

A Service of



Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Zhao, Yuejun; Markussen, Simen; Røed, Knut

## **Working Paper**

School Starting Age and the Social Gradient in Educational Outcomes

IZA Discussion Papers, No. 16851

#### **Provided in Cooperation with:**

IZA - Institute of Labor Economics

Suggested Citation: Zhao, Yuejun; Markussen, Simen; Røed, Knut (2024): School Starting Age and the Social Gradient in Educational Outcomes, IZA Discussion Papers, No. 16851, Institute of Labor Economics (IZA), Bonn

This Version is available at: https://hdl.handle.net/10419/295874

#### Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

#### Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.





# **DISCUSSION PAPER SERIES**

IZA DP No. 16851

# **School Starting Age and the Social Gradient in Educational Outcomes**

Yuejun Zhao Simen Markussen Knut Røed

MARCH 2024



# **DISCUSSION PAPER SERIES**

IZA DP No. 16851

# School Starting Age and the Social Gradient in Educational Outcomes

## Yuejun Zhao

University of Edinburgh and the Ragnar Frisch Centre for Economic Research

#### Simen Markussen

The Ragnar Frisch Centre for Economic Research

#### Knut Røed

The Ragnar Frisch Centre for Economic Research and IZA

MARCH 2024

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.

The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world's largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ISSN: 2365-9793

IZA DP No. 16851 MARCH 2024

## **ABSTRACT**

# School Starting Age and the Social Gradient in Educational Outcomes\*

Can lowering school starting age promote equality of opportunities and reduce the achievement gaps between pupils? We provide evidence on the heterogeneous (positional) effects on early school performance of two mandatory schooling reforms in Norway specifically aimed at reducing achievement gaps based on family background and immigrant status. Whereas the first reform reduced the school starting age from seven to six, the second changed the first-year curriculum from a play-oriented kindergarten pedagogy to a learning-oriented school pedagogy. We apply repeated simple difference models to evaluate the two reforms based on high-quality administrative register data, using children's grade point average (GPA) rank at age 15 to 16 and high school completion at age 21 as the main outcomes. We find no evidence that any of the reforms had the intended effect of reducing socioeconomic achievement gaps or immigrant-native differentials. Both reforms left educational inequalities more or less unchanged.

JEL Classification: 124, 128

**Keywords:** school performance, socioeconomic status, parental earnings,

immigrant children, relative age, social mobility

#### Corresponding author:

Yuejun Zhao School of Economics University of Edinburgh Edinburgh EH8 9JT United Kingdom

E-mail: yuejun.zhao@ed.ac.uk

<sup>\*</sup> Administrative registers made available by Statistics Norway have been essential. We are grateful to Nina Drange for her comments and discussions. We acknowledge financial support from the Research Council of Norway, grant number 300917. All errors are ours.

## 1 Introduction

In 1997, Norway implemented a reform reducing the school starting age from seven to six years while extending the length of compulsory school from nine to ten years. A major aim of the reform was to counter differences in learning outcomes between children from different socioeconomic backgrounds (Ministry of Church, Education and Research, 1993, p. 7). As children from economically disadvantaged families were strongly underrepresented in high-quality pre-school programs, it was hoped that a lower legislated school starting age could level the playing field. A particular concern was that many children from immigrant families did not participate in these programs, implying that they often started school at age seven with a considerable language disadvantage. To bridge the transition from kindergarten or the home environment to the school environment, the new first grade was to a large extent built on a kindergarten pedagogy, with a focus on play-oriented learning.

Nine years later—in 2006—the reform was reformed, such that the first-grade curriculum was transformed to a more standard school pedagogy. Again, an important part of the motivation was to mitigate the socioeconomic achievement gaps (Ministry of Education and Research, 2005, p. 3). A central worry was that the lack of formal learning in school lead to more socially skewed home-based learning, in effect nullifying the potential benefits of earlier school starting age and augmenting the social gradient in learning outcomes.

The lower school starting age in Norway has also fueled a debate about gender and relative age effects. This is based on two observations: firstly, that children born early in the year (and thus tend to be among the older in the class) perform better than those born later in the year (Dobkin and Ferreira, 2010; Peña, 2017), and secondly, that girls mature a bit earlier than boys and thus obtain an early learning advantage (Bertrand and Pan, 2013). The worry is that the lowering of school starting age may have exacerbated the achievement gaps related to relative age and gender. And in 2019, a government commission discussed the option of introducing a more flexible and individually adapted school starting age to offset differences in maturity (Ministry of Education and Research,

### 2019).

In the present paper, we evaluate how the two reforms have affected relative school performance along the dimensions of i) socioeconomic background (parental earnings rank), ii) immigration background, iii) relative age, and iv) gender. In the study of socioeconomic background, we pay particular attention to whether or not one of the parents is a homemaker at the child's age five, such that a realistic alternative to starting school at age six is to stay at home another year.

Our primary measures for school performance are GPA rank obtained at age 15 to 16, adjusted for differences in grading standards identified through the use of externally graded exams, and high school completion by age 21. For the first of the two reforms, we also examine outcomes observed at higher ages, such as educational attainment and early labor market earnings.

Our analysis is built on a repeated simple-difference framework whereby we look for changes in the various outcome gradients for cohorts affected and unaffected by the reforms; i.e., the achievement gaps across family backgrounds, immigrant status, relative age (month-of-birth), and gender. Our results indicate that the two reforms had no effects whatsoever on any of the gradients in question. While there are some changes from cohort to cohort, and also some trends suggesting declining upward mobility for children born into disadvantaged families, there are no signs of exceptionally large changes around the two reform years. We also find no clear evidence of differential effects with respect to parents' labor market status.

Our paper speaks to several existing literatures, including school starting age (Black et al., 2011; Cornelissen and Dustmann, 2019; Rosa et al., 2019), relative age (Berniell and Estrada, 2020; Fredriksson and Öckert, 2013; Suziedelyte and Zhu, 2015), changes in intergenerational mobility (Havnes and Mogstad, 2011, 2015; Markussen and Røed, 2023), and gender gaps (Cobb-Clark and Moschion, 2017; Cook and Kang, 2020).

A paper of particular interest is Drange et al. (2016), which evaluated the first of the reforms examined in our paper. The authors consider the lowering of mandatory school starting age as an extension of universal childcare. Using a difference-in-difference approach, the authors compare outcomes before and after the reform for children who would enter childcare as a result of the reform (the treatment group) with those who would have been in kindergarten regardless of the reform (the control group). Their findings point to negligible impact of the reform on children's school performance and academic tracking. Furthermore, they find little heterogeneity across subsamples by parental characteristics, family structure, and welfare dependency.

Our paper differs from Drange et al. (2016) in several important aspects. To begin with, we evaluate the 1997 reform jointly with the 2006 reform, which made the first school year much more school-like. Second, whereas Drange et al. (2016) focus on the absolute effects of the reform, our focus is entirely on the social gradient in outcomes and on the nature of socioeconomic and immigrant-native achievement gaps. This makes our analyses less vulnerable with respect to confounding factors affecting average school performance, obviously at the cost of not being able to identify any reform effects on this average. Third, we identify reform-induced changes in social mobility by leveraging rank-based family background measures that, in contrast to parental education, have the exact same distribution for all cohorts and arguably also a more stable socioeconomic interpretation. This reduces the risk that changes in achievement gaps arise from changes in the composition of parents along the trait used to define parental background. Finally, since all school-aged children were subject to the reforms after their implementation, the treatment-control approach does not apply in our context. We solve this by relying on a rolling single differencing approach to track the relevant achievement gaps over several years, offering insights into their underlying trends as well as on the (lack of) impacts of the reforms.

The rest of the paper is organized as follows. Section 2 outlines the institutional setting. Section 3 introduces the data and variables and describes the methodology and trends. Section 4 presents and discusses the results. Section 5 concludes the paper. Appendix A contains the results of the robustness checks. Appendix B delivers additional results on educational attainment. Appendix C examines early labor market outcomes.

## 2 Institutional Setting

Compulsory schooling in Norway applies to all resident children of eligible age. The school year starts in mid-August and ends in late June. Schools follow a common curriculum with no tracking, grade retention, or grade promotion. By default, students are assigned to free public schools according to their residential addresses (Markussen and Røed, 2023).

A central idea behind the Norwegian schooling system is that all children can go to the same school, regardless of social background, family resources, intellectual ability, ethnicity, etc. This is sometimes referred to as the unitary school principle ("Enhetsskolen"), a concept introduced in the early twentieth century and enforced through subsequent policies (Nilsen, 2010). An important aim of the unitary school is to foster diversity and ensure equality of opportunities for all, in particular across social and geographical groups.

The first reform we study, Reform 97, was launched in 1997. Prior to that, the duration of compulsory schooling was nine years, and school started in August the calendar year in which children reach the age of seven. In one of the central policy papers advocating the reduction of the school starting age, the motivation was explained as follows: "School from the age of 6 will, in contrast to a voluntary offer in kindergarten, reach everyone with an equal educational offer, regardless of place of residence and the family's finances. It will be able to counteract the effects of the differences in learning ability and willingness to learn which are due to different growing-up conditions and social background. Children with an immigrant background will greatly benefit from being assured of a Norwegian-speaking environment and adapted education a year earlier than today" (Ministry of Church, Education and Research, 1993, p. 7; our translation).

Reform 97 involved two closely related initiatives. First, it lowered the age at which pupils start school from seven to six years. Second, it extended compulsory education from nine to ten years (Ministry of Church, Education and Research, 1994). The rationale for implementing both initiatives was that lowering school starting age alone may impede learning due to pupils' lack of maturity (Thuen and Volckmar, 2020). Since 1997, Norwegian children start school during the calendar year in which they reach the age of

six, and they are comprehensively trained in the extended 10-year compulsory schooling (Ministry of Church, Education and Research, 1994).

