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Abstract 
 
This paper proposes a long-memory model including multiple cycles in addition to the long-run 
component. Specifically, instead of a single pole or singularity in the spectrum, it allows for 
multiple poles and thus different cycles with different degrees of persistence. It also incorporates 
non-linear deterministic structures in the form of Chebyshev polynomials in time. Simulations are 
carried out to analyse the finite sample properties of the proposed test, which is shown to perform 
well in the case of a relatively large sample with at least 1000 observations. The model is then 
applied to weekly data on the S&P500 from 1 January 1970 to 26 October 2023 as an illustration. 
The estimation results based on the first differenced logged values (i.e., the returns) point to the 
existence of three cyclical structures in the series with a length of approximately one month, one 
year and four years respectively, and to orders of integration in the range (0, 0.20), which implies 
stationary long memory in all cases. 
JEL-Codes: C220, C150. 
Keywords: fractional integration, multiple cycles, stock market indices, S&P500. 
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1. Introduction 

It is common in economics and finance, as well as in other disciplines, to decompose a 

time series into a trend, a seasonal and a cyclical component. For this purpose, various 

statistical tools have been developed over the years, and, most recently, machine learning 

and other big data techniques have also been used. This paper proposes a new time series 

model incorporating all these components which is a special case of the very general and 

flexible testing framework developed in Robinson (1994). More specifically, the 

deterministic part of the model includes a constant, a linear time trend, and a cyclical 

structure or seasonal dummy variables; it also allows for non-linearities in the form of 

neural networks (Yaya et al., 2021) or Chebychev polynomials in time as in Cuestas and 

Gil-Alana (2016). In the stochastic part the spectral density function is allowed to have 

multiple poles or singularities, and thus multiple integer or fractional roots of arbitrary 

order anywhere in the unit circle in the complex plane. These are related to the previously 

mentioned components. In particular, the trend component is associated with the long-

run or zero frequency, and the others (i.e., seasonal and cyclical) to other non-zero 

frequencies. Simulations are carried out to analyse the finite sample properties of this 

model, which is then applied to weekly data on the S&P500 from 1 January 1970 to 26 

October 2023 as an illustration. 

The remainder of the paper is structured as follows: Section 2 describes the model; 

Section 3 presents the test statistic; Section 4 reports on Monte Carlo evidence concerning 

the finite sample performance of the proposed test; Section 5 provides information about 

the data and discusses the empirical application; Section 6 offers some concluding 

remarks. 
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2. The Econometric Model 

Let y(t) be the observed time series from t = 1, 2, …, T. We consider the following model, 

         𝑦𝑦(𝑡𝑡)   =     𝑓𝑓(𝑧𝑧(𝑡𝑡);  𝜓𝜓)  +    𝑥𝑥(𝑡𝑡),          𝑡𝑡 =  1, 2, … ,   (1) 

where f can be a linear or a non-linear function of z(t), which is a (kx1) vector of 

observable deterministic variables, and γ is a (kx1) vector of unknown parameters to be 

estimated. Thus, if f is linear, it can include, for instance, an intercept and a linear time 

trend of the form advocated by Bhargava (1986), Schmidt and Phillips (1992) and others 

in the context of unit roots, i.e., 

𝑓𝑓(𝑧𝑧(𝑡𝑡);  𝜓𝜓)  =    𝛼𝛼  +     𝑏𝑏 𝑡𝑡    (2) 

and, if it is non-linear, it can include, for example, Chebyshev polynomials in time of the 

form: 

     𝑓𝑓(𝑧𝑧(𝑡𝑡);  𝜓𝜓)  =    ∑ 𝜃𝜃𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=0 (𝑡𝑡),    (3) 

where m indicates the number of coefficients of the Chebyshev polynomial in time Pi,T(t) 

defined as: 

𝑃𝑃0,𝑇𝑇(𝑡𝑡) =  1, and 𝑃𝑃𝑖𝑖,𝑇𝑇(𝑡𝑡)  =  √2 𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖(𝑡𝑡 − 0.5)/𝑇𝑇),   

and described in Hamming (1973) and Smyth (1998). Bierens and Martins (2010) propose 

the use of such polynomials in the case of time-varying cointegrating parameters. There 

are several advantages to using them. First, their orthogonality avoids the problem of near 

collinearity in the regressors matrix which arises with standard time polynomials. Second, 

according to Bierens (1997) and Tomasevic et al. (2009), they can approximate highly 

non-linear trends with rather low degree polynomials. Finally, they can approximate 

structural breaks in a much smoother way than the classical structural change models. 

