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Abstract 

We test for skewness preferences in a large set of observational panel data on online poker games 
(n=4,450,585). Each observation refers to a choice between a safe option and a binary risk of 
winning or losing the game. Our setting offers a real-world choice situation with substantial 
incentives where probability distributions are simple, transparent, and known to the decision-
makers. Individuals reveal a strong and robust preference for skewness, which is inconsistent with 
expected utility theory. The effect of skewness is most pronounced among experienced and 
unsuccessful players but remains significant in all subsamples that we investigate, in contrast to 
the effect of variance. 
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1 Introduction

Over the last 50 years, scholars in finance and behavioral economics have argued that whether
people take up or avoid risk depends on its skewness, that is, on its standardized thirdmoment.
Skewness preferences—a preference for positive and an aversion toward negative skewness—are
a central prediction of most behavioral models of choice under risk, such as prospect theory
(Kahneman and Tversky, 1979), salience theory (Bordalo et al., 2012), or models building on
the anticipation of regret or disappointment (Loomes and Sugden, 1982, 1987a,b; Gul, 1991; In-
man et al., 1997). In contrast, expected utility theory cannot explain why people seek positively
skewed risks but avoid negatively skewed risks. Skewness preferences can explain a wide range
of seemingly disparate puzzles in choice under risk: the favorite-longshot bias, whereby posi-
tively skewed long shots are overbet and negatively skewed return distributions of favorites are
underbet (e.g., Snowberg andWolfers, 2010); the simultaneous demand for lottery-like gambles
and high-premium insurances (Kahneman and Tversky, 1979; Sydnor, 2010; Garrett and Sobel,
1999); the Allais paradox (Allais, 1953); the growth puzzle (Fama and French, 1992; Bordalo
et al., 2013); and many instances of portfolio underdiversification (Mitton and Vorkink, 2007).

Despite the vast literature on skewness preferences (for a survey see Trautmann and van de
Kuilen, 2018), direct tests of the effect of skewness on real-world choices are scarce: the support
for skewness preferences either comes from highly stylized laboratory experiments (e.g., Ebert
and Wiesen, 2011; Ebert, 2015; Dertwinkel-Kalt and Köster, 2020), or—mainly in finance and
labor economics—from real-world decision situations where the underlying probability distri-
bution is very complex, estimated based on past data, and basically unknown to the decision
maker.1

This paper directly tests for skewness preferences in a large set of observational panel data
on real-world choices. Our setting combines a number of advantages. Contrary to laboratory
experiments, our study covers a wide range of incentives, with an expected value of the av-
erage lottery of $62.39, and builds on a high number of observations and less artificial choice
situations. In contrast to the empirical finance and labor economics literature, we do not have
to approximate the underlying probability distribution and do not need to impose strong as-
sumptions that individuals correctly estimate and comprehend such a distribution, as probabil-
ities are transparently displayed to decision-makers before they make their decisions. The risks
involved are binary and uniquely determined by the first three moments of their probability
distribution: expected value, variance, and skewness, which allows for a clean identification of
skewness preferences. In addition, individuals in our data set can generally be expected to un-
derstand risks and probabilities well, reducing the confounding effects of misunderstandings
of probabilities and imperfect information.

In detail, we study risk preferences in online poker, making use of a novelty that one of
the leading online poker platforms, Pokerstars, introduced in August 2019: the so-called all-in
cashout. The all-in cashout provides insurance against a player’s risk in a showdown situation.

1Among others, the tests of skewness preferences in finance (Boyer et al., 2010; Bali et al., 2011; Conrad et al., 2013;
Lin and Liu, 2018; Jondeau et al., 2019) and labor economics (Hartog and Vijverberg, 2007; Berkhout et al., 2010) fall
into this category: here, the probability distributions can only be approximated through expected moments that are
estimated based on past data.

2



In a showdown situation, the outcome of the poker hand is solely determined by the cards
drawn from the remaining deck of cards. The two possible outcomes for each player are: i) los-
ing and receiving a payout of zero or ii) winning the entire pot, that is, the accumulated bets by
players throughout a hand. The all-in cashout now gives each player in a showdown situation
the additional option to choose a safe payout equal to the expected payout of the underlying
lottery minus a profit margin for Pokerstars of 1%. Before making her decision whether to take
the insurance or not, all relevant information is disclosed to each player. Each observation in
our data set refers to a player’s choice between this safe insurance option and the respective
binary lottery.2 Our data set includes 4,450,585 of such individual choices in showdown situa-
tions with two opponents for Omaha Poker cash games, all collected between January 1, 2020,
and June 30, 2021.3

This specific setting allows us to identify the effect of skewness on risk-taking. We show
that skewness has a sizeable effect on risk-taking, while the effect of variance is comparably
negligible. The insurance option is selected in 20.0% of cases when the risk is left-skewed, but
only in 14.2% of cases when the risk is right-skewed. Put differently, it is around 40% more
likely that the insurance option is selected when players face a left-skewed instead of a right-
skewed risk. As winning the pot is a complementary event for the two opponents, for each
observation involving a right-skewed lottery with the winning probability π < 0.5, there is
exactly one observation in our data set that involves a left-skewed lottery with the winning
probability 1 − π > 0.5. Both of these lotteries have identical variance but inverse skewness,
which allows us to circumvent the limitations of other studies (e.g., Golec and Tamarkin, 1998)
where variance and skewness always change simultaneously.

In our regression analyses, we followMitton and Vorkink (2007) and assume a utility func-
tion that is linear in the different risk moments. In our basic specification, we regress an in-
surance choice dummy that equals one if player i chooses the insurance option in showdown
j and zero otherwise, on the first three moments of the underlying lottery. We further include
game fixed effects to control for heterogeneity in insurance choices across different games and
month fixed effects to account for month-specific heterogeneity as potentially driven by sea-
sonal effects or COVID-19 countermeasures. Increasing skewness by one standard deviation,
keeping the variance and expected values of the lotteries constant, decreases the likelihood that
the insurance option is chosen by about 2.3 percentage points, which is equivalent to a decrease
of around 13.5% compared to the average share of positive insurance choices (i.e., the mean
dependent variable). The estimated effect of variance is negligible in most specifications. A
one standard deviation increase in variance is associated with a decrease in insurance choice of
around 0.0 to 0.3 percentage points, depending on the specification. In the basic linear proba-
bility model, the estimated effect of variance is statistically insignificant.

These results remain robust to different empirical specifications (such as Probit and Logit
models), to controlling for player-specific characteristics (such as experience and average profit

2Strictly speaking, the lottery is not always binary as there are situations where a split pot can occur; we discuss
this limitation of our study in Section 5.1.

3Showdowns with more than two players typically yield more complex probability distributions, depending
on the timing of bets during a hand and on players’ available budgets. Thus, for clarity, we restrict our analysis to
two-person showdowns.
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per hand) and hand-specific variables (such as the amount ofmoney the player started the hand
with, the weekday, or the stake, that is, the size of mandatory bets), to excluding outliers, and to
using the coefficient of variation (the inverse "Sharpe" ratio of the lottery) instead of expected
value and variance. The panel structure of our data further allows us to include individual fixed
effects to control for time-invariant heterogeneity across individuals. Including individual fixed
effects does not change the impact of skewness, neither in magnitude nor significance, and it
also does not substantially affect the estimated coefficients of the first two moments.

We also explore whether our effects vary across different subgroups. To determine whether
our findings hold in contexts with large monetary stakes, we restricted our analysis to the sub-
sample that involves pots of more than $100. In this subsample, the average lottery has an
expected value of $252.93. The proportion of insurance choices (11.7%) is notably lower than
in the full sample. Despite this, the skewness effect’s magnitude is only slightly smaller, which
suggests that the effect of skewness on risk-taking behavior is similar across both low- and high-
stake decisions.

Moreover, we split our sample at the median for various player- and hand-specific charac-
teristics. We find evidence of skewness preferences in all subsamples. The evidence is strongest
for relatively experienced players, as measured by the number of showdowns the player partic-
ipated in or by the total number of hands played (including hands without showdowns). For
this group of players, the estimated effect of skewness is about one and a half times the effect
in the full sample. For this group, the effects of the other two moments are either smaller in
absolute terms or even change signs compared to the full sample. Additionally, we analyze the
impact of skill by considering separate analyses for successful (those with positive aggregated
net profits over our observation period) and unsuccessful players (those with aggregated net
losses). While a player’s skill cannot affect the outcome of the studied lotteries, it can affect the
long-run profits of players and is likely related to differences in risk attitudes and players’ moti-
vation to play poker. Indeed, while skewness affects both successful and unsuccessful players,
its effect is stronger for the latter group.

Finally, we disentangle skewness effects from loss aversion. Players could perceive their
contribution to the pot as a reference point. According to loss aversion, they exhibit a prefer-
ence to at least recoup this reference amount, thus achieving a gain and avoiding a loss. In our
setting, players facing left-skewed risks usually recoup their contribution with the insurance
option and thus realize a gain. Conversely, players who experience a loss from choosing the
insurance option may prefer to take the risk as this offers the chance of a gain. Players facing
right-skewed risks usually fall into this category. There are exceptions, however, because of
"dead" money from players not reaching the showdown. These instances of players choosing
between a right-skewed risk and an insurance option that offers a gain compared to their pot
contribution allow us to disentangle loss aversion and skewness preferences. We find evidence
for both skewness preferences and loss aversion. When the insurance option represents a gain
instead of a loss, players are significantly more likely to choose the insurance (18.2% vs 13.3
%). When controlling for loss aversion in our regression analyses, the magnitude of the skew-
ness coefficient is roughly half but remains highly significant. We thus find evidence for the
coexistence of skewness preferences and loss aversion.
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Among others, this paper contributes to the literature on decision-making in poker games
(for other related literature, see Section 2). Besides some studies that aim to quantify the ex-
tent of skill and luck in poker games (e.g., Fiedler and Rock, 2009; Potter van Loon et al., 2015;
Duersch et al., 2020), researchers havemainly used poker data to study reference-dependent risk
attitudes. Smith et al. (2009) and Eil and Lien (2014) find that poker players play less cautiously,
longer, andmore aggressively after losing a big pot or if a player is losingwithin a poker session.
These findings are in linewith the break-even hypothesis predicted by loss aversion (Kahneman
and Tversky, 1979; Thaler and Johnson, 1990). One challenge when analyzing poker play is that
it crucially depends on the players’ expectations about the opponents’ hands and playing style
(both of which are unobservable). By focusing on those situations where all uncertainty is re-
solved and players cannot actively affect the outcome of the game anymore, we can, however,
overcome these problems. So unlike in previous studies (e.g., Smith et al., 2009; Eil and Lien,
2014), missing information, wrong beliefs or a misunderstanding of the risks involved should
not play a role in our setup and should not confound our insights on the drivers of risk-taking.

We proceed as follows. In Section 2 we define skewness preferences and discuss the related
literature. In Section 3 we describe our data and setting before we present our results in Section
4. Section 5 discusses the limitations of our framework and provides corresponding robustness
checks. Section 6 concludes.

2 Theoretical Background and Related Literature

Our observations involve binary decisions between a safe "insurance" option and a binary lottery
L. As we will see in Lemma 1, such a binary lottery is uniquely defined by its expected value
E[L], its variance V ar[L] and its skewness S[L], which is defined by the third standardized
central moment

S[L] := E

( L− E[L]√
V ar[L]

)3
 . (1)

We can then define the following notions.

Definition 1. Lottery L is called right-skewed (or, equivalently, positively skewed) if S(L) > 0, left-
skewed (or, equivalently, negatively skewed) if S(L) < 0, and symmetric otherwise.

Other definitions of positive skewness, such as via "long and lean" tails of the risk’s probabil-
ity distribution, exist and are, in general, not equivalent. For binary risks L = (x1, π;x2, 1− π),
where outcome x1 is realized with probability π and x2 with probability 1 − π, Ebert (2015),
however, shows that all conventional notions of skewness are equivalent and the skewness of a
binary risk is well-defined. Moreover, binary lotteries can be uniquely identified by their first
three moments as shown by Ebert (2015) and generalized by Dertwinkel-Kalt et al. (2023):

Lemma 1. For constants E ∈ R, V ∈ R+ and S ∈ R, there exists exactly one binary lottery L =

(x1, π;x2, 1 − π) with x2 > x1 such that E(L) = E, V ar(L) = V and S(L) = S. Its parameters are
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given by

x1 = E −
√
V (1− π)

π
, x2 = E +

√
V π

1− π
, and π =

1

2
+

S

2
√

4 + S2
. (2)

We denote the binary lottery with expected value E, variance V , and skewness S as L(E, V, S).

