower than
(logn)1/2, which partly reflects the slower (nonparametric) rate of convergence of the
series estimator.

We also need regularity conditions for making uniform series inference in the (sim-
pler) infeasible setting, which requires some additional notation. The regression residual
in the infeasible case is given by

u�t ≡Z�t+1 −E
[
Z�t+1|X�

t

] =Z�t+1 − h(
X�
t

)
.
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We then set

Qn ≡ n−1
n∑
t=1

E
[
P

(
X�
t

)
P

(
X�
t

)�]
, Q̂�n ≡ n−1

n∑
t=1

P
(
X�
t

)
P

(
X�
t

)�
,

An ≡ n−1
∑
t

E
[(
u�t

)2
P

(
X�
t

)
P

(
X�
t

)�]
, Â�n ≡ n−1

n∑
t=1

(
u�t

)2
P

(
X�
t

)
P

(
X�
t

)�
.

Note that Q̂�n and Â�n are the infeasible sample analogues of Qn and An, respectively.
Below, for any ε > 0, we denote X ⊕ε= {x+u : x ∈ X , ‖u‖ ≤ ε}, that is, an ε-enlargement
of X .7 We use ‖ · ‖S to denote the matrix spectral norm.

Assumption 2. We have (i) the function h(x) ≡ E[Z�t+1|X�
t = x] is continuously differen-

tiable; (ii) there exist a sequence b�n ofmn-dimensional vectors and real sequences ζ0,n and
ζ1,n, such that (recalling the constant p> 2 from Assumption 1)⎧⎪⎨⎪⎩

sup
x∈X⊕εn

∣∣h(x) − P(x)�b�n
∣∣ =O(

n−1/2),

max
1≤l≤mn

sup
x∈X⊕εn

∣∣∂jpl(x)
∣∣ ≤ ζj,n, j ∈ {0, 1},

for all εn � n1/p−1/2,

and ζ0,nmnn
−1/4 + ζ0,nζ1,nmnn

−1/2 = o(1/ logn); (iii) the eigenvalues of Qn and An
are bounded from above and away from zero and An = Var(n−1/2 ∑n

t=1 P(X�
t )u�t ) has

bounded eigenvalues; (iv) ‖Q̂�n − Qn‖S = Op(δQ,n ), ‖Â�n − An‖S = Op(δA,n ), and

m
1/2
n (δQ,n + δA,n ) = op(1/ logn); (v) log(ζLn ) = O(logn), where ζLn ≡ supx1,x2∈X ‖P(x1 ) −

P(x2 )‖/‖x1 − x2‖.

The conditions in Assumption 2 are fairly standard for analyzing the series estima-
tion. A few remarks are in order. Condition (ii) introduces the population analogue b�n
for the regression coefficient b̂n. The existence of b�n is ensured by well-known approx-
imation theory (see, e.g., Chen (2007) and many references therein), and the precision
of the approximation may be stated explicitly in terms of the smoothness of the h(·)
function and the dimensionality of X�

t . We note that the uniform bound conditions are
stated over εn-enlargements of X , which is slightly stronger than a more conventional
condition stated over X . This modification is needed here because the generated vari-
ables X̂t may take values outside X (but they still fall in X ⊕ εn with high probability
under maintained assumptions). If the instrument X�

t does not depend on θ�, or the
generated variable X̂t is restricted to take values in X , we no longer need the enlarge-
ment, which amounts to setting εn = 0. The only high-level requirement is condition
(iv), which imposes rates of convergence for the infeasible estimators Q̂�n and Â�n under
matrix spectral norm. These conditions can be verified using, for example, Lemma 2.1
of Chen and Christensen (2015).

7We adopt the direct sum notation because X ⊕ε is in fact the direct sum of X and a closed ball centered
at zero with radius ε.
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Assumption 3. Under the null hypothesis, there exists a sequence ξn ofmn-dimensional
standard Gaussian random vectors such that

sup
x∈X

∣∣∣∣∣∣∣∣∣∣∣
n−1/2P(x)�Q−1

n

n∑
t=1

P
(
X�
t

)
Z�t+1

σn(x)

∣∣∣∣∣∣∣∣∣∣∣
= sup
x∈X

∣∣∣∣P(x)��1/2
n ξn

σn(x)

∣∣∣∣ + op
(
(logn)−1/2), (2.5)

where �n ≡Q−1
n AnQ

−1
n and σn(x) ≡ (P(x)��nP(x))1/2.