To adapt to the 10-year structure, a new curriculum was devised and launched between 1997 and 1999. The curriculum was divided into three stages: primary (grades one to four), intermediate (grades five to seven), and lower secondary school (grades eight to ten). In the primary stage, Reform 97 promoted the integration of the "play" aspect of kindergarten and the "learning" aspect of school. This primary stage was designed to ensure a smooth transition from nursery to formal education (Ministry of Church, Education and Research, 1993, 1996).

Knowledge Promotion ("Kunnskapsløftet") was a reform implemented in the fall of 2006. It led to changes in the schools' curriculum, structure, and organization (Ministry of Education and Research, 2004). The curriculum revision was partly a response to Norwegian children's disappointing performance in the PISA test in 2001 (Imsen et al., 2017). In this context, the goal of Knowledge Promotion was to help all pupils develop basic skills that are necessary for an active participation in a knowledge-based society (Ministry of Education and Research, 2006). In line with the principles of a unitary school, Knowledge Promotion advocated an inclusive learning environment, ensuring that everyone was given equal opportunities to develop their abilities (Ministry of Education and Research, 2006). The policy paper highlighted that "Evaluations of previous reforms also show that there are large differences in Norwegian schools, and that there are systematic differences between students as a result of gender and social and ethnic background. The aim of the Knowledge Promotion is for all pupils to acquire the basics skills and the competence they need to get by in life. Everyone should get the same the opportunities to develop their abilities, regardless of social or ethnic background" (Ministry of Education and Research, 2005, p. 3; our translation).

Following Knowledge Promotion, the 10 years of compulsory schooling was restructured into two stages: primary school (grades one to seven) and lower secondary school (grades eight to ten). Grades one to nine of the 10-year compulsory school adopted the new curriculum from the 2006–2007 school year, while the 10th grade implemented the

new curriculum from the 2007–2008 school year. Crucially, the curriculum reform introduced systematic reading and writing in the first grade. In other words, the pedagogy for the first year shifted from a play-oriented approach to a more learning-focused one (Ministry of Education and Research, 2004). If we interpret the school starting age as the age at which children are exposed to structured learning, e.g., in the form of reading and writing, this pedagogy revision effectively reduced school starting age once again.

## 3 Data and Methods

#### 3.1 Data

The study design follows the implementation of the reforms closely. We compare children born just before and just after relevant eligibility cutoff dates; children born before the cutoff dates constitute the control group, and those born after the cutoff dates represent the treatment group. The assignment of treatment is thus determined by birth date only. Parents could apply for earlier or later school start for their kids, but our analysis will be based on an intention-to-treat (ITT) strategy.

We use comprehensive registry data from Norway to conduct our analysis (Statistics Norway, 2020a,b,c,d,e,f,g,h,i,j,k,l). The sampling bias is minimized since the data cover the entire Norwegian population. Our sample period starts with the 1987 birth cohort, four years prior to the Reform 97 cohort, and ends in 2002, three years after the Knowledge Promotion cohort. We work with two samples, one comprising native children only, and the other combining native and immigrant children. We rely on the native sample for analysis related to the social gradient, since parental information is missing for some first-generation immigrants. The native sample includes 871,971 children, 51.2% of whom are males, and for 94.1% of whom we can match both parents. We draw on the combined sample for the remaining analysis, namely, on immigration and relative age gradients. The combined sample contains 928,366 children, 51.2% of whom are males, and 6.1% of whom are immigrants from low- or middle-income countries. The emphasis on children from low- or middle-income countries reflects that these children likely experienced greater

cultural and educational differences than children from high-income countries. The latter group turns out to behave similarly as natives and are thus included in the native group.

The outcomes, covariates, and designated reference groups are described in Table 1. Note that GPA is a composite measure of grades in all subjects, assessed at the end of compulsory school. We adjust for local grading standards using average school-by-year GPA and national test scores, following Markussen and Røed (2023).

We describe family background in terms of parental earnings rank during prime age. To begin with, we collect annual earnings between ages 40 and 46 for both parents. Next, we scale the earnings by the Basic Amount ("Grunnbeløpet"), a national wage index that tracks aggregate wage growth. Then, we rank the adjusted annual earnings and average the top three earnings (that can come from the mother and/or the father). The resultant ranking then captures the parents' earnings potential, which obviously will be highly correlated with other socially and genetically inheritable characteristics relevant for the offspring's educational performance, such as cognitive ability, self-control, ambitions, home environment (e.g., Ulvestad and Markussen, 2023), social networks, and neighborhood characteristics (e.g., Markussen and Røed, 2022). Hence, it arguably comes close to something we can interpret as social class background. To operationalize the earnings rank indicator in our analysis, we divide the population into five bins; i.e., decile 1 in the parental earnings rank distribution (bottom class), decile 2–3 (lower class), decile 4–7 (middle class), decile 8–9 (upper class), and decile 10 (top class).

An important advantage of the earnings-rank-based measure of family background is that it by construction has the exact same distribution (and interpretation) for all cohorts. This ensures that any changes in the relationship between family background and offspring outcomes can be interpreted as genuine changes in the degree of intergenerational mobility. By contrast, when parental education is used to characterize family background, it is typically difficult to assess whether changes in the intergenerational associations reflect changes in mobility or changes in the sorting into attainment brackets within the parent generations. Consequently, we adopt parental earnings rank for the main analysis, and employ parental education as an alternative measure for robustness checks.

Table 1: Definitions of outcomes and covariates

| Variable                                  | Definition                                                                                                       |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Outcomes                                  |                                                                                                                  |
| GPA rank                                  | Standardized grade point average ranked by birth year in                                                         |
|                                           | percentiles $^a$                                                                                                 |
| High school completion <sup>†</sup>       | = 1 if the individual has finished high school by age 21                                                         |
| Covariates                                |                                                                                                                  |
| $\mathrm{Male}^{\dagger}$                 | = 1 if the individual is a male (reference category: fe-                                                         |
|                                           | males)                                                                                                           |
| Parental earnings rank (PER) <sup>†</sup> | Indicators for the decile rank (1, 2–3, 4–7, 8–9, 10) of the                                                     |
|                                           | highest three parental earnings between 40 and 46 by the                                                         |
| TT 1. 4.†                                 | child's birth year <sup>b</sup> (reference category: deciles 4–7)                                                |
| Home-making parent <sup>†</sup>           | = 1 if either parent earned less than two times the Basic                                                        |
|                                           | Amount when the individual was five, $= 0$ if both parents were working and earned more than two times the Basic |
|                                           | Amount (reference category: home-making parent)                                                                  |
| Immigration status <sup>†</sup>           | Indicators for whether the individual is a native, a second-                                                     |
| iiiiiigi acioii scacas                    | generation immigrant, a first-generation immigrant ar-                                                           |
|                                           | riving between one and five, or a first-generation immi-                                                         |
|                                           | grant arriving between six and nine. Immigrants refer to                                                         |
|                                           | those from low- or middle-income countries, categorized as                                                       |
|                                           | per the World Bank's classification in 2004 (World Bank,                                                         |
|                                           | $2021)^c$ (reference category: natives)                                                                          |
| Birth months <sup>†</sup>                 | Birth month indicators: January to February, March to                                                            |
|                                           | April, May to August, September to October, November                                                             |
|                                           | to December (reference category: May to August)                                                                  |

Notes: A <sup>†</sup> indicates a dichotomous variable that equals zero if the stated condition is not met. <sup>a</sup> We treat missing records as zero (i.e., minimum grade) and generate two separate ranks, one among natives and one combining natives and immigrants. <sup>b</sup> We rank only the parental earnings of natives, and missing parental earnings are excluded. <sup>c</sup> We categorize immigrants' source countries using World Bank's classification in 2004 because 2004 had marked the beginning of the expansion of the European Union; the income classifications of member countries have changed since then, but the immigrants in our sample have not experienced such changes before they migrated. Immigrants from high-income countries are categorized as natives.

#### 3.2 Methods

We introduce a repeated simple-difference framework where for each regression, we restrict attention to two adjacent years in the sample, setting the second year as either the true reform year or as a placebo reform year. We start at the beginning of the sample and roll the window forward to cover the entire sample period. More specifically, we start with a window that contains cohorts born in 1987 and 1988, assuming that a (placebo) reform was enforced on the 1988 birth cohort. Then, we move the window to 1988 and

1989 birth cohorts, this time assuming the reform was enforced on children born in 1989. We repeat this exercise until the entire sample period is covered. The real reform years were 1991 and 2000, whereas the placebo reform years were the remaining years between 1988 and 2002.