As a result of Lemma 1, it is possible to vary skewness for binary risks while fixing the first
two moments. We can now define skewness preferences as follows:

Definition 2. An agent reveals a preference for skewness if the following holds: for any E ∈ R and
any V ∈ R+, there exists a unique threshold value Ŝ ≥ 0 so that she strictly prefers the binary lottery
L(E, V, S) over the safe option that pays E if and only if S > Ŝ.

Expected Utility Theory. In the following, we formally show that Definition 2 violates ex-
pected utility theory (henceforth: EUT) and is not coherent with any EUT utility function. Let
u(·) be a utility function with normalization u(0) = 0, and consider L = (0, 1 − π;x, π). Ac-
cording to Definition 2, there exists a threshold skewness value, or equivalently, a threshold
probability level π̄ ∈

(
1
2 , 1
)
, so that for all x ≥ 0 and all π ∈ (0, 1) we have

u(πx) ≥ πu(x) if π > π̄ (3)

u(πx) < πu(x) if π ≤ π̄. (4)

Now we define x′ := 2x and assume π ∈ (1
2 ,

π̄
2 ). Then, (3) and (4) yield 2πu(x) ≤ u(2πx) =

u(πx′) < πu(2x), and thus 2u(x) < u(2x). But we also have u(x) = u(1
2 · 2 · x) ≥ 1

2u(2x), which
gives 2u(x) ≥ u(2x). Taken together, these two derivations give a contradiction. Intuitively, Def-
inition 2 stipulates that the agent is (i) risk-averse over all risks that are not sufficiently skewed,
which necessitates a weakly concave utility function, but (ii) risk-seeking over all sufficiently
skewed risks, which necessitates a strictly convex utility function. In sum, (i) and (ii) give a
contradiction.

Notably, in our empirical setting the agent cannot obtain a gamble’s expected value E, but
only slightly less, namely 0.99E. This, however, does not alter any of the conclusions we have
drawn on the validity of EUT, as demonstrated in the following. Suppose an agent strictly
prefers a risky option L = (0, 1 − π;x, π) over 99% of its expected value, πx, if and only if the
risky option’s skewness is sufficiently large. Then we obtain the conditions that are analogous
to (3) and (4), namely,

u(0.99πx) ≥ πu(x) if π > π̄

u(0.99πx) < πu(x) if π ≤ π̄.

The very same contradiction as above can be constructed from these conditions. Intuitively,
in order to weakly prefer 0.99E over a risky option with expected value E and non-positive
skewness, the utility functionmust be sufficiently concave, but in order to prefer the risky option

6



over 0.99Ewhen skewness is sufficiently positive, the utility functionmust not be that concave—
a contradiction.

Contrary to our definition, some papers in the literature, such as Ebert andKarehnke (2020),
define skewness preferences as preferring lotteryL(E, V, S) overL(E, V,−S). Skewness prefer-
ences in this alternative sense can be reconciled with EUT bymaking the additional assumption
of prudence (whereby the third derivative of the utility function is strictly positive). We, how-
ever, view this alternative definition as less relevant for practice. In fact, we are unaware of any
real-world choice between L(E, V, S) and L(E, V,−S), where an agent chooses between two
risks that only differ in the sign of skewness. All of the motivating examples in the first para-
graph of our introduction (e.g., gambling vs. insurance choice, and most of the applications in
financial or labor economics), as well as the choice situations that we investigate in this paper,
better fit our definition where individuals choose between a risky and a safe option. When an
individual decides whether to gamble or not, she chooses between some risk (gambling) and
the safe option of not gambling. When an individual decides whether to buy insurance, she
chooses between the risky option (of not taking up insurance) and the safe option of buying
insurance. Explaining these choices between a safe and a risky option is also the core contribu-
tion of prospect theory, as highlighted in the last sentence of the abstract of the seminal paper
by Kahneman and Tversky (1979).

Taken together, skewness preferences as defined in Definition 2 are not coherent with EUT.
In order to explain why agents dislike symmetric risks, EUT needs to assume that the utility
function is strictly concave. Under this assumption, however, EUT predicts, for any skewness
level, that the safe payout of E should be strictly preferred over any lottery that pays E in ex-
pectation. When EUT wants to explain why an agent takes up a positively skewed risk, it has
to assume a convex utility function (u′′ > 0), but this then goes along with the implausible pre-
diction (that also violates Definition 2) that every binary lottery is preferred over the safe option
that pays its expected value. So, EUT cannot explain why people’s preference to take up a risk
depends on the risk’s skewness. The same holds for standard portfolio theory (Markowitz,
1952), whereby people’s utility from some risk is linearly increasing in its expected value and
linearly decreasing in its variance. Thus, EUT and standard portfolio theory would predict that
whether some risk is taken up mainly depends on variance, but not on skewness.

Behavioral Economics. Skewness preferences as defined in Definition 2 are predicted, how-
ever, by most behavioral models of choice under risk such as cumulative prospect theory (Kah-
neman and Tversky, 1979), salience theory (Bordalo et al., 2012), regret theory (e.g., Bell, 1982;
Loomes and Sugden, 1982), and disappointment aversion (Gul, 1991), as shown, for instance,
in Barberis (2012), Dertwinkel-Kalt and Köster (2020), and Ebert and Karehnke (2020). Also
seminal models proposed in the behavioral finance literature (Mitton and Vorkink, 2007) allow
for skewness preferences by, for instance, augmenting standard portfolio theory by an addi-
tional term that allows not only for a linear effect of expected value and variance, but also of
skewness on utility.

Skewness preferences allow us to understand why revealed attitudes toward risks vary
across contexts. On the one hand, people like to gamble (e.g., Golec and Tamarkin, 1998,
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Garrett and Sobel, 1999) but they also overpay for insurance with low deductibles (e.g., Syd-
nor, 2010; Barseghyan et al., 2013). In financial markets, investors seek positively skewed re-
turn distributions (Chunhachinda et al., 1997; Prakash et al., 2003; Mitton and Vorkink, 2007;
Boyer et al., 2010; Bali et al., 2011; Conrad et al., 2013). Skewness preferences also matter in la-
bor economics and, in particular, career choices (Hartog and Vijverberg, 2007; Berkhout et al.,
2010; Grove et al., 2021) as workers accept a lower expected wage if the distribution of wages in
a cluster (i.e., education-occupation combination) is right-skewed. Similarly, a preference for
skewness can explain the substantial entrepreneurial investments in private equity with bad
risk-return tradeoffs (Moskowitz and Vissing-Jørgensen, 2002).

Implications for our empirical approach. The characteristics of binary lotteries outlined above
make it appealing to study skewness effects at the hand of binary lotteries. To identify skew-
ness preferences, it is optimal to let agents repeatedly choose between a safe option and a binary
lottery, where only the lottery’s skewness differs between choices. In such a setting, skewness
preferences predict a negative relation between insurance choice and the lottery’s skewness.
While this decision situation is hardly implementable in the field (for a laboratory experiment
that precisely implements this see Experiment 1 inDertwinkel-Kalt andKöster, 2020), our setup
approximates these experiments as closely as possible (for a discussion of differences to the ideal
setup see the discussion of limitations in Section 5.1).

In our setup, poker players face the choice between a lottery and the safe option that pays
99% of the lottery’s expected value. Thus, the insurance is selected if and only if for the player’s
utility function U(·) we have 0.99 U(E(L)) > U(L). We follow Mitton and Vorkink’s (2007)
reduced-form approach by assuming "Lotto investors" that have identical preferences as tradi-
tional investors over mean and variance (see Markowitz, 1952), but also a preference for skew-
ness. The utility such investors derive from some lottery L is then given by

U(L) = E(L) + βV V ar(L) + βSS(L).4

Wewill not directly estimate the effect of the lottery’s moments on utility, but on the likelihood
that the safe insurance option is preferred over the lottery. Given this dependent variable, a
positive (negative) coefficient βV indicates variance-averse (variance-seeking) agents, and a
positive (negative) coefficient βS indicates a preference for negative (positive) skewness. This
approach, therefore, allows for both positive and negative effects of variance and skewness on
insurance choice.

3 Background and Data

In this section, we first provide background information about the underlying poker game and
the new insurance option that our study builds on (Section 3.1). In Section 3.2, we give an
overview of our data set.

4Unlike Mitton and Vorkink (2007) we adopt the usual narrow-framing assumption that is adopted throughout
experimental economics: namely, that subjects do not integrate their earning from the respective game into their
overall wealth, but evaluate it in isolation.
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3.1 Background

On Omaha Poker cash games. We analyze hands from Omaha Poker cash games. In a cash
game, all players start the hand with an amount of real money, the stack, which will be used for
betting throughout the respective hand.5 Money cannot be added or withdrawn during a hand.
However, players can leave the game after a hand is concluded or add chips up to a maximum
amount depending on the blinds (i.e., the mandatory bets posted before every hand) of the
respective game. Accordingly, we define the stake of a game by the size of the blinds. In a poker
cash game there are usually two blinds, the big blind and the small blind, which is half the size
of the big blind. In the remainder of the paper, the stake always refers to the big blind.

In Omaha Poker cash games, each player is dealt four private cards (hole cards) that are only
visible to the respective player. In addition, there are up to five community cards that are public
information and are dealt throughout three stages: i) Flop: first three community cards; ii)
Turn: fourth community card; iii) River: fifth community card. Each stage is preceded and/or
followed by a betting round. The money that players post throughout these betting rounds is
collected in the pot. Furthermore, there is a fee collected by Pokerstars, called the rake that is
deducted from the pot. The rake is calculated as a percentage of the pot, ranging from 3.5% to
5% depending on the stake, and capped at a certain amount. Accordingly, the winning player
is awarded the net pot, that is, the pot minus the rake.

If the betting causes all but one player to lay down their hole cards (i.e., they fold), the re-
maining active player wins the net pot without showing any private cards. Otherwise, the net
pot is awarded to the active player with the best five-card poker hand after the last community
card is dealt. This best five-card poker hand consists of two of the player’s hole cards and three
community cards (see also the official ranking of poker hands in Appendix A.1).

The hole cards are revealedwhen either the betting round after the River is finished or when
there are N > 2 active players, of which at least N − 1 players are all-in, that is, they put their
entire stack in the pot. The latter scenario is called a showdown. In a showdown, the players
face a binary lottery L, whose outcome depends solely on the cards that will be drawn from
the remaining deck of cards: L = (pot − rake, π; 0, 1 − π). In such a situation, the probability
that one player wins the net pot, π, can be calculated conditional on the revealed individual
hole cards and the community cards that have been dealt until the showdown. Under certain
circumstances, split pot situations may occur. In such a scenario, the lottery is not binary. We
abstract from these scenarios here and discuss the issue in Section 5.1 in more detail.

Figure 1 shows an example of a showdown after the Turn, that is, with one card to come.
Player 1 is all-in, and no more betting is possible. The best five-card hand of Player 1 is a High
Card Queen, which loses against the Two Pairs (queens and tens) of Player 6. Player 1 can only
win the hand if aHeart-card is drawn from the remaining cards, whichwould give her awinning
Flush (five cards of the same suit). In total, there are 13 Heart-cards in the 52-card deck. Five

5Beside the fact that the insurance option is only available for cash games, cash games are also more suited to
our question and "easier to analyze than tournament games, since in a cash game, a player who is risk neutral over
money should also be risk neutral over chips. This is not necessarily the case in a tournament, for a number of
reasons" (Eil and Lien, 2014), including varying incentives to outlast other players in different tournament phases
or non-linear payout structures.
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Figure 1: Exemplary screen of a showdown on Pokerstars with one card to come

Heart cards have been already revealed, implying that there are still eight Heart cards among
the 40 cards that have not been revealed yet. The probability of Player 1 winning the hand
is thus simply the number of remaining Heart cards (eight in our example) divided by the
number of remaining cards, 52 − 12 = 40, so that we obtain a winning probability of Player
1 of 8

40 = 0.20, and a probability of losing of 0.80. As shown in Figure 1, these probabilities
and the exact size of the net pot are displayed in an all-in situation on the players’ screens. If
the showdown happens at an earlier stage, the probabilities can be calculated by dividing all
possible realizations of community cards, in which a specific player holds the winning hand, by
the total number of possible realizations. Again, the corresponding probabilities and the net pot
are displayed to the players (see in Appendix A.2 an example where the showdown happens
before any community card is revealed).