As for the stochastic part of the model, x(t) is specified as: 
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∏ �1 − 2 cos𝑤𝑤𝑗𝑗𝑟𝑟 𝐿𝐿 + 𝐿𝐿2�𝑑𝑑𝑗𝑗𝑚𝑚
𝑗𝑗=1 𝑥𝑥(𝑡𝑡)  =   𝑢𝑢(𝑡𝑡),      𝑡𝑡  =

   1, 2, …,   (4)  

where 𝑤𝑤𝑗𝑗𝑟𝑟 = 2πr/T, r = T/j is a real scalar value, L is the lag operator, i.e., Lx(t) = x(t-1), 

dj is another real value corresponding to the order of integration of the cycle that explodes 

(i.e., it goes to infinity) in the spectrum at λ = j; m stands for the number of cyclical 

structures, and u(t) is a short-memory process integrated of order 0 or I(0). Such a process 

is defined as a covariance stationary one with a spectral density function that is positive 

and finite at all frequency in the spectrum. Thus, it could be a white noise process but also 

display weak autocorrelation as in a stationary and invertible AutoRegressive Moving 

Average (ARMA) model. In the present study, in order to avoid overparameterisation, we 

follow the exponential spectral approach of Bloomfield (1973) to model u(t). This is a 

non-parametric framework that is implicitly defined in terms of its spectral density 

function: 

𝑓𝑓(𝜆𝜆;  𝜏𝜏)  =  � 𝜎𝜎2
2𝜋𝜋

 � exp[ 2∑ 𝜏𝜏𝑖𝑖 cos(𝜆𝜆 𝑖𝑖) ] 
𝑛𝑛
𝑖𝑖=0  ,   (5) 

where σ2 is the variance of the error term and n denotes the number of short-run dynamic 

terms, and whose logged form approximates fairly well autoregressive processes. 

Bloomfield (1973) showed that for a stationary and invertible ARMA (p, q) process of 

the form: 

𝑢𝑢(𝑡𝑡) =   �𝜑𝜑𝑟𝑟

𝑝𝑝

𝑟𝑟=1

𝑢𝑢(𝑡𝑡 − 𝑟𝑟)  +   𝜀𝜀𝑡𝑡   +   �𝜃𝜃𝑠𝑠𝜀𝜀(𝑡𝑡 − 𝑠𝑠) 

𝑞𝑞

𝑠𝑠=1

, 

where εt is a white noise process, the spectral density function is given by: 

𝑓𝑓(𝜆𝜆; 𝜏𝜏)   =     
𝜎𝜎2

2𝜋𝜋
   �

1 + ∑ 𝜃𝜃𝑠𝑠𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
𝑞𝑞
𝑠𝑠=1

1 −  ∑ 𝜑𝜑𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝
𝑟𝑟=1

�
2

. 

According to Bloomfield (1973), the log of the above expression can be well 

approximated by Equation (5) when p and q are small values, and thus it does not require 
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the estimation of as many parameters as in the case of ARMA models. In addition, 

Bloomfield’s (1973) model is stationary across all its values (see Gil-Alana, 2004). 

 In the empirical application carried out below we assume that p = 4, and that w(r;1) 

= 0, so the first cyclical component corresponds to the long run or zero frequency. In such 

a case, the summand (1 − 2  cos𝑤𝑤(𝑟𝑟; 𝑗𝑗) 𝐿𝐿 + 𝐿𝐿2)𝑑𝑑𝑗𝑗 becomes (1 − 2 𝐿𝐿 + 𝐿𝐿2)𝑑𝑑1, which can 

be expressed as(1 − 𝐿𝐿 )2𝑑𝑑1, with the pole or singularity in the spectrum going to infinity 

at the zero frequency (Granger, 1980, Granger and Joyeux, 1980 and Hosking, 1981). For 

the other two cyclical structures, we choose the frequencies on the basis of the values of 

the periodogram, which is an estimator of the spectral density function.  

