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Abstract 
 
Early warning signals (EWS) of imminent regime shifts can be identified through the observation 
of a system’s behavior under increasing stress and before crossing a tipping point. Despite many 
advances in the detection of EWS in recent years, EWS are yet to find direct application in 
management. Here, we focus on operationalizing the EWS information in an early warning system 
consisting of a tipping indicator (e.g., autocorrelation), whose value increases as the system 
approaches the tipping point, and a trigger value, beyond which an EWS is sent. We demonstrate 
how such an early warning system allows managers to balance the risk of tipping by providing 
information for updating their belief about the location of the tipping point. In particular, 
deployment of an early warning system results in taking more cautious early steps while it 
encourages more risk taking behavior in later stages if no EWS is sent. We uncover a tension 
between better information about the location of the tipping point and increased risk of crossing 
it as a result of EWS. Our framework complements the emerging EWS knowledge in the natural 
sciences with a better understanding of how, when, and why EWS improve management. 
JEL-Codes: C610, D830, Q540. 
Keywords: catastrophic regime shifts, tipping points, early warning signals, learning, optimal 
ecosystem management. 
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1 Introduction

Human activities push many ecosystems over their tipping points where large,

rapid, and often irreversible changes are expected to follow. Indeed, for some

systems, such as the global climate (Boers, 2021; Cai et al., 2015; Lenton et al.,

2019; Dietz et al., 2021; McKay et al., 2022) and the Amazonian rainforest (Hi-

rota et al., 2011; Lovejoy and Nobre, 2018), the sheer scale and irreversibility of

potential damages make it imperative to predict the tipping points and act ahead

to prevent crossing them.

A growing literature in the natural sciences is dedicated to the identification of

generic early warning signals (EWS) of tipping points (Scheffer et al., 2009). EWS

can be detected in a variety of natural systems from lake ecosystems (Carpenter

et al., 2011), forests (Liu et al., 2019; Boulton et al., 2022) and fisheries (Clements

et al., 2017) to climate physics (Boers, 2021; Ditlevsen and Ditlevsen, 2023). The

detection of EWS has also been studied in many social fields and applications,

ranging from medical sciences (van de Leemput et al., 2014; Helmich et al., 2022)

and psychology (Hart et al., 2020) to epidemiology (O’Brien and Clements, 2021),

finance (Sarkar and Sriram, 2001; Wen et al., 2018), land degradation (Bruzzone

and Easdale, 2021), and urban planning (Dianat et al., 2022). However, what is

largely overlooked by this literature is how to actually operationalize EWS and

put them to best use for sustainable resource management. This paper takes a

first step in this direction by developing a framework to address the question of

how to build effective early warning systems (EWSys) to improve the management

of at-risk systems.

Our proposed framework, shown in Figure 1, builds on and combines the EWS

detection literature in the natural sciences with the economic literature on optimal

management under tipping risk. We connect these two literatures to demonstrate

the necessary steps for building effective EWSys for management.

Note that detecting EWS is different from forecasting the system’s behaviour.

The EWS literature uses the idea that the time series of the observations of a

socio-ecological system’s behaviour contains a signature that can anticipate tipping

(Dakos et al., 2015; Bury et al., 2021; Dakos et al., 2023). This is fundamentally

different from forecasting which is based on collecting and combining co-variates
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to predict the system’s state in the future (Petropoulos et al., 2022). Thus, the

central feature of EWS detection is that it does not need training or calibration.

Therefore, EWS can be applied to systems for which replicates are not available

(such as the planet’s climate, the Amazon, or other large ecosystems, Scheffer

et al. (2009); Boettiger and Hastings (2012)). The other aspect that distinguishes

EWS detection is that unlike forecasting, it can be applied to problems where the

tipping risk arises endogenously, i.e., when the system’s behaviour depends on or is

influenced by controllable human actions. This feature links EWS detection to the

fields of economics and management where controllable actions take center stage.

This includes important contributions to better understanding of how to react to

endogenous or exogenous tipping threats (Polasky et al., 2011; Crépin and Nævdal,

2019), and how to manage specific socio-ecological systems under tipping risk

ranging from groundwater management to the management of fisheries and climate

change (Tsur and Zemel, 1995; Nævdal, 2006; Cai and Lontzek, 2019; Voss and

Quaas, 2022), as well as first advances to incorporate Bayesian learning (Diekert,

2017; Lemoine and Traeger, 2014). Our paper squarely fits in this interdisciplinary

domain by introducing Bayesian belief revision (Sarkar and Sriram, 2001) to an

optimal management problem.

Managing real socio-ecological systems involves many actors such as politicians,

bureaucrats, scientists, resource users and interest groups. Here, we differentiate

and focus on only two entities within the management realm: the regulator that

makes decisions on resource use, and the scientific agency which monitors and

reports the state of the socio-ecological system to the regulator (see Figure 1).

In other words, the scientific agency detects the tipping point while the regulator

makes decisions about how to best respond to it.

Specifically, our stylized framework for operationalizing early warning signals

considers a regulator who needs to decide how to manage a socio-ecological sys-

tem that has an unknown and constant tipping point. The regulator’s objective

is to maximise yield from the system without pushing it over the tipping point.

However, once pressure exceeds a critical value, the system collapses. The sci-

entific agency monitors the stock status and uses the data to calculate a tipping

indicator. The tipping indicator and trigger value together constitute an EWSys.

If the tipping indicator exceeds the trigger value, a signal (EWS) is sent to the
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Figure 1: Operationalizing early warning signals: The regulator needs to decide how
much to harvest (1) from a socio-ecological system that has an unknown tipping point
(2). The scientific agency monitors the stock development (3) and uses the data to
calculate a tipping indicator. The tipping indicator and trigger value together constitute
an early warning system (4). If the tipping indicator exceeds the trigger value, an early
warning signal (EWS) is sent to the regulator (5). Based on the information received,
the regulator then decides whether to increase harvesting pressure (1).

regulator. Based on the information received, the regulator accordingly updates

her knowledge about the location of the tipping point and then decides whether

to increase harvesting pressure.

The management process illustrated in Figure 1 is generic and could also apply

to other socio-ecological systems such as land-use decisions or timber extraction

from a rainforest whose self-sustaining moisture system collapses, once the size

of the remaining forest is too small. It could equally well apply to managing

groundwater extraction from an aquifer under the threat of saltwater intrusion once

the water table falls below a critical value, or to controlling an animal population,

such as a fish stock, that collapses once its size falls below a minimum viable

threshold. For concreteness, we consider the latter example as our leading case.

Our innovation is to shift the focus from detection to action and show how and

why early warning systems improve management, under what conditions they will

be more effective, and what potential risks they may entail. As such, our paper

makes three main contributions. The first key contribution is to build a better

understanding of the effect of EWSys on management through a step-by-step pro-
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cess, starting from the simulation of a socio-ecological time series from the natural

sciences literature (Bury et al., 2020; Dakos et al., 2023) and ending with the op-

timal sequence of decisions. The proposed framework, shown in Figure 1, is quite

general and can be applied to many other socio-ecological systems beyond what

is discussed in this paper. Our second key contribution is to spell out the con-

ditions under which different parameters, such as the regulator’s time preference

and risk tolerance, affect the optimal design and management implication of an

early warning system in this framework. A related question is how the scientific

agency should set the trigger value. As our framework paves the way for fruitful

collaboration across different disciplines, we emphasize the potential benefits and

risks of relying on the EWS in concrete management applications ranging from

ecosystems and sustainable resource use to emergency planning. In particular,

the third key contribution of the paper is to uncover and highlight an underlying

tension between the value of better information and risk: while the optimal use of

EWSys improves ecosystem management, it can lead to an increase in the risk of

tipping.