The insurance option. Wemake use of the new insurance option (the so-called all-in-cashout)
introduced on August 13, 2019, on the Pokerstars website, which provides a safe alternative
against the risk that the players face in a showdown. If a player chooses this insurance option,
she will no longer be eligible to contest any portion of the net pot, and the offered amount will
be added to her stack immediately and risk-free. If she declines, she will continue to contest the
entire net pot as usual. Importantly, while other players in a game can observe the other players’
insurance decisions, the outcome of a showdown is unaffected by the opponent’s insurance
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decision. Players declining the insurance option still need the best hand in a showdown to
win the net pot, even if all their opponents have cashed out. As a result, each active player in
a showdown faces a choice between a binary risk and a safe option. The guaranteed payout
from choosing the insurance option is equal to the expected value of the lottery minus a fee
of 1% on this expected value, that is, equal to $(pot − rake) × π × 0.99. The 1% fee charged by
Pokerstars is equal for all players and has not changed since the insurance option’s introduction.
The insurance payout is rounded to full cents.

To better understand a player’s decision in a showdown, turn again to Figure 1, which shows
a situation inwhich the insurance option is offered to Player 1. The two red buttons represent the
binary choice between two options: i) the risky option "Resume hand" (explained above) that
pays $2.79 with 20% and zero with 80%; and ii) the safe insurance option that pays $0.55 with
100%. As can be seen in Figure 1, the probabilities and the exact size of the net pot are displayed
on the players’ screens. The displayed insurance payout already includes the rake and the 1%
fee. Accordingly, Player 1’s insurance payout in our example is equal to: $2.79×0.2×0.99 = $0.55

and Player 6’s insurance payout will be: $2.79×0.8×0.99 = $2.21. Thus, the players are readily
presented with all information that is relevant for their decision. The players have 12 seconds to
make their choice. If players do not choose one of the proposed alternatives within 12 seconds,
the hand resumes with the risky option.

3.2 Data

Our data set includes 4,450,585 observations, where every observation refers to a unique deci-
sion by a single player in a two-person showdown situation as described above. This includes
the decisions of 83,219 distinct players.6

Our data set is extracted from 35,529,631 distinct poker hands played between January 01,
2020, and June 30, 2021 on Pokerstars, the largest online poker network during our observation
period (Primedope, 2023). The number of distinct poker hands exceeds the number of observa-
tions, as not every poker hand results in a two-person showdown. We obtain the raw data from
a commercial poker data provider that collects and stores hand histories for every Omaha Poker
cash game played on Pokerstars.7 Hand histories are automatically generated by the Pokerstars
software and include all public information of a single poker hand. The raw data is provided
in text files and we make use of the commercial poker software "PokerTracker 4" to convert the
raw data into a workable data set. Smith et al. (2009) use an earlier version of "PokerTracker" to
construct their data set.

Our data set spans a wide range of games that vary in the size of the mandatory bets and
the maximum amount players can bring to the respective game. The hand histories include
information on all community cards, the hole cards of the players that went to a showdown, and

6As we explain in Section 5.1 in more detail, we exclude all observations that involve a winning probability of
0.5, as most of these observations refer to situations with degenerated lotteries, for which no insurance option was
offered.

7Our data provider HH Dealer (https://www.hhdealer.com/) collects the hand histories for various online poker
platforms. At Pokerstars, a hand history is accessible by all Pokerstars users that opened the window of a respective
game. As a quality check, we observed several sessions on the Pokerstars platform during the data collection period
and checked whether the obtained histories are complete and accurate.
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the net pot size. This information allows us to calculate each player’s probability of winning the
pot at showdown and assign each player’s insurance payout value. Furthermore, our data allow
us to infer whether a respective player has chosen the insurance option for each showdown.

We capture a player’s decision between the safe option and the binary lottery by the variable
insurance choice, our dependent variable of interest. This variable equals one if the player chooses
the safe option and zero if she chooses the binary lottery. In our data set, players choose the safe
option in 17.1% of cases with a standard deviation of 0.377 (Table 1). Notably, the overall share
of choices of the insurance option is rather low. A majority of players choose the risk instead of
the insurance option, whichmight be driven by a large share of individuals that are risk-seeking
in general or by the 1%-margin that has to be paid to Pokerstars if the insurance option is chosen.

Table 1: Summary statistics on insurance choice

Statistic N #(Choice=1) #(Choice=0) Mean St. Dev.
Insurance Choice 4,450,585 761,585 3,689,000 0.171 0.377

Note: The table reports summary statistics on the insurance choice dummy that equals one if the safe op-
tion is chosen and zero otherwise.

The winning probabilities and the net pot size allow us to calculate the expected value, E =

πx, the variance, V = π(1 − π)x2, and the skewness, S = 1−2π√
π(1−π)

, of each binary gamble
players face in a showdown situation. Table 2 presents the descriptive statistics for the first three
moments of the binary lotteries in our data set. Our lotteries have an average expected value
of 62.39, with a standard deviation of 326.58 and a median of 13.37 (all in US-$). The expected
values range from as little as $0.001 to as much as $64,242.40. Our measure of skewness takes
values between -40.79 and 40.79 with a mean of zero.

Table 2: Summary statistics on different moments

Statistic N Mean St. Dev. Pctl(25) Median Pctl(75)
Expected Value 4,450,585 62.39 326.58 5.11 13.37 35.92
Variance 4,450,585 73,786.68 2,157,525.00 29.52 148.86 964.71
Skewness 4,450,585 0.00 2.23 −0.86 0.00 0.86

Note: The table reports summary statistics of the expected value, variance, and skewness for the lotteries in our
sample, using net pot sizes measured in US-$.

The data set also includes a pseudonymized player ID,which serves as a unique identifier for
each observation (together with the distinct hand number). In addition, our data records each
player’s stack at the beginning of the hand and some hand-specific characteristics, such as date,
time, and the size of the mandatory bets (stake). For all four betting rounds, we further observe
the actions of all active players, that is, players that have not folded their hands. On average, a
player in our sample plays 2,159 hands and faces 53.48 two-person showdown situations during
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the respective period. The average stack at the beginning of the hand is $115.1, ranging from
$0.1 to $81,644.8

For additional analyses and robustness checks, we extract several player-specific character-
istics from the raw data, including the number of hands played over the observation period,
the amount won/loss over the entire period (including hands with no showdown), and the
average winning probability in showdown situations. As a result of the rake collected by Poker-
stars, a player makes an average loss of $0.088 per hand played. More details and the respective
summary statistics are provided in Appendix A.4.

4 Results

We first describe our descriptive results, then our main regression analyses before we discuss
in how far our results vary across different subgroups.

4.1 Descriptives

As we focus on situations where two players are in a showdown, that is, winning the pot is
a complementary event for both opponents, each right-skewed lottery (π < 0.5) has exactly
one left-skewed lottery (1 − π > 0.5) as a complement. The variance of the opponents’ binary
lotteries are identical, V1 = V2 = π(1 − π)x2. Accordingly, the opponent of a player facing a
binary riskwith skewnessS faces a lotterywith a skewness of−S. Thus, we can directly analyze
insurance choice frequencies for different signs of skewness, but with constant variance.

First, we group the observations conditional on the sign of skewness and find that individ-
uals who face a negatively-skewed lottery choose the insurance option in 20.0% of cases. In
contrast, individuals who face a positively-skewed risk do so in only 14.2% of the cases. This
difference is statistically significant (p-value < 0.0001, two-sided Welch’s t-test, assuming inde-
pendent samples) and in line with a preference for positive skewness.

Second, Figure 2 illustrates the choice frequencies of the insurance option for different ranges
of ex-ante winning probabilities with a constant average variance. The horizontal axis depicts
the winning probability range of right-skewed lotteries and the loss probability of the comple-
mentary left-skewed lotteries. For example, the first red bar at the left illustrates the insurance
choice frequency for lotteries with a winning probability between 0 and 0.1, while the neigh-
boring blue bar plots the frequency for lotteries with winning probabilities between 0.9 and 1,
that is, loss probabilities between 0 and 0.1. In all subgroups, individuals who face a negatively
(left-)skewed lottery choose the insurance option significantly more often than their opponents
who face a positively (right-)skewed lottery with the same variance. The differences are sizable
and statistically significant in all groups and range from 1.5% to 8.7% (see Table 11, Appendix
A.4). The differences are smallest for ranges closer to π = 0.5, that is, for more symmetric
lotteries. Insurance shares tend to be smaller for lotteries with a larger variance, suggesting
a positive preference for variance by the average player. Interestingly, insurance shares seem

8The average stack and the average number of showdown situations are calculated using the 4,450,585 observa-
tions in our final data set. The number of hands played by a distinct player is based on all hands in our initial data
set, including hands that did not result in a two-person showdown with a winning probability 6= 0.5.
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Figure 2: Share of insurance choices for different winning probability ranges
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Note: Figure 2 depicts the share of insurance choices depending on ex-ante winning probabilities. The
probability space is divided into 10 equidistant segments. Right-skewed and complementary left-
skewed risks with the same variance are grouped together (e.g., the first red bar at the left refers to the
interval of right-skewed risks with winning probabilities in the range (0, 0.1] while the neighboring
blue bar refers to the interval of left-skewed risks with loss probabilities in (0, 0.1]). For more details
on observations and differences between groups see Table 11, Appendix A.4.

rather constant concerning the variance for right-skewed lotteries and tend to decrease for a
higher variance for left-skewed lotteries.

While these results support a preference for skewness, they do have certain drawbacks, as
they, for instance, do not account for different expected values of the gambles and other factors
that may confound our results. We address these issues in our regression analyses.

4.2 Regression analyses

Empirical Strategy. We investigate how each moment of the underlying probability distribu-
tion influences individual insurance choices while holding the other moments constant. We
follow Mitton and Vorkink (2007) in assuming that the different risk moments have a linear
effect on utility. We do not have a clear prior regarding the influence of the expected value,
given that both the safe option and the lottery exhibit roughly the same expected value. In
contrast, we expect a positive (negative) sign for variance if individuals in our sample are, on
average, risk-averse (risk-seeking). Skewness preferences imply a negative skewness coefficient,
meaning that individuals choose the risky option more often for higher skewness. In our main
specifications, we estimate the following reduced-form equation:

yi,j(t,z) = β0 + βEEj + βV Vj + βSSj + γZi + ηWj + λt + ψz + εi,j , (5)
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where the dependent variable yi,j(t,z) is a binary indicator of whether player i chooses the in-
surance option in decision j. Each decision refers to a specific month t and a game with stake
z. Variables Ej , Vj and Sj denote the expected value, variance, and skewness of the binary risk
in decision j. λt are month fixed effects that control for month-specific factors constant across
players, such as seasonality, adaptions over time, or COVID-19 effects. ψz captures stake fixed
effects that account for the fact that a game with a higher stake directly implies higher average
expected values and variance. If such fixed effects were not included, our coefficients would not
only capture the effect of Ej and Vj on insurance choice but also heterogeneity between games
with different stakes. Finally, εi,j denotes the error term.

To account for confounding factors related to the features of a particular hand, we control
for hand-specific characteristicsWj , including the amount of money the player started the hand
with (that is, the stack), whether the player risked the entire stack during a particular show-
down, the weekday, and the position of the respective player during a hand.9 The vector Zi
includes a set of player-specific characteristics to control for different players’ playing styles and
experience levels. Player-specific characteristics are based on all poker hands in our data set
(including those without a showdown) and cover the following variables: number of hands
played, number of showdowns, profit or loss per 100 hands played, and the average winning
probability in showdowns over all hands (summary statistics can be found in Appendix A.4).

