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Discrete choice experiments (DCEs) often present concise choice scenarios that may appear 

incomplete to respondents. To allow respondents to express uncertainty arising from 

this incompleteness, DCEs may ask them to state probabilities with which they expect 

to make specific choices. The workhorse method for analyzing the elicited probabilities 

involves semi-parametric estimation of population average preferences. Despite flexible 

distributional assumptions, this method presents challenges in estimating unobserved 

preference heterogeneity, a key element in non-market valuation studies. We introduce 

a fractional response model based on a mixture of beta distributions. The model enables 

researchers to uncover preference heterogeneity under comparable parametric assumptions 

as adopted in conventional choice analysis, and can accommodate multiplicative forms 

of heterogeneity that make the semi-parametric method inconsistent. Using a DCE on 

alternative fuel vehicles, we illustrate the complementary roles of the parametric and semi-

parametric approaches. We also undertake a separate analysis in which respondents are 

randomized to either a DCE employing a conventional choice elicitation format or a parallel 

DCE employing the probability elicitation format.
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1 Introduction

The use of stated choice surveys—more commonly referred to as discrete choice
experiments (DCE) in related literature—has become a staple in non-market valu-
ation studies, overcoming initial skepticism regarding the reliability of stated pref-
erences. Early adopters of DCEs in economics focused on consumer products fea-
turing new and existing attributes (Beggs et al., 1981), following precedents in mar-
keting science. The potential for comparing unobservable future scenarios with
present conditions was subsequently recognized by researchers in environmental
economics (Layton and Brown, 2000) and health economics (Ryan, 1999), leading
to a rapid expansion of DCE studies in these areas over the past two decades.
More recently, an increasing number of labor economists harness the experimental
aspect of DCEs, which facilitates the measurement of workers’ preferences in iso-
lation from the influence of employers’ preferences and market frictions (Wiswall
and Zafar, 2018; Low, 2022; Koşar et al., 2022).

To reduce the cognitive burden on respondents, a choice scenario in DCEs typi-
cally comprises a succinct description based on a limited number of key attributes.1

Manski (1999) emphasizes that the resulting scenario is likely to omit some at-
tributes that respondents deem relevant to their decision-making, rendering it in-
complete from their perspective. He argues that this incompleteness makes it more
natural to ask respondents to state the probability with which they would make a
particular choice, rather than to elicit their preferred choice as in traditional DCEs.
Eliciting probabilities allows respondents’ stated responses to reflect their expec-
tations regarding omitted attributes.2 Blass et al. (2010) demonstrate the empirical
viability of this approach in a DCE study on the reliability of electricity supply,
and advocate the use of the least absolute deviations (LAD) estimator which may
be interpreted as a semi-parametric estimator of population average preferences.
The implied semi-parametric model, however, does not nest several parametric
models of interest to DCE studies, presenting a challenge to obtaining empirical
results which are directly comparable between the two elicitation formats.

We introduce a flexible parametric approach for modeling interpersonal prefer-
ence heterogeneity using data on elicited choice probabilities. Our approach takes
the form of a fractional response model, which employs a beta distribution to ac-
count for stochastic measurement errors (e.g., due to the rounding of small varia-
tions in probabilities) that may cause elicited probabilities to diverge from latent

1For example, 74% of DCE studies in health economics published in 2013-2017 use 6 or fewer
attributes (Soekhai et al., 2019, Table 2).

2Juster (1966) was an early proponent of the expectations format, arguing that consumer pur-
chase probabilities are inherently more informative than stated intentions to purchase.
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choice expectations. The mean-variance parameterization of beta distributions, as
proposed by Ferrari and Cribari-Neto (2004), allows us to specify a mean function
that incorporates parametric models of preference heterogeneity which are widely
used in the analysis of traditional choice data. These include models featuring
a multiplicative form of heterogeneity (Train and Weeks, 2005; Fiebig et al., 2010)
that the LAD estimator is unable to accommodate. As a result, for the first time, we
can analyze elicited probabilities under assumptions about individual preferences
that are directly comparable to those used in stated choice analyses. We leverage
this aspect of our modeling approach in a study on consumer preferences for alter-
native fuel vehicles (AFVs), using a DCE dataset that has not previously been an-
alyzed. In this DCE, participants were randomly assigned to the traditional choice
format or the probability elicitation format, allowing us to evaluate the sensitivity
of estimated preference structures to the response formats used.

Since the seminal empirical application by Blass et al. (2010), the LAD estimator
of population average preferences has become a workhorse method in a small,
yet growing number of studies adopting the probability elicitation format. Their
areas of application illustrate the broad scope of contemporary DCE research and
include environmental water quality (Herriges et al., 2011); land-use alternatives
to mitigate biodiversity loss and climate change (Shoyama et al., 2013); voting for
political candidates (Delavande and Manski, 2015); demand for electricity sources
(Morita and Managi, 2015); long-term care insurance products (Boyer et al., 2017);
workplace characteristics (Wiswall and Zafar, 2018); medical students’ demand for
general practice jobs (Pedersen et al., 2020); food choice (Scarpa et al., 2021); and
migrants’ location decisions (Koşar et al., 2022).3

The primary appeal of the LAD estimator lies in its ability to estimate popula-
tion average preferences within the mixed logit framework (McFadden and Train,
2000) without imposing a specific distribution (e.g., multivariate normal) on those
preferences. However, this flexibility invites increased challenges in estimating
the extent and source of interpersonal preference heterogeneity, which has been
the focal point of mixed logit studies (Revelt and Train, 1998; Layton and Brown,
2000; Small et al., 2005). To facilitate further discussion, consider the distinction
between coefficient heterogeneity and scale heterogeneity (Fiebig et al., 2010).4 Infer-

3In addition to LAD, Scarpa et al. (2021) also apply a fractional logit estimator (Papke and
Wooldridge, 1996). As we will discuss further in Section 2.3, the fractional logit estimator in this
context cannot be interpreted as a maximum likelihood estimator (MLE) or a consistent quasi-MLE.
By contrast, our approach is aligned with the MLE interpretation.

4Perhaps the most well-known type of mixed logit is one that accommodates heterogeneous
preferences for observed attributes by specifying coefficients on those attributes as individual-
specific random parameters. A parallel treatment of preferences for unobserved attributes requires
the variance of the residual error term to be specified as a random parameter. The former captures
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ring coefficient heterogeneity from the LAD results requires that the number of
observations per respondent exceeds the number of heterogeneous preference pa-
rameters, a condition which is rarely satisfied in DCEs.5 Further, since the LAD
estimator assumes a linear log-odds specification, it is unable to accommodate
scale heterogeneity, which is linked to interpersonal heteroskedasticity and intro-
duces a multiplicative parameter to the implied log-odds. Yet scale heterogeneity
is highly relevant for the original motivation to elicit choice probabilities: if in-
dividuals vary in their perceptions of scenario incompleteness, then the scale of
the error term in the random utility function would be individual-specific. The
importance of analyzing preference heterogeneity goes beyond purely technical
considerations as the focus on average preferences might lead to the adoption of
policies that are welfare-decreasing for large segments of the population. Addi-
tionally, willingness-to-pay (WTP) measures derived from the average preference
parameters are generally different from the average of WTP distributions (Daly
et al., 2012), and may not be as informative as the latter for cost-benefit analyses.