Additionally, our framework points to important avenues for further research

on EWS applications in management science. For example, it is important to

consider how real world decision makers would react to EWS under impending

regime shift risks (Seifert et al., 2023). Another example is how the availability of

an EWSys would impact management outcomes when the regulator and scientific

agency can act strategically (Alizamir et al., 2020).

The rest of the paper proceeds as follows. We present our framework in Section

2. Concretely, we outline model components such as the definition of an early

warning system based on the underlying socio-ecological system and trigger value,

as well as the specification the management problem and main outcomes of interest.

Next, in Section 3 we characterize the optimal solution, with particular focus on

tipping risk and economic value, and detail important dimensions of EWSys design.

Finally, we offer a concluding discussion in Section 4.
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2 The framework

We start with a model of a socio-ecological system that has a unique but unknown

tipping point acrit. The tipping point can be anywhere on the interval [0, ā]. The

system can accommodate some pressure from human actions a and still maintain

its sustainability. However, once pressure exceeds a critical value, that is a > acrit,

the system collapses. In plain words, a collapse of the system occurs whenever

the regulator’s action exceeds the tipping point. We couple this model with a

two-period dynamic management setup. That is, the regulator chooses an action

for each period. After deciding the first period action, and before deciding the

second period, the regulator may receive an early warning signal (EWS) from the

scientific agency. While our framework is stylized to isolate how early warning sys-

tems (EWSys) affect optimal decisions, it is applicable to complex socio-ecological

systems.

For concreteness, we consider a fishery as a leading example of a socio-ecological

system under the threat of collapse due to increased pressure from human activi-

ties (i.e., over-fishing). The regulator decides how much fish should be harvested

in a given period by setting a quota, allocating it to individual harvesters, and

enforcing compliance. The scientific agency, on the other hand, gathers informa-

tion on the state of the fish stock (e.g., through stock assessments, trawl surveys,

oceanographic research) and informs the regulator if the fish population is nearing

the tipping point.1

In our model, the regulator’s objective is to maximise harvest without push-

ing the fishery’s population over the tipping point. Further, we assume that the

regulator takes action in two consecutive stages (period 1 and period 2) with a

time preference for the first period. The variables a1 and a2 denote the action that

the regulator takes in period 1 and period 2, respectively, while u(a) is the utility,

derived from a given action a, normalized between zero and one by dividing it

by the highest possible harvesting action ā. The time preference manifests itself

1In some countries, these two dimensions are clearly separated (in Norway, for example, the
Directorate of Fisheries administers fishing regulations, while the Institute for Marine Science
provides stock assessments and other scientific advice). In other countries the two management
dimensions are represented by the same agency (in the US, for example, NOAA is responsible
for both research and regulation).
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in the form of a discount factor, β ∈ (0, 1], which will play an important role in

determining optimal actions under uncertainty about the tipping point.2

We assume that the regulator holds a uniform prior belief for the tipping point

on [0, ā] and denote by P1(a1) the probability that the action a1 does not cause

the collapse of the socio-ecological system. Crossing the tipping point triggers

an irreversible collapse of the population and brings zero value to the regulator,

the same as no harvesting, a = 0. Hence, the collapse of the resource could

be interpreted as the extinction of the resource stock, or as a moratorium on

harvesting. While this is a convenient normalization, the essential feature for our

analysis is that the post-collapse utility does not depend on pre-collapse actions,

see e.g., Diekert (2017).

Facing this risky prospect implies that the regulator’s risk tolerance will also

play an important role in determining optimal actions. The regulator’s risk tol-

erance is given by the parameter α ∈ (0, 1], which follows from assuming that

u(a) = (a/ā)α. On top of that, there is also learning. There is a probability func-

tion P2(a2) that describes whether the system remains stable after taking a given

action in the second period. It differs from P1(a1) in the sense that choosing a1 > 0

and not causing collapse means that the tipping point was not below a1. Hence,

after period 1, the regulator learns that a1 ≤ acrit (and hence acrit ∈ [a1, ā]).

In addition, the regulator may receive an EWS from the scientific agency about

the state of the fishery, if there exists an early warning system. Receiving or not

receiving an EWS is the second source of information that affects P2(a2). Accord-

ingly, the regulator updates her prior belief about the location of the tipping point

before deciding on the action in the second period, a2. The management problem

is therefore to find the sequence of actions {a1, a2} which yields maximum harvest

without causing the system to collapse. We argue that to solve this problem, man-

agers can use an early warning system to increase their gain, but we also caution

against relying on EWS for reducing the risk of collapse.

We now describe how such an early warning system look like.

2Note that we assume that tipping is “nonstochastic”. This reflects that the tipping point is
an imminent characteristic of the system. Any stochasticity would “serve to approximate a more
complete model with uncertainty [...] over the precise trigger mechanism underlying the tipping
point” (Lemoine and Traeger, 2014, p.155), and not be a genuine feature of tipping.
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2.1 Designing an Early Warning System

2.1.1 The socio-ecological system

First, we describe the underlying model governing the socio-ecological system. To

appreciate this model, it is important to note that we distinguish two time scales.

The regulator acts twice, once in period 1 and once in period 2. The underlying

resource develops over many short time steps t in between. In terms of our concrete

leading example, one can think of the periods as years and the regulator sets a

harvest quota for year, while the time steps are days.

For simplicity, we assume, in line with other workhorse models (Bury et al.,

2021; Boers, 2021), that population growth subject to harvesting takes a quadratic

form:

g(xt, at) = xt+1 − xt = −γ2 x2
t + γ1 xt − at + σϵt, (1)

where xt is the population size at time t, γ1 and γ2 are the linear and quadratic

growth parameters, at is the harvesting action, ϵt is a white noise error term that

follows a standard normal distribution and σ is the noise amplitude.

In the absence of harvesting, the carrying capacity of this ecosystem is at

K = γ1/γ2 from E[g(xt, 0)] = 0 where E is the expectation operator. Furthermore,

the maximum population growth is achieved when x∗ = γ1/2γ2. This provides a

basis for defining the highest action that keeps the ecosystem at a sustainable level:

E[g(x∗, acrit)] = 0, and from (1) we get acrit = γ2
1/4γ2. (2)

In our stylized setting, this critical action represents the location of the tipping

point acrit. If the regulator increases the action from its initial value of zero,

the population is able to recover and sustain its reproductive level as long as the

action does not exceed acrit. Once the action exceeds the critical value acrit, the

population will collapse and will not be able to recover to its sustainable level.