Assumption 3 is the key element for uniform inference and is clearly high-level in
nature. This condition essentially states that the infeasible sup-t statistic on the left-
hand side of (2.5) can be strongly approximated by the supremum of the centered Gaus-
sian process on the right-hand side of that equation. For our test, we need only that this
condition holds under the null hypothesis. This high-level condition may be verified as
a special case of the strong approximation theory developed by Li and Liao (2020) for
general time-series data. More specifically, we observe that under Assumption 2(iii), As-
sumption 3 holds if∥∥∥∥∥

n∑
t=1

n−1/2P
(
X�
t

)
Z�t+1 −A1/2

n ξn

∥∥∥∥∥ = op
(
(logn)−1/2). (2.6)

Since n−1/2P(X�
t )Z�t+1 forms a martingale difference array under the null hypothesis, we

can use the Yurinskii-type coupling result in Li and Liao (2020) (see their Theorem 1) to
verify (2.6) under the primitive conditions provided in that paper.8

We are now ready to state the asymptotic property of the sup-t statistic T̂n under the
null hypothesis.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold. Then under the null hypothesis
there exists a sequence ξn of mn-dimensional standard normal random variables such
that

T̂n − T̃n = op
(
(logn)−1/2),

where

T̃n = sup
x∈X

∣∣P(x)��1/2
n ξn

∣∣
σn(x)

.

Theorem 1 shows that the sup-t statistic T̂n can be strongly approximated by the
supremum of a Gaussian process P(·)��1/2

n ξn/σn(·), for which the sampling variability

8See Assumption 1 in Li and Liao (2020), as well as Assumption B2 and Lemma B1 in the Appendix of the
Online Supplemental Material of that paper for additional technical discussions.
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is fully captured by the Gaussian vector ξn with growing dimension.9 Based on this re-
sult, a natural way of computing the critical value for the sup-t statistic is to estimate
the quantile of the approximating variable T̃n by simulating the Gaussian process, with
�n and σn(·) replaced by their estimators �̂n and σ̂n(·), respectively. This approach is
shown to be asymptotically valid in Li and Liao (2020). However, as we will show in our
Monte Carlo experiments in the next section, this approach suffers from nontrivial size
distortion at relatively high quantiles (e.g., q ≥ 0.95), which makes it effectively inappli-
cable for VaR applications. We thus propose an alternative approach using bootstrap,
described in Algorithm 1 below.

Algorithm 1 (Bootstrap critical value).
Step 1. Resample (Ẑ∗

t+1, X̂∗
t )1≤t≤n as an i.i.d. sample with replacement from (Ẑt+1,

X̂t )1≤t≤n.
Step 2. Compute (ĥ∗

n(·), σ̂∗
n (·)) in the same way as (ĥn(·), σ̂n(·)) but with (Ẑt+1,

X̂t )1≤t≤n replaced by (Ẑ∗
t+1, X̂∗

t )1≤t≤n, and then set T̂ ∗
n = supx∈X n1/2|ĥ∗

n(x)−ĥn(x)|/σ̂∗
n (x).

Step 3. Repeat steps 1–2 for a large number of times. At significance level α, set the
critical value cvn,α as the 1 − α quantile of T̂ ∗

n in the Monte Carlo sample. Reject the null
hypothesis (i.e., h(x) = 0 for all x ∈X ) if T̂n > cvn,α.

Algorithm 1 resembles a “textbook” i.i.d. bootstrap. To compute the critical value,
one performs i.i.d. resampling and then repeatedly computes the test statistic. It is use-
ful to note that the θ̂n estimator does not need to be recomputed for the bootstrap sam-
ples because its plug-in error is asymptotically negligible for the nonparametric test.
Since the sup-t statistic is not asymptotically pivotal, we do not expect the bootstrap
to deliver a formal theoretical refinement. Instead, we only advocate the bootstrap as a
practical and theoretically justified way to conduct feasible inference, which turns out
to outperform the asymptotic Gaussian-based method in the applications of interest in
this paper.

The validity of the i.i.d. bootstrap in the time series setting of this paper follows from
the fact that, under the null hypothesis, the sampling variability in the test statistic is
driven by a martingale difference sequence (namely P(X�

t )u�t ). In this case the i.i.d. boot-
strap is sufficient to approximate its finite-sample distribution under the null. To con-
struct a uniform confidence band for h(·) under the alternative, one would have to cap-
ture autocovariances by using, for example, a block bootstrap, but in the testing context
of this paper this is not necessary, because to prove the test’s consistency it suffices to
simply control the asymptotic magnitude of the critical value.

Theorem 2 establishes the asymptotic property of the bootstrapped test statistic, and
further shows the size and power properties of the resulting test.

9The strong approximation error T̂n − T̃n is shown to be op((logn)−1/2 ), which is slightly stronger than
a “usual” op(1) statement. This stronger statement is needed in the present setting because the proba-
bility density of the sup-Gaussian approximating variable T̃n is divergent, but it can be bounded at rate
(log(mn ))1/2 ≤ (logn)1/2. As a result, the op((logn)−1/2 ) approximation error only leads to an o(1) error in
coverage probability, which is needed in our size analysis.
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Theorem 2. Suppose that Assumptions 1, 2, and 3 hold. Then (a) under the null hypoth-
esis there exists a sequence ξ∗

n ofmn-dimensional standard normal random variables such
that

T̂ ∗
n − T̃ ∗

n = op
(
(logn)−1/2),

where

T̃ ∗
n ≡ sup

x∈X

∣∣P(x)��1/2
n ξ∗

n

∣∣
σn(x)

.