The fractional response model that we propose complements the LAD approach
by allowing researchers to use elicited choice probabilities to uncover the popula-
tion distributions of preference and WTP parameters. This is achieved under the
same set of parametric assumptions concerning preference heterogeneity as those
applied in the analysis of elicited choices. Our empirical analysis considers pref-
erence structures aligned with mixed logit models with normally distributed coef-
ficients in the preference space (Revelt and Train, 1998) and the WTP space (Train
and Weeks, 2005), as well as Generalized Multinomial Logit (GMNL) models that
incorporate more flexible continuous mixture-of-normals distributions (Fiebig et al.,
2010; Keane and Wasi, 2013). The well-known flexibility of beta distributions (Fer-
rari and Cribari-Neto, 2004) makes them an attractive option for representing re-
porting errors in elicited probabilities. When combined with the mixed logit repre-
sentation of latent choice expectations, the resulting error distributions can exhibit
varying degrees of dispersion, skewness, and modality between respondents, as
well as across different choice scenarios within a respondent.

We apply the fractional response model to analyze preferences and WTP for
AFVs in Australia. Purchasing a car involves a significant financial commitment,
requiring the buyer to consider a complex array of individual-specific factors which
cannot be fully incorporated into a generic choice scenario. Inherent consumer un-

coefficient heterogeneity, and the latter scale heterogeneity.
5This condition arises from the fact that (1) coefficient heterogeneity is identified by running an

auxiliary OLS regression of LAD residuals on independent variables which are assumed to have
heterogeneous coefficients; and (2) this auxiliary regression must be executed separately for each
individual in the sample. We provide more discussion in Section 2.2.
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certainty regarding future fuel technologies and potential changes in policy fur-
ther adds to the complexity in decision-making. These factors make the DCE on
AFVs an ideal domain in which to evaluate the convergent validity of probability
elicitation and standard choice formats. We apply the same range of mixed logit
specifications to the choice format data as are embedded in our fractional response
model. This enables us to compare the two sets of results directly.

We find that, while the two response formats are generally qualitatively similar
in their results, there are notable differences that often favor the choice probabili-
ties format.6 For example, we uncover a negative preference for liquid petroleum
gas vehicles—which is consistent with market behavior in the time since our data
were collected—in the choice probabilities data only. We also uncover richer pat-
terns of preference heterogeneity regarding vehicle size and fuel type in the choice
probabilities data; intuitively, preferences for such attributes are unlikely to be ho-
mogeneous considering interpersonal variations in factors such as lifestyle needs,
openness to new technologies, and perceived social status. As is common in DCE
studies, our limited number of observations per respondent precludes the use of
the LAD results to identify coefficient heterogeneity. Nevertheless, our fractional
response model estimates indicate a substantial amount of coefficient and scale
heterogeneity, underscoring the importance of applying a method that can illumi-
nate this aspect to complement the analysis of population averages. Finally, in our
dataset we find that estimation is fragile with the stated choice data (but not choice
probabilities data), necessitating computational compromises to achieve conver-
gence. This hints at a practical advantage of eliciting choice probabilities: there
is the potential to capture more nuanced variations in the response variable com-
pared to simply observing how the preferred choice jumps discretely from one
alternative to another as experimental stimuli (choice attributes) change.

Outside the realm of elicited choice probabilities in DCE settings, a distinct but
related strand of literature elicits choice probabilities to investigate the impact of
information interventions on belief updating (e.g., Wiswall and Zafar, 2015; Ruder
and Van Noy, 2017; Bleemer and Zafar, 2018; Miller et al., 2020). We are optimistic
that our fractional response model will find useful applications in this context too,
in particular for identifying how informational nudges might influence the distri-
bution of beliefs in a population, not just the mean. There is also a large literature

6Similar to our DCE design, Herriges et al. (2011) and Shoyama et al. (2013) randomly assign
participants to the choice format or the probability elicitation format. They also find that the esti-
mated preference structures from the two formats exhibit qualitative similarities and quantitative
differences. However, their analyses are based on the LAD estimator of a semi-parametric model
for elicited probabilities and the MLE of a parametric model for elicited choices, making it diffi-
cult to ascertain whether the quantitative differences reflect differences in fundamental preference
structures or modeling assumptions.
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that relates expectations about states of nature to choice behavior in structural mi-
croeconomic models.7 Of note for the present study is Hendren (2013), who elicits
subjective probabilities about life events covered in insurance markets to infer and
quantify the degree of private information in the market. Hendren approximates
the distribution of subjective probabilities using a finite mixture of beta density
functions, with the objective to account for heterogeneity in agents’ beliefs. Al-
though his analytical context fundamentally differs from ours, his likelihood func-
tion shares a related algebraic structure, because our estimation of the fractional
response model is based on a continuous mixture of beta density functions.

The remainder of the paper proceeds as follows. In Section 2, we present the
random utility framework as applied to traditional stated choice data and summa-
rize how it can be generalized to incorporate different forms of preference hetero-
geneity. We then outline the linear model of subjective expectations due to Blass
et al. (2010) and set out the proposed fractional response model of preference het-
erogeneity for analyzing elicited choice probabilities. In Section 3, we describe
the data and experimental design on which we apply the different random utility
models to estimate preferences for AFVs in Australia. In Section 4, we report the
results of the empirical application. Section 5 concludes the paper.

2 Models

2.1 Mixed Logit Model of Discrete Choices

The mixed logit model, also known as the random coefficient logit model, is widely
used in applied microeconomics to quantify unobserved preference heterogeneity.
Studies such as McFadden and Train (2000) and Walker et al. (2007) show that
the model can be employed as a tractable tool to approximate a variety of random
utility maximization models, contributing to its wide application in discrete choice
modeling across disciplines. We summarize major types of mixed logit models
which are commonly employed in contemporary non-market valuation studies.

We address the typical setup of a discrete choice experiment (DCE) which has
the same individual complete multiple choice tasks presenting different sets of
alternative. Let n 2 {1, 2, · · · , N} be the index of distinct individuals and t 2
{1, 2, · · · , T} be that of decision tasks. Let xnjt and pnjt denote non-price and price

7Random utility models of the expectation-choice relation have been estimated in a variety of
settings spanning personal financial outcomes (e.g., Dominitz and Manski, 1997; Hurd et al., 2004;
McKenzie et al., 2013), health outcomes (e.g., Delavande, 2008; Tarozzi et al., 2014), returns to
schooling (e.g., Arcidiacono et al., 2012; Zafar, 2013; Delavande and Zafar, 2019) and crime (e.g.,
Lochner, 2007). For an up-to-date survey at the time of writing, see Koşar and O’Dea (2023).
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attributes of option j 2 {1, 2 · · · , J} that individual n evaluates in task t.
Consider McFadden’s random utility maximization model (McFadden, 1974).