Figure 2a shows one realization of our population model with an unknown

tipping point while facing increasing harvesting pressure. When generating it, we

set σ = 0.1 and ā = 2. Figure 2a is produced by increasing harvesting action

along the horizontal axis (grid of 500 points, a ∈ {0, 0.004, . . . , 2}) in increments

of 0.004 per time step for a population model. A model is defined by its linear

8



Figure 2: (a) Population dynamic for a fishery with an unknown tipping point subject to
an increasing harvesting action. The initial population is indicated by K. (b) The tipping
indicator (e.g., autocorrelation) increases as the ecosystem approaches the tipping point.

and quadratic growth parameters γ1 and γ2. As we set the carrying capacity

K = γ1/γ2 = 4, we have γ1 = 4acrit/K = acrit and γ2 = acrit/4 so that any

model can be identified uniquely by the value of acrit. Therefore, uncertainty over

parameters of the socio-ecological system means uncertainty over the tipping point

location acrit. In the management problem, the scientific agency uses data from

the EWSys to infer whether tipping is likely to be induced by increasing action

beyond a1.

2.1.2 Tipping indicators

Although the exact location of the tipping point is unknown to the regulator, a

literature in the natural sciences (Scheffer et al., 2009, see also Dakos et al., 2023

for a recent review) has identified some statistical characteristics of the underlying
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dynamic system that can act as a tipping indicator.3 Following this literature,

we apply, for each action a along the horizontal axis (grid of 500 points, a ∈
{0, 0.004, . . . , 2} with n = m = 100), the following algorithm to generate Figure 2b:

1. calculate the steady-state population level corresponding to action a,

2. draw n random samples from the normally distributed noise parameter ϵt

to produce a time series of the population, starting from the steady-state

population, when action a is applied,

3. calculate the autocorrelation of lag 1 for this time series and report it as the

tipping indicator,

4. repeat this procedure for m times to obtain confidence intervals for the tip-

ping indicators (shaded areas in Figure 2b).

The algorithm connects the action in the first period with the action in the

second period of the management problem: the first period action induces stock

variations.4 Assuming that the first period action did not lead to collapse, there

is sufficient time for the system to get to a stable steady state, and for calculating

the tipping indicator, before the second period action is taken. After observing

the state of the system and its tipping indicator, the scientific agency indicates an

EWS or no EWS and sends it to the regulator who then decides on the second

period action. In terms of the leading example, one could think that the action

in each period represents the harvest quota that is set once a year while each

time step in the population model, t, represents a day in which a sample of the

population size is taken. Alternatively, the periods could represent decades and

the actions represent long-term management plans or harvest control rules that are

3The choice of the tipping indicator depends on the characteristics of the socio-ecological
system. Dakos et al. (2023) have identified 65 different tipping indicators that have been used
in the literature. The most commonly used are autocorrelation, skewness, and power spectrum
(Held and Kleinen, 2004; Dakos et al., 2012; Clements et al., 2015; Bury et al., 2020)).

4Note that this algorithm does not allow for learning about the tipping point from the tran-
sition to the steady state. Generally, there could be learning from (i) the system’s approach to
steady state, (ii) whether or not the system tips, and (iii) the behaviour of the tipping indica-
tor. Our focus in this paper is on the two latter cases. This is in line with the EWS literature
(Dakos et al., 2008; Scheffer et al., 2009; Boettiger and Hastings, 2012; Dakos et al., 2015; Bury
et al., 2020, 2021; Boers, 2021). We leave the analysis of how the regulator can learn from the
approaching path for future research.
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revised periodically. The important point is that the scientific agency has access

to a time series of observations that comes at a much higher frequency than the

decisions about the actions that the regulator takes.

2.1.3 Trigger values and signal functions

As discussed extensively in the tipping point detection literature (Dakos et al.,

2015), the tipping indicator behaves in a way that its value can be used as a proxy

for the risk of crossing the tipping point. For example, auto-correlation shown in

Figure 2b increases as the system nears tipping. Furthermore, to design an early

warning system (EWSys), one can compare the value of the tipping indicator

against a benchmark called trigger value. When the value of the tipping indicator

exceeds the trigger value, an alarm (also known as EWS) goes off (Figure 1)

signaling that the system is within the vicinity of the tipping point. The choice of

trigger value in this sense, determines the sensitivity and specificity of the EWSys.

Therefore, we define an EWSys as the combination of a tipping indicator and a

trigger value.

However and because the indicator is noisy, we can describe the indicator as a

cumulative distribution function F , where F (a, acrit, θ) is the probability that the

indicator does not exceed the value θ if the current action is a and the tipping

point is at acrit.

We now introduce the signal function facrit,θ(d) that describes the probability

of an EWS when the distance to the tipping point is d = acrit − a. Beyond

not tipping, it is by receiving or not receiving the EWS that the regulator learns

whether the tipping point of the socio-ecological system is likely to be near or far

away. For a given trigger value θ, we say that the scientific agency reports an

EWS if the tipping indicator exceeds the trigger value. The definition of F as

a cumulative distribution function representing the indicator distribution implies

that the probability of an EWS (i.e., that the tipping indicator exceeds the trigger

value θ) is

facrit,θ(d) = 1− F (acrit − d, acrit, θ). (3)

Because F is a cumulative distribution function, it follows that facrit,θ(d) decreases

in the trigger value θ for all acrit and d.
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Depending on the context we may also want to write the signal function for a

fixed action a (instead of fixing tipping point acrit). We then get

f̃a,θ(d) = 1− F (a, a+ d, θ). (4)

For some concrete applications, the tipping indicator may give rise to signal

functions that only depend on the relative distance d and not on the tipping point

(or equivalently, the action), facrit,θ(·) = fa′crit,θ(·) for all acrit, a
′
crit. The theoretical

analysis of such cases is more tractable. In this paper however, we do not make

any simplifying assumption of that sort and work with the general forms (3) and

(4).

We generate Figure 3, taking as input the socio-ecological system – includ-

ing the action space (grid of 500 points, a ∈ {0, 0.004, . . . , 2}) and tipping point

space (grid of 500 points, acrit ∈ {0, 0.004, . . . , 2}). For autocorrelation, we con-

sider trigger values between −1 and 1 in increments of 0.004 (grid of 501 points,

θ ∈ {−1,−0.996, . . . , 1}). The translation from Figure 2b to Figure 3 works as

described in equations (3) and (4) when applying specific trigger values θ.5

This captures the notion that an EWSys with a given tipping indicator and a

low trigger value sends EWS more often than an EWSys with the same tipping

indicator but with a higher trigger value. Similarly, for an EWSys with a given

trigger value, the closer the population is to collapsing, the higher is the value

of the tipping indicator, and thus the more likely it is that the scientific agency

reports an EWS to the regulator.6

While Figure 3a illustrates the generic shape of the signal function, Figure 3b

shows the family of signal functions that result from a range of different trigger

values θ ∈ [−1, 1]. In other words, Figure 3b translates the data shown in Figure 2b

into the probability of receiving an EWS which mimics the probability of tipping

5For clarity, in the management problem we work with a smooth version of the signal function.
The smooth version is a moving average of the original signal functions. In a first step, we
calculate a moving average of span 13 (6 points to each side) of the first signal function component
(current location), then the second (actual tipping point), then the third (trigger value). We
repeat this procedure twice with span 9 (4 points to each side). Also see Figure A1.