While including player-specific controls addresses some endogeneity concerns, our esti-
mated coefficients may still be biased if unobserved factors correlate with the type of lotteries
individuals face. To address this issue, we exploit the panel structure of our data and include
player-specific fixed effects αi that control for all time-invariant heterogeneity across individu-
als. We extend the previous specification and estimate the following fixed effect regression:

yi,j(t,z) = βEEj + βV Vj + βSSj + ηWj + λt + ψz + αi + εij (6)

Regression results. Table 3 shows the estimated marginal effects from a linear probability
model estimating Equations 5 and 6. To simplify the comparison of coefficients’ magnitudes,
we standardize the different moments in our main specifications.10 The signs and the p-values
of the coefficients are largely unchanged if we use non-standardized variables (see Table 18,
Appendix A.6). Similarly, our main results are unchanged if we estimate a Probit or a Logit
model instead (see Table 19, Appendix A.6). Using a standardized dependent variable has the

9Two remarks on the hand-specific characteristics: i) in a two-person showdown, there is always one player that
is all-in, thereby risking her entire stack, because otherwise, betting between the two players would still be possible,
which rules out a showdown; ii) the position during a hand indicates when a player has to act during the hand,
which may have important implications for the playing style and whether a player decides to play (i.e., voluntarily
putting money in the pot) a particular set of hole cards or not. For example, players who already put money into the
pot by posting the mandatory blinds tend to play a wider selection of hole cards, as the posted blinds count towards
the necessary amount they have to call to see the first three community cards. Similarly, players who act last in each
betting round (button) will have more information on opponents’ actions when they act in future betting rounds,
which usually increases the range of played sets of hole cards as well.

10We follow the literature and standardize the variables by computing the z-score, that is, we subtract the respec-
tive mean and scale the variable by the inverse of its standard deviation. This allows us to make a unit-independent
comparison of the coefficient magnitudes.
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additional advantage that the coefficient of the constant can be approximately interpreted as
the average insurance choice shares in the particular (sub)sample.

Table 3: Regression results for full sample

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected Value 0.002* 0.003*** 0.003*** 0.007***

(2.011) (3.358) (3.560) (7.166)

Variance −0.0004 −0.001 −0.001 −0.003***
(−0.950) (−1.915) (−1.551) (−4.757)

Skewness −0.023*** −0.023*** −0.024*** −0.023***
(−17.117) (−18.476) (−18.890) (−18.577)

Constant 0.171*** 0.171*** 0.171***
(41.932) (47.518) (47.792)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Player fixed effects No No No Yes
Observations 4,450,585 4,449,739 4,449,739 4,450,585

Note: The table reports OLS regression coefficients of our main empirical specifica-
tion (Equation 5). The dependent variable is a binary indicator that equals 1 if a
player chooses the insurance option and zero otherwise. All specifications include
fixed effects for different games (on the stake level) and different months. The in-
dependent variables enter the regression as standardized z-scores. Corresponding
t-statistics are provided in parentheses, using standard errors clustered at the indi-
vidual level. The number of observations in Columns 2 and 3 differs because the av-
erage winning probability (a player-specific control variable) is not available in 846
choice situations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.

If we only include the three moments as independent variables (see Column 1, Table 3), we
find that a one standard deviation increase in skewness reduces the likelihood of choosing the
insurance by 2.3 percentage points, or 13.4% compared to the average insurance choice likeli-
hood (i.e., the mean dependent variable), while holding expected value and variance constant.
The coefficient is statistically significant (p-value< 0.0001).

The impact of variance and expected value are significantly smaller. A one standard devia-
tion rise in variance reduces insurance selection by an insignificant 0.04 percentage points. The
negligible effect of the second moment is noteworthy in light of our substantial sample size, es-
pecially when contrasted with the skewness parameter’s notable t-statistic of -17.117. A higher
expected value increases the probability that the insurance is chosen by 0.2 percentage points.
Note that this does not mean that Poker players dislike positive returns because the insurance
value also increases with the risk’s expected value. The positive coefficient indicates that play-
ers are more likely to choose the insurance option when facing lotteries with larger expected
values.

Incorporating player-specific characteristics (Column 2) and hand-specific controls (Col-
umn 3) does not substantially alter the effects of expected value and skewness. The variance
effect, while slightly larger, remains insignificant and substantially smaller than the coefficients
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of the other two moments. The results of the player fixed effects regression model are pre-
sented in Column 4 of Table 3. The estimated effect of skewness does not change in magnitude
compared to the base specification. The effects of expected value and variance increase, but
variance’s influence is still substantially smaller than skewness in absolute terms.

Overall, our regressions demonstrate a significant effect of skewness on insurance take-up.
Despite extensive data, we fail to find a statistically detectable effect of variance—what is typ-
ically regarded as a risk’s main property—in our base specifications. The estimated effect of
skewness is negative and both statistically and economically significant. The absolute magni-
tude and the t-statistics of the standardized skewness coefficients are considerably larger than
for the other twomoments, suggesting a preeminent role of skewness preferences for individual
risk-taking.

4.3 Heterogeneous effects

In this subsection, we estimate our main specifications for different potentially interesting sub-
groups. We split the full sample at the median of different player- and hand-specific character-
istics, ensuring an even distribution of observations across the subsamples. Across all subsam-
ples, we find evidence of skewness preferences, with the skewness coefficient being negative
and significant in all specifications. For a list and summary statistics of the characteristics, see
Tables 6–10 in Appendix A.4.

Players’ experience. Players’ experience is a potentially important dimension for understand-
ing players decisions in showdown situation. Previous studies suggest that experienced poker
players aremore self-reflective, less affected by negative emotions, andmake better decisions, by
mathematical standards, than inexperienced players (Palomäki et al., 2013, 2014). In our study,
this suggests that the observed effects for experienced players are less likely due to a misper-
ception of the underlying lotteries or due to impulsive choice but rather reflect a preference for
different risk moments. Moreover, we have more repeated observations for more experienced
players (for varying risks and payouts), which increases the power of our fixed effect regression
model (see Table 12, Appendix A.5).

Experienced players face more than 421 showdowns. This threshold number balances the
observations in the subsamples of inexperienced and experienced players. Experienced players
opt for insurance in 22.0% of the cases when facing a left-skewed and 14.2% of the cases when
facing a right-skewed lottery in the showdown. In contrast, the difference in insurance choice
ratios between the left- and the right-skewed lotteries is considerably smaller for inexperienced
players (17.9% vs. 14.2%). This pattern is consistent across different levels of lottery variance
(Panels A and B of Figure 6, AppendixA.5). Again, for both subgroups, differences in insurance
choices between left- and right-skewed lotteries narrows, as skewness approaches zero (see
Table 13, Appendix A.5).

In our regression analyses, we also find large heterogeneity in skewness preferences between
experienced and inexperienced players. For experienced players (as measured via the num-
ber of showdowns), increasing skewness by one standard deviation decreases the likelihood
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Table 4: Regression results for different levels of player experience

Dependent variable:
Insurance choice dummy

# showdowns # hands
≤ 421 > 421 ≤ 13,861 > 13,861
(1) (2) (3) (4)

Expected Value 0.006*** −0.002 0.007*** −0.002
(6.393) (−1.882) (5.052) (−1.759)

Variance −0.002*** 0.001 −0.003** 0.001*
(−3.580) (1.925) (−3.234) (2.121)

Skewness −0.013*** −0.033*** −0.014*** −0.032***
(−18.021) (−13.157) (−18.389) (−12.895)

Constant 0.160*** 0.182*** 0.164*** 0.178***
(113.620) (23.004) (110.186) (22.522)

Observations 2,228,808 2,221,777 2,225,785 2,224,800
Unique players 81,278 1,941 80,936 2,283
Note: The table reports OLS regression coefficients of our main empirical
specification (Equation 5) for different subsamples. The full sample is split
at the median of two different measures of player experience (as in Figure 6):
i) the number of observed showdown situations per player (Columns 1 and
2); and ii) the total number of played hands by each player, including those
without a showdown (Columns 3 and 4). At this place, we only present re-
sults from the specificationwithout additional control variables or individual
fixed effects (equivalent to Column 1 of Table 3). The dependent variable is
a binary indicator that equals 1 if a player chooses the insurance option and
zero otherwise. All specifications include fixed effects for different games (on
the stake level) and differentmonths. The independent variables enter the re-
gression as standardized z-scores. Corresponding t-statistics are provided in
parentheses, using standard errors clustered at the individual level. ∗: p<0.1;
∗∗: p<0.05; ∗∗∗: p<0.01.

of choosing the insurance option by 3.3 percentage points, which is equivalent to a decrease of
18.1% of the mean dependent variable in the respective subsample (Column 2, Table 4). For
inexperienced players, the estimated effect of skewness on individuals’ risk-taking is less than
half in size (Column 1 Table 4). This difference persists whenwe include individual fixed effects
and hand-specific control variables (see Table 12, Appendix A.5).

The coefficients of the other twomoments also differ considerably for experienced and inex-
perienced players. The effect of variance is quite small in all subsamples and has different signs
for experienced and inexperienced players in the basic specification, similar to the expected
value coefficient. These results further underscore our earlier observation that, in our sample,
skewness is a more influential factor than variance.

In Panels C and D of Figure 6 (Appendix A.5) and Columns 3 and 4 of Table 4, we split the
sample according to an alternative measure of experience: the total number of hands played
by an individual player (including those without a showdown). The cutoff value is equal to
13,861 played hands. The differences between the two subgroups align with our previous find-
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ings and remain essentially unchanged if we include fixed effects (see Table 12, Appendix A.5).
Moreover, the impact of other risk moments is similar across both measures of experience.

Players’ success. Skill partly drives poker players’ success, which separates poker from games
of pure chance, such as roulette (Potter van Loon et al., 2015; Duersch et al., 2020). While skill
does not affect the outcome of the binary lotterieswe study in this paper, it affects the outcome of
the preceding strategic interactions taking place under imperfect information. Skilled players
typically achieve higher net returns due to better judgment of hand strength, more accurate
predictions of opponents’ hands, and adjusted betting strategies. Consequently, there are likely
systematic differences in playing motives, risk attitudes, and preferences between successful
and unsuccessful players.

We categorize players into successful and unsuccessful based on their aggregated net profits
over our observation period, including results from non-showdown hands. Successful players
are those with positive aggregated net profits over our observation period and unsuccessful
players those with aggregated net losses. To account for the fact that profits can be the result
of sheer luck if a player only plays a few hands, we also examine the heterogeneity in the sub-
sample of experienced players only, who play at least 13,861 hands over our observation period.
We distinguish between sophisticated players and recreational players. Sophisticated players
are experienced successful players, while we define recreational players as experienced unsuc-
cessful players. Like sophisticated individual investors, sophisticated poker players are more
likely to reflect upon and adjust their strategy. Sophisticated players are less likely to play for
recreational reasons only and are thus potentially more similar to financial experts. In contrast,
recreational players and their underlying risk attitudes may be more comparable to speculative
retail investors or people who gamble in a casino. It is noteworthy that successful players are of-
ten experienced. In our data set, the median experienced player makes an average loss of $3.91
per hundred hands, while the median inexperienced player makes an average loss of $20.43.

Table 14, Appendix A.5, presents the results of our subsample analysis. We find strong evi-
dence of skewness preferences in both subsamples. Notably, unsuccessful players exhibit much
stronger skewness preferences, particularly those in the recreational subgroup. In this group,
a one standard deviation increase in skewness reduces the likelihood of choosing insurance by
about five percentage points, consistent across both the base and fixed effects models (Columns
5 and 7). The effects of the other twomoments align with those observed in the full sample. For
successful and sophisticated players (Columns 2, 4, 6, and 8), the absolute effect of increased
skewness on insurance choice is smaller, at only 1.0-1.1 percentage points, but remains signifi-
cant across all models. In contrast, the expected value and variance effects are notably weaker
and become statistically insignificant in the fixed effectmodel for sophisticated players (Column
8).

The subsamples also differ in average insurance rates. Successful players choose insurance
in about 11.4% of cases, compared to 19.4% for unsuccessful players. The difference in insurance
shares increases if we consider recreational and sophisticated players (23.2% vs. 10.6%). The
differences, both in terms of insurance shares and risk preferences, are consistent with the idea
that risk neutrality is advantageous for long-term earnings. Therefore, successful poker players
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are expected to show less sensitivity to risk moments. Nonetheless, skewness still significantly
influences the insurance decisions of successful players, indicating its importance even among
those who are more risk-neutral.