 

3. The Test Statistic 

The test statistic can be easily derived from Robinson (1994) extending the function f in 

Equation (1) to the non-linear case, and specifying the errors to follow Bloomfield’s 

(1973) model. 

Specifically, we test the null hypothesis: 

Ho: d = do,     (6) 

where do is a vector of real numbers and dimension m, each element corresponding to the 

order of integration at a given frequency. Given this null hypothesis, the residuals in (1) 

and (4) are 

𝑟𝑟(𝑡𝑡) =  ��1 − 2 cos𝑤𝑤𝑗𝑗𝑟𝑟 𝐿𝐿 + 𝐿𝐿2�𝑑𝑑𝑗𝑗𝑗𝑗
𝑚𝑚

𝑗𝑗=1

𝑥𝑥𝑥𝑥(𝑡𝑡)   

where xx(t) are the residuals of the linear or non-linear model in (1), and the periodogram 

of r(t) is computed as 

P(λj) =      ∣
1

(2 π T)
1
2  

 � r(t)ei λj t
T

t=1

∣2 . 
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The test statistic takes the form: 

NLROB =  T
σ�4

a�′A�−1a�,           (7) 

where T is the sample size, and 

𝑎𝑎� = −2𝜋𝜋
𝑇𝑇
∑ 𝜓𝜓(𝜆𝜆𝑗𝑗)𝑔𝑔𝑢𝑢(𝜆𝜆𝑗𝑗; 𝑡𝑡𝑡𝑡𝑡𝑡)−1𝑃𝑃(𝜆𝜆𝑗𝑗)∗
𝑓𝑓 ,       

𝜎𝜎�2 = 𝜎𝜎2(𝑡𝑡𝑡𝑡𝑡𝑡) = 2𝜋𝜋
𝑇𝑇
∑ 𝑔𝑔𝑢𝑢(𝜆𝜆𝑗𝑗 𝑡𝑡𝑡𝑡𝑡𝑡)−1𝑃𝑃(𝜆𝜆𝑗𝑗)𝑇𝑇−1
𝑓𝑓=1 , 

𝐴̂𝐴 = 2
𝑇𝑇
�∑ 𝜓𝜓�𝜆𝜆𝑗𝑗�𝜓𝜓�𝜆𝜆𝑗𝑗�

′ −∗
𝑓𝑓 ∑ 𝜓𝜓�𝜆𝜆𝑗𝑗�𝜉𝜉�𝜆𝜆𝑗𝑗�

′ �∑ 𝜉𝜉�𝜆𝜆𝑗𝑗�𝜉𝜉�𝜆𝜆𝑗𝑗�
′∗

𝑓𝑓 �∗
𝑓𝑓

−1
∑ 𝜉𝜉�𝜆𝜆𝑗𝑗�𝜓𝜓�𝜆𝜆𝑗𝑗�

′∗
𝑓𝑓 �; 

𝜓𝜓�𝜆𝜆𝑓𝑓� = 𝑙𝑙𝑙𝑙𝑙𝑙 �2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜆𝜆𝑓𝑓
2
�;     𝜉𝜉�𝜆𝜆𝑗𝑗� = 𝜕𝜕

𝜕𝜕𝑡𝑡𝑡𝑡𝑡𝑡
log  𝑔𝑔𝑥𝑥𝑥𝑥�𝜆𝜆𝑗𝑗; 𝑡𝑡𝑡𝑡𝑡𝑡�,          

where λj = 2πj/T, and * indicates that the sums are taken over all frequencies bounded in 

the spectrum, namely removing those that explode or go to infinity. Also, tau is definted 

as the 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝜏𝜏∈𝑇𝑇∗ 𝜎𝜎2(𝜏𝜏),  where T* is a subset of the Rq Euclidean space. 

It can be easily proven that extending the conditions in Robinson (1994) to the 

non-linear structure in (1), which is satisfied by Condition (*) in his paper, 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  
𝑑𝑑
→  𝜒𝜒2𝑚𝑚     as  T → ∞,   (8) 

where T indicates the sample size, and “→d” stands for convergence in distribution. Thus, 

unlike in the case of other procedures, the present one is a classical large-sample testing 

situation.  Moreover, this test is the most efficient in the Pitman sense against local 

departures from the null, i.e., if it is implemented against local departures, the limit 

distribution is 𝜒𝜒2𝑚𝑚 (v) with a non-centrality parameter v which is optimal under 

Gaussianity of the error term. The latter is not necessary for the implementation of this 

procedure, a moment condition of only order 2 being required.   

