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summary

Copulas represent the dependence structure of multivariate distributions in a
natural way. In order to generate new copulas from given ones, several propos-
als found its way into statistical literature. One simple approach is to consider
convex-combinations (i.e. weighted arithmetic means) of two or more copulas.
Similarly, one might consider weighted geometric means. Consider, for instance,
the Spearman copula, defined as the geometric mean of the maximum and the
independence copula. In general, it is not known whether weighted geometric
means of copulas produce copulas, again. However, applying a recent result of
Liebscher (2006), we show that every weighted geometric mean of extreme-value
copulas produces again an extreme-value copula. The second contribution of this
paper is to calculate extremal dependence measures (e.g. weak and strong tail
dependence coefficients) for (weighted) geometric and arithmetic means of two
copulas.

Keywords and phrases: Tail Dependence; Extreme-value copulas; arithmetic and
geometric mean

1 Copulas and Tail dependence

Let X and Y denote two random variables with joint distribution FX,Y (x, y) and continuous
marginal distribution functions FX(x) and FY (y). According to Sklar’s (1959) fundamental
theorem, there exists a unique decomposition

FX,Y (x, y) = C(FX(x), FY (y))

of the joint distribution into its marginal distribution functions and the copula

C(u, v) = P (U ≤ u, V ≤ v), U ≡ FX(X), V ≡ FY (Y )

defined on [0, 1]× [0, 1] which comprises the information about the underlying dependence
structure. Putting a different way, (2-dimensional) copulas are distribution functions on the
unit square with uniform marginals. For details on copulas we refer to Joe (1999).



The concept of tail dependence provides, roughly speaking, a measure for extreme co-
movements in the lower and upper tail of FX,Y (x, y), respectively. The upper tail dependence
coefficient (TDC) is usually defined by

λU ≡ lim
u→1−

P (Y > F−1
Y (u)|X > F−1

X (u)) = lim
u→1−

1− 2u + C(u, u)
1− u

∈ [0, 1]. (1.1)

noting that λU is solely depending on C(u, v) and not on the marginal distributions. Anal-
ogously, the lower TDC is defined as

λL ≡ lim
u→0+

P (Y ≤ F−1
Y (u)|X ≤ F−1

X (u)) = lim
u→0+

C(u, u)
u

. (1.2)

Coles et al. (1999) provide asymptotically equivalent versions of (1.1) and (1.2),

λL = 2− lim
u→0+

log(1− 2u + C(u, u))
log(1− u)

and λU = 2− lim
u→1−

log C(u, u)
log(u)

. (1.3)

In general, there are a lot of copulas (e.g. Gaussian copula, hyperbolic copula, FGM copula)
which admit upper and/or lower tail independence but nevertheless allow a certain depen-
dence between the variables U and V in the tail areas. A measure to quantify ”dependence
within tail independence” is suggested by Coles et al. (1999) who defines the weak upper
tail dependence coefficient as

χU = lim
u→1

χU (u) with χU (u) =
(

2 log(1− u)
log(1− 2u + C(u, u))

− 1
)

for u ∈ [0, 1],

provided the existence. It can be shown that −1 ≤ χU ≤ 1, χU = 1 in case of upper tail
dependence (i.e. for λU > 0), χU = 0 in case of C = Π being the independence copula and
for copulas with upper tail independence (i.e. with λU = 0), χU increases with the strength
of dependence in the tail area. In the sequel, we speak of weak upper tail independence
if χU = 0, and of weak upper tail dependence if χU 6= 0. It should be again pointed out
that it is not necessary to calculate χU in case of strong upper tail dependence, because
then χU = 1 holds. Heffernan (2000) calculated χU for numerous copulas. Her derivations
require different results from extreme value theory: Because of

P (U > u, V > u) = 1− 2u + C(u, u) = 1− 2u + P (max(U, V ) ≤ u)

the joint exceedance probability is solely determined by the distribution function of the
maximum of U and V . Instead of analyzing the limit behaviour for u → 1, one usually
considers the bivariate transformation S = −1/ log U and T = −1/ log V . The variables S

and T have so-called uniform Fréchet marginal distributions with

P (S > s) = P (T > s) = P (U > e−1/s) = 1− e−1/s for s > 0.