For each real or placebo reform, let  $S_i = \{X_{i1}, \ldots, X_{ik}\}, k \geq 1$  denote the set of covariates for individual i and  $\mathcal{P}(S_i)$  the power set of  $S_i$ . Then, for each subset  $S_{ij} \subseteq \mathcal{P}(S_i)$  (excluding the empty set), we construct  $\Pi(S_{ij})$  as the product of all elements in the subset. To estimate the relative effects of the reforms, we specify

$$y_i = \alpha + \beta \times \text{reform}_i + \sum_j \gamma_j \times \Pi(S_{ij}) + \sum_j \delta_j \times \Pi(S_{ij}) \times \text{reform}_i + \varepsilon_i,$$
 (1)

where  $y_i$  denotes the outcome for child i, reform<sub>i</sub> is an indicator variable that equals 1 if the child was born in the second year of the two-year period, and hence exposed to either the real or the placebo reform.  $S_i$  draws from parental earnings rank, immigration status, birth month, gender, and parental role (i.e., home-making or working), the former three constituting vectors with multiple indicators in  $X_i$ . We are interested in the parameter  $\delta_j$ , the reform-induced changes in outcome compared to changes in the reference group. For example, to examine how male and female immigrants ("immg") respond to the reform, we specify:

$$\begin{split} y_i &= \alpha + \beta \ \mathrm{reform}_i + \gamma_m \ \mathrm{male}_i + \sum_f \gamma_f \ \mathrm{immg}_{if} + \sum_f \gamma_{mf} \ \mathrm{male}_i \times \mathrm{immg}_{if} \\ &+ \sum_f \delta_{mf} \ \mathrm{male}_i \times \mathrm{immg}_{if} \times \mathrm{reform}_i + \sum_f \delta_{\overline{m}f} \left(1 - \ \mathrm{male}_i \right) \times \mathrm{immg}_{if} \times \mathrm{reform}_i + \varepsilon_i, \end{split}$$

where we use subscript m for males,  $\overline{m}$  for females, and f for immigration category.

We estimate ITT effects using year of birth, rather than actual school starting age. The reason is that while we can infer actual school starting age from observed data, it is likely endogenously determined as parents react to the reforms. For example, parents may hold off children born late in the year (such as December) to start a year later ("redshirting"), or enroll children born early in the year (such as January) a year sooner (Deming and Dynarski, 2008; Larsen and Solli, 2017). In Figure 1, we plot the proportion

of noncompliers across years using age at completion

$$\widehat{\text{School starting age}_i} = \begin{cases} \text{Age at completion}_i - 9 & \text{if birth year } < 1991 \\ \text{Age at completion}_i - 10 & \text{if birth year } \geq 1991. \end{cases}$$

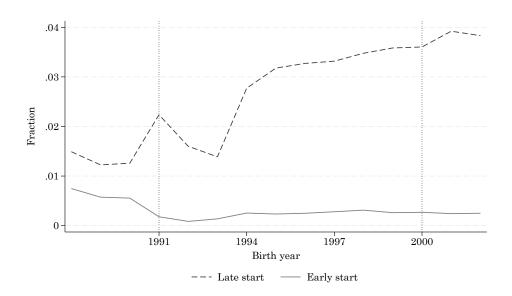



Figure 1: The proportion of children who start earlier and later than 6/7. We identify early and late starters based on age and grade at completion. The reform years, 1991 and 2000, are marked by the dotted vertical lines.

Since there is hardly any grade retention or promotion in Norway, the age at completion (which is also the age a child takes the GPA test) will almost perfectly identify school starting age. We do observe that in the 1991-cohort, more children start later (2.2%) than in neighboring years, and fewer children start earlier (0.2%) than before. In the 2000-cohort, up to 3.6% of children enroll later than age 6, and 0.3% enroll sooner. This noncompliance adds noise to the data, especially around the reform years.

## 3.3 Trends

Are there trends in the socio-demographic markers during the sample period? In Figure 2, we illustrate the trends in immigration, month of birth, gender, and parental roles for cohorts born between 1988 and 2002. The proportion of immigrant children (panel a) has increased over the sample period, especially second-generation immigrants. This was

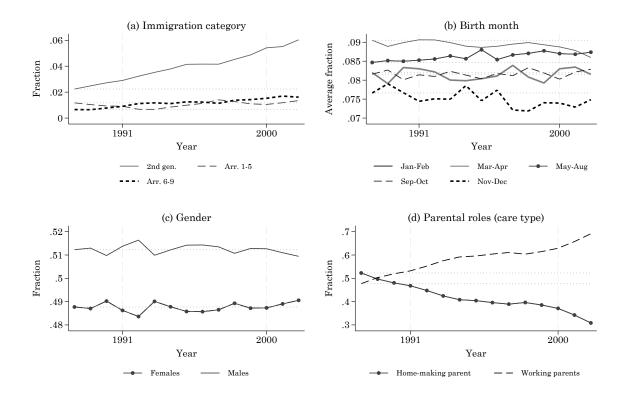



Figure 2: Descriptive trends among children born between 1988 and 2002. (a) Immigration categories: second-generation immigrants from low- or middle-income countries, first-generation immigrants from low- or middle-income countries arriving between ages one and five, and between ages six and nine. Due to high prevalence, we do not plot natives in panel (a). (b) Birth months: January to February, March to April, May to August, September to October, and November to December. (c) Gender: females and males. (d) Parental roles implying care type: home-making parent (home care) and working parents (kindergarten care).

partly driven by the expansion of the European labor market in 2004 (Hoen et al., 2022). In panel (b), we observe that some months have consistently higher average birth rate than others, notably, January to February, and May to August. This seasonal variation in births can be attributed to factors such as climate and holiday patterns.

Panel (c) plots the trends in the proportion of males and females. Over the years, there are consistently more boys than girls, and the average gap is 2.5 percentage points. Towards the end of the sample, the gap has tightened but the difference is still well over one percentage point. Over time, there has been a continuous decline in the proportion of children with home-making parents at the child's age five and thus a potential for home care at age six (panel d), while the proportion with working parents has steadily climbed. Starting from 1989, there are more children without a homemaker parent than there are

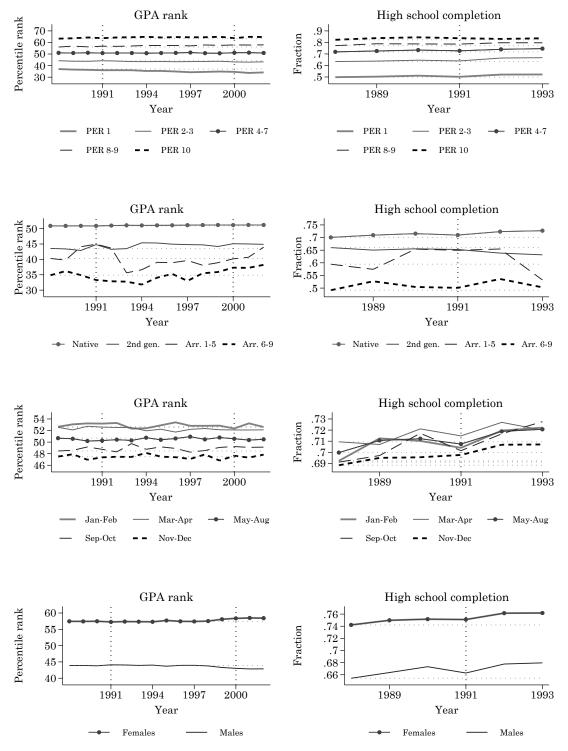
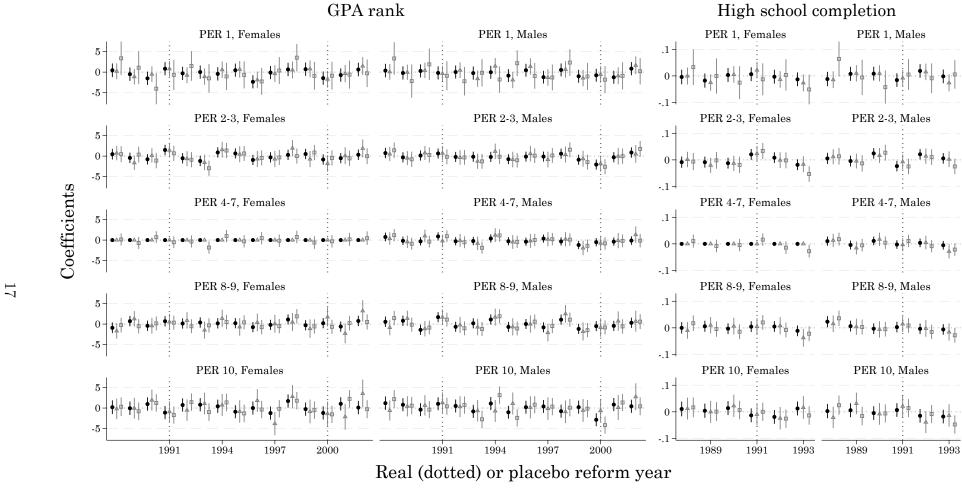



Figure 3: Average child outcomes by parental earnings rank (PER) deciles, immigration categories, birth months, and gender. We focus on births between 1988 and 2002 for GPA, which is measured at age 15 to 16 for most children. For high school completion, which is assessed by age 21, we restrict attention to births between 1988 and 1993. Parents are ranked based on their top three earnings from ages 40 to 46 and the child's birth year. Children are categorized into five classes: bottom class (decile 1), lower class (deciles 2 to 3), middle class (deciles 4 to 7), upper class (deciles 8 to 9), and top class (decile 10). Concerning immigration categories, children are categorized into four immigration groups: natives, second-generation immigrants from low- or middle-income countries arriving between ages one and five, and between ages six and nine. Immigrants from high-income countries are treated as natives. Regarding relative age, children are categorized into five groups based on their birth months: January to February, March to April, May to August, September to October, and November to December.

with a homemaker parent. This trend may be credited to the rise in female labor force participation and the corresponding increase in preschool enrollment after 1990 (Black et al., 2011).

In Figure 3, we present average child outcomes by parental earnings rank, immigration category, birth month, and gender over the sample period. Some interesting patterns can be identified from the panels. First, there is a clear ranking in GPA and high school completion by social class (top row): children's outcomes improve with their parents' social standing. For GPA rank, the gap widens over the years, with bottom class offspring lagging behind. Second, native students attain better outcomes than immigrants (second row). The disadvantages are the most pronounced for first-generation immigrants who arrived after the age of six, despite steady improvements in their GPA rank and high school completion. Third, being old-for-grade (i.e., born earlier in the year) gives pupils a clear advantage in GPA, whereas being young-for-grade (i.e., born later in the year) means lower achievements (third row). The differences between intermediate birth groups are less distinct for high school completion. Fourth, there exist persistent achievement gaps between females and males (fourth row), with females consistently outperforming males under both measures.