Largemonetary stakes. It is particularly interesting to see whether our results also hold when
we restrict our analysis to large monetary stakes, that is, for decisions involving pots of more
than $100. Themedian lottery in this subsample has an expected value of $95.45, with amean of
$252.93. In this subsample, players selected the insurance option in 104,390 of 892,191 instances,
yielding an insurance rate of 11.7%. Notably, players facing negatively-skewed lotteries chose
the insurance in 13.7% of the cases, while those with positively-skewed risks did so in 9.7% of
the cases.

Our regression results, which are presented in Table 15, Appendix A.5, show that with large
monetary stakes, the absolute magnitude of the skewness coefficients moderately decrease to
1.6 to 1.9 percentage points, yet remain statistically significant across all specifications. Thus,
our main conclusions remain unchanged when restricting our analysis to decisions with larger
monetary stakes.

5 Limitations of our framework and robustness

In this section, we show the robustness of our results by addressing potential limitations and
shortcomings of our setup. We first address the fact that, in our setting, lotteries are not always
binary. Second, we disentangle skewness preferences from loss aversion, both of which could
potentially drive our findings. Third, we address miscellaneous other issues.

5.1 Lotteries are not always binary

One limitation of our setup is that the underlying risks are, strictly speaking, not always binary,
as split pots can occur. Split pots arise when players hold the same best five-card hand after all
community cards are dealt. In this case, each involved player is awarded half of the pot. In our
sample, 6.6% of all showdown situations result in a split pot. As players’ best five-card hand
includes precisely two of their private cards and three of the community cards, split pots are
rare in Omaha Poker cash games compared to other Poker games. This is one reason why it is
advantageous to focus on this particular poker variant in our study.

In scenarios where split pots are possible, players face the following trinary lottery: L =

(x, π; 1
2x, µ; 0, 1 − µ − π), where µ is the ex-ante probability of a split pot and π is the ex-ante

probability of winning the entire pot. In our data, µ and π are not independently observable,
neither for the players nor for us. In fact, we only observe a "payout-weighted" winning proba-
bility π̃ = 1

2µ+ π, which can be understood as the percentage of the pot the player is expected
to win. If a split pot is possible, the agent thus sees the binary lottery: L̃ = (x, π̃; 0, 1 − π̃), for
which E(L) = E(L̃). In Appendix A.3, we present an example of a choice situation where a
split pot is possible and explain in detail how the payout-weighted probabilities are calculated.
If no split pot is possible ex-ante (µ = 0), which is true for the majority of hands, both lotter-

20



ies are equivalent (L = L̃). Moreover, in every showdown situation, for the player that faces
the right-skewed and the one that faces the left-skewed risk, the probability of a split pot is the
same, the variance of the lottery is the same, and the absolute value of the lottery’s skewness
is the same. Consequently, the possibility of split pots should not systematically confound our
estimated skewness effects.

Notably, there are situationswhere the likelihood of a split pot is equal to one (µ = 1), where
the hand will result in a split pot irrespective of the remaining cards drawn from the deck. In
these situations, the weighted probability we observe is equal to 0.5, but no insurance option
was offered as the hand outcome is deterministic. Our dataset does not allow for a clear dis-
tinction between these deterministic scenarios and those with a weighted probability of 0.5. To
address this issue, we exclude all observations with a weighted probability of 0.5. Most of these
observations refer to a situation where the underlying lottery is degenerate, and no insurance
option was offered.11 Moreover, a winning probability of 0.5 implies that the underlying risk is
not skewed but symmetric.

In response to the issue of split pots, we run our regression analyses for a subsample that
excludes all observations that resulted in a split pot. The results are illustrated in Table 24,
Appendix A.6. The estimated coefficients and p-values of all three moments remain nearly
unchanged compared to our main regressions (Table 3). Note, however, that this approach
only excludes observations that ultimately resulted in a split pot and not all showdowns where
a split pot is possible ex-ante. However, the robustness of our estimated effects reassures us that
our results are not confounded by the possibility of split pots.

5.2 Disentangling skewness preferences and loss aversion

Loss aversion, a key element of prospect theory (Kahneman and Tversky, 1979), posits that in-
dividuals assess payoffs relative to a specific reference point and have a preference for avoiding
a loss over attaining a similarly sized gain, defined relative to this reference point. In our setting,
the amount contributed by a player to the pot could serve as a natural reference point. Accord-
ing to loss aversion, players then avoid the insurance option when the insurance pays less than
the player contributed to the pot, as thiswould represent a safe loss. In the showdown situations
that we analyze, players facing left-skewed risks usually recoup their contribution with the in-
surance option and thus realize a gain.12 Conversely, players facing right-skewed risks typically
incur a loss when choosing the insurance option due to their low winning probability and thus
may prefer to take the risk. However, there are exceptions due to "dead" money from players
who folded their hands prior to the showdown. These instances of players choosing between a
right-skewed risk and an insurance option that offers a gain relative to their pot contributions
allow us to distinguish between loss aversion and skewness preferences.

11This is implied by the following observation: In total, there are 111,507 observations (out of 4,562,092) with an
observed probability of 0.5. 95,401 of those observations result in a split pot. In these 95,401 cases, the insurance
option was chosen in 830 cases (0.9%). In the 16,106 cases that did not result in a split pot, the insurance was chosen
in 3,528 cases (21.9%).

12Because of the rake that is deducted from the pot by Pokerstars, there are some situations where players facing
a left-skewed lottery are, in fact, in the loss domain.
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As a first step, we compare insurance choices between players forwhom the insurance choice
represents a gain and for whom it represents a loss. To achieve this, we limit the range of win-
ning probabilities to between 0.3 and 0.5, ensuring a set of similar lotteries. There are only very
few observations below a winning probability of 0.3 where players obtain a gain from choosing
the insurance option. Above 0.5, there are nearly no observations where the insurance option
implies a loss. Our qualitative results, however, do not change if we expand the probability
range. Our analysis reveals significant differences in average insurance shares (see Table 16,
Appendix A.5). Players whose insurance option represents a gain have an average insurance
share of 18.2%, compared to 13.3% for players whose insurance implies a loss. This disparity
in insurance choices is evident across different subsamples analyzed above and for pots larger
than $100. The magnitude of these differences—when compared to the average insurance share
within each subsample—remains notably stable across the various groups.

Table 5: Regression results for full sample including the loss aversion dummy

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected Value −0.001 0.0003 −0.00004 0.006***

(−1.292) (0.274) (−0.043) (6.026)

Variance 0.001* 0.001 0.001 −0.002**
(2.048) (1.129) (1.221) (−3.121)

Skewness −0.009*** −0.009*** −0.009*** −0.010***
(−10.766) (−11.025) (−11.158) (−12.444)

Loss aversion dummy −0.025*** −0.025*** −0.026*** −0.023***
(−18.881) (−21.048) (−21.694) (−19.315)

Constant 0.171*** 0.171*** 0.171***
(41.926) (47.538) (47.805)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Player fixed effects No No No Yes
Observations 4,417,835 4,417,000 4,417,000 4,417,835

Note: The table reports OLS regression coefficients of our main empirical specifica-
tion (Equation 5), including the loss aversion dummy. The dependent variable is
a binary indicator that equals 1 if a player chooses the insurance option and zero
otherwise. All specifications include fixed effects for different games (on the stake
level) and different months. The independent variables enter the regression as stan-
dardized z-scores. Corresponding t-statistics are provided in parentheses. Standard
errors for the fixed effects regression are clustered at the individual level. Number
of observations in Columns 2 and 3 differ because the average winning probability,
one of the player-specific control variables, is not available in 835 choice situations.
∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.

Next, we conduct regression analyses to explore these patterns further. Our analyses em-
ploy the same specifications as above, additionally including a "loss aversion" dummy variable
indicating whether the insurance option represents a loss relative to the pot contribution. The
coefficient on this dummy serves as our metric for loss aversion, indicating the change in the
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likelihood of selecting insurance when it represents a loss as opposed to a gain. Everything
else equal, the baseline model using the full sample shows a 2.5 percentage point decrease in
the insurance choice likelihood when the insurance represents a loss (Table 5). This effect re-
mains stable across various specifications. Similar to the skewness effect, the effect of loss aver-
sion is more pronounced for players who participated in more hands and unsuccessful players
who experienced aggregated real money losses during our observation period (see Table 17,
Appendix A.5). For pots exceeding $100, the absolute size of the estimated effect of the loss
aversion dummy slightly decreases from 2.5 to about 1.9 percentage points. Including the loss
aversion dummy also affects our estimates of different risk moments. While reduced to approx-
imately one percentage point, the skewness effect is still highly significant, unlike the effects
of variance and expected value (Table 5). We again estimate the strongest skewness effects for
the subsample of experienced and unsuccessful players. However, the skewness effects remain
significant for inexperienced and successful players, and when considering only pots over $100
(Table 17, Appendix A.5). Our findings suggest evidence of both skewness preferences and loss
aversion.

5.3 Additional robustness checks

This subsection provides additional robustness checks to address other potential endogeneity
issues and limitations. First, as mentioned above, we estimate Logit and Probit models to ac-
count for the inherent non-linear relationship between our binary outcome variable and our
independent variables. The results are consistent with our main findings. The estimated aver-
age marginal effects of skewness, as well as their significance, remain nearly unchanged in both
specifications (see Table 19, Appendix A.6).

Second, the first two moments of the lotteries depend on the net pot size. Our observations
differ considerably in net pot sizes leading to substantial tails in the distribution of lotteries’
expected value and variance. To make sure that this dispersion in pot sizes does not drive our
results, we conduct our analyses using a normalized measure of lotteries’ volatility, which is
independent of the pot size: the "coefficient of variation" (CV) of the lotteries, which can be
understood as the inverse of the "Sharpe ratio" of the lotteries.13 The CV is defined as the ratio
of the standard deviation to the mean:

√
V ar(L)/E(L) =

√
π(1− π)x2/πx =

√
(1− p)/p.

This measure is dimensionless and commonly used in finance and economics (similar to the
Sharpe ratio, Sharpe, 1994) and in psychology (e.g., Weber et al., 2004). We estimate the same
regression equation as above with the only difference that we replace the expected value and
the variance of the lottery with its CV. Table 20 in the Appendix shows the estimated marginal
effects. The skewness coefficient slightly increases and remains highly statistically significant.
The coefficient of the CV is slightly positive in all specifications and statistically significant at the
1%-level (except for the specification with player fixed effects). As an additional corroboration
that our results are not driven by outliers, we run our main specification with samples trimmed
at the 1%- and the 99%-percentiles of the lotteries’ net pot. The results are shown in Table 21.

13Note that the Sharpe ratio in Finance is usually defined in terms of the difference between a risky investment’s
return and the risk-free return.
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The skewness coefficient remains almost unchanged. The variance coefficient slightly increases
in absolute terms to -0.5 percentage points and is now also highly significant. The coefficients
are comparable ifwe trim the samplewith respect to the expected at the 5%- and 95%-percentiles
or if we winsorize the samples instead of trimming (results not shown).

Third, we run the same regressions for a sample that only includes players that face both
types of lotteries—left- and right-skewed—at least once. This does also not change our results
(see Table 22, Appendix A.6). Thus, our skewness effects are not driven by a fundamental
difference between individuals facing left-skewed and individuals facing right-skewed risks.

Fourth, we estimate Equations 5 and 6, excluding all observations of players who never or
always choose the insurance option. This rules out that our results are driven by the fact that
players who always choose the insurance option face fundamentally different binary risks than
players who never choose the insurance option. Limiting our sample to those players increases
the estimated skewness effect (Table 23, Appendix A.6). Again, the (absolute) effect size and
t-statistics of the skewness variable clearly exceed the estimates of the other moments in those
specifications.