6Compared to the EWS literature that considers early warnings to be a function of exogenous
time and then spells out sufficient time to act (e.g. through the formulation of “lead time”),
EWS in our paper depend on the endogenous distance to the tipping point in terms of harvesting
pressure. Hence, the notion of EWS is directly relevant for ecosystem management.
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(a)
(b)

Figure 3: (a) The signal function expresses the probability of receiving EWS as a function
of distance to the tipping point. (b) A family of signal functions can be derived for a
given tipping indicator (here: autocorrelation, Figure 2b) and a set of trigger values
(here ranging from θ= − 0.5 to θ=0.7). When the distance to the tipping point is 0.5
units, the probability to receive an EWS is close to 0% for an EWSys with a trigger
value of θ=0.7, about 2% for an EWSys with a trigger value of θ=0.4, about 94% for
an EWSys with a trigger value of θ=0.1, and nearly 100% for an EWSys with a trigger
values of θ= − 0.2 and θ= − 0.5.

itself.

In our leading example, the regulator sets a given quota for the first period a1

knowing that EWSys will warn her if this quota would push the system close to the

tipping point acrit. If the first-period quota did not lead to collapse, she will receive

an update from the scientific agency whether there is an EWS or not. Receiving or

not receiving an EWS is helpful information for setting the second-period quota a2.

If there is no EWS, the regulator realizes that increasing the harvesting action (at

least, by a small bit) is unlikely to cause the collapse of the fish stock in the second

period. But if there is an EWS, the regulator realizes that the current harvesting

quota has pushed the system close to the tipping point. Therefore, increasing the

harvesting action is not wise, as it may cause the system to tip. To put it in

technical terms, receiving or not receiving an EWS helps the regulator to update

her belief about the location of the tipping point. The Appendix illustrates the

concept of Bayesian learning for two different EWSys with low and high trigger

values θ and with low and high levels of harvesting actions in the first period a1,

considering the resulting family of signal functions facrit,θ as input. We now turn
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our attention to how to utilise EWS to design an optimal strategy to improve

management outcomes.

2.2 The management problem

We first detail the regulator’s objective function. In general, the value of the

two-period management problem is given by (5):

V1 = max
a1∈[0,ā]

{
P1(a1)·

(
u(a1) + β

[
q(a1)·V EWS

2 (a1) + (1−q(a1))·V noEWS
2 (a1)

])}
,

(5)

where V EWS
2 = maxa2∈[0,ā]

{
PEWS
2 (a2)·u(a2)

}
if EWS received

V noEWS
2 = maxa2∈[0,ā]

{
P noEWS
2 (a2)·u(a2)

}
if no EWS received

The connection between utility, actions, and the socio-ecological model in equa-

tion (1) comes through P1(a1) = 1−
∫ a1
0

p1(acrit)dacrit, the probability that a given

action a1 does not cause the system to collapse. That probability depends on the

action (a higher action increases the risk of collapse and accordingly reduces P )

and the probability distribution p1, the regulator’s belief about the tipping point

location at that time. We assume that the regulator holds a uniform prior belief

for the tipping point on [0, ā].

This belief is updated between the first and the second period based on two

sources of information: First, from experience as she learns whether the first period

action caused the system to tip or not. Second, from the EWSys (if it exists) where

she learns whether an EWS is received or not. Her second period belief will be

either

pEWS
2 (acrit) =

facrit,θ(acrit−a1)p1(acrit)∫ ā
a1

fãcrit,θ(ãcrit−a1)p1(ãcrit)dãcrit
(6)

or

pnoEWS
2 (acrit) =

(1−facrit,θ(acrit−a1))p1(acrit)∫ ā
a1

(1−fãcrit,θ(ãcrit−a1))p1(ãcrit)dãcrit
, (7)

where facrit,θ is the signal function.

Because the regulator anticipates that her beliefs will change after the first
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period action, problem (5) has a recursive structure. The probability to receive an

EWS is given by

q(a1) =

∫ ā

a1
facrit,θ(acrit − a1)p1(acrit)dacrit

P1(a1)
. (8)

We will refer to q as the EWS probability. It depends on the action in period 1,

the initial belief p1 about the true location of the tipping point, and the signal

function facrit,θ that describes the likelihood of receiving an EWS when located at

a distance d to the true tipping point acrit. As described above, the trigger value

θ determines the shape of that signal function. The denominator P1(a1) reflects

that the correct interpretation of q is EWS probability, provided that action a1

did not lead to collapse.

2.3 The effect of an Early Warning System

In addition to characterizing the optimal solution with an early warning system,

we compare the situation with an EWSys to the situation without an EWSys.

Here, we concentrate on two outcomes: The risk of tipping, and the value that a

given EWSys provides over a situation without an EWSys. We will evaluate how

the risk of tipping and the added-value of the EWSys depend on the trigger value,

and the regulator’s time and risk preferences.

To describe the change in tipping risk and the value that a given EWSys

provides over the baseline situation without an EWSys, we need to define the latter.

We call the value of (5) when no EWSys is available V b and the corresponding

tipping risk Rb.

The probability of not crossing the tipping point when choosing a harvesting

action a ∈ [0, ā] is P (a) = ā−a
ā
. Building on the fact that the first and second period

actions are identical in the model without an EWSys (Diekert, 2017), and inserting

the utility function u(a) = (a/ā)α, we can express the regulator’s objective function

as:

V b = max
a

{
ā− a

ā
(1 + β)(a/ā)α

}
. (9)
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The first-order condition for this problem is

− aα + (ā− a)αaα−1 = 0, (10)

which yields the optimal baseline action:

ab =
α

1 + α
ā. (11)

2.3.1 Definition of tipping risk

With an EWSys, we will show that it is generally not optimal to choose ab in

both the first and the second period. Rather, optimal actions will generally differ

between the first and the second period and whether an EWS has been received

or not. Given an optimal contingent plan {a∗1, a∗2,EWS, a
∗
2,noEWS}, we determine

the probability that these actions will lead to a collapse of the system, the tipping

risk. We assume that the regulator’s prior belief about the location of the tipping

point is unbiased, i.e., the true location of the tipping point is the realization of a

random draw from a distribution that coincides with the regulator’s prior belief.

Consider one tipping point acrit. Using the indicator function 1(Cond) that

equals 1 if condition Cond is true and 0 otherwise, we can write the condition for

collapse as

C(acrit) = 1(a∗1>acrit) + 1(a∗1≤acrit)·
[
1(EWS)·1(a∗2,EWS>acrit) +1(noEWS)·1(a∗2,noEWS>acrit)

]
.

(12)

One possibility for collapse is that the first period action already exceeds the

tipping point (the first part in (12)). If the first action does not exceed the tipping

point, then tipping occurs with an EWS, if the action a∗2,EWS exceeds the tipping

point, and without an EWS, if the action a∗2,noEWS exceeds the tipping point.