These descriptive findings tentatively suggest that the reforms may have been ineffective at leveling the playing field. Had they succeeded, we should probably have witnessed breaks in the trends around the reform years and narrower achievement gaps in subsequent periods. We do not see any clear evidence in this direction.


## 4 Results

In this section, we report the interaction coefficients from Equation (1) for the real and the placebo reforms. These coefficients can be interpreted as the change from one cohort to another in the positional (relative) influence of background characteristics, as if a reform took place for the second of the two cohorts. For most of the years, we can think of this as effects of a placebo reform, capturing trends and fluctuations that are unrelated

to the reforms evaluated in this paper. However, for two of the birth cohorts (1991 and 2000), the coefficients may capture effects of the true reforms (Reform 97 and Knowledge Promotion, respectively). These coefficients are marked on the figures by vertical dotted lines. If the two reforms really had non-negligible influences on the outcome gradients in question, we would expect to see some significant estimates in these particular years that stand out relative to the estimates obtained for the placebo reform years. For GPA rank, we examine the impact of both reforms, with children born in 1991 and 2000 being the first cohort subject to the respective reforms. For high school completion, we focus on Reform 97 with effective reform year 1991 due to the relatively young age of children from the Knowledge Promotion cohort.

## 4.1 Parental earnings rank

Has an early school start affected the social gradient? In Figure 4, we use parental earnings rank (PER) as the socioeconomic indicator to answer the question. Owing to a lack of information on parental earnings for some first-generation immigrant children, we focus on native children in this exercise. The figure presents separate findings for GPA rank and high school completion, as well as for males and females. We first estimate the gradient effects for all parental roles, treating middle-class females as the reference group. As discussed in Section 3.1, examining the social gradient based on parental earnings rank has the great advantage that the distribution of parental traits is the same for all cohorts, mitigating the risk that changes in parent-offspring associations arise from changes in the composition of parents along the measured parental trait. Focusing on the effects estimated for the true reform years (indicated by the markers just to the left of the vertical dotted lines), we see few signs of significant changes in the relative performance of the different classes. There are perhaps some indications that lower class females (PER 2-3) gained a bit from Reform 97, whereas top class females lost. However, we do not see a similar gradient response among boys, and it is hard to identify a consistent pattern that can plausibly be interpreted as reform effects. Moreover, as can be seen from Figure 4, there are a number of statistically significant changes in the gradients also in non-



● Home-making parent or working parents ▲ Home-making parent □ Working parents

Figure 4: Reform-induced changes by parental earnings rank (PER) decile. Each coefficient comes from a regression on a two-year sample, where the second year is set to be the real or placebo reform year. The real reform years are 1991 and 2000. We present separate estimates for pooled parental roles, children with a home-making parent, with working parents, males, and females. We focus on births between 1988 and 2002 for GPA, which is measured at age 15 to 16 for most children. For high school completion, which is assessed by age 21, we restrict attention to births between 1988 and 1993. Parents are ranked based on their top three earnings from ages 40 to 46 and the child's birth year. Children are categorized into five classes: bottom class (decile 1), lower class (deciles 2 to 3), middle class (deciles 4 to 7), upper class (deciles 8 to 9), and top class (decile 10). Home-making parent is defined as either parent earning less than two times the Basic Amount when the child was five. The reference group comprises middle-class females in pooled parental-role regressions and those with a home-making parent in regressions distinguishing parental roles. The markers pinpoint the estimated coefficients, and the vertical whiskers represent the 95 percent confidence intervals.

reform years, indicating that there are other fluctuations and trends represented in the data.

Figure 4 also reports results where we have distinguished between having a home-making parent and having working parents—a distinction more relevant for Reform 97—and treat middle-class females with a home-making parent as the reference category. One might expect that children who had a homemaker parent would benefit disproportionally from Reform 97, particularly if resources are limited in the household. However, given the large changes in the fraction of home-making parents over time (see Figure 2, panel (d)), it seems plausible that the selection into this state has also changed considerably, along dimensions that are relevant for offspring outcomes (e.g., parents' cognitive and social abilities); hence any changes in the parent-offspring associations need to be interpreted with some care. The results are in any case not very different from those obtained unconditional on parents' employment status. We find that the number of statistically significant coefficients regarding the true Reform 97 effects is 0 (out of 18) when the presumed alternative to school start is home care and 1 (out of 20) when the alternative is kindergarten care. Overall, there is no clear evidence of changes in the social gradient in 1991 or 2000, and it holds regardless of parental earnings rank and care type.

Considering all the estimates reported in Figure 4 together, it is notable that the estimates for the true reform years do not stand out. Of the 84 true-reform coefficients, 9 or 10.7% are significant at the 5% level. This is not statistically different from the 6.0% (30 out of 504) for the placebo-reform coefficients (p-value = 0.10). Looking at the estimated real reform effects on GPA rank and high school completion together, it is also striking that they rarely convey a consistent story whereby, e.g., positive effects on GPA rank are matched by corresponding positive effects on high school completion.

Given the ambition of improving relative outcomes for the lower classes, it is notable that the coefficients for the bottom class (PER 1) are more often negative than positive (72.2% vs. 27.8% in real reform years, and 58.7% vs. 41.3% across all years), consistent

<sup>&</sup>lt;sup>1</sup>Admittedly, when we focus only on the sample with pooled parental roles (solid circles), real-reform coefficients are more likely significant than placebo reform coefficients. We suspect that the significant coefficients might be spurious given the trends illustrated in Figure 3.

with the presence of a negative trend in their relative performance that continued more or less undisturbed after the reforms. Meanwhile, both females and males report a nearly equal share of negative and positive coefficients, indicating that gender gaps are not closing.

## 4.2 Immigration background

Has legislating a lower school entry age reshaped the impact of immigration background? We answer this question using Figure 5, which includes native as well as immigrant children. Immigrant children are categorized into three groups: second-generation immigrants, first-generation immigrants arriving between ages one and five, and first-generation immigrants arriving between ages six and nine. We set the reference category to native females.

Similar to socioeconomic background, we recognize little effects on the immigration gradient in the real reform years. Viewed in isolation, the estimates indicate a favorable effect of Reform 97 on GPA rank for second-generation immigrants. However, this is not matched by corresponding effects on high school completion, casting some doubts on the findings' substantive significance. For first-generation immigrant groups, the estimated effect patterns appear a bit erratic, most likely reflecting differences in the composition of immigrant cohorts, e.g., with respect to the country of origin. Put differently, these significant effects could be spurious in nature.

In sum, the placebo reform years return a higher proportion of significant coefficients than the real reform years (13.5% vs. 4.8%), although the difference is not statistically significant (p-value = 0.26). The distinction between real and placebo reform effects remains non-existent when we examine GPA rank and high school completion separately (p-values = 0.22 and 0.62), or females and males separately (p-values = 0.30 and 0.53).

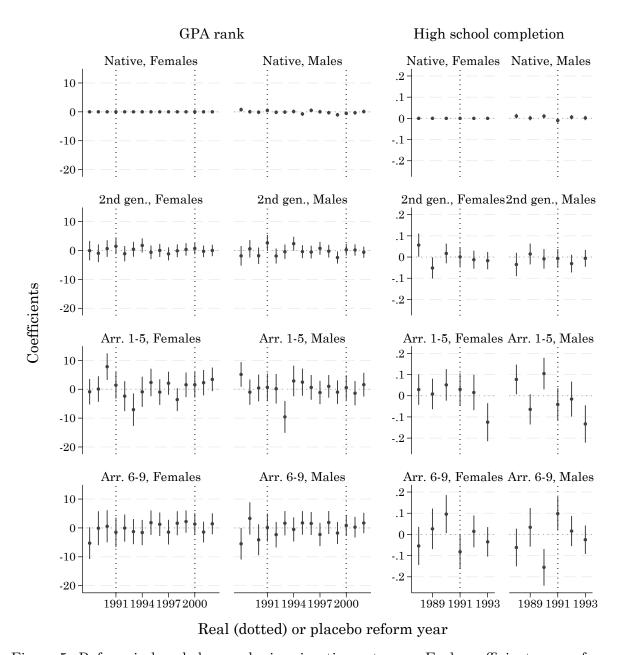



Figure 5: Reform-induced changes by immigration category. Each coefficient comes from a regression on a two-year sample, where the second year is set to be the real or placebo reform year. The real reform years are 1991 and 2000. We present separate estimates for males and females. We focus on births between 1988 and 2002 for GPA, which is measured at age 15 to 16 for most children. For high school completion, which is assessed by age 21, we restrict attention to births between 1988 and 1993. Children are categorized into four immigration groups: natives, second-generation immigrants from low- or middle-income countries, first-generation immigrants from low- or middle-income countries arriving between ages one and five, and between ages six and nine. Immigrants from high-income countries are treated as natives. The reference group comprises native females. The markers pinpoint the estimated coefficients, and the vertical whiskers represent the 95 percent confidence intervals.