Individual n’s preference for option j in task t is represented by a random utility
function Unjt

Unjt = �n · xnjt � �npnjt + "njt/�n (1)

where �n and �n represent utility weights on the observed attributes; "njt is an i.i.d.
type 1 extreme value error term; and �n is a scale parameter that is inversely related
to randomness in the individual’s choice behavior. Conditional on the utility and
scale parameters, the probability that the individual chooses option j in this task
is given by

Pnjt =
exp[Vnjt]PJ
i=1 exp[Vnit]

(2)

where exp[·] indicates the exponential function; and the utility index Vnjt = �n ·(�n ·
xnjt��npnjt) given equation (1). Of course, since any increase in �n is observation-
ally equivalent to a proportionate shift in �n, the parameters must be normalized
further to permit identification. As we will summarize shortly, the exact functional
form of the index function Vnjt varies across discrete choice models, depending on
the approaches to normalization and the specification of interpersonal preference
heterogeneity. The basic case of the multinomial logit model (MNL), for example,
results from having the scale factor normalized to unity (�n = 1) and the utility
weights specified as non-random coefficients that remain constant across all indi-
viduals (�n = �̄ and �n = �̄).8

The mixed logit model refers to a family of discrete choice models that accom-
modate interpersonal preference heterogeneity by specifying the attribute-specific
utility weights, sometimes along with the scale factor, as random parameters (Mc-
Fadden and Train, 2000). Perhaps the most well-known type of mixed logit model
is the normal mixed logit model (Revelt and Train, 1998), which maintains the
MNL setting of �n = 1 and specifies Vnjt as

Vnjt = �n · xnjt � �npnjt (3)

where �n and �n are individual-specific draws from a multivariate normal distri-
bution that represents the population distribution of preferences. Indeed, this type
of model specification has been so widely used that the term “mixed logit model”,

8One may still introduce interpersonal heterogeneity in the MNL framework by specifying the
utility weights as a deterministic function of observed personal characteristics (Train, 2009, §3.3.1).
In this case even the non-random utility weights need carry the index of individuals n. For the
simplicity of notation we do not consider this case in the present section, and attach the index n
only to those parameters that vary randomly between individuals.
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without further qualification, is often understood to describe this particular speci-
fication rather than the family of models. For the clarity of the distinction between
the family and the particular instance of it, we will refer to the latter and equation
(3) as the NMXL model.

The focal point of non-market valuation is the willingness-to-pay (WTP) for
non-price attributes, which is defined as !n = �n/�n. See, for example, Small et al.
(2005). A key drawback of the NMXL model is that the implied WTP distribution
does not have finite moments including the population average and variance, since
the support of normal �n includes zero. Specifying �n as a positive-valued distri-
bution, such as log-normal, is often considered unsatisfactory since the implied
moments tend to take on implausible values.

The mixed logit model in the WTP space, proposed by Train and Weeks (2005),
addresses these limitations by specifying the individual’s preferences in terms of
the WTP coefficients, rather than the utility weights, from the outset. Algebraically,
their model can be seen as a special case of equation (1) that normalizes �n, instead
of �n, to unity for all individuals. The resulting model is in the WTP space since
this normalization leads to a utility index of

Vnjt = n(!n · xnjt � pnjt) (4)

where !n := �n/�n is the vector of WTP coefficients and n := �n · �n is a com-
posite parameter that captures heterogeneity in the taste for money, as well as in
the scale of utility. The most popular approach is to complete the stochastic speci-
fication by modeling {ln[n],!n} as individual-specific draws from a multivariate
normal distribution, thereby linking the mean of !n to the population average
WTP. This distribution assumption represents a fundamental departure from the
NMXL model, since one cannot derive normal !n as the ratio of normal �n and
normal �n.9 For ease of reference, we will refer to the mixed logit model in the
WTP space in equation (4) as the NWTP model.

The GMNL-II model, developed by Fiebig et al. (2010), makes a fuller use of
the notion that the mixed logit model can be normalized to accommodate scale
heterogeneity alongside coefficient heterogeneity. The acronym is derived from
the fact that it is a version of the more flexible, but also more exotic, Generalized
Multinomial Logit (GMNL) model that we will summarize shortly. In GMNL-II,
the scale factor �n is normalized by setting its population mean—rather than all
of its individual-specific values as was the case with NMXL—to unity. The utility

9This follows from the general result that the ratio of two normally distributed random variables
does not itself follow a normal distribution.
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index in this instance is specified as

Vnjt = �n(�n · xnjt � �npnjt) (5)

where �n and �n are draws from a multivariate normal distribution as with NMXL,
and ln[�n] from a normal distribution whose mean is calibrated to satisfy E[�n] =

1.10 As is the case under NMXL, the parameters �n and �n in GMNL-II are inter-
preted as utility weights rather than WTP coefficients. GMNL-II nests NMXL in
equation (3) as a special case with a degenerate �n, but it does not nest the NWTP
model in equation (4) as a special case with a normalized price coefficient �n := 1.
Unlike �n, the composite scale parameter n in the NWTP model retains its mean
as a free parameter.

Finally, the full version of GMNL generalizes equation (5) further by allowing
scale heterogeneity to have distinct effects on the population mean of the utility
weights and individual-specific deviations around the mean. To facilitate further
discussion, let us decompose each individual’s utility weights as �n = �̄ + ⌘n and
�n = �̄ + ⌫n, where the overbar indicates the mean and ⌘n and ⌫n the deviations.
The utility index under GMNL is given by

Vnjt = �n(�̄ · xnjt � �̄pnjt) + [� + �n(1� �)](⌘n · xnjt � ⌫npnjt) (6)

where ⌘n and ⌫n are draws from a zero-mean multivariate normal distribution;
ln[�n] from a normal distribution whose mean is calibrated as with GMNL-II; and
�̄, �̄, and � represent non-random parameters to be estimated alongside these dis-
tributions. The only extra parameter compared to GMNL-II is �, but this small
addition lets the data speak for the extent to which interpersonal heterogeneity is
better modeled as GMNL-II (� = 0) or GMNL-I (� = 1). In a “horse race” study
which fits a variety of discrete choice models to 10 empirical data sets, Keane and
Wasi (2013) conclude that GMNL either achieves the best fit or offers a close ap-
proximation to a better fitting model which is often computationally less tractable.

2.2 Linear Model of Elicited Log-Odds

In traditional DCEs, respondents are asked to select one of J different alternatives
in each choice task. Manski (1999) and Blass et al. (2010) advocate an alterna-
tive response format that involves asking respondents to indicate the probability,
in percentage terms, that they would make a particular choice. Given that most

10Suppose that ln[�n] follows a normal distribution with a mean of m and a standard deviation of
⌧ . Then the mean of �n is equal to exp[m+0.5⌧2]. As this formula implies, the mean normalization
of �n in GMNL-II can be accomplished by treating ⌧ as a free parameter and setting m := �0.5⌧2.
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DCEs limit the number of attributes describing each alternative to minimize in-
formation overload and respondent fatigue, the choice scenarios presented may
be incomplete from the respondent’s perspective. This incompleteness refers to the
potential exclusion of certain relevant attributes in decision-making, requiring re-
spondents to infer or imagine the missing information. Manski (1999) argues that,
from a behavioral perspective, choice probabilities are a desirable response format
that allows respondents to express their choice uncertainty due to those unspeci-
fied aspects. Blass et al. (2010) demonstrate that, from an empirical perspective, the
use of choice probabilities is appealing as it facilitates semi-parametric estimation
of mixed logit models. We now summarize their semi-parametric approach.

