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SUMMARY

Recently, Liebscher (2006) introduced a general construction scheme of d-variate
copulas which generalizes the Archimedean family. Similarly, Morillas (2005)
proposed a method to obtain a variety of new copulas from a given d-copula.
Both approaches coincide only for the particular subclass of Archimedean copulas.
Within this work we present a unifying framework which includes both Liebscher
and Morillas copulas as special cases. Above that, more general copulas may be
constructed. First examples are given.

Keywords and phrases: construction of d-variate copulas; Archimedean copulas

1 Introduction to d-copulas

Representing the dependence structure of two or more random variables, the popularity of
copulas is steadily increasing. Let [a,b]? C R?. A function K : [a,b]Y — R is said to be
d-increasing if its K-volume

2 2
V=3 S ()t K (g, ug,) > 0 (1.1)
11=1 ig=1

for all a < uj < wp <band i =1,...,d. If, additionally, [a,b] = [0,1] and K satisfies the
boundary conditions

K(ui,...,uj-1,0,uj41,...,uq) =0 and K(1,...,1,u,1,...,1)=u (1.2)

for arbitrary uw € [0,1], K is termed as copula and we write C, instead. Putting a
different way, let Xi,..., Xy denote d random variables with joint distribution F(x) =
F(z1,...,z4) and continuous marginal distribution functions Fy(x),..., Fy(z). According
to Sklar’s (1959) fundamental theorem, there exists a unique decomposition

F(x1,...,2q) = C(F1(x1),...,Fa(xq))
of the joint distribution into its marginal distribution functions and the so-called copula

C’(ul,...,ud):P(Ulgul,...,Udgud), UZEFZ(XZ)



on [0,1]% which comprises the information on the underlying dependence structure (For
details on copulas we refer to Nelsen, 2006 and Joe, 1997). Finally, if C' has dth order
derivatives, the d-increasing condition is equivalent to

9iC
—— > 0. .
8u1...8ud*0 (1.3)

2 Construction schemes for copulas

There are several construction methods for d-copulas. Among them, the family of Archi-
medean copulas which enjoys great popularity due to its simple construction. Whereas
several generalized Archimedean families emerged in the recent literature (e.g. XXXXX),
special emphasis will be put on the contributions of Morillas (2005) and Liebscher (2006),
henceforth.

2.1 Archimedean copulas

Let ¢ : [0,1] — [0, o0] be a continuous, strictly decreasing and convex function with ¢(1) =0
and @[~ denote the so called pseudo-inverse of ¢ defined by ¢~1(t) for 0 < t < (0)
and 0 for p(0) < t < co. It can be shown (see, e.g. Nelsen, 2006) that C(uj,us) =
o= (p(u1) + p(uz)) defines a class of bivariate copulas, the so-called Archimedean copulas
with additive generator function ¢. Furthermore, if ¢(0) = oo the pseudo-inverse describes
an ordinary inverse function, and ¢ is termed as a strict generator. Given a strict generator
¢, bivariate Archimedean copulas can be extended to the d-dimensional case (d > 2): Every
function C : [0,1]¢ — [0, 1] defined by

Cluy, ... ug) =@ " (cp(ul) +p(ug) + -+ go(ud)) (2.1)

is a d-dimensional Archimedean copula if and only if p~!

ie. if o7 € L, with

Lo = {¢:R+ - [071]‘¢(0) — 1, ¢(00) = 0, (~1) 6P (£) >0, kzlm}

is completely monotonic on R,

Example 2.1. The d-variate Clayton copula arises from ¢(t) = §(¢t7% — 1) and is given by

—1/6
CCl(ul,...,ud)z(u;9+---+u;9—d+1) 0> 0. (2.2)

Alternatively, Archimedean copulas can be characterized by multiplicative generators (see
Nelsen, 2006). Setting 9(t) = exp(—¢(t)) and 9= (t) = [=1(—1nt), equation (2.1) can be
rewritten as

Cluy,. .. ug) =01 (0(u1) Duz) - ... ﬁ(ud)>. (2.3)

The function ¥ is called multiplicative generator of C'. Due to the relationship between ¢
and 9, the function ¢ : [0,1] — [0,1] is continuous, strictly increasing and concave with
9(1) = 1.