## 4.3 Relative age




Figure 6: Reform-induced changes by birth month. Each coefficient comes from a regression on a two-year sample, where the second year is set to be the real or placebo reform year. The real reform years are 1991 and 2000. We present separate estimates for males and females. We focus on births between 1988 and 2002 for GPA, which is measured at age 15 to 16 for most children. For high school completion, which is assessed by age 21, we restrict attention to births between 1988 and 1993. Children are categorized into five groups based on their birth months: January to February, March to April, May to August, September to October, and November to December. The reference group comprises females born between May and August. The markers pinpoint the estimated coefficients, and the vertical whiskers represent the 95 percent confidence intervals.

Has commencing school sooner affected the influence of relative age? In Figure 6, we categorize birth months into five groups: January to February, March to April, May to

August, September to October, and November to December.<sup>2</sup> We set the reference category to females born mid-year (May to August) and include native as well as immigrant children in the analysis.

Here, we would have expected to find some negative relative effects of both reforms on those born late in the year (the young-for-grades). However, with the exception of a negative effect of Reform 97 on high school completion for November-December-born boys, we see no clear pattern in this direction. The figure indicates that the reforms have not generated a notable impact on the relative age gradient. Of the 27 true reform coefficients, 2 are statistically significant at the 5% level, compared to 17 out of 162 of the placebo reform coefficients. The p-value of difference in proportions is 0.62. The lack of real versus placebo differential remains when we slice the comparison by gender, outcome, or reform. This indicates that statistically significant results arise in the real and placebo reform years alike, as observed with parental earnings rank and immigration background.

## 4.4 Robustness checks

In Appendix A, we conduct several robustness checks to verify the lack of clear reform effects. So far, we have used parental prime-age earnings rank to capture family background. An alternative measure would be parental education. In Figure A.1, we repeat the social gradient analysis, this time using parental education level to represent socioe-conomic status. We divide children into four groups based on the highest education level of the parent with the highest education: compulsory education, secondary schooling, bachelor's degree, or master's degree or above. We find that, akin to parental earnings, the parental education gradient is unresponsive to the reforms.

To discern the reform impact on childcare, we have, up to this point, used parental earnings at the child's age five to proxy for home-making and thus home care. What is also available to us is kindergarten coverage rate by municipality. In Figure A.2, we assign

<sup>&</sup>lt;sup>2</sup>We recognize that starting early or late correlates systematically with birth month. When we use pupils' actual age at start rather than their default age to estimate the average treatment effect (instead of the ITT effect), we obtain very similar results. We do not report these results because using actual school starting age reintroduces the selection problems that motivated our ITT analysis in the first place.

kindergarten coverage by a child's municipality at birth, and reevaluate the effect of an early school start on the social gradient. For each birth cohort, we compute the average coverage rate from age one to five, and define low coverage as the birth municipality having below-median kindergarten coverage. We observe that the alternative childcare indicator amplifies existing differences. Upper-class (or female) children have a higher share of positive coefficients than lower- and bottom-class (or male) children. However, children's school performance or high school completion vary from year to year, and we again fail to identify significant changes to the social gradient in the reform years.

With respect to immigration, we have thus far focused on immigrant children from lowor middle-income countries. What if we had considered all immigrants regardless of their origin country? In Figure A.3, we redefine immigrant status to comprise all immigrants (that additionally include immigrants from high-income countries). The proportion of immigrants increases from 6.1% to 7.8%. We establish similar findings as before, namely, there is insubstantial evidence of a change in the immigration gradient.

By and large, these robustness checks point to the null results that were previously established. With few exceptions, lowering the school starting age irrespective of pedagogy does not flatten the socio-demographic gradients as the reforms intended.

### 4.5 Further results

In Appendix B, we examine the impact of lowering school starting age from seven to six has on the social gradient of two additional education outcomes: university degree and years of non-compulsory education by age 27. We define university degree as a binary measure that equals 1 if the individual has acquired at least a bachelor's degree by age 27. For non-compulsory education, we consider years of education above grade 9/10 by age 27. While there is an upward trend in university completion and non-compulsory education, it is not a direct result of Reform 97. As per Figures B.2, B.3, and B.4, an early school entry has little impact on the social gradient, the role of immigration status, or the effect of relative age, in keeping with the main results on high school completion.

In Appendix C, we turn attention to early-life labor market outcomes including full-

time employment and earnings rank. We define full-time employment as a dichotomous measure that equals 1 if the individual earns over three times the Basic Amount at age 27. To construct earnings rank, we rank individuals' taxable earnings at age 27 by birth cohort. We observe that children from the bottom decile, immigrants arriving after school starting age, and young-for-graders are still among the weakest performing in the labor market. In fact, not only has Reform 97 failed to improve their outcomes, in some cases, it appears to have made these disadvantaged children worse off, according to Figures C.2, C.3, and C.4. For instance, bottom-class males with working parents are 6.5 percentage points less likely to be working full-time, and rank 4.1 percentiles lower relative to middle-class females with a home-making parent. That said, these effects may have been dominated by other time-varying patterns such as cyclical fluctuations in employment.

# 5 Concluding remarks

Using population data from Norway, we study how two compulsory schooling reforms altered children's relative schooling outcomes along the dimensions of socioeconomic status, immigration status, relative age, and gender. The first reform, Reform 97, lowered school starting age from seven to six and extended compulsory education from nine to ten years. The second reform, Knowledge Promotion, introduced structured learning at age six, in some sense reducing school starting age again from seven to six. We use rolling simple-difference models to identify the relative effects of the reforms on children's GPA rank at age 15 to 16, as well as their high school completion by age 21. We find that the reforms did not noticeably alter the socio-demographic gradients. With respect to Reform 97, our results fit well into the findings by Drange et al. (2016), who found no reform effect on average outcomes and also failed to identify significant effect heterogeneity with respect to family background. Our results also align with the findings reported by Markussen and Røed (2023) that the declining upward mobility for children born into disadvantaged families has continued undisturbed during the reform periods.

These findings contrast with one of the aims of both reforms, which was to narrow existing achievement gaps, especially with respect to socioeconomic status and immigrant background. For the reforms to enhance social mobility, they need to benefit socially disadvantaged children more than they do socially advantaged children. However, in our analysis, neither lower-class nor immigrant children gained disproportionately from the reforms, irrespective of gender or the type of care they alternatively would have received. In this sense, the reforms have failed to deliver. However, in contrast to popular concerns and ongoing debate, the reforms did not exacerbate the relative age and gender differentials. Hence, one could say that the reforms neither achieved their intended goals nor generated their expected adverse side effects. We simply see no clear effects in any direction.

What could have contributed to the reforms' lack of systematic impact on the sociodemographic gradients? The reforms are comprehensive, involving multiple strategies, and the exact impact of each strategy is hard to pinpoint. In the case of Reform 97, it is difficult to separately identify the effects of lowering the school starting age, which took effect at age six, and extending compulsory schooling, which occurred at age 14 to 15. This is because the earliest measure is collected at age 15 to 16 (i.e., GPA rank). In the case of Knowledge Promotion, the key reform strategy was the academization of the first-year curriculum, and although the reform was implemented at a particular point in time (2006), it may in practice have developed in a more gradual fashion. It is also important to recognize that the effects of certain strategies can counteract each other: students can maladjust to entering school at a younger age, but thrive in the extra year of compulsory education. Moreover, the implementation of Reform 97 implied that two birth cohorts started school at the same time, perhaps putting an exceptional pressure on limited school resources. This may have affected different children differently in ways that modulated pupils' positional responses to the reform. Meanwhile, another implication of Reform 97 was that children born 1992 and onward enjoyed easier access to kindergartens, as the reform freed up places previously occupied by the six-year-olds. The interplay of kindergarten and school starting age could thus be keeping relative gains and losses in check.

## References

- Berniell, I., Estrada, R., 2020. Poor little children: The socioeconomic gap in parental responses to school disadvantage. Labour Economics 66, 101879. doi:10.1016/j.labeco.2020.101879.
- Bertrand, M., Pan, J., 2013. The trouble with boys: Social influences and the gender gap in disruptive behavior. American Economic Journal: Applied Economics 5, 32–64. doi:10.1257/app.5.1.32.
- Black, S.E., Devereux, P.J., Salvanes, K.G., 2011. Too young to leave the nest? the effects of school starting age. The Review of Economics and Statistics 93, 455–467. doi:10.1162/REST\_a\_00081.
- Cobb-Clark, D.A., Moschion, J., 2017. Gender gaps in early educational achievement. Journal of Population Economics 30, 1093–1134. doi:10.1007/s00148-017-0638-z.
- Cook, P.J., Kang, S., 2020. Girls to the front: How redshirting and test-score gaps are affected by a change in the school-entry cut date. Economics of Education Review 76, 101968. doi:10.1016/j.econedurev.2020.101968.
- Cornelissen, T., Dustmann, C., 2019. Early school exposure, test scores, and noncognitive outcomes. American Economic Journal: Economic Policy 11, 35–63. doi:10.1257/pol. 20170641.
- Deming, D., Dynarski, S., 2008. The lengthening of childhood. Journal of Economic Perspectives 22, 71–92. doi:10.1257/jep.22.3.71.
- Dobkin, C., Ferreira, F., 2010. Do school entry laws affect educational attainment and labor market outcomes? Economics of Education Review 29, 40–54. doi:10.1016/j.econedurev.2009.04.003.
- Drange, N., Havnes, T., Sandsør, A.M.J., 2016. Kindergarten for all: Long run effects of a universal intervention. Economics of Education Review 53, 164–181. doi:10.1016/j.econedurev.2016.04.002.
- Fredriksson, P., Öckert, B., 2013. Life-cycle effects of age at school start. The Economic Journal 124, 977–1004. doi:10.1111/ecoj.12047.
- Havnes, T., Mogstad, M., 2011. No child left behind: Subsidized child care and children's Long-Run outcomes. American Economic Journal: Economic Policy 3, 97–129. doi:10.1257/pol.3.2.97.
- Havnes, T., Mogstad, M., 2015. Is universal child care leveling the playing field? Journal of Public Economics 127, 100–114. doi:10.1016/j.jpubeco.2014.04.007.
- Hoen, M.F., Markussen, S., Røed, K., 2022. Immigration and economic mobility. Journal of Population Economics 35, 1589–1630. doi:10.1007/s00148-021-00851-4.
- Imsen, G., Blossing, U., Moos, L., 2017. Reshaping the nordic education model in an era of efficiency. changes in the comprehensive school project in denmark, norway, and sweden since the millennium. Scandinavian Journal of Educational Research 61, 568–583. doi:10.1080/00313831.2016.1172502.