(b) for α ∈ (0, 1/2), the test described in Algorithm 1 has asymptotic level α under the null
hypothesis (i.e., h(x) = 0 for all x ∈ X ) and has asymptotic power 1 under the alternative
hypothesis (i.e., h(x) �= 0 for some x ∈ X ).

3. Simulations

We now examine the finite-sample properties of the proposed test in a Monte Carlo
experiment for GARCH-based VaR models. We consider two data generating processes
(DGPs), each with sample size n = 2000. Under the first DGP, we generate a time series
(Yt )1≤t≤n of daily losses from a Gaussian GARCH(1,1) process:

DGP-N:

{
Yt = vtεt , εt ∼ i.i.d. N (0, 1),

v2
t =ω+βv2

t−1 + γY 2
t−1,

with parameters ω = 0.05, β = 0.9, and γ = 0.05. Our second DGP is taken from Bon-
temps (2019), who uses a Student’s t EGARCH process:

DGP-A:

{
Yt = vtzt , zt ∼ i.i.d. t(0, 1, 4),

log
(
v2
t

) =ω+ γ(|zt−1| −E
[|zt−1|

]) + δzt−1 +β log
(
v2
t−1

)
,

with parameters ω= 0.0001, γ = 0.3, δ= −0.8, and β= 0.9.
In both cases, the quantile model is a Gaussian GARCH(1,1), estimated via (quasi)

maximum likelihood. The VaR of Yt+1 at confidence level q is obtained as

ft(θ̂n ) =�−1(q)
√
ω̂n + β̂nv̂2

t + γ̂nY 2
t ,

where �(·) is the cumulative distribution function of a standard normal distribution.
Under DGP-N, this model is correct and the null hypothesis is true. Under DGP-A
this model is misspecified and the null hypothesis is false. We can thus examine the
test’s size and power properties using these two DGPs. Below, we consider VaRs for
q ∈ {0.75, 0.9, 0.95, 0.99} and fix the significance level of the test at α= 5%.

We use (Yt , v̂t ) as the (feasible) conditioning variable in the nonparametric regres-
sion. To construct the basis functions, we first use a rank-transformation to rescale Yt
and v̂t onto the [−1, 1] interval, and denote the transformed variables as Y ′

t and v̂′
t , re-
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Table 1. Finite-sample rejection rates for GARCH-VaR models.

Null Hypothesis Alternative Hypothesis

75% 90% 95% 99% 75% 90% 95% 99%

Gaussian 0.047 0.056 0.082 0.336 1.000 1.000 0.999 0.995
Bootstrap 0.038 0.032 0.031 0.034 0.980 0.974 0.969 0.728

Note: This table reports the rejection frequencies of the specification tests at the 5% significance level for the GARCH-based
VaR model with probability levels ranging from 75% to 99%. The critical values are computed either based on the asymptotic
Gaussian approximation or the bootstrap. The left and right panels are for the null hypothesis (i.e., DGP-N) and the alternative
hypothesis (i.e., DGP-A), respectively.

spectively; we then set X̂t = (Y ′
t , v̂

′
t ).10 We usemn = 6 series terms, with the form P(X̂t ) =

(1, Y ′
t , v̂

′
t , Y

′
t v̂

′
t , LP2(Y ′

t ), LP2(v̂′
t ))�, where LP2(·) denotes the second-order Legendre

polynomial, which is employed to reduce the multicollinearity among the series terms.
Below, we examine the finite-sample performance of the specification test via 10,000

Monte Carlo trials. The critical value of the test is computed in two ways: the first is based
on the asymptotic Gaussian approximation (Theorem 1), and the second is based on the
bootstrap procedure (Theorem 2) with 1000 resamples.

Table 1 reports the finite-sample rejection frequencies for the two tests. The left
panel reports results under the null hypothesis. When q = 0.75, we see that both the
asymptotic Gaussian approximation and the bootstrap method control size well. How-
ever, as q increases, the Gaussian approximation leads to nontrivial overrejections. For
example, the test rejects 33.6% of the time when q= 0.99. In contrast, the rejection rates
of the bootstrap method are generally close to the 5% nominal level across all settings,
although the test appears to be somewhat conservative.11

The right panel of Table 1 reports the rejection rates of the tests under the alterna-
tive hypothesis. Both tests exhibit nontrivial power to detect the model misspecification.
As expected, power is lower at higher quantiles, reflecting the reduction in information
available to detect model misspecification as we move deeper into the tail. The rejection
rates of the test based on the asymptotic Gaussian approximation are greater than those