Applying a Taylor approximation for large s, e−1/s ≈ 1− 1
s and P (S > s) = P (T > s) ≈ 1

s .
Ledford & Tawn (1996) showed that for uniform Fréchet marginal distributions and under
weak conditions

P (S > t, T > t) ≈ L(t)P (S > t)1/η for large t
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holds, where L(t) is a slowly varying function in ∞, i.e. with L(ct)
L(t) → 1 for t →∞ for

each c > 0. Moreover, the coefficient η quantifies a weak upper tail dependence coefficient
because χU = 2η − 1. Furthermore, it can be shown that λU = c in case of L(t) → c and
χU = 1 and λU = 0 in case of χU < 1. Moreover, using

P (S > t, T > t) = P (U > e−1/t, V > e−1/t) = 1− 2e−1/t + C(e−1/t, e−1/t)

the relation between the uniform Fréchet marginal distributions and the copula C can be
established. Thus one has to check if there is a function L(t) slowly varying in ∞ and a η

satisfying

1− 2e−1/t + C(e−1/t, e−1/t) ≈ L(t)
(

1
t

)1/η

for large t.

Likewise, the weak lower tail dependence coefficient equals the limit of

χL(u) =
2 log(u)

log(C(u, u))
− 1

for u → 0. This limit in turn can be calculated by applying extreme value theory. Again,
one has to consider a factorisation of the form

C(1− e−1/t, 1− e−1/t) ≈ L(t)
(

1
t

)1/η

for large t.

The relationship between L(t), η on the one side and λL, χL on the other side is identical
to the case of upper tail dependence. For a more detailed treatment of weak and strong tail
dependence we refer to Heffernan (2000) and Klein & Fischer (2006).

2 The weak TDC of the arithmetic mean of two copulas

In general, every convex-combination of two (or more) copulas C1 and C2

C(u, v;α) = αC1(u, v) + (1− α)C2(u, v), (2.1)

is again a copula. Convex-combinations are popular to construct flexible copula models
(see, e.g. Junker & May, 2005). If the upper TDC of C1 and C2 is given by λU,1 and λU,2,
respectively, it is straightforward to check that the upper TDC λU of C is given by

λU = αλU,1 + (1− α)λU,2.

To the best of our knowledge, there is no result for the weak upper tail dependence coefficient
χU . The corresponding derivation is subject to the next theorem.

Theorem 1. Assume that the weak upper TDC of C1 and C2 is given by χU,1 and χU,2.
The weak upper TDC χU of the convex combination (i.e. arithmetic mean) of two copulas
does not dependence on α and is given by

χU = max
{

χU,1, χU,2

}
.
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Proof: Recall that if

1− 2e−1/t + C(e−1/t, e−1/t) ≈ L(t)
(

1
t

)1/η

holds for large t, the weak lower tail dependence coefficient is given by χU = 2η − 1.
Consequently, from the assumptions on C1 and C2 above and for large t follows that

1− 2e−1/t + C1(e−1/t, e−1/t) ≈ L1(t)t−1/η1 and

1− 2e−1/t + C2(e−1/t, e−1/t) ≈ L2(t)t−1/η2 .

where L1(t) and L2(t) are slowly varying functions in ∞. Hence, for large t,

1− 2e−1/t + C(e−1/t, e−1/t) = 1− 2e−1/t + αC1(e−1/t, e−1/t) + (1− α)C2(e−1/t, e−1/t)

= α
[
1− 2e−1/t + C1(e−1/t, e−1/t)

]
+ (1− α)

[
1− 2e−1/t + C2(e−1/t, e−1/t)

]

≈ αL1(t)
(

1
t

)1/η1

+ (1− α)L2(t)
(

1
t

)1/η2

Assume w.l.o.g. that 0 < η1 < η2 ≤ 1 such that 1/η1 > 1/η2 > 0 and t−1/η1 < t−1/η2 for
large t (note that in particular 1/t < 1). Then, for large t,

1− 2e−1/t + C(e−1/t, e−1/t) ≈ L∗(t)
(

1
t

)1/η2

with L∗(t) ≡ (1 − α)L2(t). Therefore, the weak tail dependence coefficient is given by
χU = 2η2 − 1. Otherwise, i.e for 0 < η2 < η1 ≤ 1, the result is χU = 2η1 − 1. Consequently,
χU = 2 max(η1, η2)− 1 = max{χU,1, χU,2} holds in the general case. ¤

3 TDC for the geometric mean of two extreme-value
copulas

In contrast to the arithmetic mean of two copulas, it is in general not known (as far as we
know) if the geometric mean of two arbitrary copulas is again a copula. There is, however,
already a result for a specific case, i.e. copula family B12 in Joe (1999) – also known as
Spearman or Cuadras-Augé copula – which results as the geometric mean of the maximum
copula and the independence copula, i.e.

