Fischer, Matthias J.; Dörflinger, Marco

Working Paper
A note on a non-parametric tail dependence estimator

Diskussionspapier, No. 76/2006

Provided in Cooperation with:
Friedrich-Alexander-University Erlangen-Nuremberg, Chair of Statistics and Econometrics

Suggested Citation: Fischer, Matthias J.; Dörflinger, Marco (2006) : A note on a non-parametric tail dependence estimator, Diskussionspapier, No. 76/2006, Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Statistik und Ökonometrie, Nürnberg

This Version is available at:
http://hdl.handle.net/10419/29588

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
A NOTE ON A NON-PARAMETRIC TAIL DEPENDENCE ESTIMATOR

Matthias Fischer & Marco Dörflinger
Department of Statistics and Econometrics
University of Erlangen-Nürnberg, Germany
Email: Matthias.Fischer@wiso.uni-erlangen.de

SUMMARY
We present a non-parametric tail dependence estimator which arises naturally from a specific regression model. Above that, this tail dependence estimator also results from a specific copula mixture.

Keywords and phrases: Upper tail dependence; nonparametric estimation; copula

1 Coefficients of Tail Dependence (TDC)

Let X and Y denote two random variables with joint distribution $F_{X,Y}(x, y)$ and continuous marginal distribution functions $F_X(x)$ and $F_Y(y)$. According to Sklar’s (1960) fundamental theorem, there exists a unique decomposition

$$F_{X,Y}(x, y) = C(F_X(x), F_Y(y))$$

of the joint distribution into its marginal distribution functions and the so-called copula (function)

$$C(u, v) = P(U \leq u, V \leq v), \quad U \equiv F_X(X), \quad V \equiv F_Y(Y)$$

on $[0, 1]^2$ which comprises the information about the underlying dependence structure (For details on copulas we refer to Joe, 1997). The concept of tail dependence provides, roughly speaking, a measure for extreme co-movements in the lower and upper tail of $F_{X,Y}(x, y)$, respectively. The upper tail dependence coefficient (TDC) is usually defined by

$$\lambda_U \equiv \lim_{u \to 1^-} P(Y > F_Y^{-1}(u) | X > F_X^{-1}(u)) = \lim_{u \to 1^-} \frac{1 - 2u + C(u, u)}{1 - u} \in [0, 1]. \quad (1.1)$$

noting that λ_U is solely depending on $C(u, v)$ and not on the marginal distributions. Analogously, the lower TDC is defined as

$$\lambda_L \equiv \lim_{u \to 0^+} P(Y \leq F_Y^{-1}(u) | X \leq F_X^{-1}(u)) = \lim_{u \to 0^+} C(u, u). \quad (1.2)$$

Coles et al. (1999) provide asymptotically equivalent versions of (1.1) and (1.2),

$$\lambda_L = 2 - \lim_{u \to 0^+} \frac{\log(1 - 2u + C(u, u))}{\log(1 - u)} \quad \text{and} \quad \lambda_U = 2 - \lim_{u \to 1^-} \frac{\log C(u, u)}{\log(u)}. \quad (1.3)$$

For reason of brevity, we focus on the upper TDC λ_U. Results on the lower TDC can be obtained in a similar manner.
2 Reviewing non-parametric TDC-estimators

For a given (bivariate) random sample of length \(n\) \((X_1, Y_1), \ldots, (X_n, Y_n)\) from \((X, Y)\) let

\[X(1) = \min\{X_1, \ldots, X_n\} \leq \ldots \leq X(n) = \max\{X_1, \ldots, X_n\}\]

denote the corresponding order statistics. All of the relevant non-parametric TDC-estimator \(\hat{\lambda}_U\) of \(\lambda_U\) (See, e.g., Schmidt & Stadtmüller, 2006, Frahm, Junker & Schmidt, 2005 and Dobric & Schmid, 2005) rest upon the non-parametric copula estimator

\[
C_n(i/n, j/n) = \frac{1}{n} \sum_{l=1}^{n} 1(X_l \leq X(i), Y_l \leq Y(j)).
\]

(2.1)

Plugging (2.1) into equation (1.1) and its asymptotically equivalent version (1.3), respectively, a first pair of estimators is obtained (via "simple replacement")

\[
\hat{\lambda}_U^{[1]} = \frac{C_n((1-k/n, 1) \times (1-k/n, 1))}{1 - (1-k/n)} \quad \text{and} \quad \hat{\lambda}_U^{[2]} = 2 - \frac{\log C_n(1-k/n, 1-k/n)}{\log(1-k/n)},
\]

where \(k \approx \sqrt{n}\) seems to be appropriate (cp. Dobric & Schmid, 2005, section 4). Secondly, Dobric & Schmid (2005) interpret equation (1.1) after suitable re-formulations as regression equation

\[
C_n((1-i/n, 1) \times (1-i/n, 1)) = \lambda_U \cdot \frac{i}{n} + \varepsilon_i, \quad i = 1, \ldots, k
\]