To facilitate further discussion, we assume J = 2 henceforth, as is the case
with the empirical settings of Blass et al. (2010), as well as our own application
below. The conditional choice probability in equation (2) implies that the log-odds
of selecting alternative j = 2 is given by ln[Pn2t/Pn1t] = Vn2t � Vn1t. Define �xn2t =

xn2t � xn1t and �pn2t = pn2t � pn1t as the differences in the observed attributes of
the two alternatives under consideration.

With this new notation, we can express the log-odds under the NMXL model
in equation (3) as

ln[Pn2t/Pn1t] = �n ·�xn2t � �n�pn2t

= (�̄ ·�xn2t � �̄�pn2t) + (⌘n ·�xn2t � ⌫n�pn2t)

= �̄ ·�xn2t � �̄�pn2t + ✏n2t

(7)

where the second equality applies the decomposition of multivariate normal �n

and �n into their population mean (�̄ and �̄) and individual-specific deviation
components (⌘n and ⌫n), as introduced in the context of the GMNL-II model; and
the third equality is derived by aggregating these deviations into a composite error
term ✏n2t.

Suppose that individual n states that their probability of choosing alternative
j in task t is equal to ynjt. The statistical analysis by Blass et al. (2010) is based on
the core assumption that one may equate this elicited choice probability with the
NMXL probability Pnjt. Then one may estimate �̄ and �̄ in equation (7) conve-
niently by running a regression of ln[yn2t/yn1t] on �xn2t and �pn2t. Since the nor-
mal error components ⌘n and ⌫n have a mean of zero, the composite error ✏n2t sat-
isfies the zero conditional mean assumption and the ordinary least squares (OLS)
estimator is consistent in this instance. Additionally, as the error components are
symmetric, ✏n2t satisfies the zero conditional median assumption required for the
consistency of the least absolute deviations (LAD) estimator. Unlike OLS, the LAD
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estimator offers robustness to outliers in the elicited log-odds, which may arise
from the behavioral tendency to round off very small or large probabilities.

The zero conditional mean or median property of ✏n2t may be satisfied even if
the underlying error components ⌘n and ⌫n are not normal. This consideration
adds a semi-parametric character to the OLS or LAD regression of elicited log-
odds based on equation (7). The consistency of both estimators allows for any zero
mean and symmetric distribution of ⌘n and ⌫n, providing flexibility beyond the
multivariate normality assumption of the NMXL model.

Despite the ease of estimation and semi-parametric advantage, the probability
elicitation format and the log-odds regression approach are relatively underuti-
lized in DCE studies. A notable drawback is that both OLS and LAD techniques
are unsuitable in the presence of scale heterogeneity, which is characteristic of both
the NWTP and the GMNL models. For illustration, consider the GMNL-II specifi-
cation in equation (5), which implies following the log-odds

ln(Pn2t/Pn1t) = �n(�̄ ·�xn2t � �̄�pn2t) + �n(⌘n ·�xn2t � ⌫n�pn2t)

= �n(�̄ ·�xn2t � �̄�pn2t) + �n✏n2t
(8)

where scale heterogeneity is represented by �n. Given that the individual-specific
multiplicative factor is now attached to the mean coefficients, standard regression
procedures can no longer be applied to estimate these coefficients. Furthermore
the new composite error term �n✏n2t, as a product of two random variables, may
not have the conditional mean or median of zero, even if ✏n2t does when considered
in isolation. The inability to accommodate scale heterogeneity warrants a concern
in light of empirical findings suggesting that this aspect accounts for a substan-
tial share of interpersonal heterogeneity in discrete choice data.11 Moreover, scale
heterogeneity is highly relevant given the notion of incomplete scenarios that mo-
tivates the elicitation of choice probabilities. Different individuals may perceive
an identical scenario as incomplete to varying extents, and these perceptual dif-
ferences imply that the relative importance of the error term in the random utility
function varies from individual to individual, hence scale heterogeneity.

Beyond its apparent limitations in addressing scale heterogeneity, the log-odds
regression model in equation (7) falls short in providing several key parameter

11In an analysis of model fit across 10 empirical datasets, Fiebig et al. (2010) find that models
which account for scale heterogeneity (such as GMNL or its variant that preserves scale heterogene-
ity while assuming coefficient homogeneity) outperform NMXL in every case. This finding aligns
with an earlier study by Hensher et al. (1998) in the basic MNL framework, which concluded that
discrepancies between stated and revealed preference data could be more parsimoniously modeled
by introducing a data-specific scale factor, instead of allowing the entire coefficient vector to shift
between the two data sources.
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estimates crucial in DCE studies. As noted earlier, these studies are usually mo-
tivated by non-market valuation questions, which relate to WTP measures �n/�n.
One can use the log-odds regression coefficients to evaluate the average decision
maker’s WTP as long as the average is defined in terms of utility parameters: the
WTP takes the form of �̄/�̄ in this case. But the results are difficult to interpret in
relation to the population distribution of WTP because this ratio does not reflect
the average or median of the WTP distribution per se, which is more pertinent to
non-market valuation: the mean or median ratio of two random variables does not
equate to the ratio of their respective means or medians.

Finally, empirical research often aims to quantify not just the central tendency
of preference parameters, but also their population distributions (Layton and Brown,
2000; Small et al., 2005). Employing log-odds regression to study population dis-
tributions requires that the number of choice observations per individual, denoted
as T in our notation, exceed the combined dimension of xnjt and pnjt.12 Many DCE
studies, including Hackbarth and Madlener (2013, 2016) from which we borrow
our design elements (see Section 3), do not meet this requirement: The common
practice of adopting a small T to minimize respondent fatigue often makes it in-
feasible to apply the log-odds approach to measure population distributions.13

2.3 Fractional Response Model of Elicited Choice Probabilities

To complement the semi-parametric estimator using the elicited log-odds, it would
be advantageous to employ a parametric model of individual heterogeneity for
the choice probabilities data. Ideally, such a model should incorporate compara-
ble assumptions regarding individual preference heterogeneity as the widely-used
parametric mixed logit models in the DCE literature.

Our objective is to formulate this type of model while accounting for evaluative
or reporting errors that may introduce discrepancies between a respondent’s latent
and stated choice probabilities. The integration of these errors into the assumed
decision making process is a cornerstone of McFadden’s random utility model,
especially in the context of its application to traditional DCE analysis. However,
the existing literature does not provide a framework that researchers can readily

12To estimate individual-specific ⌘n and ⌫n, one should run an auxiliary regression of residuals
(estimates of ✏n2t) on �xn2t and �pn2t, separately for each individual n. The dimensionality con-
dition relative to T arises from the standard rank condition required for independent variables to
identify regression coefficients.

13Note that xnjt often encompasses more variables than a simple count of distinct product at-
tributes. For example, a qualitative attribute with K levels (e.g., vehicle size options like small,
medium, or large) may require representation through K� 1 distinct dummies rather than just one
variable. In labeled choice experiments, an additional alternative-specific constant is needed for
each labeled alternative, further expanding the dimension of xnjt.
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employ to address this modeling issue when engaging in the analysis of elicited
choice probabilities. We aim to address this gap.

