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Abstract Constructing skew and heavy-tailed distributions by transform-
ing a standard normal variable goes back to Tukey (1977) and was extended
and formalized by Hoaglin (1983) and Martinez & Iglewicz (1984). Applica-
tions of Tukey’s GH distribution family – which are composed by a skew-
ness transformation G and a kurtosis transformation H – can be found, for
instance, in financial, environmental or medical statistics. Recently, alter-
native transformations emerged in the literature. Rayner & MacGillivray
(2002b) discuss the GK distributions, where Tukey’s H-transformation is
replaced by another kurtosis transformation K. Similarly, Fischer & Klein
(2004) advocate the J-transformation which also produces heavy tails but
– in contrast to Tukey’s H-transformation – still guarantees the existence
of all moments. Within this work we present a very general kurtosis trans-
formation which nests H-, K- and J-transformation and, hence, permits
to discriminate between them. Applications to financial and teletraffic data
are given.

1 Introduction

Using the Gaussian distribution as statistical model for data sets is wide-
spread, especially in practice. However, departure from normality seems
to be more the rule than the exception. In order to construct skew and
heavy-tailed distributions, Tukey (1977) suggested to transform a standard
Gaussian variable Z with a specific non-linear transformation, the so-called
family of GH-transformations – which is composed by a skewness transfor-
mation G and a kurtosis transformation H. The corresponding GH distri-
bution has been successfully applied in financial, medical or environmental

Send offprint requests to:
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statistics. Badrinath & Chatterjee (1988, 1991) did pioneer work applying
it to stock returns of the New York stock exchange. Mills (1995) applied
them to FTSE index returns, Fischer, Horn & Klein (2006) to returns of
aluminium and zinc, and Dutta & Babbel (2003) as distributional model for
US-Dollar London Inter Bank Offer Rates. Furthermore, Dutta & Babbel
(2005) and Tunaru, Kadam & Albota (2005) deal with derivative pricing
formulas under GH distributions. In contrast, Dupuis (2004) and Dupuis
& Field (2004) adress the problem of modelling extreme wind speeds and
conclude that the GH distribution is ”at least as effective as the more clas-
sical generalized extreme value distribution”. Although GH distributions
dominate both theory and application, different competitive transforma-
tions are available in the relevant literature: Rayner & MacGillivray (2002b)
discuss the GK distributions, where Tukey’s H-transformation is replaced
by another kurtosis transformation K. Similarly, Fischer & Klein (2004)
advocate the J-transformation which also produces heavy tails but – in
contrast to Tukey’s H-transformation – still guarantees the existence of all
moments. Within this work we exclusively focus on kurtosis transformations
and present a very general one (in section 2) which nests H-, K- and J-
transformation and allows to discriminate between them. Properties of the
corresponding distributions are dedicated to section 3, whereas empirical
application can be found in section 4.

To be more precise, Tukey (1977) suggested to transform a Gaussian random
variable Z by means of certain transformations T (z) via

Y = Z · T (Z)θ, θ ∈ R. (1)

In order to make sure that the tails of the distribution of Y are heavier
than those Z (which we focus on within this work), T (z) has to be positive,
symmetric and strictly monotone increasing for z ≥ 0 (see, e.g. Hoaglin,
1983). Moreover, we restrict ourselves on non-negative parameters θ ≥ 0,
where no transformation takes place if θ = 0 (i.e. Z and Y coincide) and
positive values of θ produce positive tail elongation. Originally, Tukey’s
suggests the H-transformation1

TH(z) ≡ exp(z2) (2)

which guarantees the existence of moments up to order 1/(2θ) which in turn
coincides with the asymptotic tail index of Y (see Proposition 1 in Morgen-
thaler & Tukey, 2000). Alternative transformations with existing moments
but still heavy tails followed up by MacGillivray & Cannon’s (1997) K-
transformation (see also Rayner & MacGillivray, 2002a, 2002b)