10The use of rank-transformation may be formally justified as follows. Let FY (·) and Fv(·) denote the
cumulative distribution functions of Yt and vt , respectively, and then let X�

t collect the transformed vari-
ables 2FY (Yt ) − 1 and 2Fv(vt ) − 1, which take values in [−1, 1]. The rank-transformed variables Y ′

t and
v̂′
t can be written analogously as 2F̂Y (Yt ) − 1 and 2F̂v(v̂t ) − 1, where F̂Y (·) and F̂v(·) are the sample ana-

logues of FY (·) and Fv(·), respectively. Therefore, the difference between X̂t and X�
t stems from replacing

θ� ≡ (FY (·), Fv(·),ω, β, γ) with its estimator θ̂n. Note that a Donsker theorem for weakly dependent data
implies that cumulative distribution functions can be estimated at the n1/2-rate of convergence under the
uniform metric (see, e.g., Theorem 1 of Dehling, Durieu, and Volny (2009), Theorem 3.1 of Dedecker, Rio,
and Merlevède (2014), and Chapter 7 of Rio (2017)). Hence, although θ̂n contains a functional component,
it is still a n1/2-consistent estimator for θ�. The theory developed above can be easily generalized to ac-
commodate this slightly more general “plug-in,” by replacing the Euclidean distance on θ with a generic
metric.

11The size distortion resulted from the Gaussian-based critical value does not arise from the plug-in

estimation error in θ̂n. In simulation results not presented here, we also considered the infeasible setting
with known θ�, and found that the Gaussian-based test’s rejection rate is at 35.1% (resp., 10.9%) when q =
99% (resp., 95%). More generally, the rejection rates in the infeasible setting are very similar to those in the
feasible setting presented here.
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based on the bootstrap, suggesting higher power, but given the former’s size distortion
at high quantiles, that test is not always reliable.

4. Empirical application

In an influential paper, Adrian and Brunnermeier (2016) proposed a measure of a firm’s
systemic risk known as “CoVaR” based on how the market portfolio’s VaR differs accord-
ing to whether the firm’s return is at a normal level or a “stressed” level. To define this
measure, let Ymarket

t and Y (i)
t be the losses of the market and firm i on week t, respec-

tively (measured simply as the negative of their returns that week). For some probability
level q, such as 0.95 or 0.99, the firm’s q-VaR is obtained by fitting the following linear
quantile regression:

Qq
(
Y (i)
t+1|Ct

) = α(i)
q +β(i)�

q Ct , (4.1)

where Ct is a collection of covariates described below. The market portfolio’s q-VaR is
modeled similarly, but with an additional covariate, namely the contemporaneous loss
of firm i:

Qq
(
Ymarket
t+1 |Ct , Y

(i)
t+1

) = α̃(i)
q + β̃(i)�

q Ct + γ̃(i)
q Y

(i)
t+1. (4.2)

To facilitate the definition of CoVaR, it is helpful to define the following function:

ψ(i)
q (c, y ) ≡Qq

(
Ymarket
t+1 |Ct = c, Y (i)

t+1 = y), (4.3)

which is the model-implied q-quantile of the market portfolio when the covariates Ct
take value c and the loss of firm i equals y. The CoVaR of firm i is then defined as

CoVaR(i)
q ≡ψ(i)

q

(
Ct ,Qq

(
Y (i)
t+1|Ct

)) −ψ(i)
q

(
Ct ,Q0.5

(
Y (i)
t+1|Ct

))
. (4.4)

In words, CoVaR(i)
q measures the change in the VaR of the market portfolio when firm i’s

loss moves (hypothetically) from its conditional median to its conditional q-quantile. If
the market’s VaR changes markedly when the the loss of firm i moves to its q-quantile,
then the market VaR is sensitive to the losses of firm i and that firm is said to have high
systemic risk. If the market’s VaR is insensitive to the losses of firm i, then that firm has
little impact on the market and is said to have low systematic risk.

The estimation of CoVaR thus relies on two building blocks: (4.1) exclusively pertains
to the conditional quantile of firm i’s loss, while (4.2) captures the relationship between
the market’s VaR and the firm. For simplicity, we refer to (4.1) and (4.2) as the VaR and
CoVaR specification, respectively, although the CoVaR risk measure is computed using
equation (4.4). Since both components of the CoVaR measure are conditional quantile
models, we can apply the proposed test to examine the empirical specifications pro-
posed by Adrian and Brunnermeier (2016).