  

4. Finite Sample Properties 

This section reports on the finite sample performance of the test described above. 

Specifically, we carry out Monte Carlo simulations to analyse the size and the power of 
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this test against various alternatives. A similar experiment was conducted in Gil-Alana 

(2001), though in that case m = 1 and thus only a single cyclical structure was allowed. 

By contrast, in the present study we assume that m = 3 and that the Data Generating 

Process (DGP) is characterised by the following orders of integration: d1= 0.75, d2 = 0.50 

and d3 = 0.25; this implies that the first cyclical structure is highly persistent and non-

stationary, the second one is on the borderline between the stationary and nonstationary 

case, and the third one is stationary. For the length of the cycles we impose j = 10, 100 

and 250, with different sample sizes. These values are arbitrary, though the results were 

found to be robust to choosing other values. For the alternative hypotheses we consider 

values for the three orders of integration of 0.25, 0.50 and 0.75. For j we choose the same 

values as in the true model, therefore the size of the test is reported in the tables for d = 

(0.75, 0.50, 0.25)T. 

INSERT TABLES 1, 2 AND 3 ABOUT HERE 

Table 1 reports the results based on T = 1,000. It can be seen that the size of the 

test is too large, the rejection frequency being 0.119 for a nominal size of 0.050 and very 

large (above 0.700) in all cases. Table 2 shows that with a bigger sample size, i.e. 

T=2,000, the power becomes closer to the nominal size, 0.094, and the rejection 

probabilities are now higher than 0.800 in all cases, being equal to 1 in 7 out of the 27 

cases. Finally, Table 3 displays the results for T=3,000; in this case the nominal size is 

0.066, and there are 12 cases when the rejection probabilities are equal to 1, these being 

higher than 0.900 in all cases. 

 

5. An Empirical Application 

We use weekly data on the S&500 closing prices from 1 January 1970 to 26 October 

2023. The source is Yahoo finance. Figure 1 displays plots of the original data and their 
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log transformation in the upper panel, and their corresponding periodograms in the lower 

one. Both exhibit a very large value at the smallest (zero) frequency, which might be an 

indication of the need for (fractional or non-fractional) differentiation of the data. 

INSERT FIGURES 1 AND 2 ABOUT HERE 

Figure 2 displays the plots of the first differenced data. Much higher volatility is 

observed in the second half of the sample when using the original data, but not in the case 

of the logged ones. Therefore, we use the latter series for the empirical application below.  

Initially we set m = 5, and obtained j1 = 1, as one would have expected in view of 

the periodograms displayed in Figure 1. The estimated value of d1 is then 1, which is 

consistent with the results of standard unit root tests (Dickey and Fuller, 1979; Phillips 

and Perron, 1988; Kwitakowski et al., 1992; Elliot et al., 1996; Ng and Perron, 2001; 

etc.). We also allowed for fractional integration by estimating the equation (1-L)x(t) = 

u(t) instead of imposing (4). The results support the unit root null hypothesis with values 

of d equal to 0.981 and 0.992 for the original and logged transformed data respectively, 

the corresponding 5% confidence intervals being (0.972, 1.009) and (0.983, 1.017). Next, 

we focus on the first differenced log-values, in this case setting m = 4, and finding an 

order of integration not significantly different from zero; finally we set m = 3. 

Note that standard unit roots are a special case of (2) with m = 1 and w = 0 such 

that the model becomes:  

            (1 − 2 𝐿𝐿 +   𝐿𝐿2)𝑑𝑑𝑗𝑗  𝑥𝑥(𝑡𝑡)  =   𝑢𝑢(𝑡𝑡),      𝑡𝑡  =    1, 2, …,   (9) 

and, denoting 2dj = d, corresponds to the standard I(d) model at the long-run or zero 

frequency and a unit root if d =1: 

                        (1 − 𝐿𝐿)𝑑𝑑  𝑥𝑥(𝑡𝑡)  =   𝑢𝑢(𝑡𝑡),      𝑡𝑡  =    1, 2, …   .  (10) 

To allow for some degree of generality we assume that x(t) are the errors in a regression 

model with an intercept and a time trend, i.e., 
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              𝑦𝑦(𝑡𝑡)  =  𝛼𝛼 +  𝛽𝛽 𝑡𝑡  +  𝑥𝑥(𝑡𝑡),   (11) 

and make two alternative assumptions for u(t), namely that it is a white noise process or 

that it follows the exponential spectral model of Bloomfield (1973) in turn. 