TK(z) ≡ 1 + z2 (3)

and by Fischer & Klein (2004) who discussed the J-transformation

TJ(z) ≡ cosh(z) = 0.5
(
ex + e−x

)
. (4)

1 Note that Tukey (1977) originally considered TH(z) = exp(0.5z2), instead.
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Until Klein & Fischer (2006), no ”superstructure” was available for these
transformations which includes (2), (3) and (4) as special case. One possible
superstructure is the ”power series representation”

TA(z) ≡
∞∑

i=0

aiz
2i (5)

for certain weights ai ∈ R, i ≥ 0 which guarantee that the power series
has a finite limit. In particular, Tukey’s H-transformation is obtained for
ai = 1/i!, i ∈ N, equation (3) is recovered if a0 = 1, a1 = 1 and ai = 0,
i > 1 and equation (4) setting ai = 1/(2i!).

2 A general kurtosis transformation

It was the power series representation of the exponential function, i.e.

exp(z) = 1 +
∞∑

i=1

zi

i!

which motivated formula (5). Unfortunately, this formula is not very opera-
tional because an infinite number of unknown parameters a0, a1, . . . , ai, . . .
have to be estimated to reveal the ”data-generating transformation”. An-
other representation of the exponential function is given by

exp(z) = lim
n→∞

(1 + z/n)n.

The latter motivates a second general transformation – which we term as
HJK-transformation, henceforth –

THJK(z;β, n, g) =
(

1 +
(z2 + g)β − gβ

n

)n

, β > 0, g > 0, n ≥ 1. (6)

Obviously, TH(z) = THJK(z; 1,∞, g) and TK(z) = THJK(z; 1, 1, g), i.e.
both K-transformation and H-transformation are included as special case.
Moreover, we will demonstrate later that TJ (z) ≈ THJK(x; 0.5,∞, 0.5).
Hence, accounting for the law of parsimony, it seems to reasonable setting
g ≡ 0.5 in equation (6). Above these well-known examples, a great variety
of transformations is included, some of them are shown in figure 1, below.
Obviously, positiveness and symmetry of THJK are guaranteed. Moreover,
under the above assumptions and for z > 0,

T ′HJK(z; β, n) = 2 β z

(
1 +

(
z2 + 0.5

)β − 0.5β

n

)n−1 (
z2 + 0.5

)β−1
> 0

i.e. the HJK-transformation is strictly increasing. Applying

(1 + x)n =
n∑

i=0

(
n

i

)
xi
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Fig. 1 Different GHK-transformations.

to equation (6),

THJK(z; β, n) =
n∑

i=0

(
n
i

)

ni

(
(z2 + 0.5)β − 0.5β

)i

. (7)

For β = 1, the coefficients of the power series representation from (5) are

a0 = 1, ai =

(
n
i

)

ni
, i = 1, . . . , n and ai = 0, i > n.

If otherwise β ≈ 1, an approximate power series representation can be
obtained if a second order Taylor approximation at z0 = 0 is applied to
(z2 + 0.5)β , namely

(z2 + 0.5)β ≈ 0.5β + 2β 0.5βz2 and THJK(z; β, n) ≈
n∑

i=0

(
n
i

)
(2β0.5β)i

ni
z2i.

The approximate coefficients are then

a0 = 1, ai =

(
n
i

)
(β 0.5β−1)i

ni
, i = 1, . . . , n and ai = 0, i > n. (8)

Within this work we focus on two special cases, the HK-transformation
which nests both H- and K-transformation and the HJ-transformation
which includes the H-transformation and closely approximates the J-trans-
formation (as it will be shown later on).

2.1 The HK-Transformation

Setting β = 1 in (6) we obtain the HK-transformation

THK(z;n) =
(

1 +
z2

n

)n

, n ≥ 1. (9)
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Obviously, TH(z) = THK(z;∞) and TK(z) = THK(z; 1). Furthermore,

THK(z; 2) = 1 + z2 + 0.25z4.