We can now calculate the total probability of collapse asR =
∫
C(acrit)p1(acrit)dacrit,
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where p1 is the prior. We get

R =

∫ a∗1

0

p1(acrit)dacrit +

∫ a∗2,EWS

a∗1

facrit,θ(acrit − a∗1)p1(acrit)dacrit

+

∫ a∗2,noEWS

a∗1

(1− facrit,θ(acrit − a∗1))p1(acrit)dacrit. (13)

The baseline tipping risk that is induced by the optimal action ab in the absence

of an EWSys is Rb =
∫ ab

0
p1(acrit)dacrit. Below we establish that a∗1 ≤ ab and

a∗1 ≤ a∗2,EWS ≤ a∗2,noEWS. Because of this, we can write the change in risk due to

the EWSys as

R−Rb =−
∫ ab

a∗1

p1(acrit)dacrit

+

∫ a∗2,EWS

a∗1

facrit,θ(acrit − a∗1)p1(acrit)dacrit (14)

+

∫ a∗2,noEWS

a∗1

(1− facrit,θ(acrit − a∗1))p1(acrit)dacrit.

Denoting Rθ as the tipping risk under an EWSys with trigger value θ, we can

calculate the relative risk change as

∆θ
R =

Rθ −Rb

Rb
. (15)

This expression is positive if the EWSys increases risk and negative if it decreases

risk.

2.3.2 Definition of economic value

To define a measure of the value that an EWSys provides over a situation without

the EWSys, one might find it natural to define the value of the EWSys as V θ−V b,

where V θ denotes the value of (5) under an EWSys with trigger value θ. However,

that quantity is not invariant under changes to the utility function that preserve

risk preferences. To get a measure that only depends on preferences but not the
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utility function representation, we can look at the action level â that makes the

regulator indifferent between the following cases:

(i) taking action â in both periods without the risk of collapse.

(ii) the actual decision-problem we study (this can be the baseline scenario with-

out EWSys or the scenario with EWSys).

For a given instantaneous utility function u, the intertemporal utility of the case

(i) is u(â) + βu(â) = (1 + β)u(â). Let the intertemporal utility of the scenario we

study be V1, cf. expression (5), i.e. all actions have already been chosen optimally.

The indifference condition is (1 + β)u(â) = V1, or u(â) = V1/(1 + β). With

u(a) = (a/ā)α, we get â = ā[V1/(1 + β)]1/α.

We can calculate âb for the baseline scenario and we can calculate âθ for the

EWSys scenario with trigger value θ. It is easy to show that, in either case, â is

invariant under cardinal transformations of the utility function, i.e. ũ = λu. Note

that we do not have to consider additive shifts of the utility function as we have

set u(0) = 0.

In any case, a higher â means the situation is more valuable to the decision-

maker. Because changes of the utility function changes the certainty-equivalent

â of the baseline scenario, a suitable measure of the relative increase in economic

value provided by the EWSys is the increase in the certainty-equivalent caused by

the EWSys, relative to the baseline certainty-equivalent,

W θ =
âθ − âb

âb
. (16)

In the following, we shall first characterize the optimal solution of the man-

agement problem (5) for a given EWSys. Then, we will analyze, for given time

preference and risk tolerance of the regulator, how the total risk of tipping depends

on the trigger value of the EWSys. Finally, we shall present how the relative change

in risk (15), and value (16) depend on the regulator’s time and risk preferences.
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3 Results

We solve the management problem (5) numerically, taking as input the socio-

ecological system (1) and assuming a uniform initial prior p1(acrit) = 1/ā. We

solve the equation system by backward recursion on the grid space, which consists

of the action space (grid of 500 points, a ∈ {0, 0.004, . . . , 2}), the tipping point

space (grid of 500 points, acrit ∈ {0, 0.004, . . . , 2}), as well as the trigger value

space (grid of 501 points, θ = {−1,−0.996, . . . , 1}) and the resulting family of

signal functions facrit,θ.

This allows us to characterize the regulator’s second-period objective function

after hearing an EWS, the regulator’s second-period objective function after not

hearing an EWS, and her first-period objective function, as well as the correspond-

ing beliefs pEWS
2 and pnoEWS

2 . The numerical results are presented in detail in the

Appendix. Figure A2 shows how the optimal first period action depends on the

trigger value θ. Figure A3 shows the objective function for the first-period action,

given the preference parameters α = 0.4 and β = 0.8. Figure A4 then zooms in

on how the EWS probability q and expected second-period value depend on the

first period action a1. Figure A5 shows the second-period objective function and

probability of not tipping for EWS and no EWS. Finally, Figure A6 shows the

second period action choice a∗2 and second period step a∗2 − a∗1 as a function of

trigger value θ for different risk tolerance levels α, discount factors β and whether

an EWS has been received. We summarize these insights below.

3.1 Characterization of the optimal solution

The baseline case without an EWSys results in an optimal action ab that merely

balances the expected benefits of a harvesting action with the expected cost of

causing the collapse. The regulator will always choose the same level of action in

the first and the second period. The reason why this behavior is indeed optimal

is that the regulator does not receive any new information after the first period,

apart from the fact that her action did not cause the collapse.

The situation is different when an EWSys exists. In this case, the regulator

– conditional on not having crossed the tipping point acrit already – will receive
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additional information from the scientific agency after the first action a1. The

regulator anticipates that the presence of EWSys will improve her management by

taking a better-informed action in the second period. As a consequence, compared

to the baseline case without an EWSys, the regulator will choose a lower action

in the first period, that is a∗1 ≤ ab (for the case α = 0.4 and β = 0.8, compare the

black line to the violet line in Figure A3).

The optimal second-period action a∗2 depends on whether or not the scientific

agency reports an EWS. If it does, the regulator realizes that the tipping point

acrit is close and increasing the harvesting level will increase the risk of tipping,

militating against a higher second-period action. At the same time, it does not

make sense to reduce the level of harvesting because the regulator knows that

the current level of harvesting, although triggered an EWS, did not cause the

collapse. Consequently, after receiving an EWS the regulator will typically stay

put, i.e., choose the same action in the second period as in the first period, a∗2 = a∗1;

exemplified by the blue lines in the right panel of Figure A6 when α ∈ {0.2, 0.4,
0.6, 0.8} and β = 0.4.

In contrast, if the scientific agency does not report an EWS, the regulator knows

that a moderate increase in harvesting is unlikely to cause collapse. Hence, the

regulator will find it optimal to increase the action in the second period, a∗2 > a∗1

(see the red lines in the right panel of Figure A6).

Importantly, this means that the more cautious first-period choice is not due to

the possibility of receiving bad news. Rather, the possibility of receiving good news

and leaping forward at reduced risk afterwards is what drives the more cautious

first-period action (see Figure A6). This is consistent with the literature on the

quasi-option value and the value of flexibility (Henry, 1974; Arrow and Fisher,

1974): anticipating that one will receive more information on the tipping point

location is a reason to make a more cautious decision (i.e., maintain flexibility and

potentially make a bolder move in the second period).