2.2 Morillas copulas

Obviously, (2.3) can also be expressed using the independence copula C+(u) = H?Zl Uy
Clus, ... ug) = Y (CL(ﬁ(ul), . 0(ud))).
Morillas (2005) substitutes C*+ by an arbitrary d-copula C in order to obtain
Colur, ... uq) = 91 (é(ﬂ(ul),ﬁ(uQ), . ,ﬁ(ud))> (2.4)

and proves that Cy is a d-copula if 971 is absolutely monotonic of order d on [0,1], i.e. if
9= (t) satisfies
d*9=1(t)
19[*1] (k) H=_—"_">9
@)W = S >

for k=1,2,...,d and ¢ € (0,1). For detailed properties of Cy we refer to Morrilas (2005).

Example 2.2. [Generalized FGM copulas|] Possible generator functions ¢ are stated in
Morillas (2005, table 1). Notice that not every generator in table 1 is absolutely monotonic
for arbitrary d > 1. Consider 9(t) = t*/” for > 1 (number 2 in table 1), i.e. 9I=1(t) = ¢

which is only absolute monotonic of order d = 2 for » > 1 and assume that C' is a FGM

copula, i.e. C(u,v) = uv(l 4+ 0(1 — u)(1 —v)) for § € [—1,1]. Hence, with (2.4), the
generalized FGM copula

C(u,v;0,r) = w (1 +O(1— U1 — ,Ul/r))r

results. Extensions to higher dimensions follow immediately.

2.3 Liebscher copulas

Another way of generalizing Archimedean copulas goes back to Liebscher (2006) who intro-
duces d-copulas of the form

m

Clun, . ug) = %Zwﬂ(ul).wﬂ(w)....-%d(ud) , (2.5)

where ¥ and v, : [0,1] — [0, 1] are functions satisfying the following conditions: Firstly,
it is assumed that ¥4 exist with W) (u) > 0 for k = 1,2,...,d and u € [0, 1], and that
U(0) = 0. Secondly, 1) is assumed to be differentiable and monotonely increasing with
¥j5(0) = 0 and 9;,(1) = 1 for all k, j. Thirdly, Liebscher’s construction requires that

v Zd)jk(v) =v for k=1,2,...,dand v € [0, 1].
j=1



These conditions guarantee that C defined in (2.5) is actual a copula (see Theorem 4.1 in
Liebscher, 2006). It is easily verified that the approaches of Morillas (2005) and Liebscher
(2006) coincide only if m = 1, 97" = 9l5" = .. 9l2" = ¥ in (2.5) and Cy = C* in (2.4)
which corresponds to the generalized (multiplicative) Archimedean case.

In addition, Liebscher (2006) provided a general method who to obtain appropriate functions
k. Assume that hj : [0,1] — [0,1] for j =1,...,mand k =1, ..., d are differentiable and
bijective functions such that A% (u) > 0 for u € (0,1), hj,(0) = 0 and hyj(1) = 1. Further
assume that mu = hyg(u) + ... + Ape(u) holds for each k = 1,...,d. Let ¢ = ¥~! be the
inverse function of ¥ which is assumed to be differentiable. An appropriate choice is then

given by jp(u) = Ay ($(w)), since ¥ (u) = R ((u)) - ' (u) > 0.

Example 2.3. Consider d = m = 2 and define for «, 5 € [1,2]
hir(u) = u®,  hoi(u) =2u—u®, hia(u) =u®,  hoo(u) = 2u —uP.

Together with ¥(t) = t", e.g. 1 (u) = t'/" for r > 1, the corresponding Liebscher copula is

Cu,v) = (05 [u" @07 = /") w2017 — 17 ) (2.6)

3 A unifying approach

The key idea of Morillas (2005) was to replace the independence copula (which is implicitly
assumed within the multiplicative generalized Archimedean framework) by an arbitrary
copula C and to proof that the new function is a copula, too. Having a closer look at (2.5),
one might be tempted to replace the product by an arbitrary d-copula in order to extend
Liebscher’s proposal, at the one hand and to nest Morillas’ proposal as second special case,
at the other hand. Indeed, in the next section it will be shown that the new function is
again a d-copula.