At any case, the (exact) coefficients of the power series representation are
given by

a0 = 1, ai(n) =

(
n
i

)

ni
, i = 1, . . . , n and ai(n) = 0, i > n.

Note that for j ≥ 1,

ai(n) ≤ ai(n + j), i = 1, . . . ,∞ and lim
n→∞

ai(n) =
1
i!

.

2.2 The HJ-Transformation

Similarly, for n →∞, (6) reduces to

THJ (z; β, g) = exp
(
(z2 + g)β − gβ

)
, β > 0, g ≥ 0 (10)

which we will call the HJ-transformation. Setting β = 1 in (10) recovers
again the H-transformation of Tukey (1977). Next we derive an approxima-
tion for the J-transformation. For β = 0.5, equation (10) rewrites to

THJ (z; 0.5, g) = exp
(√

z2 + g −√g
)

. (11)

In addition, the J-transformation of Fischer & Klein (2004) can be approx-
imated for sufficiently large z as follows

TJ(z) = 0.5
(
ez + e−z

) ≈ 0.5 exp(z) = exp(z − ln(2)). (12)

Equating (11) and (12), we obtain
√

z2 + g−√g = z− ln(2) and we obtain
an approximation of the J-transformation for both smaller and larger z us-
ing THJ (z; 0.5, 0.5) with g = (ln(2))2 ≈ 0.5. Table 1 illustrates how accurate
the approximation works.

z 0 0.5 1 2 4 6 7

TJ(z) 1.00 1.17 1.68 4.11 28.48 204.43 549.26
THJ(z, 0.5, 0.5) 1.00 1.13 1.54 3.76 27.31 201.72 548.32

Percentual deviation 0.00 3.96 8.73 9.22 4.30 1.35 0.17

Table 1 Approximating the J-transformation.

Setting β = 2 and g = 0.5, (10) reduces to

THJ (z; θ, β) = exp
(
θ
[
(z4 + z2)

])

which resembles Morgenthaler and Tukey’s (2000) HQ-transformation.
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3 HJK(-NORMAL) DISTRIBUTIONS

Starting with a standard normal variable Z, we now focus on the distribu-
tion of the variable Y = K(Z) = Z ·T (Z)θ, where T is one of the Tukey-type
transformations considered before. Applying standard methods of variable
transformation, the density of Y requires the inverse transformation of T –
which is rarely available in closed form – and is given by

fY (y) =
fZ(K−1(y))
K ′(K−1(y))

with K ′(z) = T (z)θ−1(T (z) + θzT ′(z)).

In contrast, the p-quantiles of Y admit a very simple representation, i.e

QY (p) = K(QZ(p)),

where QZ(p) denote the p-quantile of a standard Gaussian distribution. If
a HJK-transformation is applied to Z, the resulting distribution will be
termed as HJK-distribution, henceforth. As before, investigations concen-
trate on the HK-distribution and on the HJ-distribution.

3.1 The HK-Distribution

It is already known that all moments of the K-distribution – correspond-
ing to the K-transformation – exist (see, e.g. Klein & Fischer, 2004). The
same applies to HK-distribution as the next lemma will show. Hence, HK-
distributions approximate the H-distributions (which are obtained as lim-
iting case) but still guarantee for finite moments.

Lemma 1 All moments of the HK-distribution exist for θ ≥ 0 and all
n ∈ N.

Proof: Define Yθ,n ≡ Z
(
1 + Z2

n

)θ n

, where Z is standard Gaussian. Ob-

viously, for θ = [θ + 1], where [a] is the smallest integer less than a,
E(Yθ,n) ≤ E(Yθ,n). Using that E(Zi) < ∞ for all i > 0 and defining
ν = kθn ∈ N,

E
(
Y k

θ,n

)
= E

(
Zk

(
1 +

Z2

n

)ν)