As with the preceding subsection, let Pn2t denote the respondent’s latent choice
probability for alternative 2, which incorporate their subjective evaluation of the
incomplete aspects of a choice scenario. Differently from the log-odds regression
approach, however, we explicitly consider the elicited choice probability yn2t as a
noisy manifestation of this latent preference. This approach aligns with the famil-
iar decomposition of a latent dependent variable into systematic evaluation and
response error components in behavioral choice modeling. A beta distribution
with a mean of Pn2t offers a particularly attractive stochastic specification of yn2t
to account for the random evaluative noise. This distribution has support on the
unit interval, as required for representing elicited probabilities. Moreover, it is
well-known for its ability to take on a variety of shapes depending on the data,
including bimodality and left or right skewness, without requiring the researcher
to impose such features as a priori assumptions.

For concreteness, let ✓n denote the parameters that represent individual prefer-
ences in a particular model, i.e., those terms on the right-hand of Vnjt in equations
(3) to (6) other than the observed attributes. We assume that, conditional on ✓n, yn2t
follows a beta distribution with a mean of Pn2t and a variance of Pn1tPn2t/(1 + �),
where Pn1t = 1 � Pn2t and � is the distribution’s precision parameter to be esti-
mated. The conditional density of yn2t can be then specified as

lnt[yn2t;✓n,�] =
�[Ant +Bnt]

�[Ant]�[Bnt]
yAnt�1
n2t yBnt�1

n1t (9)

where �[·] denotes the gamma function, yn1t = 1 � yn2t, Ant = �Pn2t, and Bnt =

�Pn1t. This conditional density function is equal to the density function of the
usual beta regression model, except that ✓n includes random, as opposed to fixed,
parameters.14 While it might seem natural to have the precision parameter � spec-
ified as an individual-specific random parameter �n akin to ✓n, our experience
in the empirical analysis below indicates that such a model specification is diffi-
cult to identify empirically. Considering that the variance of yn2t under the beta
distribution is Pn1tPn2t/(1 + �), where each Pnjt is a function of ✓n, interpersonal
preference heterogeneity inherited from mixed logit already induces this variance
to exhibit interpersonal heteroskedasticity. We speculate that this makes it difficult
to disentangle the distinct role of possible heterogeneity in �, and specify it as a
non-random parameter.

The utility index Vnjt which underpins Pn2t and Pn1t in equation (9) can incor-
14Put another way, just as mixed logit models can be seen as random coefficient MNL models,

this fractional response model can be seen as random coefficient beta regression models.
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porate any mixed logit structure, including NMXL, NWTP, GMNL-II, and GMNL
specifications reviewed above. This enables the use of elicited probabilities in the
estimation of the same set of preference parameters as one could do with discrete
choice data. In our empirical analysis below, we exploit this feature to draw fuller
comparisons of preference structures estimated from a probability elicitation ex-
periment to those from a traditional DCE, where both types of experiments were
based on the same set of choice scenarios. As detailed in Appendix A, the un-
conditional likelihood function for a fractional response model based on equation
(9) has the same algebraic form as that for the corresponding mixed logit model,
except that the beta conditional density takes the place of the logit conditional den-
sity in each choice scenario. Similarly as with the case of mixed logit (Train, 2009,
S6.7), we apply the method of maximum simulated likelihood (MSL) to maximize
a simulated analogue to this likelihood function with respect to parameters char-
acterizing the population distribution of ✓n and the precision parameter �.

Our modeling approach is closely related to two preceding studies. Scarpa
et al. (2021) pursue a similar goal of estimating the mixed logit type of individ-
ual heterogeneity from elicited choice probabilities, employing a fractional logit
model inspired by Papke and Wooldridge (1996). In our notation, they use the
fractional logit density of the form P yn1t

n1t P yn2t
n2t in the place of our equation (9). This

approach, however, falls short of a formal statistical justification: The model spec-
ification is incomplete from the perspective of MSL as the fractional logit density
does not fully specify a data generating process for yn2t, and does not result in
a consistent quasi-maximum likelihood estimator either as it falls outside Papke
and Wooldridge’s intended scope for the fractional logit method.15 In an analysis
of subjective beliefs over life events, Hendren (2013, pp.1750-1751) employs a fi-
nite mixture of beta density functions to model the belief distributions, leveraging
the flexibility of beta distributions. His modeling framework is markedly different
from ours since he directly considers probabilities as primitives, whereas our prim-
itives are preference parameters which, together with observed attributes, gener-
ate probabilities. Nevertheless, our modeling approach is broadly aligned with his
in the sense that integrating out ✓n from equation (9) to obtain the unconditional
likelihood function results in a continuous mixture of beta density functions.

15Papke and Wooldridge (1996) focus squarely on estimating a regression function for fractional
responses which does not involve any random parameter. In this setting the fractional logit density
leads to a quasi-maximum likelihood estimator of non-random regression coefficients which is con-
sistent for a variety of true regression functions. This result is, however, irrelevant to the estimation
of the population distribution of random parameters ✓n.
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2.4 Flexible Models of Choices and Expectations

Perhaps the most well-known semi-parametric estimator of a random utility dis-
crete choice model is the maximum score (MS) estimator due to Manski (1975,
1985). In terms of our notation for the log-odds approach in equation (7), this
method provides a consistent estimator of the ratio � = �̄/�̄ under a relatively
mild assumption that (Pn2t � Pn1t) > 0 if and only if (� · �xn2t � �pn2t) > 0. As
a semi-parametric estimator, the MS method offers greater flexibility than the OLS
and LAD methods for log-odds regression due to its capability to accommodate
non-logit functional forms of Pnjt. Unlike OLS and LAD, the MS method provides
robustness against any form of scale heterogeneity attributed to �n 2 (0,1), be-
cause the inequality (� ·�xn2t��pn2t) > 0 is equivalent to �n(� ·�xn2t��pn2t) > 0.
As Yan and Yoo (2019, S2.3) discuss in detail, the latter feature implies that the MS
estimator is consistent for the NWTP and GMNL-II models as well as the NMXL
model, along with their variants where the coefficients follow symmetric but non-
normal distributions.16 A well-known limitation of the MS estimator, however, is
that it lacks point identification unless the variable linked to the normalized coeffi-
cient (in this case, �pn2t) exhibits continuous and unbounded support.17 In all DCE
designs, each attribute consists of a small finite number of distinct levels, implying
that the MS estimator can only achieve set identification in the resulting data.

The original version of the MS estimator is designed for binary choice data and
can be implemented by finding the values of � that maximize Kendall’s rank cor-
relation coefficient between dn2t�dn1t and (� ·�xn2t��pn2t), where dnjt is a choice
indicator equal to 1 if respondent n chooses alternative j in task t and 0 otherwise.
Following a conceptual development by Manski (1999), Blass et al. (2010) adapted
this method for the expectations context by using the difference between elicited
choice probabilities, denoted as yn2t � yn1t, in place of the binary choice indicators.
To complement our parametric analysis, in which we estimate the same parametric
models of preference heterogeneity for both standard DCE and choice probabili-
ties data, we apply the respective procedures to compute MS estimates for the two
data types. Thus, we can draw parallel semi-parametric comparisons.