3.1 The main result

For reasons of clarity, consider first d = 2 but arbitrary m. In accordance to Liebscher
we assume that W*)(u) > 0 for k = 0,...,d with ¥(0) = 0. Moreover, ;; is presumed
to be differentiable and monotone increasing with ;;(0) = 0, 1;;(1) = 1 and, in order to
guarantee the boundary conditions, that

1 m
v — Zl/)jk(v) =w.
m “
j=1
For an arbitrary copula C' with existing copula density we define

K(u,v) =V ZC(%l(u)ﬂﬁjz(U)) . (3.1)
j=1

=



Obviously,

K( (7711 zm: [ 1/}]1 %2( ))]) = (711 in: {C((/Jﬂ(U),O)}) = \I/(O) =0.

j=1

Similar, K(0,v) = 0 and
) = 3 (5 o n0] ) <1 (55 o]
U (;id@l(u)) =u.

Assuming differentiablity of C' and neglecting the arguments of the following functions,

0K 1 oC
o Z O

and
PK 1 |s=0C 1 9 |w=0C
k= = .= ' .. 2 Ay,
Oudv mo = Ou Wi |t m  Ov = ou It
1 oC 1 |~ 0°C
o " / / / /
= v E . ; 1/}]1 +\I’ : E [; dudv 1/}]1 7%2]
Positivity follows from the assumptions above and because
80 oC
<
- 8u v

which is stated, e.g. by Drouet-Mari & Kotz (2001, p. 67).

Example 3.1 (Continuation of example 2.3). Again, consider d = m = 2 and hq;(u) = u
hai(u) = 2u — u®, hia(u) = u?, hos(u) = 2u — uP for a, B € [1,2] together with W(t) = ¢
e.g. P(u) = t'/" for r > 1. Plugging the FGM copula into (3.1),

7

Cu,v;e, 3,0) = 277 (u% (21}% —v%> [14—9(1 —u%) (1 —20v7 —|—v%)}

fur <2v% —v%> [1+9 (1 —ug) (1 — 207 +v%)])r.

Setting # = 0, the copula from example 2.3 is obtained.



Example 3.2 (Continuation of example 2.2). Consider m = 2, ¥(t) = " for r > 1 and
i (t) = t1/7. Tt follows from the last proof that the result also holds if two different copulas
C, and Cs are considered instead of C. Consequently, assuming C; to be a FGM copula
with parameter 6; for i = 1, 2, the following generalized FGM copula results:

C(u,v:0,7) = uv [(1 F O (1 —ul/TY(1— vl/r))r n (1 F02(1 — w1 — vl/r)ﬂ .

Setting 6 = 0, the copula from example 2.2 is obtained.

3.2 The multivariate case

The copula from (3.1) can be extended to higher dimensions. Under the above assumptions
on ¥ and 1;; define

K(ui,... ug) = %Z (j1 (), - .., o (ua)) | (3.2)

where m > 1 and d > 2. Now,

K(ul,...,uk_l,O,uk+1,~-~,Ud):
ST % [C(zpjl(ul), o Win—1 (uk—1), ¥ix(0), Yjpta (Ug1)s - - - ijd(“d))]
=1
_— %Z[C(T/Jﬂ(ul)’---7¢jk—1(uk—1)vOv¢jk+1(uk+1)v'"7wjd(ud))} =v(0)=0
=1
and K(1,...,Lul,...,1) =
T %Z |:C(’l/}j1(1),...,'l/}jk_1( )s Wik (ur), Yier1(1), ..., ja(l ))]
=1
= U %Z[C(lavlad}]k(uk)vl’vl)) 7]7-1; Uk

such that the boundary conditions are valid.



Neglecting the arguments of the functions and presuming differentiability,

d m i
1 ) ad+1710
= — (2)
k(u) = k(ug, ..., uq) - g E v E: T Thoean Ot Vi | I Vie | (33)

veM; (1)

where M;(l) C {2,...,d} with [M;(l)| = d—i. This is a density because ;;(u) > 0, @ >0
(by assumption) and Qr)— exists under certain assumptions (see Joe, 1997, p. 15). Note
that the copulas used i in the function ¥ can be different.