= E

(
Zk

ν∑

i=0

(
ν

i

)
Z2i

ni

)
=

ν∑

i=0

(
ν

i

)
E

(
Z2i+k

)

ni
< ∞ ¤

In order to demonstrate how close the HK-distribution approximates the H-
distribution which appears as limit distribution, table 3 summarizes selected
(1 − p)-quantiles for different n ∈ N. Choosing N = 2000 seems to be
advisable in order to obtain a satisfying approximation in the tails.
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p 1/4 1/8 1/32 1/64 1/256 1/512 1/1024

n = 1 1.0382 1.0880 1.1615 1.1888 1.2323 1.2502 1.2662
n = 2 1.0418 1.1069 1.2229 1.2712 1.3532 1.3886 1.4211
n = 5 1.0445 1.1246 1.3015 1.3885 1.5541 1.6326 1.7084
n = 10 1.0455 1.1323 1.3470 1.4639 1.7076 1.8327 1.9593
n = 50 1.0463 1.1395 1.3986 1.5584 1.9383 2.1602 2.4051
n = 100 1.0464 1.1405 1.4065 1.5738 1.9812 2.2252 2.4994
n = 500 1.0465 1.1413 1.4131 1.5869 2.0191 2.2838 2.5863
n = 2000 1.0465 1.1414 1.4144 1.5894 2.0266 2.2955 2.6039
n = ∞ 1.0465 1.1415 1.4148 1.5903 2.0291 2.2995 2.6099

Table 2 (1− p)-quantiles of the HK-distribution (θ = 0.1).

Van Zwet (1964) introduces a partial kurtosis ordering on the set of all sym-
metric, continuous and strictly monotone increasing distributions. In this
concept, a symmetric distribution F has less kurtosis than a symmetric dis-
tribution G (F ¹S G), if G−1(F (x)) is convex for x > F−1(0.5), where F−1

and G−1 denote the inverse cdf (or quantile function) of F and G, respec-
tively. The next lemma shows that the parameter θ is a kurtosis parameter
(in the sense of van Zwet) for every member of the HK-distribution family,
i.e. for n fixed.

Lemma 2 Assume that n ∈ N is fixed. The parameter θ ≥ 1/(2n) of the
HK-distribution is actually a kurtosis parameter, i.e. increasing θ corre-
sponds to higher kurtosis and vice versa.

Proof: Assume that θ2 ≥ θ1 ≥ 1/(2n) > 0. According to Theorem 1 of Klein
& Fischer (2006), it suffices to verify that

T ′HK(z; θ2, n)
T ′HK(z; θ1, n)

≥ THK(z; θ2, n)
THK(z; θ1, n)

and
T ′′HK(z; θ2, n)
T ′′HK(z; θ1, n)

≥ T ′HK(z; θ2, n)
T ′HK(z; θ1, n)

.

This, however, follows directly from (10),

T ′HK(z; θ, n) = 2
(

n + z2

n

)θ n
θzn

(n + z2)
and

T ′′HK(z; θ, n) = 2θ n

(
n + z2

n

)θ n

·z
2(2 θ n− 1) + n

(n + z2)2
≥ 0 if θ ≥ 1/(2n). ¤

Similarly, n ≥ 1/(2θ) is a kurtosis parameter for fixed θ ≥ 0, too.

Lemma 3 Assume that θ ≥ 0 is fixed. The parameter n ≥ 1/(2θ) of the
HK-distribution is actually a kurtosis parameter, i.e. increasing n corre-
sponds to higher kurtosis and vice versa.
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Proof: Assume that n2 ≥ n1. Again, it suffices to verify that

T ′HK(z; θ, n2)
T ′HK(z; θ, n1)

≥ THK(z; θ, n2)
THK(z; θ, n1)

and
T ′′HK(z; θ, n2)
T ′′HK(z; θ, n1)

≥ T ′HK(z; θ, n2)
T ′HK(z; θ, n1)

.

Some straightforward reformulations show that this is equivalent to

n2

n1
≥ n2 + z2

n1 + z2
and

z2(2θn2 − 1) + n2

z2(2θn1 − 1) + n1
≥ n2 + z2

n1 + z2
.