A natural question is to ask how the combination of optimal first- and second-

period actions impacts on the overall probability of tipping. Figure 4 shows the

total risk of tipping and its constituent parts with an EWSys compared to the

situation without an EWSys. Clearly, for a non-informative EWSys (trigger value

θ below -0.6, approximately, for α = 0.8 and β = 0.4) there is no difference to
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Figure 4: Disentangling the components of tipping risk. The black line shows the total
change in tipping risk when comparing, for a given trigger value θ, the situation with
an EWSys to the situation without an EWSys (parameter settings are risk tolerance
α = 0.8 and discount factor β = 0.4). The total change is the sum of the risk reduction
due to a less risky action in period 1 (blue line), a more risky action in period 2 after
receiving an EWS (red line) and after receiving no EWS (yellow line). For large values
of θ, the availability of an EWSys increases the total risk of tipping.

the situation without an EWSys. As the scientific agency uses an EWSys with

a higher trigger value, however, the total tipping risk decreases. After a certain

point (θ ≈ −0.4), however, the tipping risk increases, though it is still smaller than

in the situation without an EWSys. This is no longer true once θ exceeds a value

of 0.5. Then, the total risk of tipping is higher with an EWSys than without an

EWSys.

The three components of risk change shown in Figure 4 directly correspond to

equation (14) for the change in collapse risk relative to the baseline risk. The blue

line (the first component) shows how the first period action changes risk. As the

optimal first action a∗1 never exceeds the baseline action ab, this first component

is non-positive. The second (red) and third (yellow) components describe how the

second period actions a∗2,EWS and a∗2,noEWS change the risk relative to the situation
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of staying at a∗1, respectively. Those latter components are non-negative.

We find that intermediate levels of the trigger value drive down risk the most as

the first period action gets the most cautious. We also observe that the additional

move despite bad news (red) can increase risk, but that this channel is limited.

Intuitively, the regulator chooses a relatively low first period action to take advan-

tage of the possibility of relatively safe increase in the second period upon hearing

an EWS (bad news). But when she hears no EWS at a low trigger value, this

does not mean too much (as the tigger value is low), so that she still increases

the second-period action beyond the first-period action. The regulator no longer

increases the second-period action beyond the first-period action once the EWSys

is sufficiently informative (θ ≈ −0.4 for the current parameter combination). The

reason for an overshooting of risk at high trigger values is the increased risk from

moving after hearing good news (no EWS), and the fact that this additional risk

is not counterbalanced by a more cautious first-period action.

Nevertheless, the possibility of receiving an EWS always increases the economic

value that can be derived from the socio-ecological system because the EWSys pro-

vides additional information about the location of the tipping point (the regulator

can always choose to ignore the information and be as well off as when no EWSys

exists).

3.2 Important dimensions of EWSys design

While the above discussion was couched in terms of the regulator’s objective for a

given set of risk and time preferences, we now analyze how the change in tipping

risk and the relative value gain from an EWSys depends on the trigger value for

various combinations of risk and time preferences.

Figure 5 illustrates important dimensions of EWSys design. Each point in

Figure 5a and Figure 5b shows, for a given combination of α and β, the change in

risk ∆θ
R (x-axis) and the increase in economic value W θ (y-axis) that is resulted

from the implementation of an EWSys with trigger value θ relative to the baseline

case without an EWSys. Figure 5a on the left keeps the discount factor fixed

at β = 0.4, and illustrates four different values of risk tolerance α (indicated by

different colors). Figure 5b on the right keeps risk tolerance fixed at α = 0.4 and
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Figure 5: Relative change in risk on the horizontal axis vs. relative increase in economic
value on the vertical axis for (a) fixed time preference β = 0.4 and varying risk tolerance
α, and (b) varying time preference β and fixed risk tolerance α = 0.4. Color shades
indicate low trigger values (light) to high trigger values (dark). The lower panel of each
figure, (c) and (d), shows the trigger values resulting in the top 10% for economic value
increase (circles) and risk reduction (squares). Large symbols represent the optimal
trigger value in the respective dimension and directly correspond to the symbols in the
upper panel.

illustrates four different values of β. Both panels highlight the trade-off in risk

and economic value as the trigger value θ changes from -1 (light shade) to 1 (dark

shade), describing a counterclockwise loop.

For concreteness, let us focus on the situation where β = 0.4 and α = 0.4 (pur-

ple points in Figure 5a). For the starting point of θ = −1 (the (0,0) coordinates),

there is no change relative to the situation without an EWSys because the EWSys

is not informative – the tipping indicator always exceeds the trigger value (i.e., the
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EWS is triggered too easily too early as illustrated in Figure 3b). As the trigger

value θ increases, we move to the top right corner where the EWSys reduces total

tipping risk and increases economic value, which is unambiguously good for man-

agement. However, there is a turning point after which a higher θ does not reduce

the risk of tipping anymore but increases it (a leftward move in the risk-value co-

ordinate system). As elaborated above, there might be cases where the total risk

of tipping even exceeds the baseline risk in the absence of the EWSys (left side of

the vertical dashed lines in Figure 5a and Figure 5b). Similarly, there is a turning

point after which a higher θ no longer leads to a further increase in economic value

but induces a downward move in the risk-economic value coordinate system.

This counterclockwise loop traced by changing the trigger value is a generic

feature. A higher β (reflecting a higher relative weight placed on the future) implies

that the EWSys adds more value, which is intuitive. Interestingly, a higher α (more

risk tolerance) does not necessarily imply an increased total risk of tipping, as this

is the result of the complex interplay of the optimal first-period action a∗1, the

learning that takes place due to that action for the given EWSys, and the optimal

second-period action a∗2 (Section 2.3.1).

It is natural to mark the point at which increasing the trigger value θ no longer

increases economic value (highlighted with a black outer circle in Figure 5a and

Figure 5b) Similarly, we mark the point at which increasing the trigger value

no longer decreases tipping risk (highlighted with a black square in Figure 5a

and Figure 5b). We plot the trigger values that maximize economic value and

the trigger values that minimize tipping risk for different values of risk tolerance

(Figure 5c) and discount factor (Figure 5d). The figures clearly show that the

best trigger values that achieve these different targets are not the same. In fact,

even the trigger values that result in the top 10% value increase and the ones that

result in the top 10% risk reduction do not overlap in many cases. Hence, even in

this stylized model, there is a tension between the maximum increase in economic

value and the maximum risk reduction.
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4 Discussion

Our study develops a framework to complement the emerging knowledge on de-

tecting early warning signals (EWS) with a better understanding of how and why

early warning systems (EWSys) can improve management: the mere existence of

an EWSys for detecting the tipping point invokes more cautious initial actions. If,

in fact, an EWS is received, it affirms that the caution was warranted, while not re-

ceiving an EWS implies that it is unlikely that a tipping point is imminent (i.e., no

news is good news). This may encourage the regulator to take a subsequent bolder

action which may – in some circumstances – lead to an increased risk of tipping

compared to a situation where no EWSys is available. Yet, an EWSys is always

economically valuable, as the additional information can simply be disregarded.

Nevertheless, the overall societal value of an EWSys can only be assessed by

its contribution towards the broader management objective. There are different

views in society on the objective of ecosystem management. Those concerned with

the conservation of the ecosystem may prefer an EWSys with a low trigger value

to minimize the risk of collapse, while others may prefer an EWSys with a high

trigger value to maximize the economic value, despite the increased tipping risk.

Even if society as a whole were to subscribe to the maximization of economic

value, different groups could have different preferences about risk tolerance or

time discounting, leading to different valuations of a given EWSys (see Figure 5).

Thus, any deliberate effort to design an EWSys carries some inevitable tensions.