Example 3.3. Assume d = 3 and arbitrary m. Further, using M; (1) = {2,3}, M2(1) = {2},
M5(2) = {3} and M3 = () in (3.3) the copula density is

0

k = K
(U) 8u18u28u3 (u)
1 = 93C 1 m 92C
= v . — — s L/ — 1ot
m ; Ouq Ousdus Virjetss | + m ; 10Uy V51¥52
" i . 6270 !l mo -
v m Z 5u18U3wj1wj3 +v Z 5U1

Example 3.4. For d = 4, m arbitrary and with M7 (1) = {2, 3,4}, Mx(1) = {3,4}, M»(2) =

{2,4}, M>(3) = {2,3}, M3(1) = {2}, M3(2) = {3}, M3(3) = {4}, My = 0 in (3.3), the copula
density k(u) is given by

0
k(U) B 8%16’&28713811,4 K(u)

m

1 o*C 1 [ & 03C
- .= T - v~
m ; Ou1 OugOusOuy Vi iV | + m ; Ou10usz0uy

! ! !
Yi1t5304

+ 0.

3=

- 1 [« 9%C
/4 I \Il// R /, /, /.
(Z aulaugau ]1%2 ja | m ]; Ou10usOus Vir¥i2¥is

Jj=

=

3

j=1 j=1
m

92C , L, 1 [« 0C |,
Z 1/);11/’]‘4 + " m Z SV
j=1

3

(5 8’U,4

1 92C 1 (& 0%C
T v v, It
+ (Z Ou10uq Vin¥ie | + m Z Oui0us Vir¥is



4 Parametric candidates for ¥ and h

So far, we introduced a very general copula representation which might be used, on the one
hand, to construct general d-copulas themselves but, on the other hand, to generalize given
d-copulas. Beside of the copula C' itself, two functions ¥ and h have to be specified. We
conclude this work with some remarks on how to construct these functions.

4.1 Construction of parametric V-functions

Suitable function ¥ on [0,1] with ¥(0) = 0 and ¥(1) = 1 are required to be absolute
monotonic of order k. Trivially, this holds if ¥ is absolute monotonic for any order. Ac-
cording to Feller (1950, p. 249), absolute monotonic and continuous functions admit the
representation
u(r) =po+pix+pa®+..., 0<z<l1

for non-negative coefficients p;. In order to ensure that u(0) = 0 and u(1) = 1, it follows
that po = 0 und py + p1 + p2 + ... = 1. Hence, ¥(x) can be derived from a probability
generation function of a discrete distribution (up to an additive and a scaling constant). For
instance, for a given n € N and p € (0, 1], the probability generation function of a binomial
distribution is p(t) = ((1 — p) 4+ pt)™ and one obtains
(1—=p)+pz)" = (1—-p)

p

The probability generation function of the geometric distribution is given by p(t) =
the corresponding W-function is given by
1_pqw P (1-q

\I]G(J;’p) = D - .
= —p  l-qz

TE(2;p,n) =

p
1—qt’

Similarly, from the Poisson distribution, p(t) = exp(—X + At) for A > 0 and

Az _ -2 Az _
P (a0 = & I .
1—e? et —1
Finally, if X has probability mass function
1
PX=2)=——7-— f =0,2,4,6,...
( ?) cosh(1)x! OFET AR
we arrive at

cosh(t) cosh(z) — cosh(0)

t) = i.e. =
p(t) cosh(1)’ Le. ¥(z) cosh(1) — cosh(0)
which can be easily generalized to
U(z:a) = cosh(z%) — cosh(O)’
cosh(1) — cosh(0)
Of course, other choices for h can be obtained from alternative probability distributions.
Moreover, every inverse of ¥ itself is again an admissible function.

a > 0.