Whereas the first inequality is obvious, the second is valid for θ ≥ 1/(2n1),
i.e. if both transformations are convex. ¤

Finally, different HK-distributions are plotted in figure 2, below.
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Fig. 2 Different Different HK-distributions.

To sum up, the heavy-tailed HK-distribution family provides an approx-
imation of Tukey’s H-distribution but still guarantees that all moments
exist. In particular, it can be used to decide whether a H-transformation or
a K-transformation is appropriate.

3.2 The HJ-Distributions

Consider the HJ-transformation with g = 0.5, i.e.

THJ (z; θ, β) = exp
(
θ
[
(z2 + 0.5)β − 0.5β

])
.

It was already mentioned that β = 1 corresponds to Tukey’s H-transformation.
The corresponding distribution has finite moments up to order less than
1/(2θ) if Z is Gaussian. For Y = Z · THJ (Z; θ, β) we obtain

E(Y k) =
∫ ∞

−∞
zk exp

(
θk

[
(z2 + 0.5)β − 0.5β

]) 1√
2π

exp(−0.5z2)dz

= exp
(−0.5βθk

) ∫ ∞

−∞
zk 1√

2π
exp

(
θk(z2 + 0.5)β − 0.5z2

)
dz(13)
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Setting β = 1, we see that

E(Y k) =
∫ ∞

−∞
zk 1√

2π
exp

(−0.5z2(1− 2θk)
)

dz < ∞

for 1 − 2θk > 1, i.e. for k < 1/(2θ). Similar considerations – based on
(13) – can be applied to show that no moments exist for β > 1 and all
moments exist for β < 1. This explains (see table 3, below) why tails of the
H-distribution (β = 1) are sufficiently approximated only for β′s very close
to one.

p 1/4 1/8 1/32 1/64 1/256 1/512 1/1024

β = 0.50 1.0274 1.0664 1.1372 1.1688 1.2270 1.2541 1.2802
β = 0.60 1.0318 1.0805 1.1767 1.2227 1.3113 1.3545 1.3970
β = 0.70 1.0359 1.0949 1.2226 1.2878 1.4207 1.4884 1.5572
β = 0.90 1.0433 1.1254 1.3395 1.4663 1.7597 1.9278 2.1115
β = 0.95 1.0449 1.1333 1.3754 1.5247 1.8830 2.0956 2.3335
β = 0.99 1.0462 1.1398 1.4066 1.5765 1.9978 2.2554 2.5495
β = 0.995 1.0464 1.1407 1.4107 1.5834 2.0133 2.2772 2.5793
β = 0.999 1.0465 1.1413 1.4140 1.5889 2.0259 2.2950 2.6037
β = 1.00 1.0465 1.1415 1.4148 1.5903 2.0291 2.2995 2.6099

Table 3 (1− p)-Quantiles of the HJ-distribution (θ = 0.1).

To sum up, the HJ-distribution family constitutes a very flexible distribu-
tion family which includes distributions for which all, some or no moments
exist.

Lemma 4 Assume that β ≥ 0.5 is fixed. The parameter θ ≥ 0 of the HJ-
distribution is actually a kurtosis parameter, i.e. increasing θ corresponds
to higher kurtosis and vice versa.

Proof: Its first derivative is

T ′HJ(z; θ, β) = 2βθ z
(
z2 + 0.5

)β−1
exp

(
θ

((
z2 + 0.5

)β
+ 0.5β

))
(14)

which is monotone increasing for z > 0. Similarly,

T ′′HJ (z; θ, β) = 4θβ exp
(
θ

(
z2 + 0.5

)β
+ θ 0.5β

) (
z2 + 0.5

)β−2 ·R(z) (15)

with R(z) = θ(z2 + 0.5)ββz2 + z2(β − 0.5) + 0.25.