16However, the MS estimator may not offer similar robustness to the full GMNL in equation (6),
where the scale factor influences the mean coefficients and individual-specific deviation terms by
different proportions due to �. When expressed in terms of unobservables rather than choice prob-
abilities, the consistency condition for the MS estimator is a zero conditional median assumption
about a composite error term that incorporates unobserved preference heterogeneity and idiosyn-
cratic disturbance. Unlike for GMNL-II, where the scale factor �n does not affect the question of
whether Vn2t �Vn1t is greater than 0, it does impact this directional comparison under GMNL. The
implied unobserved preference heterogeneity is captured by �n(1��)(⌘n ·�xn2t�⌫n�pn2t), where
the multiplication by �n means that it may not exhibit zero-mean symmetry, even if ⌘n and ⌫n do.

17While one may choose any parameter in �̄ for normalization, �̄ is a convenient choice as it
allows interpretation of the identified coefficients as reflecting the average decision maker’s WTP.
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3 Data and Experimental Setup

3.1 Overview

We compare alternative models of preference heterogeneity using data from a DCE
that has not previously been analyzed. Our primary interest is in modeling elicited
choice probabilities to compare different fractional response model specifications
and the LAD approach. Nevertheless, in our DCE, respondents were randomly
assigned to complete either probability elicitation tasks or standard choice tasks.
This feature enables us to extend our analysis to evaluate the sensitivity of esti-
mated preferences to the different response formats.

Our DCE concerns consumer preferences for alternative fuel vehicles (AFVs)
in Australia. This is a market where choice uncertainty is potentially important
since the market is emergent, new cars are an irregular purchase, and there are
likely to be many factors outside our choice experiment that will influence prefer-
ences and increase the liklihood of choice uncertainty. Our data were collected in
2017, at which point AFV penetration was limited but growing in Australia. For
example, less than 0.2% of new cars sold were electric or plug-in hybrid in 2017
(Electric Vehicle Council, 2023) but in the 12 months to Q3 2023 they accounted for
8.5% of sales, with a further 10.3% of sales being traditional hybrids (Australian
Automobile Association, 2023).

3.2 Choice Set Design and Attributes

Following similar studies in Germany (Hackbarth and Madlener, 2013, 2016), we
consider the following attributes on consumer choices: vehicle size; fuel type; fuel
cost; CO2 emissions; recharge time; refill availability; driving range (maximum
before re-fuel); and purchase price. Vehicle size was not included in the German
studies, but this is an important feature in the Australian market, and is included
in related Australian studies (Abdoolakhan, 2010; Beck et al., 2013). The levels and
conditions for each attribute are specified in Table 1.

Our choice sets were constructed using a D-efficient fractional factorial block
design. The reference model for the efficiency measure was multinomial logit with
a coefficient vector of zeros. We generated 64 binary choice sets segmented into
eight blocks. Each participant therefore saw 8 different scenarios in random order
and each scenario presented a choice between two alternatives without an opt-out
option. In addition to the conditions listed in Table 1, we also ensured that the fuel
type varied in each scenario.

To compare the two response formats, we used a between-person design. Each
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Table 1: DCE attributes and levels

Attribute Levels Conditions

Price In $000’s: 20, 25, 30, 35, 40, 45,
50, 55, 60, 70, 80

See note below

Size Small, Medium, Large None

Fuel type Conventional (CV), Hy-
brid electric (HEV), Liquid
petroleum gas (LPG), Hydro-
gen fuel cell (FCEV), Battery
electric (BEV), Plug-in hybrid
electric (PHEV)

Always vary in choice sets

Fuel cost $6.50, $13, $19.50 None

CO2 Emissions 0%, 50%, 75%, 100% of aver-
age car

If CV, LPG or HEV then 50%,
75% or 100%; If FCEV, BEV or
PHEV then 0%, 50% or 100%

Recharge time NA, 10 min, 1 hr, 6 hrs If CV, LPG, FCEV or HEV
then NA; If BEV or PHEV
then 10 min, 1 hr or 6 hrs

Refill availability 20%, 60% and 100% of all sta-
tions

If CV, HEV or LPG then 60%
or 100%; If FCEV, BEV or
PHEV then 20%, 60% or 100%

Driving range 100km, 400km, 700km,
1000km

If CV, HEV, LPG, FCEV or
PHEV then 400km, 700km or
1000km; If BEV then 100km,
400km or 700km

Notes: Relevant price levels vary by fuel type and vehicle size as listed in the following parentheses.
CV and LPG: Small (20, 25, 30); Medium (30, 35, 40); and Large (30, 45, 60). HEV and PHEV: Small
(30, 35, 40); Medium (40, 45, 50); and Large (40, 55, 70). BEV and FCEV: Small (40, 45, 50); Medium
(40, 45, 50); and Large (40, 65, 80).

participant had a 5/7 chance of being allocated to the standard DCE asking them
to state their preferred choice in each scenario, and a 2/7 chance of being allocated
to the alternative format asking them to state their choice probabilities instead.18

The instructions given to participants in each treatment, and an example choice
set, are provided in Appendix B.

For DCEs to be informative, it is important that the choice set includes at-
18Our allocation rule gave less weight to the probability elicitation format because, at the time

of data collection, we did not anticipate being able to use elicited choice probabilities to estimate
preference heterogeneity. Since LAD is limited to estimating population average preferences given
our design, we chose not to assign equal weights to both elicitation formats. Our subsequent devel-
opment of the fractional response model made the estimation of preference heterogeneity feasible.
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tributes and levels that are real-world relevant (i.e., are calibrated to actual or po-
tential consumer choices). We chose the set of AFV types based on Hackbarth and
Madlener (2013), but decided against including liquid natural gas and 20% bio-
fuel vehicles as these markets were practically non-existent, and seemed unlikely
to develop, in Australia as of 2017 (this has indeed been the case in the years since
our experiment). We added liquid petroleum gas (LPG) as this was a popular fuel
alternative in 2017, although since then its popularity has waned (Laverick, 2023).
Our attribute levels for CO2 emissions, recharge time, driving range and recharg-
ing time are in line with Hackbarth and Madlener (2013). For fuel cost, we used
public data from the Australian Bureau of Statistics on fuel usage and from the
Australian Petroleum Institute on fuel prices to determine a typical fuel cost of
around AUD$13/100km for passenger vehicles. We used this as a middle-price
and ±50% for low- and high-price. Finally, our levels for vehicle costs (in $AUD)
were mainly informed by Abdoolakhan (2010, Fig. 4.2), which were calibrated
using a focus group and a pilot study. We started with a range of prices for new,
automatic transmission CV, LPG and HEV vehicles, adjusted the prices to 2017 dol-
lars, and added prices for other categories based on an informal search of popular
models. We then checked our price ranges with Hackbarth and Madlener (2013)
and Beck et al. (2013) and confirmed the ranges were broadly similar.

Our scenarios were tested on a pilot sample of 49 people recruited from the
same marketing panel used for our main dataset. Our pilot data supported our
design choices, with a large degree of variation in options selected across the sce-
narios, and sensible coefficient estimates.