Our empirical analysis uses the same data as Adrian and Brunnermeier (2016).12

The dataset contains all publicly traded US commercial banks, broker-dealers, insur-
ance companies, and real estate companies for the period from January 1971 to June

12This data is available from the American Economic Review website: https://www.aeaweb.org/
articles?id=10.1257/aer.20120555.

https://www.aeaweb.org/articles?id=10.1257/aer.20120555
https://www.aeaweb.org/articles?id=10.1257/aer.20120555
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2013, a total of 1823 firms and 2209 weeks. The covariates Ct are the weekly real estate
sector return (Housing), the weekly market return of the S&P 500 index (MktRet), short-
term TED spread (TED), change in the credit spread (Credit), change in 3-month yield
(Yld3M), change in the slope of the yield curve (TERM), and equity volatility (MktSD).
We refer to Adrian and Brunnermeier (2016) for a more detailed description of these
variables.

To conduct the model specification test, we need to select a conditioning variable
Xt known at time t. Motivated by the recent literature on the impact of economic uncer-
tainty, we use a variety of uncertainty measures including the economic policy uncer-
tainty index proposed by Baker, Bloom, and Davis (2016) and the financial and macro
uncertainty indexes proposed by Jurado, Ludvigson, and Ng (2015).13 These uncertainty
measures are moderately correlated: the correlation between economic policy uncer-
tainty and financial (resp., macro) uncertainty is 0.32 (resp., 0.20), and the correlation
between financial and macro uncertainty indexes is 0.59. Below, we use each of these in-
dexes separately as a conditioning variable in our specification test. As in our simulation
study, we use the rank-transformation to rescale Xt to have support [−1, 1] and set the
basis functions as mth-order Legendre polynomials (resulting in m+ 1 series terms).14

Critical values are computed from 1000 bootstrap replications using Algorithm 1 from
Section 2, at significance level α= 5%.

Table 2 presents the results of the bootstrap-based specification tests for q = 95%
or 99%, for the three different economic uncertainty measures. To gauge the sensitivity
of the test outcome to the choice of the number of series terms in the nonparametric
estimation, we present results form ∈ {6, 
 
 
 , 10}. We conduct specification tests for each
firm separately, and summarize the results by reporting the rejection rates averaged over
the cross-section.

From Table 2, we see that the 95%-VaR specification (equation (4.1)) is rejected sub-
stantially more frequently than the 5% nominal level: the rejection rate ranges from
15.7% to 20.6% across different implementations. On the other hand, the 95%-CoVaR
specification (equation (4.2)) is only rejected approximately at the nominal level, sug-
gesting that this specification is satisfactory for a representative firm. At the 99%-
quantile, the rejection rates for both VaR and CoVaR models are lower, and are gener-
ally close to or below the nominal level. It is noteworthy that the test results are broadly
insensitive to the choice of series terms and measure for economic uncertainty.

Given that the CoVaR specification is rarely rejected in the test results reported in
Table 2, is it possible to replace it with a more parsimonious model? To shed light on this
question, we consider submodels of equation (4.2) obtained by reducing the number of
covariates inCt . We test these more parsimonious specifications and report the rejection
rates across firms in Table 3. For brevity, we focus on the economic policy uncertainty
measure as the conditioning variable of the test. As a benchmark, the first two columns

13The economic policy uncertainty index is available at https://www.policyuncertainty.com, and the
financial and macro uncertainty indexes are available at https://www.sydneyludvigson.com/macro-and-
financial-uncertainty-indexes.

14Recall that the rank-transform of a variable Xt is obtained as 2F̂X (Xt ) − 1, where F̂X is the empirical
CDF ofXt . Further recall that the kth Legendre polynomial can be obtained as ∂k(x2 − 1)k/∂xk/(2kk!).

https://www.policyuncertainty.com
https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
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Table 2. Empirical rejection rates using different conditioning variables.

Policy Uncertainty Financial Uncertainty Macro Uncertainty

95% 99% 95% 99% 95% 99%

m VaR CoVaR VaR CoVaR VaR CoVaR VaR CoVaR VaR CoVaR VaR CoVaR

6 0.165 0.064 0.068 0.030 0.204 0.072 0.072 0.031 0.206 0.049 0.081 0.017
7 0.166 0.068 0.067 0.017 0.200 0.073 0.058 0.021 0.193 0.046 0.080 0.015
8 0.170 0.074 0.066 0.009 0.205 0.075 0.058 0.020 0.188 0.050 0.071 0.014
9 0.163 0.078 0.067 0.007 0.196 0.065 0.055 0.018 0.183 0.045 0.070 0.010

10 0.157 0.072 0.067 0.007 0.179 0.053 0.058 0.014 0.162 0.035 0.070 0.008

Note: This table reports the cross-sectional empirical rejection frequencies of the specification tests for Adrian and Brun-
nermeier’s (2016) VaR and CoVaR models given by equations (4.1) and (4.2), respectively. The left, middle, and right panels
show results with the conditioning variable Xt being the policy, financial, and macro uncertainty measures, respectively. The
quantile for the VaR and CoVaR models is fixed at q ∈ {95%, 99%}. All tests are implemented at the 5% significance level with
Legendre polynomial basis with order m ∈ {6, 
 
 
 , 10}, and are based on bootstrapped critical values with 1000 resamples.

labeled “None” report the rejection frequencies of the submodel that has no covariates
from Ct . This simple specification is rejected for about 30% of the stocks for the 95%-
CoVaR. It is rejected less frequently for the 99%-CoVaR, but the rejection frequency is
nevertheless still markedly higher than the 5% nominal level. These findings are in con-
trast to those in Table 2, suggesting that at least some of the covariates are crucial in the
CoVaR model.