- Larsen, E.R., Solli, I.F., 2017. Born to run behind? persisting birth month effects on earnings. Labour Economics 46, 200–210. doi:10.1016/j.labeco.2016.10.005.
- Markussen, S., Røed, K., 2022. Are richer neighborhoods always better for the kids? Journal of Economic Geography 23, 629–651. doi:10.1093/jeg/lbac031.
- Markussen, S., Røed, K., 2023. The rising influence of family background on early school performance. Economics of Education Review 97, 102491. doi:10.1016/j.econedurev.2023.102491.
- Ministry of Church, Education and Research, 1993. St.meld. nr. 40 (1992-93) ... vi smaa, en Alen lange; Om 6-åringer i skolen konsekvenser for skoleløpet og retningslinjer for dets innhold [... we are the young, barely two feet long; About 6-year-olds in school consequences for the school curriculum and guidelines for its content] URL: https://www.stortinget.no/no/Saker-og-publikasjoner/Saker/Sak/?p=4748.
- Ministry of Church, Education and Research, 1994. St.meld. nr. 29 (1994-95) Om prinsipper og retningslinjer for 10-årig grunnskole ny læreplan [Principles and guidelines for 10-year compulsory schooling new curriculum] URL: https://www.stortinget.no/no/Saker-og-publikasjoner/Stortingsforhandlinger/Lesevisning/?p=1994-95&paid=3&wid=b&psid=DIVL1325&pgid=b\_1057.
- Ministry of Church, Education and Research, 1996. Reform 97- Dette er grunnskolereformen [This is the primary school reform] URL: https://www.regjeringen.no/no/dokumentarkiv/regjeringen-brundtland-iii/kuf/veiledninger/1996/reform-97-dette-er-grunnskolereformen/id87403/.
- Ministry of Education and Research, 2004. St.meld. nr. 30. (2003–2004) Kultur for læring [A culture for learning]. White paper. URL: https://www.regjeringen.no/no/dokumenter/stmeld-nr-030-2003-2004-/id404433/?ch=1.
- Ministry of Education and Research, 2005. Kunnskapsløftet reformen i grunnskole og videregående opplæring [Knowledge Promotion the reform in primary and secondary education]. URL: https://www.regjeringen.no/globalassets/upload/kilde/ufd/prm/2005/0081/ddd/pdfv/256458-kunnskap\_bokmaal\_low.pdf.
- Ministry of Education and Research, 2006. Kunnskapsløftet [Knowledge Promotion] Information for pupils and parents/guardians. URL: https://www.regjeringen.no/globalassets/upload/kilde/kd/bro/2006/0002/ddd/pdfv/292311-kunnskapsloftet2006\_engelsk\_ii.pdf.
- Ministry of Education and Research, 2019. NOU 2019: 3 Nye sjanser bedre læring Kjønnsforskjeller i skoleprestasjoner og utdanningsløp [New chances better learning Gender differences in school performance and education]. https://www.regjeringen.no/no/dokumenter/nou-2019-3/id2627718/.
- Nilsen, S., 2010. Moving towards an educational policy for inclusion? Main reform stages in the development of the Norwegian unitary school system. International Journal of Inclusive Education 14, 479–497. doi:10.1080/13603110802632217.
- Peña, P.A., 2017. Creating winners and losers: Date of birth, relative age in school, and outcomes in childhood and adulthood. Economics of Education Review 56, 152–176. doi:10.1016/j.econedurev.2016.12.001.

Rosa, L., Martins, M., Carnoy, M., 2019. Achievement gains from reconfiguring early schooling: The case of brazil's primary education reform. Economics of Education Review 68, 1–12. doi:10.1016/j.econedurev.2018.10.010.

Statistics Norway, 2020a. Constant person characteristics (faste\_oppl).

Statistics Norway, 2020b. Demographic information and the population's level of education. History with annual dating (f\_utd\_demografi).

Statistics Norway, 2020c. Detailed annual education data containing all completed formal education (f\_utd\_kurs).

Statistics Norway, 2020d. Grades for completed primary school (tab\_kar\_grs).

Statistics Norway, 2020e. Highest completed education level by year from 1980 to 2018 (utd1980\_2018).

Statistics Norway, 2020f. Link between child, mother and father. (mor\_far\_snr).

Statistics Norway, 2020g. Municipality number by year from 1975 to 2021 (kommnr).

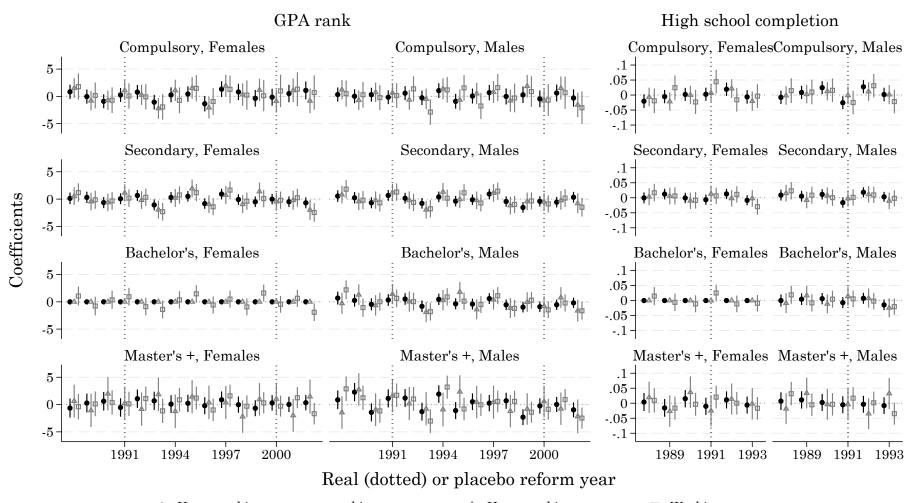
Statistics Norway, 2020h. National examinations (nasjonale\_prover).

Statistics Norway, 2020i. Pension accrual from 1967 to 2017 (pgiv1967\_2017).

Statistics Norway, 2020j. School absences (fravaer2007 - fravaer2021; 15 separate datasets).

Statistics Norway, 2020k. Taxable income with labor earnings from 1993 to 2017 (inntekt1993 – inntekt2020; 28 separate datasets).

Statistics Norway, 2020l. Whether or not a person is a resident in Norway at the beginning of each year (bosatt19920101\_20190101).


Suziedelyte, A., Zhu, A., 2015. Does early schooling narrow outcome gaps for advantaged and disadvantaged children? Economics of Education Review 45, 76–88. doi:10.1016/j.econedurev.2015.02.001.

Thuen, H., Volckmar, N., 2020. Postwar school reforms in norway, in: Oxford Research Encyclopedia of Education. doi:10.1093/acrefore/9780190264093.013.1456.

Ulvestad, M.E.S., Markussen, S., 2023. Born or bred? The roles of nature and nurture for intergenerational persistence in labour market outcomes. Journal of Population Economics 36, 1005–1047. doi:10.1007/s00148-021-00880-z.

World Bank, 2021. World Bank Country and Lending Groups. https://datahelpdesk.worldbank.org/knowledgebase/articles/ 906519-world-bank-country-and-lending-groups.

## Appendix A Results on robustness



● Home-making parent or working parents ▲ Home-making parent □ Working parents
Figure A.1: Reform-induced changes by parental education. Each coefficient comes from a regression on a two-year sample, where the second year is set to be the real or placebo reform year. The real reform years are 1991 and 2000. We present separate estimates for pooled parental roles, children with a home-making parent, with working parents, males, and females. We focus on births between 1988 and 2002 for GPA, which is measured at age 15 to 16 for most children. For high school completion, which is assessed by age 21, we restrict attention to births between 1988 and 1993. Children are categorized into four groups according to the highest education level of the parent with the highest education: compulsory education, secondary schooling, bachelor's degree, and master's degree or above. Home-making parent is defined as either parent earning less than two times the Basic Amount when the child was five. The reference group comprises middle-class females in pooled parental-role regressions and those with a home-making parent in regressions distinguishing parental roles. The markers pinpoint the estimated coefficients, and the vertical whiskers represent the 95 percent confidence intervals.