 We start with the linear case. Table 4 displays the estimates of d along with their 

associated 95% confidence bands, under the three standard specifications with: i) no 

deterministic terms (α = β = 0 in (8)); ii) an intercept only (β = 0) and iii) a constant and 

a linear time trend. Our preferred model is selected on the basis of the statistical 

significance of the estimated coefficients (shown in bold in the table). We report the 

results for both the original and log-transformed data. The coefficient on the linear trend 

is significant in three out of the four cases (the exception is represented by the original 

data with Bloomfield disturbances), and, although d is maller than 1 in all four cases, the 

unit root null hypothesis cannot be rejected for any of them. 

INSERT TABLES 4 AND 5 ABOUT HERE 

 Table 5 concerns the nonlinear model. One can see that the nonlinear terms are 

significant in some cases (especially with white noise errors), and again the estimates of 

d are within the unit root interval, which implies that first differencing is required for both 

the linear and the nonlinear terms. 

INSERT TABLES 6 AND 7 ABOUT HERE 

 As mentioned before, we estimate the model given by equations (1) and (4) for 

the return series, and first set m = 4. In this case, the order of integration of one of the 

cyclical structures is found to be equal to zero. Next, we set m = 3. The results are very 

similar for the linear (Table 6) and non-linear (Table 7) models, in both cases the orders 

of integration of all three components being significant. 

INSERT TABLES 8 AND 9 ABOUT HERE 
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6. Conclusions 

This paper proposes a long-range dependence framework allowing for multiple cycles 

which is then applied to analyse the behaviour of the weekly S&P500. Specifically, 

instead of a single pole or singularity in the spectrum as in standard models, our model 

allows for multiple poles and thus different cycles with different degrees of persistence. 

It also incorporates non-linear deterministic structures in the form of Chebyshev 

polynomails in time. Montecarlo simulations show that in finite samples the proposed test 

behaves well if the sample size is relatively large, namely if the number of observations 

is at least 1,000.  

 The empirical application using weekly data on the S&P500 provides evidence of 

a large value in the periodogram at the zero frequency. Unit and fractional root tests also 

suggest the need to take first differences. The estimation results based on the first 

differenced logged values (i.e., the returns) point to the existence of three cyclical 

structures in the series with a length of approximately one month, one year and four years 

respectively, and to orders of integration in the range (0, 0.20), which implies stationary 

long memory in all cases. 

Future research could develop the framework presented in this paper in several 

ways. For instance, the number of structures m could be endogenised; estimation methods 

such as those proposed by Giraitis and Leipus (1995), Woodward et al. (1998), Ferrara 

and Guegan (2001), and Sadek and Khotanzad (2004) could be extended to allow for non-

linear trends, and breaks in the data could also be modelled. Moreover, these methods 

could also be used to examine the stochastic behaviour of a wide range of macro variables 

such as GDP, inflation or unemployment. 
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Table 1: Rejection frequencies of the test for a sample size T = 1,000 
d1 d2 d3 Rejection freq. 

0.25 0.25 0.25 0.889 

0.25 0.25 0.50 0.947 

0.25 0.25 0.75 1.000 

0.25 0.50 0.25 0.799 

0.25 0.50 0.50 0.845 

0.25 0.50 0.75 0.945 

0.25 0.75 0.25 0.904 

0.25 0.75 0.50 0.967 

0.25 0.75 0.75 1.000 

0.50 0.25 0.25 0.866 

0.50 0.25 0.50 0.923 

0.50 0.25 0.75 0.988 

0.50 0.50 0.25 0.777 

0.50 0.50 0.50 0.814 

0.50 0.50 0.75 0.908 

0.50 0.75 0.25 0.890 

0.50 0.75 0.50 0.923 

0.50 0.75 0.75 0.998 

0.75 0.25 0.25 0.815 

0.75 0.25 0.50 0.901 

0.75 0.25 0.75 0.945 

0.75 0.50 0.25 0.119 

0.75 0.50 0.50 0.807 

0.75 0.50 0.75 0.833 

0.75 0.75 0.25 0.812 

0.75 0.75 0.50 0.865 

0.75 0.75 0.75 0.939 
In bold, the value corresponding to the size of the test. Nominal size: 5% 
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Table 2: Rejection frequencies of the test for a sample size T = 2,000 
d1 d2 d3 Rejection freq. 