As the next step, we include each of the covariates one at a time in the CoVaR model
and report the rejection frequencies. The results reveal that, when we control for the eq-
uity volatility (MktSD), the rejection rates fall to around the levels presented in Table 2,
which used the full set of covariates. Meanwhile, controlling for any of the other six co-
variates (e.g., Housing, TED, etc.) contributes little to reducing the rejection rates, sug-
gesting that these additional covariates are individually unimportant. To confirm this
conjecture, we finally consider a CoVaR specification with all covariates included ex-
cept for MktSD, with the corresponding rejection rates reported in the last two columns
of Table 3, labeled “All\MktSD.” The rejection rates are similar to those with no covari-
ates, which suggests that these covariates are not important for the CoVaR specification
jointly. Overall, the results in Table 3 point to equity volatility as the most (and perhaps
only) important covariate in the CoVaR specification.

5. Conclusion

This paper proposes a new consistent specification test for quantile models in time-
series analysis. Our test is based on a nonparametric, series-based, estimate of a con-
ditional moment that is known to equal zero when the model is correctly specified. We
extend the uniform nonparametric inference method of Li and Liao (2020) in two direc-
tions that are critical for our empirical application. First, to overcome a size distortion
we discover when the asymptotic Gaussian approximation is directly used in quantile
applications near the tail, we propose a bootstrap method to obtain critical values for
our test statistic. Establishing the validity of the proposed bootstrap method is nonstan-
dard because a “non-Donsker” feature present in the original problem also manifests in
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Table 3. CoVaR specification with different covariates.

None Housing MktRet TED Credit

m 95% 99% 95% 99% 95% 99% 95% 99% 95% 99%

6 0.293 0.167 0.346 0.115 0.194 0.159 0.255 0.089 0.246 0.161
7 0.329 0.158 0.351 0.077 0.279 0.139 0.249 0.057 0.292 0.148
8 0.309 0.144 0.340 0.059 0.289 0.147 0.257 0.031 0.276 0.138
9 0.287 0.121 0.325 0.069 0.266 0.150 0.250 0.030 0.267 0.123

10 0.301 0.083 0.324 0.038 0.274 0.127 0.230 0.013 0.267 0.091

Yld3m TERM MktSD All\MktSD

m 95% 99% 95% 99% 95% 99% 95% 99%

6 0.332 0.127 0.335 0.166 0.053 0.013 0.252 0.123
7 0.366 0.114 0.371 0.143 0.052 0.009 0.274 0.109
8 0.375 0.081 0.370 0.125 0.055 0.008 0.278 0.084
9 0.342 0.087 0.354 0.110 0.057 0.004 0.268 0.078

10 0.332 0.059 0.339 0.062 0.052 0.005 0.283 0.049

Note: This table reports the cross-sectional empirical rejection frequencies of the specification tests for the q-CoVaR model,
q ∈ {95%, 99%}, with different subsets of covariates. The column labels indicate the variable(s) included in Ct for each sub-
model. The conditioning variable Xt is the economic policy uncertainty measure. All tests are implemented at the 5% signifi-
cance level with Legendre polynomial basis with order m ∈ {6, 
 
 
 , 10}, and are based on bootstrapped critical values with 1000
resamples.

the “bootstrap world.” Second, we deal with the issue that both the dependent variable
and the (growing number of) independent variables in our series regression contain es-
timated parameters that enter in a nonsmooth way. We apply the proposed new tests
to a detailed analysis of the well-known CoVaR measure of Adrian and Brunnermeier
(2016). We find that their specification for individual firm VaR is rejected more often
than expected given the significance level of the test, suggesting that this model can be
improved either via additional covariates or a more flexible specification. We also find
that just one of the seven covariates used in the CoVaR specification is important for this
model passing our specification tests. This suggests either that the CoVaR model can be
made much more parsimonious, or perhaps more likely, that there are other covariates
not considered in Adrian and Brunnermeier (2016) that could improve the explanatory
power of the model.

Appendix: Proofs

Throughout the proofs, we use K to denote a generic finite constant that may change
from line to line. For p ≥ 1, let ‖ · ‖p denote the Lp norm for random variables. For no-
tational simplicity, we write

∑
t in place of

∑n
t=1. The proofs rely on several technical

lemmas, Lemmas S1–S12, which are collected in the Online Supplemental Material.