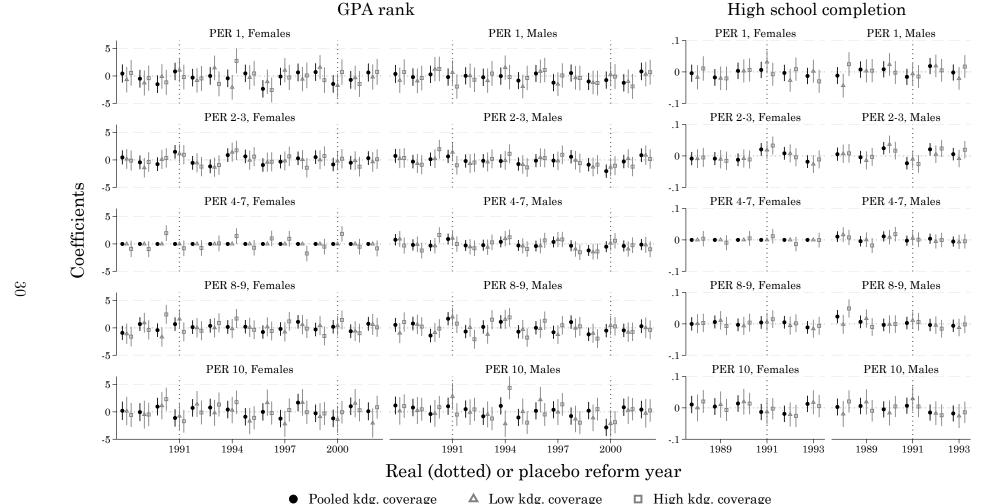



Figure A.2: Reform-induced changes by parental earnings rank (PER) decile. Each coefficient comes from a regression on a two-year sample, where the second year is set to be the real or placebo reform year. The real reform years are 1991 and 2000. We present separate estimates for pooled kindergarten (kdg.) coverage, high coverage, males, and females. We focus on births between 1988 and 2002 for GPA, which is measured at age 15 to 16 for most children. For high school completion, which is assessed by age 21, we restrict attention to births between 1988 and 1993. Parents are ranked based on their top three earnings from ages 40 to 46 and the child's birth year. Children are categorized into five classes: bottom class (decile 1), lower class (deciles 2 to 3), middle class (deciles 4 to 7), upper class (deciles 8 to 9), and top class (decile 10). Kindergarten coverage is assigned by municipality at birth, averaged from ages 1 to 5. We define low coverage as the municipality having below-median coverage for each birth cohort. The reference group comprises middle-class females in pooled coverage regressions and those growing up in low coverage areas in regressions distinguishing coverage. The markers pinpoint the estimated coefficients, and the vertical whiskers represent the 95 percent confidence intervals.




Figure A.3: Reform-induced changes by immigration category for all immigrants. Each coefficient comes from a regression on a two-year sample, where the second year is set to be the real or placebo reform year. The real reform years are 1991 and 2000. We present separate estimates for males and females. We focus on births between 1988 and 2002 for GPA, which is measured at age 15 to 16 for most children. For high school completion, which is assessed by age 21, we restrict attention to births between 1988 and 1993. Children are categorized into four immigration groups: natives, second-generation immigrants, first-generation immigrants arriving between ages one and five, and between ages six and nine. We consider all immigrants irrespective of the income profiles of their origin countries. The reference group comprises native females. The markers pinpoint the estimated coefficients, and the vertical whiskers represent the 95 percent confidence intervals.

# Appendix B Further results on education

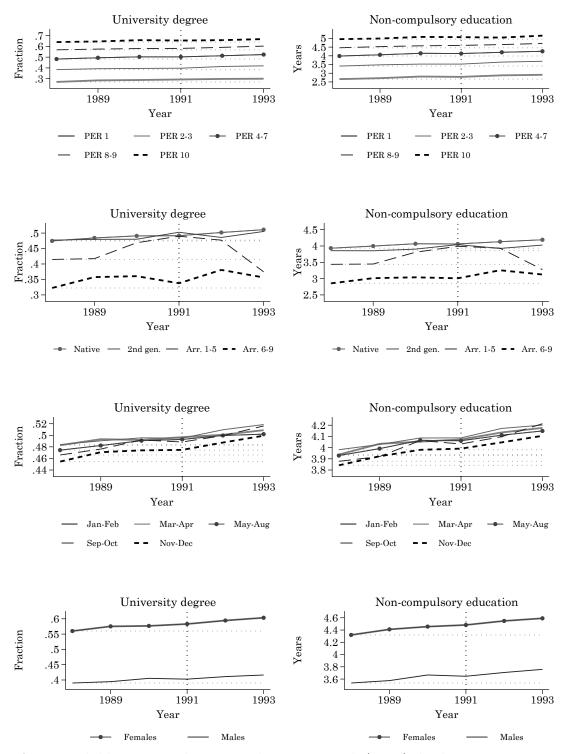



Figure B.1: Average child outcomes by parental earnings rank (PER) deciles, immigration categories, birth months, and gender. We focus on births between 1988 and 1993 for university degree and non-compulsory education, both evaluated at age 27. Parents are ranked based on their top three earnings from ages 40 to 46 and the child's birth year. Children are categorized into five classes: bottom class (decile 1), lower class (deciles 2 to 3), middle class (deciles 4 to 7), upper class (deciles 8 to 9), and top class (decile 10). Concerning immigration categories, children are categorized into four immigration groups: natives, second-generation immigrants from low- or middle-income countries, first-generation immigrants from low- or middle-income countries arriving between ages one and five, and between ages six and nine. Immigrants from high-income countries are treated as natives. Regarding relative age, children are categorized into five groups based on their birth months: January to February, March to April, May to August, September to October, and November to December.

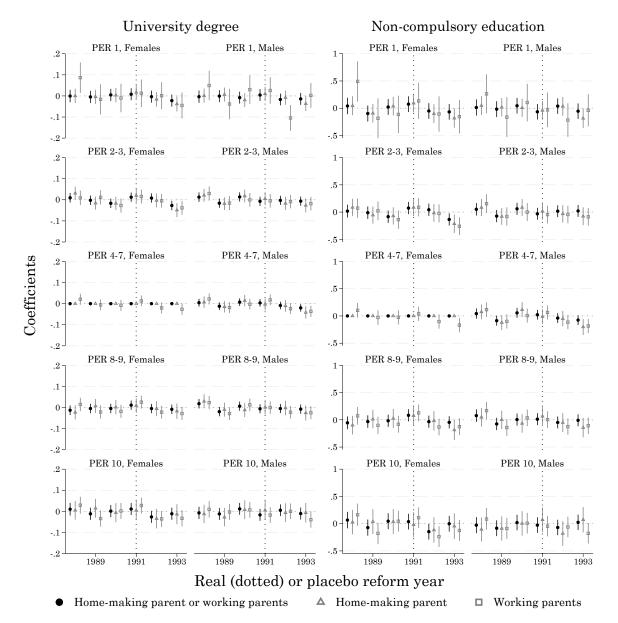



Figure B.2: Reform-induced changes by parental earnings rank (PER) decile. Each coefficient comes from a regression on a two-year sample, where the second year is set to be the real or placebo reform year. The real reform year is 1991. We present separate estimates for pooled parental roles, children with a home-making parent, with working parents, males, and females. We focus on births between 1988 and 1993 for university degree and non-compulsory education, both evaluated at age 27. Parents are ranked based on their top three earnings from ages 40 to 46 and the child's birth year. Children are categorized into five classes: bottom class (decile 1), lower class (deciles 2 to 3), middle class (deciles 4 to 7), upper class (deciles 8 to 9), and top class (decile 10). Home-making parent is defined as either parent earning less than two times the Basic Amount when the child was five. The reference group comprises middle-class females in pooled parental-role regressions and those with a home-making parent in regressions distinguishing parental roles. The markers pinpoint the estimated coefficients, and the vertical whiskers represent the 95 percent confidence intervals.

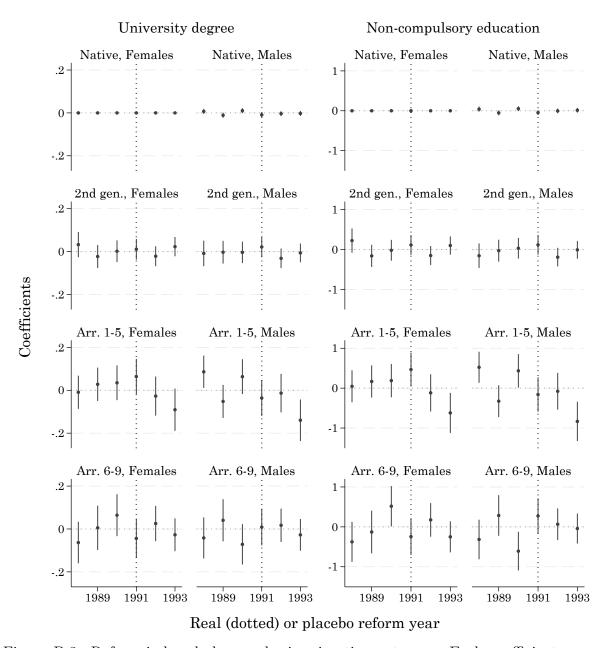



Figure B.3: Reform-induced changes by immigration category. Each coefficient comes from a regression on a two-year sample, where the second year is set to be the real or placebo reform year. The real reform year is 1991. We present separate estimates for males and females. We focus on births between 1988 and 1993 for university degree and non-compulsory education, both evaluated at age 27. Children are categorized into four immigration groups: natives, second-generation immigrants from low- or middle-income countries, first-generation immigrants from low- or middle-income countries arriving between ages one and five, and between ages six and nine. Immigrants from high-income countries are treated as natives. The reference group comprises native females. The markers pinpoint the estimated coefficients, and the vertical whiskers represent the 95 percent confidence intervals.