0.25 0.25 0.25 0.911 

0.25 0.25 0.50 1.000 

0.25 0.25 0.75 1.000 

0.25 0.50 0.25 0.801 

0.25 0.50 0.50 0.906 

0.25 0.50 0.75 1.000 

0.25 0.75 0.25 0.998 

0.25 0.75 0.50 1.000 

0.25 0.75 0.75 1.000 

0.50 0.25 0.25 0.899 

0.50 0.25 0.50 0.978 

0.50 0.25 0.75 1.000 

0.50 0.50 0.25 0.839 

0.50 0.50 0.50 0.848 

0.50 0.50 0.75 0.922 

0.50 0.75 0.25 0.955 

0.50 0.75 0.50 0.988 

0.50 0.75 0.75 1.000 

0.75 0.25 0.25 0.890 

0.75 0.25 0.50 0.977 

0.75 0.25 0.75 0.994 

0.75 0.50 0.25 0.094 

0.75 0.50 0.50 0.883 

0.75 0.50 0.75 0.847 

0.75 0.75 0.25 0.890 

0.75 0.75 0.50 0.914 

0.75 0.75 0.75 0.978 
In bold, the value corresponding to the size of the test. Nominal size: 5% 
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Table 3: Rejection frequencies of the test for a sample size T = 3,000  
d1 d2 d3 Rejection freq. 

0.25 0.25 0.25 0.989 

0.25 0.25 0.50 1.000 

0.25 0.25 0.75 1.000 

0.25 0.50 0.25 0.991 

0.25 0.50 0.50 0.911 

0.25 0.50 0.75 1.000 

0.25 0.75 0.25 1.000 

0.25 0.75 0.50 1.000 

0.25 0.75 0.75 1.000 

0.50 0.25 0.25 0.939 

0.50 0.25 0.50 1.000 

0.50 0.25 0.75 1.000 

0.50 0.50 0.25 0.965 

0.50 0.50 0.50 0.934 

0.50 0.50 0.75 0.980 

0.50 0.75 0.25 0.999 

0.50 0.75 0.50 1.000 

0.50 0.75 0.75 1.000 

0.75 0.25 0.25 0.956 

0.75 0.25 0.50 1.000 

0.75 0.25 0.75 0.999 

0.75 0.50 0.25 0.066 

0.75 0.50 0.50 0.909 

0.75 0.50 0.75 0.917 

0.75 0.75 0.25 0.943 

0.75 0.75 0.50 0.993 

0.75 0.75 0.75 1.000 
In bold, the value corresponding to the size of the test. Nominal size: 5% 
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Table 4: Estimates of d in the linear model given by Equation (1)  

i)    Results based on white noise errors 

 No terms With an intercept With a time trend 

Original 0.97   (0.94,  1.00) 

 

0.97   (0.94,  1.00) 

 

0.97   (0.94,  1.00) 

 Logged values 0.99   (0.96,  1.02) 

 

0.98   (0.96,  1.01) 

 

0.98   (0.96,  1.01) 

 ii)    Results based on autocorrelated (Bloomfield) errors 

 No terms With an intercept With a time trend 

Original 0.95   (0.92,  0.99) 0.95   (0.92,  1.00) 0.95   (0.92,  1.00) 

 Logged values 0.97   (0.93,  1.02) 

 

0.99   (0.95,  1.04) 

 

0.99   (0.95,  1.04) 

 
The values in parenthesis are the 95% confidence intervals. Those in bold correspond to the models selected 
on the basis of the statistical significance of the deterministic terms. 
 