Proof of Theorem 1. By Lemma S2 and Lemma S7,

‖�̂n −�n‖S = op(1). (A.1)
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Since the eigenvalues of Qn and An are bounded from above and away from zero, the
eigenvalues of �n satisfy the same property and, by (A.1), we also have

λ−1
min(�̂n ) + λmax(�̂n ) =Op(1). (A.2)

These lemmas also show that, under the null hypothesis,

‖�̂n −�n‖S =Op
(
δQ,n + δA,n + ζ0,nm

1/2
n n−1/4 + ζ1,nm

1/2
n n−1/2). (A.3)

By (A.2), (A.3), and Assumptions 2(ii), (iv),

sup
x∈X

∣∣∣∣σn(x)
σ̂n(x)

− 1

∣∣∣∣ = sup
x∈X

∣∣∣∣ σ̂2
n (x) − σ2

n (x)

σ̂n(x)
(
σ̂n(x) + σn(x)

) ∣∣∣∣
≤ sup
x∈X

∣∣∣∣P(x)�(�̂n −�n )P(x)

P(x)��̂nP(x)
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= Op

(
δQ,n + δA,n + ζ0,nm

1/2
n n−1/4 + ζ1,nm

1/2
n n−1/2)

= op
(
(logn)−1). (A.4)

Note that h(·) = 0 and b�n = 0 under the null hypothesis. We can then decompose

n1/2(b̂n − b�n
) = Q̂−1

n

(
n−1/2

∑
t

P
(
X�
t

)
u�t

)
+ Q̂−1
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(
n−1/2

∑
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(
P(X̂t )−P

(
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))
u�t

)

+ Q̂−1
n

(
n−1/2

∑
t

P(X̂t )
(
Ẑt+1 −Z�t+1

))
.

Observe that ĥn(x) − h(x) = P(x)�(b̂n − b�n ) + P(x)�b�n − h(x). We thus have

sup
x∈X

∣∣∣∣∣∣∣∣∣
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∣∣, (A.5)

where
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R4,n(x) ≡ n1/2(P(x)�b�n − h(x)
)

σ̂n(x)
.

Note that ‖n−1/2 ∑
t P(X�

t )u�t ‖ =Op(m1/2
n ). By Lemma S2 and Assumptions 2(ii), (iv),

sup
x∈X

∣∣R1,n(x)
∣∣ =Op

(
m

1/2
n

(
δQ,n + ζ1,nm

1/2
n n−1/2)) = op

(
(logn)−1/2).

Since θ̂n = θ� +Op(n−1/2 ), by Assumption 2(ii) and Lemma S5, it is easy to see that

sup
x∈X

∣∣R2,n(x)
∣∣ ≤Op
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By (A.4) and Lemma S8,
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Finally, we note that
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where the inequality follows from (A.2), and the equality follows from Assumptions 1(vii)

and 2. From the estimates above, we see that supx∈X |Rj,n(x)| for each 1 ≤ j ≤ 4. Hence,

by (A.5),
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Let ξn be defined as in Assumption 3. By the concentration property of Gaussian

processes, we have

sup
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Then Assumption 3 further implies that
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By (A.4) and (A.8),∣∣∣∣∣∣∣∣∣∣∣
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Combining (A.6) and (A.9), we deduce
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∣∣∣∣n1/2(ĥn(x) − h(x)
)

σ̂n(x)

∣∣∣∣ − sup
x∈X

∣∣∣∣∣∣∣∣∣∣∣
n−1/2P(x)�Q−1

n

n∑
t=1

P
(
X�
t

)
u�t

σn(x)

∣∣∣∣∣∣∣∣∣∣∣
= op

(
(logn)−1/2).

The assertion of the theorem then readily follows from Assumption 3 and the above ap-
proximation.

Next, we prove Theorem 2 in the main text. We need to explicitly introduce some
notation for various bootstrap quantities:
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Proof of Theorem 2. (a) Step 1. We prove the assertion in part (a) in four steps. In this
step, we show that
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By Lemma S7 and Lemma S11, we see that under the null hypothesis,∥∥Â∗
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Consequently,
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which proves (A.10).
Step 2. Let ω̂∗
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uniformly over x ∈ X .
First, by Assumption 2(iii), ∥∥P(x)
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We can further decompose
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for any x ∈ X . Under the null hypothesis, Lemma S6 implies that n1/2b̂n =Op(m1/2
n ). By

Assumption 2(iii), Lemma S2, Lemma S9, and (A.16),∥∥P(x)�
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where the second line is implied by Assumption 2(ii). By Assumption 2(iii), Lemma S7,
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which together with Assumption 2(iii), Lemma S2, Lemma S9, and (A.16) implies that∥∥∥∥P(x)�
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where the second equality is implied by Assumption 2(ii). The claim in (A.15) follows
from (A.17), (A.18), (A.20), and (A.22).