Finally, it is conceivable that the insurance decision is affected by other factors connected to
the surrounding poker game. We provide additional robustness checks in the appendix control-
ling for two features of the surrounding poker game (Table 25, Appendix A.6). First, we control
for the players’ last action in a hand. A player’s last action is either betting or calling, whereas
there is always one caller and one bettor per hand. The caller knows the hand will end in a
showdown, but the bettor is unsure whether their opponent will call, which creates uncertainty
about reaching a showdown. This difference between players can affect their emotional state
when deciding whether to choose the insurance. Second, we control for whether the opponent
in the showdown took the insurance or not. While the opponent’s insurance decision does not
influence the outcome of the showdown, as noted above, players in a game observe the insur-
ance decision of the other players, allowing for a potential behavioral response to the other’s
decision. Including these control variables in our regression analyses does not affect our main
results. Moreover, the coefficients on these two additional control variables are rather small and
insignificant in most specifications.

6 Discussion and Conclusion

The introduction of the insurance option in online poker allows us to cleanly test for skewness
preferences in a large set of observational data among individualswho are rather experienced in
choice under risk. We detect a strong and robust effect of skewness on risk-taking. Our results
complement, for instance, recent survey findings (Holzmeister et al., 2020)whereby skewness is
the only moment that systematically affects financial professionals’ perception of financial risk.
We substantiate this finding in a real-world setting with a comprehensive data set of strongly
incentivized choices.

Arguably, offering insurance (as reflected, in our case, by the all-in cashout) against nega-
tively skewed risks as faced in a showdown situation increases the attractiveness of gambling.
This way, players can enjoy positively skewed risks while being insured against negatively
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skewed risks, which caters to players with skewness preferences. If such skewness preferences
do not reflect true preferences, but are bias-driven as suggested, for instance, by the salience lit-
erature (Bordalo et al., 2022; Dertwinkel-Kalt and Köster, forthcoming), the introduction of the
all-in cashout induces players to gamble excessively. The online casino’s profits then increase
due to the introduction of this option, but even though consumers demand it, their surplus
potentially decreases.

As we analyze poker players, our study relies on a selective sample of people—a feature
that is shared by most field studies on risky choice, which are restricted to, for instance, finan-
cial investors (e.g., Boyer et al., 2010; Conrad et al., 2013; Lin and Liu, 2018), game show par-
ticipants (e.g., Gertner, 1993; Post et al., 2008), bettors (e.g., Snowberg and Wolfers, 2010; An-
drikogiannopoulou and Papakonstantinou, 2020), or people buying auto insurance (e.g., Cohen
and Einav, 2007). In our case, the selected sample has advantages and disadvantages. Online
poker may attract individuals with non-representative (risk) preferences, which is backed by
the observation that the overall insurance take-up is rather low and playing online poker has,
on average, a negative expected return due to the fee taken by the platform providers (on av-
erage a player loses around $0.088 per hand). Past studies suggest that online poker players
are more likely to be younger and predominantly male compared to the general population
(Barrault and Varescon, 2016). While not necessarily applicable to the general population, our
results could be rather informative for individuals that self-select into risky choices in other
instances, such as individual investors—particularly those with a large propensity to invest in
lottery-type stocks (Kumar, 2009; Han and Kumar, 2013) or cryptocurrencies (Hackethal et al.,
2022)—, bettors (e.g., Andrikogiannopoulou and Papakonstantinou, 2020; Moskowitz, 2021),
and entrepreneurs (Moskowitz and Vissing-Jørgensen, 2002).

More generally, our results suggest that payoff skewness or lottery-like features are impor-
tant drivers for risk-taking and (asset) prices, particularly in markets that are predominately
populated by young speculative individuals, such as the markets for crypto assets. In addi-
tion, our findings have important real-world implications beyond asset pricing and risk-taking,
as skewness preferences affect career choices and may explain recent phenomena, such as the
boom of tech start-ups or the popularity of extended warranties for many durable goods, even
when generous base warranties are in place (Lee and Venkataraman, 2022).
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A Appendix

A.1 Poker hands ranking

The player with the highest ranked five-card hand, consisting of two private cards and three
community cards, wins the pot in Omaha Poker cash games. The poker hand ranking is as fol-
lows (Source: Pokerstars: https://www.pokerstars.eu/poker/games/rules/hand-rankings/):

1. Straight Flush: Five cards in numerical order, all of identical suits. In the event of a tie,
the highest rank at the top of the sequence wins. The best possible straight flush is known as
a royal flush, which consists of the ace, king, queen, jack, and ten of a suit. A royal flush is an
unbeatable hand.

2. Four of a Kind: Four cards of the same rank, and one side card or ‘kicker.’ In the event of
a tie, the highest four of a kind wins. In community card games, where players have the same
four of a kind, the highest fifth side card (’kicker’) wins.

3. Full House: Three cards of the same rank, and two cards of a different, matching rank.
In the event of a tie, the highest three matching cards wins the pot. In community card games,
where players have the same three matching cards, the highest value of the two matching cards
wins.

4. Flush: Five cards of the same suit. In the event of a tie, the player holding the high-
est ranked card wins. If necessary, the second-highest, third-highest, fourth-highest, and fifth-
highest cards can be used to break the tie. If all five cards are the same rank, the pot is split. The
suit itself is never used to break a tie in poker.

5. Straight: Five cards in sequence. In the event of a tie, the highest ranking card at the top of
the sequence wins. Note: The Ace may be used at the top or bottom of the sequence, and is the
only card which can act in this manner. A,K,Q,J,T is the highest (Ace high) straight; 5,4,3,2,A is
the lowest (Five high) straight.

6. Three of a kind: Three cards of the same rank, and two unrelated side cards. In the event
of a tie, the highest ranking three of a kind wins. In community card games, where players have
the same three of a kind, the highest side card, and if necessary, the second-highest side card
wins.

7. Two pair: Two cards of a matching rank, another two cards of a different matching rank,
and one side card. In the event of a tie: Highest pair wins. If players have the same highest pair,
highest second pair wins. If both players have two identical pairs, highest side card wins.

8. One pair: Two cards of a matching rank, and three unrelated side cards. In the event
of a tie, the highest pair wins. If players have the same pair, the highest side card wins, and if
necessary, the second-highest and third-highest side card can be used to break the tie.

9. High card: Any hand that does not qualify under a category listed above. In the event of
a tie, the highest card wins, and if necessary, the second-highest, third-highest, fourth-highest,
and smallest card can be used to break the tie.
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A.2 Choice situation for a showdown before the flop

Figure 3 shows another example of a showdown situation, in particular of a constellation be-
fore any community cards have been dealt. The difference from the example in the main text
is the different stage of the game when the showdown situation has occurred. The situation
environment for the player is equivalent, that is, payouts and probabilities are clearly displayed
on the player’s screen and the decision the player takes is the same. Note that the players have
the insurance option only once, namely in the moment of showdown.

Figure 3: Example of an all-in cashout situation before any community cards have been dealt
(German software)

A.3 Showdowns with split pot possibility

Figure 4 shows an example of a showdown situation with one card to come. The difference
from the example in the main text is that there is a split pot possibility. After the Turn, Player
1 holds the best five-card hand with a "Straight" (5-6-7-8-9). Player 4’s best possible five-card
hand is 8-8-8-K-9, three of a kind. Again, there are still 40 cards in the deck. Player 4 would
win the entire pot if the board pairs, that is, if a King, 9, 5 or 8 is drawn, giving her a winning
Full House. As Player 1 holds one 8 and one 5, there are seven cards in the remaining deck that
would give Player 4 the winning hand. Accordingly, the likelihood for Player 4 to win the entire
pot is π = 7

40 = 0.175. However, as player 4 also holds a 6 (and 8/9) in his hand, a 7 on the
River would give her the same straight (5-6-7-8-9) as Player 1, which would result in a split pot.
There are three 7s still in the deck, implying a probability for a split pot of: µ = 3

40 = 0.075.
As Player 4 would only win half of the pot in this case, 1

2µ is added to the winning probability
to get the "payout-weighted probability," or expected winning share of pot, that is displayed on
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the screen: π+ 1
2µ = 0.175+ 1

20.075 = 0.2125. Apart from that, the decision environment for the
player is equivalent, that is, payouts are clearly displayed on the player’s screen and the players
only have the insurance option once, namely in the moment of showdown.

Figure 5 illustrates shares of hands that result in a split pot depending on expected winning
shares of the pot.

Figure 4: Example of an all-in cashout situation on the Turn with a split pot possibility
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Figure 5: Share of split pots depending on the expected winning share of the pot
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Note: Figure 5 presents the share of hands that resulted in a split pot depending on expected winning
shares of the pot. The expected winning share is equivalent to the "payout-weighted" winning proba-
bility introduced in Section 5.1. The shares are divided into 10 equidistant segments and right-skewed
and complementary left-skewed risks are grouped together (e.g., the first red bar on the left refers to
the interval of right-skewed risks with expected winning shares in the range (0,0.1] and the neighbor-
ing blue bar refers to the interval of left-skewed risks with expected winning shares in [0.9,1)).

A.4 Additional summary statistics and descriptives

Table 6: Summary statistics of player-specific characteristics

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
Number of hands played 83,219 2,159.42 12,932.65 1.00 53.00 186.00 785.00 602,706.00
Number of experienced showdown situations 83,219 53.48 252.60 1.00 2.00 7.00 26.00 13,930.00
Average winning probability 82,470 0.44 0.15 0.00 0.37 0.45 0.52 1.00
Profit per hundred hands 83,219 −98.01 1,048.16 −145,158.40 −66.45 −19.73 −2.27 36,620.00

Note: The table reports summary statistics of all player-specific characteristics that we use in our empirical anal-
ysis. Characteristics are used, both, as control variables in our regressions analyses and to split the full sample
for our subsample analyses (Section 5.3). The variable Number of experienced showdown situations is calculated
using the 4,485,585 observations of showdown situations in our full sample. The other characteristics are based
on all hands in our initial data set, which also includes hands that did not result in a two-person showdown
with awinning probability of 6= 0.5. The statistics are calculatedwith equal weights on all players. For the profit
per hundred hands variable this implies that players who have played fewer hands are heavily overweighted in
the calculation of the summary statistics. As these players usually make high losses in few hands and then stop
playing, we get a large discrepancy between the average profits per hundred hand across all hands and play-
ers, which is equal to -$8.88, and the profit per hundred hands when the mean is calculated with equal weights
on single players (as illustrated in the table). The number of observations (N) for average winning probability
differs compared to other characteristics as these values are not available in the data for 749 players.

Tables 7-9 report summary statistics of all hand-specific characteristics that we use in our em-
pirical analysis.
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Table 7: Summary statistics of stakes & stacks

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
Stake 4,450,585 1.195 5.505 0.100 0.100 0.250 0.500 100.000
Stack 4,450,585 115.088 628.627 0.100 10.390 25.240 63.960 81,643.93

Note: The table reports summary statistics of the stake (mandatory bets) and the stacks (money of each player at the be-
ginning of the hand) in our sample. Values are measured in US-$ terms.

Table 8: Summary statistics of the risk-all-stack dummy, the dummy indicating insurance choice
of the other player and the dummy indicating whether the last action of a player was a call

Statistic N # Dummy = 1 # Dummy = 0 Mean St. Dev.
Risk-All-Stack dummy 4,450,585 2,225,425 2,225,160 0.500 0.500
Other player’s insurance dummy 4,450,585 761,577 3,689,008 0.171 0.377
Call dummy 4,450,585 2,171,584 2,279,001 0.488 0.500

Note: The table reports the number of hand situations where the respective player risks her entire stack (Risk-all-stack=1),
where the other player has chosen the insurance and where the last action of the respective player was a call. As we do not
directly observe whether a player risks her entire stack in a showdown, we approximate the risk-all-stack dummy with the
player’s stack, final pot and expected winning shares. Due to rounding and presence of mandatory bets of other players who
are not involved in the showdown, there might be some individuals that wrongly end up in the subsample of individuals that
do not risk their entire stack. The error margin should be small and should not confound the results.

Table 9: Frequencies of positions in a showdown situation

BB BTN CO EP MP SB
Frequency 915,826 902,579 773,689 362,749 632,235 863,507

Note: The table reports absolute frequencies of the different positions of the player in a show-
down situation. These are namely: BB ("Big Blind"; person that has to post the big blind), BTN
("Button"; person that acts last in every betting round after the Flop), CO ("Cut-Off"; person
that acts second last in every betting round after the Flop), SB ("Small Blind", person that has
to post the big blind) as well as EP ("Early Position") and MP ("Middle Position”) that refers
to positions between the "Big Blind" and the "Cut-Off".
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Table 10: Frequencies of weekdays

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Frequency 610,961 610,300 617,142 616,895 641,434 682,997 670,856

Note: The table reports absolute frequencies of the weekdays when showdown situations have occurred.