3.3 Sample Recruitment and Characteristics

Participants in our study were drawn from Qualtrics marketing research panels,
and completed the allocated type of decision task and other survey questions on-
line. Our recruitment process targeted people aged 25-70 years and a balanced
pool of men and women. Our final sample is 60% female and has a mean age
of 45.9 years, with 6 people outside the target age group. To ensure participants
were engaged, we included an attention filter and people who failed this screening
question are not included in our estimation sample.19

Table 2 provides demographic information on our sample, as well as partic-
ipants’ vehicle purchasing history and intentions, and attitudes towards climate
change. Column 1 includes population benchmarks derived from population weighted

19The attention filter was a four item matrix asking how satisfied (5-point scale) they are with
their life, finances, and neighbourhood, and then the attention filter instructing them to select ‘dis-
satisfied’. 127 people (14.4%) failed the attention filter and were omitted.
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Table 2: Sample descriptive statistics

Population All Choice Probability
(HILDA) respondents respondents respondents

Female 0.511 0.604 0.592 0.634
Age 45.9 48.3 48.7 47.7
Australian born 0.683 0.709 0.703 0.723
Lives major city 0.590 0.674 0.665 0.703
Married/de-facto 0.711 0.613 0.638 0.624
Household size 3.05 2.568 2.569 2.555
Num. dependent children 0.771 0.602 0.593 0.625
Graduate 0.338 0.332 0.358 0.302
Employed 0.715 0.555 0.552 0.564
Retired 0.139 0.230 0.236 0.213
Household income:

$0-$50k 0.139 0.321 0.328 0.307
$50k-$100k 0.267 0.514 0.512 0.520
$100k+ 0.594 0.164 0.160 0.173

Owns an AFV � 0.033 0.029 0.043
Car last purchased:

0-5 years � 0.744 0.726 0.787
5-10 years � 0.146 0.158 0.134
10+ years � 0.082 0.093 0.064

Car intended next purchase:
Within 3 years � 0.440 0.433 0.461
3-6 years � 0.188 0.195 0.168
6+ years � 0.077 0.081 0.068
Unsure/never � 0.295 0.291 0.304

Agree about climate change that:
It matters � 0.679 0.716 0.668
Vehicles a main cause � 0.751 0.768 0.792

Number of respondents � 755 525 202

Notes: Population statistics are derived from an external data source (HILDA). All respondents refer
to all participants in our DCE. Choice (probability) respondents refer to those who were randomly
allocated to complete standard choice (probability elicitation) tasks. Every respondent evaluated 8
scenarios presenting two alternative fuel vehicles at a time.

data from the Household Income and Labour Dynamics in Australia Survey (HILDA)
(Summerfield et al., 2022).20 Although our sample is not representative of Aus-
tralians aged 25-70 in 2017, it is broadly similar across many dimensions, including
age, heritage, where they live, couple status, household composition, and educa-
tion. The employment rate is lower in our sample than the population (55% versus

20The HILDA Project was initiated and is funded by the Australian Government Department of
Social Services (DSS) and is managed by the Melbourne Institute of Applied Economic and Social
Research (Melbourne Institute). The findings and views reported in this paper, however, are those
of the author and should not be attributed to either DSS or the Melbourne Institute.
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72%) and our sample has lower household income, although this could be partly
due to income being measured more comprehensively in the HILDA survey.

We also observe a high degree of engagement with the auto market: 74% of par-
ticipants had purchased a car in the last five years and 44% intended to purchase a
car in the next three years. The rate of AFV ownership21 is low (3%), but in line with
the population rate presented by another source (Australian Bureau of Statistics,
2018). Lastly, we observe that most people (68%) agree that climate change mat-
ters and that vehicles are a main cause (75%) which suggests they should value the
environmental benefits of AFVs.

We note that our two treatment samples (i.e., those who completed standard
choice tasks and those who completed probability elicitation tasks) are highly com-
parable in terms of each characteristic. None of the differences are large in mag-
nitude or statistically significant (p-values > 0.1 on all differences), demonstrating
that our randomization worked.

4 Results

4.1 Elicited Choice Probabilities

We first present the raw distribution of elicited choice probabilities across 1,616
data points for 202 participants.22 Each data point making up Figure 1 represents
a subjective probability of choosing the second alternative in a given choice sce-
nario. In about 80% of cases, we observe interior probabilities rather than 0 or
100%, which suggests that choice uncertainty is prevalent in this setting. The re-
maining fifth are almost equally split between the two boundary points, as one
may expect given the random assignment of choice attributes to alternatives. As
usual with stated probabilities (see Manski, 2004; Manski and Molinari, 2010; Blass
et al., 2010), we observe signs of rounding behavior which induces spikes at mul-
tiples of 5%. For model estimation, we follow Blass et al. (2010) and recode the
boundary responses of 0 and 100% as 0.1 and 99.9%: Similar to their log-odds re-
gression, our fractional response model requires all data points to be interior prob-
abilities.23 Together with potential rounding behavior, this recoding makes it ap-

21Our definition here includes duel fuel (LPG/petrol) vehicles
22We drop 8 observations where stated probabilities do not add up to 100 within choice sets.
23Although rounding near the boundaries of the [0, 100] interval is a problem for OLS estima-

tion of the linear model, assuming symmetric preferences circumvents the inference problem and
permits estimation of the linear median regression model by LAD. The fractional response model
addresses rounding directly through the scale parameter of the beta regression function, �, which
accounts for dispersion in how precisely respondents state their true probability in the survey. An
alternative approach to analyze variables that represent probabilities with an excess proportion of
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Figure 1: Histogram of choice probabilities for the second vehicle in each scenario.

propriate to view each data point as a combination of a true latent probability and
measurement error. The LAD estimator of Blass et al. (2010) addresses this issue
implicitly by virtue of its usual consistency condition that allows for measurement
error that does not affect the location of the conditional median. Our fractional
response model addresses it more explicitly by specifying each elicited probability
as a draw from a beta distribution, the mean of which is the latent probability.

4.2 Population Average Preferences

We now use elicited choice probabilities in Figure 1 to study preferences for AFVs
in Australia. To benchmark the main method used in current literature, we apply
the LAD estimator of equation (7). We are interested in how these LAD results
compare to fractional response models based on equation (9), which allow us to
incorporate alternative parametric forms of preference heterogeneity presented in
Section 2.1. We compute the MSL estimates of these fractional models by using 500
shuffled Halton draws to simulate sample likelihood functions.

In our DCE, each respondent evaluates 8 different scenarios, where each sce-
nario is described by eight attributes in Table 1. We specify all six numeric at-
tributes (price, fuel cost, CO2 emissions, recharge time, refill availability and driv-
ing range) as continuous variables, and expand the two qualitative attributes (ve-

zeroes and ones is the zero-one inflated beta regression model. However, this model discards the
observations with zeroes and ones and so truncates the sample based on the observed responses.
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hicle size and fuel type) into dummy variables. Since there are three vehicle sizes
and six fuel types, even this parsimonious specification entails a minimum of 13
preference coefficients (6 + 2 + 5) to estimate.24 We thus face a typical data environ-
ment for DCE studies, where the number of preference coefficients exceeds that of
observations per respondent. This precludes the use of the LAD estimates to fur-
ther identify the extent of interpersonal heterogeneity in each coefficient.25 While
we estimate this heterogeneity as part of our fractional response models, for now
we focus on population average coefficients—that is, �̄ and �̄ as per our notation
in Section 2—which can be estimated by both the benchmark method and our ap-
proach. We will discuss results that incorporate interpersonal heterogeneity in the
next two subsections.