Step 3. In this step, we show that there exists a sequence ξ∗
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dimensional Gaussian vectors such that∣∣∣∣sup
x∈X

∣∣P(x)�Q−1
n ω̂

∗
n

∣∣
σn(x)

− sup
x∈X

∣∣P(x)�Q−1
n A

1/2
n ξ∗

n

∣∣
σn(x)

∣∣∣∣ = op
(
(logn)−1/2). (A.23)

By Assumption 2(iii), Lemma S7, and Lemma S12,
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Denote αn(x) =Q−1
n P(x)/σn(x), and note that supx∈X ‖αn(x)‖ ≤ Cα for some finite con-
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v ∈X ⊕εn. We then consider the class of functions Fn = F0

n ∪(−F0
n ), with F0
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x∈ X }. To prove (A.23), we shall apply Corollary 2.2 in Chernozhukov, Chetverikov, and
Kato (2013) to Fn under the Dn-conditional probability.

Specifically, by the Cauchy–Schwarz inequality,∥∥fn,x(z, t )
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where we recall the definition of ζLn from Assumption 2. Therefore, Fn forms a VC-type
class with (constant) envelope F ≡ Cαζ0,nm

1/2
n , and it satisfies the following uniform en-

tropy condition for some constantA:
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where the supremum is taken over all finitely discrete probability measures, and we de-
note by N(Fn, ‖ · ‖Q,2, ε‖F‖Q,2 ) the covering number for Fn under the L2(Q) norm. By
(A.24), we have for any n≥ 1,
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Thus, applying Corollary 2.2 in Chernozhukov, Chetverikov, and Kato (2013) under the
Dn-conditional probability (with q = ∞, γ = 1/ logn, b = Cαζ0,nm

1/2
n , σ = O(1), and

Kn =O(logn) in their notation) shows that there exists a sequence ξ∗
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where the op((logn)−1/2 ) statement follows from Assumption 2(ii).
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By (A.12) and (A.27),
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(
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= op
(
(logn)−1/2). (A.28)

Together with (A.26), this estimate further implies∣∣∣sup
x∈X

∣∣αn(x)�ω̂∗
n

∣∣ − sup
x∈X

∣∣αn(x)�A1/2
n ξ∗

n

∣∣∣∣∣ = op
(
(logn)−1/2), (A.29)

as asserted in (A.23).
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Step 4. By (A.15) and (A.23), we complete the proof of part (a) as follows:∣∣∣∣sup
x∈X
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n A

1/2
n ξ∗

n
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= op

(
(logn)−1/2).

(b) The size property of the test follows from part (a) of Theorem 2. It remains to
show the claimed power property. Observe∣∣∣∣sup

x∈X
|n1/2ĥn(x)|
σ̂n(x)

− sup
x∈X

∣∣n1/2h(x)
∣∣

σ̂n(x)
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. (A.30)

Note that supx∈X σ̂n(x) ≤ supx∈X ‖P(x)‖λ1/2
max(�̂n ) = Op(ζ0,nm

1/2
n ). Under the alternative

hypothesis, we have supx∈X |h(x)|> 0. Therefore, supx∈X |n1/2h(x)|/σ̂n(x) diverges to in-
finity in probability at a rate that is at least n1/2/(ζ0,nm

1/2
n ). In addition, we observe
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x∈X
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σ̂n(x)

≤Op
(
n1/2)(sup

x∈X

∥∥P(x)
∥∥∥∥b̂n − b�n

∥∥∥∥P(x)
∥∥ + sup

x∈X
|P(x)�b�n − h(x)|∥∥P(x)

∥∥
)

=Op
(
n1/2δb,n

)
, (A.31)

where the inequality follows from the triangle inequality and the Cauchy–Schwarz
inequality, and the latter rate statement follows from Assumption 2 and Lemma S6
(with δb,n ≡ ζ1,nm

1/2
n n−1/2 + ζ0,nm

1/2
n n−3/4). Under Assumption 2, n1/2δb,n = o(n1/2/

(ζ0,nm
1/2
n )). Therefore, the sup-t statistic supx∈X |n1/2ĥn(x)|/σ̂n(x) also diverges to in-

finity in probability at a rate that is at least n1/2/(ζ0,nm
1/2
n ).

From (A.1), Lemma S9, and Lemma S11, it is easy to see that λ−1
min(�̂∗

n ) = Op(1).
Therefore,
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))
where the first equality is by Lemma S10, and the second equality holds under the main-
tained rate requirement in Assumption 2. In view of the fact that the sup-t statistic di-
verges to infinity at rate that is at least n1/2/(ζ0,nm

1/2
n ), we can conclude that the test

rejects the alternative hypothesis with probability approaching 1.
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