If the EWSys cannot be designed but must be taken as is, there might still be

disagreements about whether it should be used at all. Future research may focus on

analyzing EWS in interactive environments of heterogeneous actors with diverging

preferences.

Our work opens two important avenues for management science. First, how do

real decision makers react to EWS under impending regime shift risks? For exam-

ple, Seifert et al. (2023) experimentally study how participants’ under- and over-

reaction to dynamic regime shift risk depends on the initial prior of the decision-

makers. Given our results, it is an open question whether EWS would dampen

or amplify such behavioral effects. Second, how would the availability of EWSys

impact decision making when the regulator and the scientific agency are strate-
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gic actors? In a recent contribution, Alizamir et al. (2020) highlight the role of

the sender’s credibility for its ability to induce the receiver to take certain ac-

tions. More generally, embedding the full potential to receive EWS in strategic

settings will likely be a formidable challenge, but its solution promises significant

contribution to both theoretical (Kamenica and Gentzkow, 2011; Bergemann and

Morris, 2016) and experimental (Bolton and Katok, 2018) approaches to Bayesian

persuasion.

A central feature of our model is the direct relationship between human ac-

tions and the occurrence of the tipping point. This feature characterizes several

real-world problems, such as fisheries, forests, or livestock management. In other

applications, however, human control is less direct. For many conservation prob-

lems species may be threatened not only by hunting and poaching, but also by

habitat loss or climate change (many of these threats are indirectly caused by hu-

mans, but on different temporal and spatial scales). Better understanding of such

uncontrollable processes and how they interact with human actions is a key task

for future research.7

Finally, we have assumed that the EWS is binary and not continuous. This

is in line with the existing literature on EWS (Scheffer et al., 2009; Dakos et al.,

2015; Bury et al., 2021; Boettiger and Hastings, 2012) that only considers whether

an EWS is sent or not. Such a setup could reflect a situation where the scientific

agency has full information, but the regulator’s capacity (time or money) to process

it, is limited. Alternatively, the setup could reflect a data-poor environment where

the scientific agency itself has only limited information or a system that is too

complex and noisy to accurately monitor the tipping indicator (Chen and Tung,

2023; Boers, 2023). In principle, however, one could well think that there is more

nuance to the EWS. Many practical applications, for example, work with a “traffic

light system” where there is an intermediate, yellow, stage of warning in between

the two extremes of warning (red), and no warning (green). A natural question

7Another key assumption of our model is that the tipping risk is linked only to current actions.
However, in a number of systems the risk of tipping is a function of both current and past actions
(Liski and Salaniè, 2019; Crépin and Nævdal, 2019). In such applications, current actions have
to be taken before all consequences of past actions are realized. In this case, our proposed
framework can be further developed to account for the interaction of past and future tipping
risk affects the value that can be derived from an EWSys, providing an interesting link to the
literature on attribution (Stott et al., 2004; Otto, 2016).
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for future research is how the granularity of the EWS affects the EWSys, and, in

turn, its optimal design.

Despite these limitations and simplifications, our framework can pave the way

for fruitful collaborations across disciplines such as ecology, economics, engineer-

ing, management and psychology. It builds a bridge to the next generation of

EWS research that can now assess the risk and value of an EWS in concrete em-

pirical applications by showing how it can be used in a management setting, and,

depending on the different views in society on the objective of ecosystem manage-

ment, when and why it can improve decisions in the presence of tipping points.

As a result, we have made the translation from detection to operationalization

readily available for use by practitioners. While our stylized socio-ecological sys-

tem is generic, it can be tailored to specific real-world decision-making problems

addressing sustainability and the best use of limited human and natural resources.
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Anne-Sophie Crépin and Eric Nævdal. Inertia risk: Improving economic models of catastrophes.
The Scandinavian Journal of Economics, n/a(n/a):1–27, 2019. doi: 10.1111/sjoe.12381. URL
https://www.onlinelibrary.wiley.com/doi/abs/10.1111/sjoe.12381.

V. Dakos, C. A. Boulton, J. E. Buxton, J. F. Abrams, D. I. Armstrong McKay, S. Bathiany,
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warnings in climate, ecological, and human systems. EGUsphere, 2023:1–35, 2023. doi: 10.
5194/egusphere-2023-1773. URL https://egusphere.copernicus.org/preprints/2023/

egusphere-2023-1773/.

Vasilis Dakos, Marten Scheffer, Egbert H. van Nes, Victor Brovkin, Vladimir Petoukhov, and
Hermann Held. Slowing down as an early warning signal for abrupt climate change. Proceedings
of the National Academy of Sciences, 105(38):14308–14312, 2008. ISSN 0027-8424. doi: 10.
1073/pnas.0802430105. URL https://www.pnas.org/content/105/38/14308.

Vasilis Dakos, Stephen R. Carpenter, William A. Brock, Aaron M. Ellison, Vishwesha Guttal,
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Appendix 1 Illustration of belief updating

Here we illustrate how the regulator updates her belief about the location of the

tipping point. In our stylized model, the location of the tipping point corresponds

to the highest action that the system can sustain. We illustrate four cases: the

regulator chooses either a high or a low action, and the EWSys has either a high

or a low trigger value. The starting point for all four cases is the same: the

regulator holds a uniform prior p1 about the location of the tipping point (with∫ ā

0
p1(acrit)dacrit = 1, where ā = 2 is the maximum harvesting action), Panel (A).

Consider first the two

cases where the trigger

value of the EWSys is

low (θ= − 0.5), Panels (B)

and (C). Choosing a low

action (a=0.3) implies a

small probability of causing

the collapse of the system

whereas choosing a high ac-

tion (a=1.0) implies a large

probability of causing col-

lapse (shown by the thick-

ness of the grey arrows).

Conditional on not causing

the collapse, the regulator

learns that the respective

action level is safe. Consequently, the probability that the tipping point is at

one of the remaining potential locations must be higher. When the regulator re-

ceives an EWS, the probability that the tipping point is close is high, relative to

the probability that the tipping point is far. On the other hand, if the regulator

receives no EWS, the probability that the tipping point is close is low: no news is

good news.

The same logic holds when the trigger value of the EWSys is high (θ=0.4),

Panels (D) and (E). While the probability of collapse conditional on action is the
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same, the probability to receive an EWS and the resulting posteriors differ.

We now compare how a regulator choosing a low action updates her belief upon

not receiving an EWS from an EWSys with low or high trigger value, Panel (B)

vs. Panel (D). Recall that not receiving an EWS is good news (indicated by the

green arrow). In the case of a low trigger value, the probability of not receiving

an EWS is low, but the regulator becomes optimistic (in terms of assigning a

lower probability that a given action causes collapse) for a relatively large range.

In contrast, with a high trigger value, it is likely that the regulator receives no

EWS. Correspondingly, when the regulator does not receive an EWS, she becomes

optimistic only for a small range in front of the current position.

Appendix 2 Numerical implementation

We numerically solve the equation system (1), (3), and (5), by backward re-

cursion on the grid space. The grid space consists of the action space (grid of

500 points, a ∈ {0, 0.004, . . . , 2}), the tipping point space (grid of 500 points,

acrit ∈ {0, 0.004, . . . , 2}), as well as the trigger value space (grid of 501 points,

θ = {−1,−0.996, . . . , 1}) and the resulting family of signal functions facrit,θ.