Thus, convexity of THJ is guaranteed at any case (independently of θ) if
β ≥ 0.5. Now assume that θ2 ≥ θ1 > 0. In accordance to theorem 1 of Klein
& Fischer (2006), it suffices to verify that

T ′HJ (z; θ2, β)
T ′HJ (z; θ1, β)

≥ THJ (z; θ2, β)
THJ (z; θ1, β)

and
T ′′HJ (z; θ2, β)
T ′′HJ (z; θ1, β)

≥ T ′HJ (z; θ2, β)
T ′HJ (z; θ1, β)

.
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The first inequality follows immediately after a few reformulations. The
second inequality is equivalent to

θ2(z2 + 0.5)ββz2 + z2(β − 0.5) + 0.25
θ1(z2 + 0.5)ββz2 + z2(β − 0.5) + 0.25

≥ 1.

At any case, this is true for β ≥ 0.5 ¤

Lemma 5 Assume that θ ≥ 0 is fixed. The parameter β ≥ 0.5 of the HJ-
distribution is actually a kurtosis parameter, i.e. increasing β corresponds
to higher kurtosis and vice versa.

Proof: Assume that β2 ≥ β1 ≥ 0.5. In accordance to the last lemma it
suffices to verify that

T ′HJ (z; θ, β2)
T ′HJ (z; θ, β1)

≥ THJ (z; θ, β2)
THJ (z; θ, β1)

and
T ′′HJ (z; θ, β2)
T ′′HJ (z; θ, β1)

≥ T ′HJ (z; θ, β2)
T ′HJ (z; θ, β1)

.

The first inequality equals

β2(z2 + 0.5)β2 ≥ β1(z2 + 0.5)β1

and follows from the monotonicity of the power function. The second in-
equality is equivalent to

θ(z2 + 0.5)β2β2z
2 + z2(β2 − 0.5) + 0.25

θ(z2 + 0.5)β1β1z2 + z2(β1 − 0.5) + 0.25
≥ 1.

and follows again if β2 ≥ β1 ≥ 0.5 ¤
Finally, different HJ-distributions are plotted in figure 3, below.
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Fig. 3 Different Different HJ-distributions.
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4 ESTIMATION OF HJK-DISTRIBUTIONS

Traditionally, quantile-based methods are applied to obtain estimates of
the unknown parameters (see, e.g., Tukey, 1977 or Rayner & MacGillivray,
2002a). Due to the increasing computing power, maximum likelihood es-
timation (MLE) which had been thought intractable can now be tackled
numerically. Rayner & MacGillivray (2002b) conducted a comprehensive
study on MLE in the context of GH- and GK-distribution. Their results in-
dicate that ”sample sizes significantly larger than 100 should be used to ob-
tain reliable estimates through maximum likelihood”. Refering to Rayner &
MacGillivray (2002b) for both theoretical and computational details, MLE
maximizes the logarithm of the likelihood (as a function of the unknown
parameters θ, β, n) for a simple random sample y1, . . . , yn, given by

LL(θ, n, β; y1, . . . , yn) =
n∑

i=1

ln
(

fZ(K−1(yi;β, n))
K ′(K−1(y; β, n); β, n)

)
,

where K denote one of the Tukey-type transformation discussed above. Here
numerical likelihood maximization was carried out using standard mini-
mization routines in MATLAB which have the advantage of not requiring
derivative information about the log-likelihood. The corresponding MAT-
LAB code is available from the author by request.