(2.2)

which motives \(\hat{\lambda}_U^{[3]}\) as OLS-estimator of equation (2.2). Thirdly, Dobric & Schmid (2005) propose to approximate the unknown copula \(\tilde{C}(u, v)\) by the convex-combination \(\tilde{C}(u, v) = \alpha \min\{u, v\} + (1-\alpha)uv\) of the maximum (co-monotonicity) copula \(\min\{u, v\}\) and the independence copula \(C_\perp(u, v) = uv\) (i.e. copula \(B_{11}\) in Joe, 1997). Noting that \(\lambda_U\) of \(\tilde{C}\) is given by \(\alpha\), Dobric & Schmid (2005) introduce \(\hat{\lambda}_U^{[4]}\) which corresponds to that \(\alpha\) which minimizes

\[
F(\alpha) = \sum_{i=1}^{k} \left(C_n \left(\frac{1-i}{n}, 1 - \frac{i}{n} \right) - \tilde{C} \left(\frac{1-i}{n}, 1 - \frac{i}{n} \right) \right)^2.
\]

The following tables classifies the above-mentioned estimators \(\hat{\lambda}_U^{[i]}, i = 1, \ldots, 4\). By the end of this work we present an TDC-estimator \(\lambda_U^{(6)}\) which coincides with the TDC-estimator \(\hat{\lambda}_U^{(5)}\) which arises from a regression equation derived from TDC-formula (1.3).

<table>
<thead>
<tr>
<th>Underlying method</th>
<th>(1.1)</th>
<th>(1.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple replacement</td>
<td>(\hat{\lambda}_U^{(1)})</td>
<td>(\hat{\lambda}_U^{(2)})</td>
</tr>
<tr>
<td>Regression approach</td>
<td>(\hat{\lambda}_U^{(3)})</td>
<td>(\hat{\lambda}_U^{(4)})</td>
</tr>
<tr>
<td>Approximation</td>
<td>(\hat{\lambda}_U^{(5)})</td>
<td>(\hat{\lambda}_U^{(6)})</td>
</tr>
</tbody>
</table>

Table 1: A classification scheme of non-parametric TDC estimators.
3 Derivation of a new non-parametric TDC-estimator

Instead of considering the arithmetic mean of the independence copula C_\perp and the co-monotonicity copula C_U, we now focus on the geometric mean of C_\perp and C_U (i.e. copula family B12 in Joe, 1997), that is

$$C^*(u, v) = (\min\{u, v\})^{\delta} \cdot (uv)^{1-\delta}, \quad \delta \in [0, 1].$$ \hspace{1cm} (3.1)

We first proof that δ corresponds to the lower TDC of C: Using equation (1.3),

$$\lambda_U = 2 - \lim_{u \to 1-} \frac{\log C^*(u, u)}{\log(u)} = 2 - \lim_{u \to 1-} \frac{\log(u^{2-\delta})}{\log(u)} = \delta. \hspace{1cm} (3.2)$$

In accordance to Dobric & Schmid (2005), approximating the (unknown) copula $C(u, v)$ by $C^*(u, v)$, an estimator for λ_U is given by

$$\hat{\lambda}_U^{(6)} = \arg\min_{\lambda \in [0, 1]} \sum_{i=1}^{k} \left(C_n\left(1 - \frac{i}{n}, 1 - \frac{i}{n}\right) - \left(1 - \frac{i}{n}\right)^{2-\lambda}\right)^2. \hspace{1cm} (3.3)$$

We next show that $\hat{\lambda}_U^{(6)}$ equals $\hat{\lambda}_U^{(5)}$, a new estimator which results from an LS-estimator of the equation

$$\log C_n\left(1 - \frac{i}{n}, 1 - \frac{i}{n}\right) = (2 - \lambda_U) \cdot \log \left(\frac{i}{n}\right) + \varepsilon_i, \quad i = 1, \ldots, k$$

which itself follows from the Coles et al. (1999) formula (1.3) in combination with (2.1).

Lemma 3.1. The tail dependence estimator $\hat{\lambda}_U^{(6)}$ and $\hat{\lambda}_U^{(5)}$ are asymptotically equivalent.

Proof: We first observe that the LS estimator can be represented as

$$\hat{\lambda}_U^{(5)} = \arg\min_{\lambda \in [0, 1]} \sum_{i=1}^{k} \left(\log C_n\left(1 - \frac{i}{n}, 1 - \frac{i}{n}\right) - (2 - \lambda) \cdot \log \left(1 - \frac{i}{n}\right) \right)^2. \hspace{1cm} (3.4)$$

Now, using the relationship $\log(y^d) \approx 1 - y^d$ for $y \approx 1$ and $d \in [0, 1]$,

$$\hat{\lambda}_U^{(5)} \approx \arg\min_{\lambda \in [0, 1]} \sum_{i=1}^{k} \left(1 - C_n\left(1 - \frac{i}{n}, 1 - \frac{i}{n}\right) - 1 + \left(1 - \frac{i}{n}\right)^{2-\lambda} \right)^2$$

$$\approx \arg\min_{\lambda \in [0, 1]} \sum_{i=1}^{k} \left(C_n\left(1 - \frac{i}{n}, 1 - \frac{i}{n}\right) - \left(1 - \frac{i}{n}\right)^{2-\lambda} \right)^2 = \hat{\lambda}_U^{(6)}. \hspace{1cm} \square$$
References