Table 5: Estimates of d in the non-linear model given by Equation (2)  

i)    Results based on white noise errors 

 d θ1 θ2 θ3 θ4 

Original 0.97 
(0.93,  1.01) 

1811.38 
(1.92) 

-1381.76 
(-2.44) 

484.63 
(1.67) 

-335.25 
(-1.72) 

Logged 1.01 
(0.98,  1.04) 

5.400 
(6.81) 

-0.058 
(-0.12) 

-0.575 
(-2.39) 

1.167 
(7.30) 

ii)    Results based on autocorrelated (Bloomfield) errors 

 d θ1 θ2 θ3 θ4 

Original 0.96 
(0.94,  1.02) 

1043.07 
(1.59) 

-702.52 
(-1.93) 

307.28 
(1.48) 

-185.24 
(-1.32) 

Logged 1.00 
(0.97,  1.04) 

0.915 
(6.81) 

-3.429 
(-4.32) 

1.096 
(2.77) 

0.047 
(0.17) 

The values in parenthesis in column 2 are the 95% confidence intervals. Those in bold correspond to the 
significant Chebyshev polynomials. 
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Figure 1: Data in levels and periodograms 

Original data Logged transformed data 

  
 
 
 

Periodogram original data Periodogram logged transformed data 

  
The values on the horizontal axis correspond to the discrete Fourier frequencies, λj = 2πj/T, j = 1, 2, …T/2. 
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Figure 2: Data in first differences and periodograms 

Original data Logged transformed data 

  
 
 
 

Periodogram original data (j = 1, …, 1000) Periodogram logged data (j = 1, …, 1000) 

  
Periodogram original data, (j = 1, …120) Periodogram logged data (j = 1, …, 120) 

  
The values on the horizontal axis correspond to the discrete Fourier frequencies, λj = 2πj/T, j = 1, 2, … T/2. 
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Table 6: Frequencies with the highest values at periodograms, with j = 1, …, 1000 

(1 – L) Data (1 – L) Log data 

j T / j Value at Periodogram J T / j Value at Periodogram 
794 3.53 1448.09 871 3.22 0.000642 
998 2.81 1082.75 607 4.62 0.000520 
274 10.24 1076.58 242 11.60 0.000493 
170 16.51 1013.94 920 3.05 0.000458 
814 3.45 990.76 679 4.13 0.000454 
608 4.61 916.17 170 16.51 0.000639 

J indicates the discrete frequency in the periodogram; T/j indicates the number of periods per cycle, while 
the third and sixth columns indicate the corresponding value at the periodogram. 

Table 7: Frequencies with the highest values at periodograms, with j = 1, …, 120 

(1 – L) Data (1 – L) Log data 

j T / j Value at Periodogram J T / j Value at Periodogram 
75 37.44 575.65 110 25.52 0.000248 

15 187.20 485.48 16 175.50 0.000247 
107 26.25 469.23 50 56.16 0.000239 
110 25.52 465.70 70 40.11 0.000226 

J indicates the discrete frequency in the periodogram, T/j indicates the number of periods per cycle, and 
the third and sixth columns the corresponding value of the periodogram. 

Table 8: Frequencies and orders of integration in a linear model  

 j1 j2 j3 d1 d2 d3 

White noise 602 
(4.66) 

 

240 
(11.70) 

14 
(200.57) 

0.09 
(0.02, 1.17) 

0.06 
(0.01, 0.09) 

0.13 
(0.11, 0.14) 

Bloomfield 601 
(4.67) 

241 
(11.65) 

14 
(200.57) 

0.06 
(-0.01, 1.17) 

0.07 
(0.02, 0.10) 

0.05 
(-0.02, 0.10) 

The values in parenthesis in columns 2, 3 and 4 are the number of periods per cycle. Those in parenthesis 
in columns 5, 6 and 7 are the 95% confidence bands for the orders of integration at the respective 
frequencies. 

Table 9: Frequencies and orders of integration in a non-linear model   

 j1 j2 j3 d1 d2 d3 

White noise 600 
(4.69) 

236 
(11.89) 

13 
(216.00) 

0.07 
(-0.01, 0.14) 

0.04 
(-0.05, 0.08) 

0.12 
(0.05, 0.16) 

Bloomfield 609 
(4.61) 

238 
(11.78) 

14 
(200.57) 

0.05 
(-0.02, 0.19) 

0.03 
(-0.03, 0.07) 

0.11 
(0.04, 0.17) 

The values in parenthesis in columns 2, 3 and 4 are the number of periods per cycle. Those in parenthesis 
in columns 5, 6 and 7 are the 95% confidence bands for the orders of integration at the respective 
frequencies. 
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