That is, for each feasible point, we calculate the value of regulator’s second-

period objective function after hearing an EWS, and the value of the regulator’s

second-period objective function after not hearing an EWS, as well as the corre-

sponding beliefs pnoEWS
2 and pnoEWS

2 . We then plug these values into the regulator’s

first-period maximization problem to find the combination of first-period action

a∗1, second-period action under no news a∗2,noEWS, and second-period action with

EWS a∗2,EWS that maximizes (5).

As the calculated EWS probability that results from a given combination of

action, tipping point, and trigger value is the outcome of a specific realisation of

noise terms, we apply moving average to the data to work with smooth versions

of the signal function, see footnote 5 and Figure A1. This procedure reduces noise

in the outcome variables, see panels (c) and (d), it has no discernible impact on

the firs-period objective function (see panel (b) of Figure A1).
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(a) Signal functions for fixed tipping point
acrit = 1.6032 and trigger value θ = −0.56
(left), −0.26 (middle), and 0.16 (right).
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(b) First period objective functions for trig-
ger value θ = −0.56 (bottom), −0.26 (mid-
dle), and 0.16 (top).
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(c) Optimal first period action as a function
of trigger value θ. The horizontal dashed
lines show the action space grid.
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Figure A1: Smoothing the signal functions. Comparison of the original signal functions
(in gray) with the smooth signal functions (in red). The smooth version is a moving
average of the original signal functions. The preference parameters in panels (c) and (d)
are α = 0.4 and β = 0.8.
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Appendix 3 Detailed analysis

Figure A2 shows the optimal first-period action a∗1 with an EWSys as a function of

its trigger value θ. First, both very low and high trigger values are non-informative

and hence equivalent to the absence of an EWSys. Therefore the optimal actions

with such an EWSys are equivalent to the baseline optimal action ab. This baseline

level is independent of the discount factor β (right panel) but strongly dependent

on risk tolerance α (left panel), see equation (11). Second, intermediate trigger

values lead to decreases in the optimal first period action in order to wait for the

information provided by the EWSys. This wait-and-see effect is more pronounced

when the future matters more (high discount factor, right panel).
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(a) Discount factor β = 0.4.
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(b) Risk tolerance α = 0.4.

Figure A2: Optimal first-period action a∗1 as a function of trigger value θ for different
levels of risk tolerance (left panel) and different discount factors (right panel). Note the
different scale of the vertical axis.

Figure A3 shows the objective function for the first-period action, given the

preference parameters α = 0.4 and β = 0.8.

The objective function combines expected second-period value, first-period util-

ity, and probability of survival, see equation (5). The blue line (red line) represents

the objective function for the hypothetical first-period choice when the decision-

maker knows for sure that she will receive bad news (good news). The blue line

peaks where the black line peaks. This indicates that what causes the more cau-

tious first-period action with an EWSys is not the possibility to receive bad news;
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rather, the possibility to observe good news and then leap forward drives the more

cautious choice. This is why the red line peaks for a low first-period action a1.

For the selected trigger values (which are fairly small), an increase in trigger value

tends to reduce the optimal first-period action. This pattern would be reversed

for larger trigger values, cf. Figure A2.
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Figure A3: Objective function for choosing the optimal first-period action (see (5)).
Trigger values are θ = −0.68 (solid lines) and θ = −0.1040 (dashed lines), and preference
parameters are α = 0.4 and β = 0.8.

Figure A4 zooms in on two subcomponents of the objective function. Panel

(a) shows the EWS probability q and panel (b) shows the expected second-period

value as functions of a1.

In panel (a) we see that the likelihood to receive an EWS increases with the

first period action. The lower the trigger value, the more sensitive the EWSys and

therefore the higher the likelihood to receive an EWS.

In panel (b) we see that the expected value coincides with the utility function for

large first-period actions. The reason is that receiving the EWS is very likely (see

panel (a)) and the best action a∗2,EWS after bad news is (typically) to stay, so that

expected value of first-period action a1 coincides with u(a1). That the expected

value (purple line) never falls below the utility function (black line) indicates that

the information provided by the EWSys is always (weakly) valuable.
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(a) EWS probability q.
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Figure A4: Panel (a): EWS probability q, cf. expression (8), as a function of the first
period action, conditional on survival. Panel (b): Second-period values of the objective
function conditional on survival, cf. (5), and its expected value (purple line). For
comparison we show the utility function that represents (conditional on survival) the
second period value without an EWSys (black line). In both panels, we have α = 0.4
and β = 0.8.

Figure A5 shows the objective functions for choosing the optimal second pe-

riod actions, conditional on receiving an EWS or not receiving an EWS after an

arbitrary first period action.

The objective function (in black, left axis) that determines the optimal second-

period action (indicated by a vertical line) is the product of survival probability

(decreasing in a2) and utility function (increasing in a2), see (5). We plot these

functions for two different trigger values, θ=− 0.680 (solid lines) and θ=− 0.104

(dashed lines). We also show the probability of survival P (a2) as a function of

the second-period action a2 (in red, right axis). Survival is guaranteed if the

second-period action does not exceed the first-period action.

The higher trigger value (dashed lines) corresponds to a less sensitive EWSys;

bad news is therefore taken seriously and the optimal second-period action is more

cautious than for a more sensitive EWSys (solid line). Similarly, if good news (no

EWS) materializes, then this is big news if the EWSys is sensitive and therefore

induces a bold move forward (solid line). We spell out in more detail how the

section period action/step depends on the trigger value in Figure A6 below.
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(a) After bad news (“EWS”).
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(b) After good news (“noEWS”).

Figure A5: Objective functions for choosing the optimal second-period actions after bad
news (left panel) and good news (right panel). The arbitrary current position inherited
from the first period (not chosen optimally) is a1 = 0.501 (indicated by the dotted
vertical line). Risk tolerance is α = 0.8. The trigger value θ is −0.68 (solid lines) and
−0.104 (dashed lines).
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(a) Second period choice a∗2.
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(b) Second period step a∗2 − a∗1.

Figure A6: Optimal second-period action after bad news (blue lines) and good news (red
lines) as a function of trigger value θ for different levels of risk tolerance α (light colors
correspond to lower values of α). The left panel shows absolute optimal second period
actions a∗2,EWS and a∗2,noEWS . The right panel shows the additional step between first
and second period a∗2,EWS − a∗1 and a∗2,noEWS − a∗1. The discount factor (relevant for the
choice of a∗1) is β = 0.4.

Figure A6 shows the optimal second-period actions after bad news (blue lines)

and good news (red lines) as a function of trigger value θ for different levels of risk

tolerance α (light colors correspond to lower values of α). Several observations
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stand out: First, the usual response to bad news is to stay put (blue lines, right

panel). Second, the more sensitive the EWSys (lower trigger values), the bolder

the second-period action after good news. Third, higher risk tolerance implies

higher actions and therefore higher risk (left panel). Fourth, lower risk tolerance

implies more cautious actions in the first period, followed by a stronger adjustment

in case of good news (right panel). The interaction of these effects causes the non-

monotone pattern in tipping risk (see Figure 4).
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