CG(u, v; α) = min{u, v}α(uv)1−α, α ∈ [0, 1] (3.1)

Applying a recent result from Liebscher (2006, Theorem 3.1), we are able to prove in the
next lemma that the geometric mean of two extrem-value copulas is again an extrem-value
copula.
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Lemma 3.1. Assume that C1 and C2 are two extreme-value copulas. It follows that

CG(u, v;α) = C1(u, v)αC2(u, v)1−α, α ∈ [0, 1] (3.2)

is again an extreme-value copula.

Proof: Using that C(ut, vt) = C(u, v)t for t > 0 holds for any extreme-value copula, (3.2)
can be rewritten – defining g1(u) ≡ uα and g2(u) ≡ u1−α – as

CG(u, v;α) = C1(u, v)αC2(u, v)1−α = C1(uα, vα)C2(u1−α, v1−α)

= C1(g1(u), g1(v))C2(g2(u), g2(v))

Obviously, g1 and g2 are bijective and monotone increasing functions with g1(u) · g2(u) =
uαu1−α = u. Hence, applying theorem 3.1 of Liebscher (2006), the assertion follows. More-
over, CG(u, v; α) is again an extreme-value copula because

CG(ut, vt; α) =
(
C1(u, v)αC2(u, v)1−α

)t
= (CG(u, v; α))t

. ¤

The next lemma states that the (upper) tail dependence coefficient λU of the geometric
mean of two extreme-value copulas derives as convex-combination of the TDC of the two
copulas itself.

Lemma 3.2 (Strong TDC). Assume that C1 and C2 are two extreme-value copulas with
upper strong TDC λU,i for i = 1, 2. Then the TDC of the weighted geometric mean of C1

and C2 is given by
λU = αλU,1 + (1− α)λU,2

Proof: Plugging the copula from (3.2) into equation (1.3) we obtain

λU = 2− lim
u→1

log(C1(u, u)αC2(u, u)1−α)
log(u)

= 2− α lim
u→1

log C1(u, u)
log(u)

− (1− α) lim
u→1

log C2(u, u)
log(u)

= α
(
2− lim

u→1

log C1(u, u)
log(u)

)
+ (1− α)

(
2− lim

u→1

log C2(u, u)
log(u)

)

= αλU,1 + (1− α)λU,2 ¤.

Finally, we turn to the weak tail dependence coefficient. First recall (e.g. Heffernan, 2000)
that every extreme-value copula C may be characterized by a so-called dependence function
V via

C(u, v) = exp(−V (−1/ ln(u),−1/ ln(v))),

where exakt independence corresponds to V (1, 1) = 2 and perfect dependence to V (1, 1) = 1.
Regarding the weak upper TDC, η = 1 and hence χU = 1 for all extreme-value distributions
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with V (1, 1) 6= 2. Hence, emphasize is put on the weak lower TDC which can be expressed
– provided that V (1, 1) > 1 – as

χL =
2− V (1, 1)

V (1, 1)
. (3.3)

This result facilitates the derivation of the weak lower TDC, as the next lemma shows.

Lemma 3.3 (Weak TDC). Assume that C1 and C2 are two extreme-value copulas with
weak upper TDC χL,1 and χL,2, and dependence functions V1 and V2, respectively. Then
the TDC of the weighted geometric mean of C1 and C2 is given by is given by

χL =
2− αV1(1, 1)− (1− α)V2(1, 1)

αV1(1, 1) + (1− α)V2(1, 1)

Proof: Some reformulations reveal the dependence function of CG which is given as the
convex-combination of the dependence function of C1 and C2:

CG(u, v; α) = C1(u, v)αC2(u, v)1−α

= exp
(
−αV1

(
− 1

ln(u)
,− 1

ln(v)

))
exp

(
−(1− α)V2

(
− 1

ln(u)
,− 1

ln(v)

))

= exp
(
−V

(
− 1

ln(u)
,− 1

ln(v)

))

with V (u, v) ≡ αV1(u, v)+(1−α)V2(u, v). Consequently, using (3.3), the assertation follows.
¤

Example 3.1. Consider the copula C1(u, v) which is characterized by the ”logistic” depen-
dence function

V1(x, y; β) =
(
x−1/β + y−1/β

)β

, 0 < β ≤ 1

with weak lower TDC given by χL,1 = 21−β−1. Further, let C2(u, v) = uv with dependence
function V2(x, y) = V1(x, y; 1) = x−1 + y−1, hence V2(1, 1) = 2 and χL,2 = 0. It follows that

χL =
2− α2β − (1− α)2

α2β + (1− α)2
=

α(2− 2β)
2 + α(2β − 2)

and χU = 1.
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