Table 11: Differences in shares of insurance choice among right- and left-skewed risks for dif-
ferent ranges of winning probabilities

right-skewed interval (r) left-skewed interval (l) Obs.(r) Obs.(l) ∆ in shares t-statistic

(0.0, 0.1] [0.9, 1.0) 298, 984 298, 984 0.087∗∗∗ 86.165

(0.1, 0.2] [0.8, 0.9) 344, 012 344, 013 0.085*** 88.607

(0.2, 0.3] [0.7, 0.8) 462, 970 463, 002 0.076*** 95.299

(0.3, 0.4] [0.6, 0.7) 563, 305 563, 297 0.054*** 78.788

(0.4, 0.5) (0.5, 0.6) 555, 986 556, 032 0.015*** 21.340

Note: The table reports the number of observations in each of the ten equidistant probability ranges illustrated in Figure
2. Column 5 reports the difference in the shares of insurance choice between complementary groups of left- and right-
skewed risks. The imbalance in observations between the left- and right skewed intervals is due to rounding differences
in winning probabilities. Column 6 reports t-statistics of the two-sided Welch’s t-test, assuming independent samples.
∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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A.5 Additional subsample analyses

Figure 6: Share of insurance choices depending on players’ experience
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Note: The figure depicts the share of insurance choices depending on ex-ante winning probabilities, equivalent to
Figure 2, for different subsamples of relatively inexperienced players (Panels A and C) and subsamples of relatively
experienced players (Panels B and D). The sample is split at the median of the respective experience measure. In
Panels A and B, players’ experience is measured by the number of observed showdowns in the sample. In contrast,
Panels C and D use the total number of played hands by each player, including those without a showdown, as a
measure of the player’s experience. The probability space is divided into 10 equidistant segments. Right-skewed
and complementary left-skewed riskswith the same variance are grouped together. Formore details on observations
and differences between groups see Table 13, Appendix A.5.
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Table 12: Regression results in subsamples, with fixed effects

Dependent variable:
Insurance choice dummy

# showdowns # hands
≤ 421 > 421 ≤ 13,861 > 13,861
(1) (2) (3) (4)

Expected Value 0.011*** 0.003** 0.013*** 0.002*
(7.758) (2.604) (7.275) (2.337)

Variance −0.004*** −0.001 −0.005*** −0.001
(−4.947) (−1.912) (−4.824) (−1.558)

Skewness −0.012*** −0.035*** −0.013*** −0.034***
(−17.295) (−14.656) (−17.081) (−14.180)

Player-specific controls No No No No
Hand-specific controls Yes Yes Yes Yes
Player fixed effects Yes Yes Yes Yes
Observations 2,228,808 2,221,777 2,225,785 2,224,800
Unique players 81,278 1,941 80,936 2,283
Note: The table reports OLS regression coefficients of our fixed effects specification (Equation
6) for different subsamples. Compared to Table 4, we include individual fixed effects and hand-
specific characteristics as control variables (equivalent to Column 4 of Table 3). The full sample
is split at the median of two different measures of player experience: i) the number of observed
showdown situations in our sample per player (Columns 1 and 2); and ii) the total number of
played hands by each player, including those without a showdown (Columns 3 and 4). The de-
pendent variable is a binary indicator that equals 1 if a player chooses the insurance option and
zero otherwise. All specifications include fixed effects for different games (on the stake level)
and different months. The independent variables enter the regression as standardized z-scores.
Corresponding t-statistics are provided in parentheses, using standard errors clustered at the in-
dividual level. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 13: Differences in shares of insurance choice among right- and left-skewed risks

r l # showdowns # hands

≤ 421 > 421 ≤ 13,861 > 13,861

(1) (2) (3) (4) (5) (6)

(0.0, 0.1] [0.9, 1.0) 0.044∗∗∗ 0.132∗∗∗ 0.049∗∗∗ 0.128∗∗∗

(32.088) (89.251) (35.267) (87.543)

(0.1, 0.2] [0.8, 0.9) 0.049∗∗∗ 0.121∗∗∗ 0.054∗∗∗ 0.117∗∗∗

(37.326) (86.976) (40.775) (84.803)

(0.2, 0.3] [0.7, 0.8) 0.048∗∗∗ 0.103∗∗∗ 0.053∗∗∗ 0.098∗∗∗

(43.805) (89.307) (47.609) (86.359)

(0.3, 0.4] [0.6, 0.7) 0.041∗∗∗ 0.065∗∗∗ 0.045∗∗∗ 0.061∗∗∗

(42.663) (66.679) (46.300) (63.359)

(0.4, 0.5) (0.5, 0.6) 0.012∗∗∗ 0.016∗∗∗ 0.013∗∗ 0.015∗∗∗

(12.590) (16.507) (13.815) (15.337)
Note: The table presents the difference in the shares of insurance choice between
left- and right-skewed risks for different subsamples and ranges of ex-ante win-
ning probabilities, as defined in Columns 1 and 2 and illustrated in Figure 6. The
full sample is split at themedian of two different measures of player experience: i)
the number of observed showdown situations in our sample per player (Columns
3 and 4); and ii) the total number of played hands by each player, including those
without a showdown (Columns 5 and 6). Corresponding t-statistics of the two-
sidedWelch’s t-test, assuming independent samples, are provided in parentheses.
∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 14: Regression results in subsamples, depending on players’ success

Dependent variable:
Insurance choice dummy

All players Experienced players only
without fixed effects with fixed effects without fixed effects with fixed effects

Profit per hundred hands Profit per hundred hands Profit per hundred hands Profit per hundred hands

≤ 0 > 0 ≤ 0 > 0 ≤ 0 > 0 ≤ 0 > 0

(1) (2) (3) (4) (5) (6) (7) (8)

Expected Value 0.006*** 0.002* 0.011*** 0.003*** 0.002 0.002 0.007** 0.002
(4.093) (2.010) (5.599) (3.343) (1.133) (1.147) (2.690) (1.636)

Variance −0.002* −0.001 −0.004*** −0.002** -0.0001 −0.001 −0.002 −0.001
(−2.572) (−1.855) (−3.512) (−3.088) (−0.204) (−1.126) (−1.887) (−1.690)

Skewness −0.029*** −0.011*** −0.027*** −0.011*** −0.049*** −0.010*** −0.048*** −0.011***
(−16.785) (−7.057) (−17.422) (−7.172) (−13.116) (−4.936) (−13.868) (−5.264)

Constant 0.193*** 0.114*** 0.231*** 0.105***
(42.059) (15.142) (21.618) (10.482)

Observations 3,192,498 1,258,087 3,192,498 1,258,087 1,289,004 935,796 1,289,004 935,796

Player-specific controls No No No No No No No No
Hand-specific controls No No Yes Yes No No Yes Yes
Player fixed effects No No Yes Yes No No Yes Yes
Observations 3,192,498 1,258,087 3,192,498 1,258,087 1,289,004 935,796 1,289,004 935,796
Unique players 65,886 17,333 65,886 17,333 1,472 811 1,472 811

Note: The table reports regression coefficients for basic OLS specification (Equation 5) in Columns 1, 2, 5, and 6 and for the
setup including player fixed effects (Equation 6) in Columns 3, 4, 7 and 8. The baseline samples are split into unsuccessful
(columns with an uneven number) and winning (columns with an even number) players. Columns 1 to 4 employ the full sam-
ple, and Columns 5 to 8 use the sample of experienced players as the baseline sample. All specifications include fixed effects for
different games (on the stake level) and different months. The independent variables enter the regression as standardized z-
scores. Corresponding t-statistics are provided in parentheses, using standard errors clustered at the individual level. ∗: p<0.1;
∗∗: p<0.05; ∗∗∗: p<0.01.

39



Table 15: Regression results for the subsample of hands with pot size > 100 US-$

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected Value 0.001 0.002 0.002 0.005***

(0.719) (1.415) (1.56) (4.469)

Variance 0.0004 0.0001 0.0002 −0.001*
(0.617) (0.186) (0.356) (−2.272)

Skewness −0.016*** −0.019*** −0.019*** −0.018***
(−10.783) (−14.283) (−14.391) (−13.490)

Constant 0.117*** 0.117*** 0.117***
(24.866) (27.331) (27.462)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Player fixed effects No No No Yes
Observations 892,191 892,130 892,130 892,191

Note: The table reports OLS regression coefficients of our main empirical specifica-
tion (Equation 5) for the subsample of hands with pot size > 100 US-$. The depen-
dent variable is a binary indicator that equals 1 if a player chooses the insurance op-
tion and zero otherwise. All specifications include fixed effects for different games
(on the stake level) and different months. The independent variables enter the re-
gression as standardized z-scores. Corresponding t-statistics are provided in paren-
theses, using standard errors clustered at the individual level. Number of observa-
tions in Columns 2 and 3 differ because the average winning probability, one of the
player-specific control variables, is not available in 61 choice situations. ∗: p<0.1; ∗∗:
p<0.05; ∗∗∗: p<0.01.
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Table 16: Insurances choice shares for gain and loss implying lotteries

Sample

0.99E higher than
contributions

(1)

0.99E lower than
contributions

(2)

Difference

(3)

(A) Full Sample
0.182
(0.386)
88,454

0.133
(0.339)

1,021,519

−0.049
(−36.891)

(B) Experienced Players
(# hands played > 13,861)

0.192
(0.394)
41,861

0.137
(0.344)
506,370

−0.055
(−27.510)

(C) Inexperienced Players
(# hands played ≤ 13,861)

0.173
(0.379)
46,593

0.128
(0.334)
515,149

−0.045
(−24.914)

(D) Unsuccessful Players
(Profit per 100 hands ≤ 0)

0.202
(0.402)
66,082

0.147
(0.354)
728,183

−0.055
(−34.137)

(E) Successful Players
(Profit per 100 hands > 0

0.122
(0.327)
22,372

0.096
(0.295)
293,336

−0.026
(−11.316)

(F) Large Pot Size
(Pot Size > 100 US-$)

0.140
(0.346)
14,946

0.091
(0.287)
221,731

−0.049
(−16.757)

Note: The table reports the difference in insurance choice shares between decisions
where the offered insurance payout was larger than the players’ pot contributions and
decisions where the offered insurance payout was smaller than the contributions. The
comparison is made for various subsamples. The winning probabilities in all subsam-
ples are limited to the range (0.3, 0.5). Columns 1 and 2 report the respective insur-
ance choice shares, followed by standarddeviations in parentheses, and the number of
observations for the respective sample. Column 3 reports the difference between the
insurance choice shares in Columns 1 and 2, along with the corresponding t-statistic
in parentheses. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 17: Regression results including loss aversion dummy for different subsamples

Dependent variable:
Insurance choice dummy

Experienced
Players

(1)

Inexperienced
Players

(2)

Unsuccessful
Players

(3)

Successful
Players

(4)

Large
Pot Size

(5)
Expected Value −0.006*** 0.007*** 0.004* 0.001 −0.004*

(−4.512) (4.443) (2.530) (0.630) (−2.493)

Variance 0.003* −0.003* −0.001 -0.0003 0.003**
(2.346) (−2.201) (−1.266) (−0.400) (2.756)

Skewness −0.015*** −0.003*** −0.010*** −0.005*** −0.005***
(−9.547) (−6.142) (−10.161) (−4.121) (−5.367)

Loss aversion dummy −0.029*** −0.019*** −0.022*** −0.025*** −0.019***
(−12.633) (−24.364) (−12.688) (−16.013) (−13.108)

Constant 0.178*** 0.164*** 0.193*** 0.114*** 0.117***
(22.527) (110.303) (42.18) (15.114) (24.768)

Player-specific controls No No No No No
Hand-specific controls No No No No No
Player fixed effects No No No No No
Observations 2,207,911 2,209,924 3,170,340 1,247,495 877,118
Unique Players 2,283 80,936 65,886 17,333 28,090