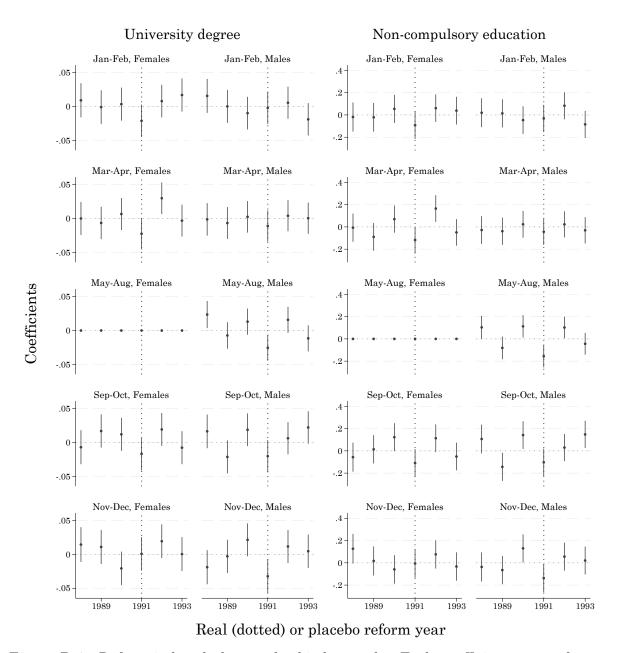



Figure B.4: Reform-induced changes by birth month. Each coefficient comes from a regression on a two-year sample, where the second year is set to be the real or placebo reform year. The real reform year is 1991. We present separate estimates for males and females. We focus on births between 1988 and 1993 for university degree and non-compulsory education measures, both evaluated at age 27. Children are categorized into five groups based on their birth months: January to February, March to April, May to August, September to October, and November to December. The reference group comprises females born between May and August. The markers pinpoint the estimated coefficients, and the vertical whiskers represent the 95 percent confidence intervals.

# Appendix C Further results on employment

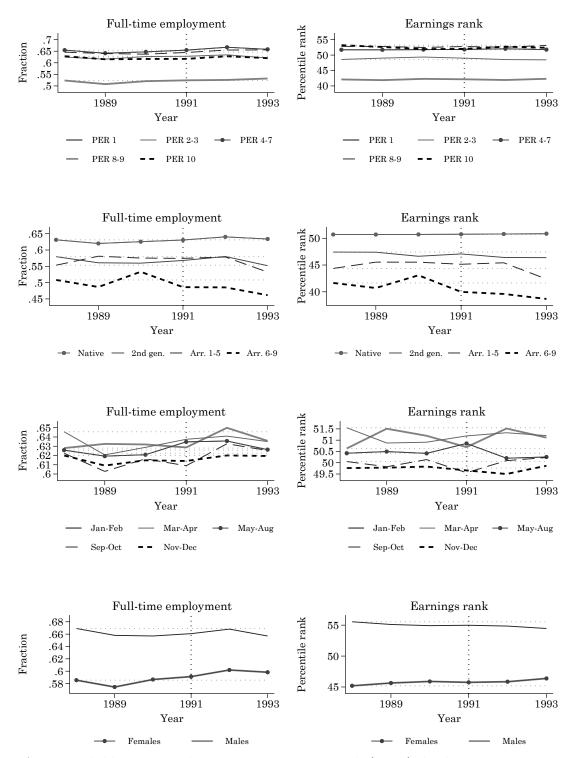



Figure C.1: Average child outcomes by parental earnings rank (PER) deciles, immigration categories, birth months, and gender. We focus on births between 1988 and 1993 for full-time employment and earnings rank, both evaluated at age 27. Parents are ranked based on their top three earnings from ages 40 to 46 and the child's birth year. Children are categorized into five classes: bottom class (decile 1), lower class (deciles 2 to 3), middle class (deciles 4 to 7), upper class (deciles 8 to 9), and top class (decile 10). Concerning immigration categories, children are categorized into four immigration groups: natives, second-generation immigrants from low- or middle-income countries, first-generation immigrants from low- or middle-income countries arriving between ages one and five, and between ages six and nine. Immigrants from high-income countries are treated as natives. Regarding relative age, children are categorized into five groups based on their birth months: January to February, March to April, May to August, September to October, and November to December.

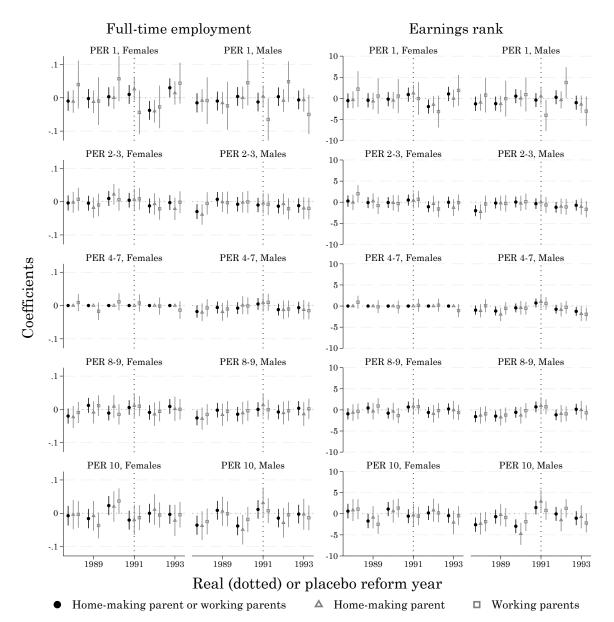



Figure C.2: Reform-induced changes by parental earnings rank (PER) decile. Each coefficient comes from a regression on a two-year sample, where the second year is set to be the real or placebo reform year. The real reform year is 1991. We present separate estimates for pooled parental roles, children with a home-making parent, with working parents, males, and females. We focus on births between 1988 and 1993 for full-time employment and earnings rank, both evaluated at age 27. Parents are ranked based on their top three earnings from ages 40 to 46 and the child's birth year. Children are categorized into five classes: bottom class (decile 1), lower class (deciles 2 to 3), middle class (deciles 4 to 7), upper class (deciles 8 to 9), and top class (decile 10). Home-making parent is defined as either parent earning less than two times the Basic Amount when the child was five. The reference group comprises middle-class females in pooled parental-role regressions and those with a home-making parent in regressions distinguishing parental roles. The markers pinpoint the estimated coefficients, and the vertical whiskers represent the 95 percent confidence intervals.

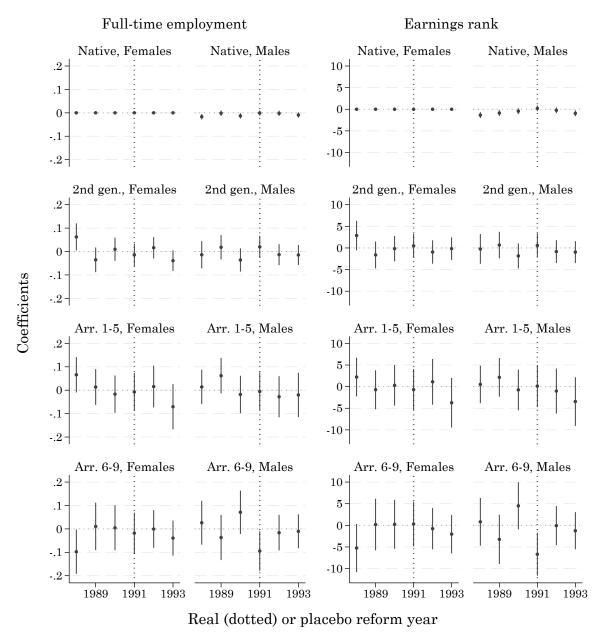



Figure C.3: Reform-induced changes by immigration category. Each coefficient comes from a regression on a two-year sample, where the second year is set to be the real or placebo reform year. The real reform year is 1991. We present separate estimates for males and females. We focus on births between 1988 and 1993 for full-time employment and earnings rank, both evaluated at age 27. Children are categorized into four immigration groups: natives, second-generation immigrants from low- or middle-income countries, first-generation immigrants from low- or middle-income countries arriving between ages one and five, and between ages six and nine. Immigrants from high-income countries are treated as natives. The reference group comprises native females. The markers pinpoint the estimated coefficients, and the vertical whiskers represent the 95 percent confidence intervals.

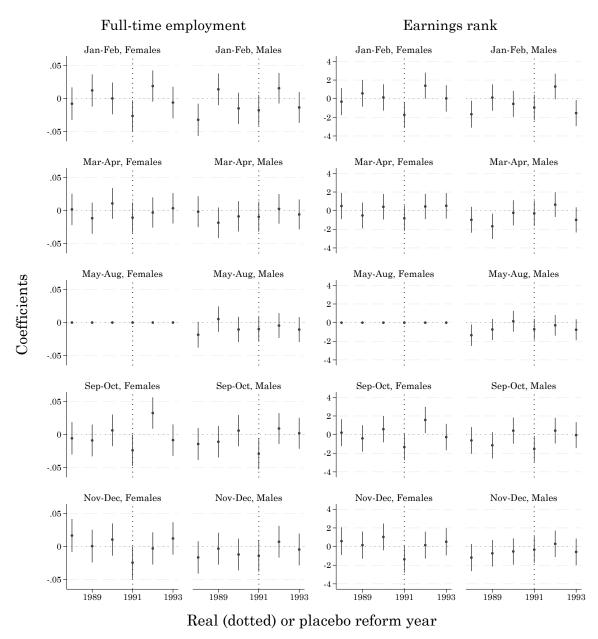



Figure C.4: Reform-induced changes by birth month. Each coefficient comes from a regression on a two-year sample, where the second year is set to be the real or placebo reform year. The real reform year is 1991. We present separate estimates for males and females. We focus on births between 1988 and 1993 for full-time employment and earnings rank, both evaluated at age 27. Children are categorized into five groups based on their birth months: January to February, March to April, May to August, September to October, and November to December. The reference group comprises females born between May and August. The markers pinpoint the estimated coefficients, and the vertical whiskers represent the 95 percent confidence intervals.