5 APPLICATION TO HEAVY-TAILED DATA

At first, we focus on the continuously compounded returns (e.g. differences
of consecutive log prices) of ALLIANZ AG over the period 1 January 1990
to 31 December 2003 (3485 observations). The (sample) mean of the log-
returns (which are depicted in figure 4, below) is −0.00002 with a (sample)
standard deviation of 0.0221. Moreover, the data set exhibits only a small
amount of skewness (the skewness coefficient – measured by the third stan-
dardized moments – is given by by −0.069), whereas the kurtosis coefficient
– in terms of the fourth standardized moments – is 5.362, reflecting the
remarkable leptokurtosis.
The results for the ALLIANZ returns arising from maximum likelihood
estimation of the parameters from different Tukey-type distributions are
summarized in table 4, below.
Obviously, focussing on the log likelihood value LL, the return data under
consideration are closer to the H-distribution than to the K-distribution,
but closer to the J-distribution than to the H-distribution. At any case, LL
additionally increases both for HJ- and HK distributions. Altogether, the
HJ-distribution family seems to be the best choice for the Allianz returns.
This is also confirmed by the parameter estimators of the ”super model” ,
i.e. of the HJK-distribution.
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Fig. 4 Log returns and kernel density.

T bµ bδ bθ bn bβ LL
HJK −0.0026 1.3808 0.2843 201.23 0.6208 −7310.7

H −0.0084 1.465 0.2319 ∞ 1.00 −7315.7
HK −0.0172 1.403 0.1750 5.50 1.00 −7311.2
K −0.0264 1.285 0.3918 1.00 1.00 −7320.1

H −0.0084 1.465 0.2319 ∞ 1.00 −7315.7
HJ −0.0215 1.376 0.2975 ∞ 0.60 −7310.7
J −0.0201 1.385 0.4059 ∞ 0.50 −7311.2

Table 4 ML estimation

The second data set is taken from the BC-pAug89 data in the Internet Traffic
Archive2. It measures the transferred bytes/sec within consecutive seconds.
The trace BC-pAug89 began at 11:25 on August 29, 1989, and ran for about
3143 seconds. The data are heavy-tailed featuring an excess kurtosis of
1.66. A further look on the time series and the corresponding kernel density
estimation in figure 5 points out the significant skewness inherent to the
internet traffic data (the third standardized moment is about 1.26).
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Fig. 5 Different HJ-distributions.

2 http://ita.ee.lbl.gov/html/contrib/BC.html
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For this reason, we also include a specific skewness transformation (for de-
tails on that transformations we refer to Rayner & MacGillivray, 2002a) to
obtain the G−HJK-transformation

TG−HJK(z) =
(

1 + 0.8 · 1− exp(−gz)
1 + exp(−gz)

)
z · THJK(z; θ, n, β)

which reduces to the HJK-transformation in the symmetric case, i.e. for
g = 0. Otherwise, the G−HJK distributions are skewed to the right (g > 0)
or skewed to the left (g < 0). Table 5 contains the ML-estimators and the
corresponding log-likelihood values.

T g µ δ θ n β LL
G−HJK 0.7528 115690 77247 0.0078 199.9 1.52 −39546

G−H 0.7917 124130 88680 0.0348 ∞ 1.00 −39579
G−HK 0.7784 115681 77251 0.0241 199.8 1.00 −39549
G−K 0.7894 115440 72435 0.1123 1.00 1.00 −39568

G−H 0.7917 124130 88680 0.0348 ∞ 1.00 −39579
G−HJ 0.7528 115610 74931 0.0166 ∞ 1.15 −39549
G− J 0.7829 115600 74930 0.1008 ∞ 0.50 −39554

Table 5 ML estimation

Again, the J-transformation outperforms both H-transformation and K-
transformation. Applying either the HK-transformation or the HJ-trans-
formation instead of a ”standard”-transformation increases the log-likelihood
at any case. However, application of the HJK-transformation leads to a
slight additional improvement of the log-likelihood-value. The estimation
results suggest that β À 1, n = ∞ and θ ≈ 0 might be the best choice for
the underlying data set.

6 SUMMARY

The construction of heavy-tailed distributions by transforming the standard
normal variable goes back to Tukey (1977) who introduced the family of H-
distributions or simply H-distributions derived from the H-transformation.
Other transformations (e.g. K-transformation and J-transformation) fol-
lowed up. Within this work we introduced and discussed the very general
HJK-transformation and its corresponding distribution which nests H-, J-
and K-transformations as (tractable) special case and allows to discriminate
between them. Application to financial returns and internet traffic data is
given.
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