Note: The table reports OLS regression coefficients for ourmain empirical specification (Equation 5), includ-
ing an additional control for the loss aversion dummy, which indicates whether a player is in the winning
or loss domain in the respective hand, across different subsamples. Columns 1 and 2 represent subsam-
ples which reflect players’ experience by splitting observations at the median of the total number of hands
played for each player, Columns 3 and 4 represent subsamples which reflect players’ success by splitting ob-
servations based on whether a player has achieved a positive profit per hundred gamed played or not and
Column 5 represents the subsample which reflects hands with large pot size, specifically those exceeding
100 US-$. The dependent variable is a binary indicator that equals 1 if a player chooses the insurance op-
tion and zero otherwise. All specifications include fixed effects for different games (on the stake level) and
different months. The independent variables enter the regression as standardized z-scores. Corresponding
t-statistics are provided in parentheses, using standard errors clustered at the individual level. ∗: p<0.1; ∗∗:
p<0.05; ∗∗∗: p<0.01.
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A.6 Robustness checks

Table 18: Regression results for full sample, non-standardized variables

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected Value 0.000005* 0.000008*** 0.000009*** 0.00002***

(2.011) (3.358) (3.560) (7.166)

Variance −0.0000000002 −0.0000000003 −0.0000000003 −0.000000001***
(−0.950) (−1.915) (−1.551) (−4.757)

Skewness −0.010*** −0.010*** −0.011*** −0.010***
(−17.117) (−18.476) (−18.890) (−18.577)

Constant 0.186*** 0.064*** 0.044*
(21.905) (3.379) (2.228)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Player fixed effects No No No Yes
Observations 4,450,585 4,449,739 4,449,739 4,450,585

Note: The table reports OLS regression coefficients of our main empirical specification (Equation 5).
Compared to Table 3, the independent variable enters the regression as non-standardized absolute val-
ues. The dependent variable is a binary indicator that equals 1 if a player chooses the insurance option
and zero otherwise. All specifications include fixed effects for different games (on the stake level) and
different months. Corresponding t-statistics are provided in parentheses, using standard errors clus-
tered at the individual level. Number of observations in Columns 2 and 3 differ because the average
winning probability, one of the player-specific control variables, is not available in 846 choice situations.
∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 19: Regression results for full sample, Logit and Probit specifications

Dependent variable:
Insurance choice dummy

Logit Probit
(1) (2) (3) (1) (2) (3)

Expected Value 0.011*** 0.014*** 0.020*** 0.008*** 0.010*** 0.012***
(4.894) (5.652) (6.480) (4.032) (4.790) (5.645)

Variance −0.004* −0.006* −0.004 −0.002 −0.003 −0.002
(−1.966) (−2.338) (−1.389) (−1.417) (−1.558) (−1.622)

Skewness −0.022*** −0.022*** −0.023*** −0.023*** −0.023*** −0.023***
(−16.275) (−18.065) (−18.391) (−16.129) (−18.170) (−18.512)

Player-specific controls No Yes Yes No Yes Yes
Hand-specific controls No No Yes No No Yes

Observations 4,450,585 4,449,739 4,449,739 4,450,585 4,449,739 4,449,739

Note: The table reports (average) marginal effects from estimating Logit & Probit specifications according to Equation 5. The de-
pendent variable is a binary indicator that equals 1 if a player chooses the insurance option and zero otherwise. All specifications
include fixed effects for different games (on the stake level) and different months. The independent variables enter the regression
as standardized z-scores. The values of Wald test statistics (for testing the null hypothesis that coefficients are zero) are provided
in parentheses, using standard errors clustered at the individual level. Number of observations in Columns 2 and 3 differ because
the average winning probability, one of the player-specific control variables, is not available in 846 choice situations. ∗: p<0.1; ∗∗:
p<0.05; ∗∗∗: p<0.01.
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Table 20: Regression results, employing coefficient of variation as a measure of dispersion in-
stead of expected value and variance

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Coefficient of Variation 0.003** 0.003** 0.003** 0.0001

(3.184) (3.085) (3.133) (0.155)

Skewness −0.026*** −0.026*** −0.026*** −0.024***
(−17.011) (−17.168) (−17.503) (−16.542)

Constant 0.171*** 0.171*** 0.171***
(41.937) (47.525) (47.798)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Fixed effects No No No Yes
Observations 4,450,585 4,449,739 4,449,739 4,450,585

Note: The table reports OLS regression coefficients of our main empirical specification (Equation
5). The dependent variable is a binary indicator that equals 1 if a player chooses the insurance op-
tion and zero otherwise. All specifications include fixed effects for different games (on the stake
level) and different months. The independent variables enter the regression as standardized z-
scores. Corresponding t-statistics are provided in parentheses, using standard errors clustered
at the individual level. Number of observations in Columns 2 and 3 differ because the average
winning probability, one of the player-specific control variables, is not available in 846 choice sit-
uations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 21: Regression results for a subsample with the net pot to be trimmed between 1%- and
99%-percentiles

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected Value 0.009*** 0.012*** 0.012*** 0.024***

(4.778) (6.691) (6.713) (14.446)

Variance −0.005*** −0.006*** −0.006*** −0.009***
(−5.843) (−7.162) (−7.168) (−11.648)

Skewness −0.022*** −0.022*** −0.022*** −0.020***
(−16.184) (−17.231) (−17.596) (−16.245)

Constant 0.173*** 0.173*** 0.173***
(42.186) (47.56) (47.835)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Player Fixed effects No No No Yes
Observations 4,361,753 4,360,925 4,360,925 4,361,753

Note: The table reports OLS regression coefficients of our main empirical specification (Equation
5). The underlying sample is trimmed between 1%- and 99%-percentiles of the net pot. The de-
pendent variable is a binary indicator that equals 1 if a player chooses the insurance option and
zero otherwise. All specifications include fixed effects for different games (on the stake level)
and different months. The independent variables enter the regression as standardized z-scores.
Corresponding t-statistics are provided in parentheses, using standard errors clustered at the in-
dividual level. Number of observations in Columns 2 and 3 differ because the average winning
probability, one of the player-specific control variables, is not available in 828 choice situations. ∗:
p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 22: Regression results for the subsample of players that face both left- and right-skewed
showdown situations

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected Value 0.002 0.003*** 0.003*** 0.007***

(1.948) (3.36) (3.528) (7.147)

Variance −0.0003 −0.001 −0.001 −0.003***
(−0.889) (−1.883) (−1.556) (−4.748)

Skewness −0.023*** −0.023*** −0.024*** −0.023***
(−17.172) (−18.555) (−18.977) (−18.601)

Constant 0.171*** 0.171*** 0.171***
(41.666) (47.257) (47.535)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Fixed effects No No No Yes
Observations 4,415,012 4,414,920 4,414,920 4,415,012

Note: The table reports OLS regression coefficients of our main empirical specification (Equation
5). Compared to Table 3, we exclude all observations of players that do not face at least one right-
and one left-skewed lottery. The dependent variable is a binary indicator that equals 1 if a player
chooses the insurance option and zero otherwise. All specifications include fixed effects for dif-
ferent games (on the stake level) and different months. The independent variables enter the re-
gression as standardized z-scores. Corresponding t-statistics are provided in parentheses, using
standard errors clustered at the individual level. Number of observations in Columns 2 and 3
differ because the average winning probability, one of the player-specific control variables, is not
available in 92 choice situations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 23: Regression results for a subsample, excluding players who never or always choose the
insurance option

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected Value 0.010*** 0.011*** 0.012*** 0.017***

(4.621) (5.036) (5.053) (5.734)

Variance −0.004** −0.004*** −0.004*** −0.007***
(−3.186) (−3.499) (−3.445) (−4.072)

Skewness −0.030*** −0.029*** −0.029*** −0.028***
(−18.264) (−18.779) (−18.998) (−18.616)

Constant 0.218*** 0.218*** 0.218***
(44.926) (52.943) (53.043)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Fixed effects No No No Yes
Observations 3,476,736 3,476,692 3,476,692 3,476,736

Note: The table reports OLS regression coefficients of our main empirical specification (Equa-
tion 5). Compared to Table 3, we exclude all observations of players here who never or always
choose the insurance option. The dependent variable is a binary indicator that equals 1 if a player
chooses the insurance option and zero otherwise. All specifications include fixed effects for dif-
ferent games (on the stake level) and different months. The independent variables enter the re-
gression as standardized z-scores. Corresponding t-statistics are provided in parentheses, using
standard errors clustered at the individual level. Number of observations in Columns 2 and 3
differ because the average winning probability, one of the player-specific control variables, is not
available in 44 choice situations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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Table 24: Regression results for the subsample in which no split pots occur

Dependent variable:
Insurance choice dummy

(1) (2) (3) (4)
Expected Value 0.002** 0.003*** 0.004*** 0.008***

(2.847) (3.961) (4.219) (7.365)

Variance −0.001 −0.001* −0.001 −0.003***
(−1.308) (−2.062) (−1.630) (−4.127)

Skewness −0.024*** −0.024*** −0.024*** −0.024***
(−17.199) (−18.517) (−18.947) (−18.625)

Constant 0.177*** 0.177*** 0.177***
(42.277) (47.952) (48.249)

Player-specific controls No Yes Yes No
Hand-specific controls No No Yes Yes
Fixed effects No No No Yes
Observations 4,154,930 4,154,123 4,154,123 4,154,930

Note: The table reports OLS regression coefficients of our main empirical specification (Equation
5). Compared to Table 3, we exclude all observations that result in a split pot ex-post. The de-
pendent variable is a binary indicator that equals 1 if a player chooses the insurance option and
zero otherwise. The main independent variables of interest are the expected value, variance, and
skewness of the underlying lottery. Additionally we add fixed effects for different games (on the
stake level) and different months to control for the unobserved heterogeneity across games and
over time. The independent variables enter the regression as standardized z-scores. Correspond-
ing t-statistics are provided in parentheses, using standard errors clustered at the individual level.
Number of observations inColumns 2 and 3 differ because the averagewinning probability, one of
the player-specific control variables, is not available in 807 choice situations. ∗: p<0.1; ∗∗: p<0.05;
∗∗∗: p<0.01.
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Table 25: Regression results including the dummy for the insurance choice of the other player
and the dummy indicating whether the last action of the respective player was a call

Dependent variable:
Insurance choice dummy

(1a) (1b) (1c) (2) (3) (4)
Expected Value 0.002* 0.002* 0.002* 0.003*** 0.003*** 0.007***

(2.019) (2.014) (2.017) (3.359) (3.564) (7.167)

Variance −0.0004 −0.0004 −0.0004 −0.001 −0.001 −0.003***
(−0.956) (−0.951) (−0.955) (−1.916) (−1.557) (−4.761)

Skewness −0.023*** −0.023*** −0.023*** −0.023*** −0.024*** −0.023***
(−17.239) (−17.137) (−17.219) (−18.612) (−19.101) (−18.808)

Other player’s insurance −0.0002 −0.0002 0.0003 0.001** 0.001***
(−0.827) (−0.829) (0.944) (2.948) (4.46)

Call dummy 0.001 0.001 0.0002 0.001 0.001***
(1.329) (1.33) (0.482) (1.916) (4.342)

Constant 0.171*** 0.171*** 0.171*** 0.171*** 0.171***
(41.933) (41.933) (41.933) (47.518) (47.792)

Player-specific controls No No No Yes Yes No
Hand-specific controls No No No No Yes Yes
Player fixed effects No No No No No Yes
Observations 4,450,585 4,450,585 4,450,585 4,449,739 4,449,739 4,450,585

Note: The table reports OLS regression coefficients for our main empirical specification (Equation 5), including ad-
ditional controls: the dummy indicating the insurance choice of the other player and the dummy indicatingwhether
the last action of the respective player was a call. Column 1a reports results for the basic specification, including
both of these additional dummies, Columns 1b and 1c report results for specifications in which each dummy is
included separately. The dependent variable is a binary indicator that equals 1 if a player chooses the insurance
option and zero otherwise. All specifications include fixed effects for different games (on the stake level) and dif-
ferent months. The independent variables enter the regression as standardized z-scores. Corresponding t-statistics
are provided in parentheses, using standard errors clustered at the individual level. The number of observations
in Columns 2 and 3 differs because the average winning probability, one of the player-specific control variables, is
not available in 846 choice situations. ∗: p<0.1; ∗∗: p<0.05; ∗∗∗: p<0.01.
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