4.2 Construction of parametric hA-functions

Following Liebscher’s construction sketched in subsection 2.3, any suitable differentiable and
monotone increasing function h with h(0) = 0 and h(1) = 1 with h'(z) < 2 for = € [0,1]
may be serve as appropriate candidate. Here we present a very simple way to obtain such
functions h: Starting from a random variable X on (a,b) D [0, 1] with distribution function
F and (existing) density function f we define

_F() -

M0 = F O~ F)

which is easily seen to satisfy the above-mentioned requirements if f(t) < 2F (1) — 2F(0) is
guaranteed. Moreover, h~1(t) is well-defined and also a possible candidate. Possible choices

together with the corresponding parameter restrictions are subject to table 1, below.

Parameter h(x) Distribution F(x)

a€ll,2] x® Power x®

§ > 0.3183 il Cosine e

- e | et | 3+ S st
a € [-0.5,1] (T_ti;w Nameless (Tiizf

¢ < 2.5138 e Bradford e

0< A< 1.5936 ey Exponential | 1 — exp(—\z)

o > 0.4044 W Normal ®(z,0,0)

0.9728 < ¢ < 3.2599 lepte) Weibull 1 — exp (—a°)

0 < c<6.8954 17(?‘752(352(:7(?)@2)_6 Gen. Logistic | (1 + exp(—z))~°

§ > 0.3102 Zigg:igg:f;g;gj?: Gumbel exp(—exp(—z/4))

§ > 0.5366 443“::;?;1((6‘:5;Zrﬂm//(gg;))))):: Hyp.Secant 2 arctan (exp(rz/(26)))
(a,b) € A* abr®=1(1 — 2%)0~1 Kumaraswany | abr® (1 — 2%)0~1

Table 1: Different parametric generator functions with

A* = {(a,b)az 1, b>1, ab(

1-1/a
1
ab — 1) (

b
a—1
— <2
ab—1> - }

In order to roughly compare the flexibility of these h-functions, we conclude with figure 1,
where the possible "range” of all transformations (for different parameter constellations) is
numerically displayed.



h(x) [Power distribution] h(x) [Cosine distribution] h(x) [Semicircular]

1 1
0.9 0.9
0.8] 038
0.7] 0.7
0.6 0.8
0.5] 05
0.4 0.4]
0.3] 03
0.2] 0.2
0.1] 0.1
o 0.2 0.4 06 08 1 o 0.2 0.4 0.6 08 1 o 02 0.4 0.6 08 1
h(x) [Nameless] h(x) [Bradford] h(x) [Exponential]
1 1 1
0.9] 0.9] 0.9
0.8] 0.8] 0.8
0.7] 0.7] 0.7
0.6 0.6] 0.6
05 05 05
0.4] 0.4} 0.4]
0.3] 0.3] 03
0.2] 0.2] 0.2
0.1] 0.1] 0.1
o 0.2 0.4 0.6 08 1 o 0.2 0.4 06 08 1 o 02 04 0.6 08 1
h(x) [Normal] h(x) [Weibull] h(x) [Gen.Logistic]
1 1
0.9] 0.9
0.8] 0.8
0.7] 0.7
0.6 0.6
0.5] 05
0.4] 0.4
0.3] 0.3
0.2] 0.2
0.1] 0.1
o 02 0.4 06 08 1 04 06 ] 02 04 0.6 08 1
3 h(x) [Gumbel] ) h(x) [Hyp.Secant] h(x) [Kumaraswany]
0.9] 0.9]
0.8] 0.8]
0.7] 0.7]
0.6 0.6]
0.5] 0.5]
0.4] 0.4]
0.3] 0.3]
0.2] 0.2]
0.1] 0.1]
0 02 04 06 08 10 02 04 06 08 1

Figure 1: Different A-functions.
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5 Summary

The contribution of this paper is a very general construction scheme of d-copulas which
generalizes the recent proposals of Morillas (2005) and Liebscher (2006). Given m d-copulas
of the same type (i.e from the same copula family) or, possibly, from different families, we
show how to combine these copulas to a new copulas by means of certain generator functions
which have been adopted from Liebscher (2006). Liebscher’s framework is recovered if these
”parent copulas” correspond to independence copulas, Morrillas’s framework if m = 1. We
also show how to construct such generator functions. Finally, some examples are given.
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