Table 3 presents alternative estimates of population average preference coeffi-
cients �̄ and �̄. The first column reports the benchmark LAD estimates based on
the log-odds specification in equation (7). Subsequent columns present fractional
response models that incorporate successively richer preference structures. The
second column reports the fractional response model of multinomial logit pref-
erences (F-MNL). This baseline model incorporates the standard MNL model—
which assumes the same preference coefficients, i.e., �n = �̄ and �n = �̄ for all
individuals n—as the expected value Pn2t of the beta distribution in equation (9).
The third column (F-NMXL) extends this specification to incorporate interpersonal
preference heterogeneity as assumed by the NMXL model in equation (3). The
fourth (F-GMNL-II) and fifth (F-GMNL) columns generalize the NMXL structure
further to accommodate interpersonal scale heterogeneity, following GMNL-II and
GMNL specifications in equations (5) and (6).

We obtain mostly the same results in terms of signs and significance across
all model specifications. As one may expect from standard consumer theory and
anecdotal evidence, in all models the average consumer dislikes a higher price or
fuel cost, and has a preference for a greater refill availability and driving range (p-
values < 0.01). We find suggestive evidence of pro-environmental preferences in
our sample, as the average consumer’s utility decreases significantly with greater
CO2 emissions (at the 5% level in the LAD model and at the 1% level in the frac-
tional response models).26 Recharge time is also a source of disutility, but it is only

24We exclude dummies for “small” vehicle size and “conventional” fuel type which act as the
reference categories.

25One solution to this underidentification problem is to assume that only a subset of preference
coefficients exhibit heterogeneity. However, this solution is difficult to justify in light of common
findings from DCE studies, which report substantial heterogeneity in tastes for most, if not all,
included attributes. As reported in Appendix C (Table C1), the results from our fractional response
models align with these common findings.

26The evidence is only suggestive as the enactment of environmental policies, such as emissions
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Table 3: Population-level preference estimates for AFVs using choice probabilities.

LAD F-MNL F-NMXL F-GMNL-II F-GMNL

Medium size 0.067 0.076 0.069 0.150⇤⇤ 0.080
(0.071) (0.052) (0.069) (0.060) (0.062)

Large size 0.080 0.123⇤⇤ 0.110 0.054 0.035
(0.073) (0.056) (0.074) (0.086) (0.070)

Liquid Petroleum Gas -0.129 -0.080 -0.098 -0.472⇤⇤⇤ -0.309⇤⇤⇤
(0.109) (0.073) (0.090) (0.087) (0.098)

Hybrid Electric -0.024 0.121 0.157 0.064 0.048
(0.121) (0.087) (0.103) (0.070) (0.096)

Hydrogen Fuel Cell -0.100 0.062 0.082 0.005 0.017
(0.142) (0.081) (0.099) (0.093) (0.138)

Plug-in Hybrid Electric -0.154 -0.071 -0.072 -0.347⇤⇤⇤ -0.146
(0.115) (0.099) (0.104) (0.110) (0.124)

Battery Electric -0.244⇤⇤ -0.019 -0.072 -0.005 -0.047
(0.109) (0.099) (0.121) (0.089) (0.134)

Fuel cost -0.032⇤⇤⇤ -0.026⇤⇤⇤ -0.032⇤⇤⇤ -0.034⇤⇤⇤ -0.039⇤⇤⇤
(0.005) (0.004) (0.005) (0.005) (0.005)

CO2 Emissions -0.152⇤⇤ -0.205⇤⇤⇤ -0.244⇤⇤⇤ -0.414⇤⇤⇤ -0.253⇤⇤⇤
(0.074) (0.066) (0.066) (0.127) (0.063)

Recharge time -0.040⇤⇤ -0.030⇤⇤ -0.039⇤⇤ -0.034⇤ -0.032
(0.016) (0.012) (0.017) (0.021) (0.020)

Refill availability 0.293⇤⇤⇤ 0.244⇤⇤⇤ 0.335⇤⇤⇤ 0.317⇤⇤⇤ 0.411⇤⇤⇤
(0.083) (0.061) (0.076) (0.101) (0.088)

Driving range 0.027⇤⇤⇤ 0.034⇤⇤⇤ 0.038⇤⇤⇤ 0.043⇤⇤⇤ 0.041⇤⇤⇤
(0.010) (0.008) (0.010) (0.007) (0.007)

-1 * Price 0.175⇤⇤⇤ 0.145⇤⇤⇤ 0.171⇤⇤⇤ 0.244⇤⇤⇤ 0.238⇤⇤⇤
(0.017) (0.021) (0.028) (0.026) (0.025)

� 1.249⇤⇤⇤ 2.244⇤⇤⇤ 3.117⇤⇤⇤ 3.119⇤⇤⇤
(0.107) (0.249) (0.342) (0.329)

⌧ 1.109⇤⇤⇤ 0.696⇤⇤⇤
(0.0851) (0.0794)

� -0.816⇤⇤⇤
(0.193)

No. of parameters 14 14 27 28 29
No. of choice sets 1612 1612 1612 1612 1612
LL 538.3 653.4 762.6 791.4
AIC -1048.6 -1252.8 -1469.3 -1524.7
BIC -973.2 -1107.4 -1318.5 -1368.6

Notes: This table reports population mean parameters. Table C1 of Appendix A reports correspond-
ing standard deviations. Standard errors in parentheses are clustered at the respondent level (202
respondents). ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.
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significant at the 5% level in models that do not account for scale heterogeneity
(LAD, F-MNL, and F-NMXL). Of note is the disutility associated with LPG vehi-
cles, which complements well the declining popularity of this fuel type since our
survey was conducted Laverick (2023). However, the coefficient is only significant
(1% level) in the F-GMNL specifications, demonstrating the value of these more
flexible specifications in uncovering preference relationships that may be hidden
in simpler specifications that do not account for variable individual perceptions
of scenario incompleteness. Vehicle size is not a robust independent predictor of
choice expectations, but as we will discuss next, there is considerable preference
heterogeneity for this attribute.

For the F-NMXL, FGMNL-II and F-GMNL models, we also estimate the pop-
ulation standard deviations of �n and �n around the average coefficients.27 These
estimates are presented in Table C1 of Appendix C. Across all three fractional
response models, we find significant heterogeneity in consumer preferences for
price, fuel cost, driving range, recharge time and CO2 emissions, in addition to
several of the qualitative dummies, including the preferences for battery electric
and large size vehicles. We will return to quantify this preference variability in the
next subsection.

The estimated scale parameter ⌧ is 1.11 in F-GMNL-II with a standard error
of 0.09, which suggests the presence of substantial scale heterogeneity in the data.
The F-GMNL estimate of the scale parameter ⌧ is 0.70 with a standard error of 0.08.
Meanwhile, the F-GMNL estimate of � is -0.816, which implies that the variance
of residual taste heterogeneity increases more than proportionately as the vector
of utility weights are scaled up or down by �n (Keane and Wasi, 2013). Recall the
distinction between the scale parameter of the random utility model (�) and the
scale parameter of the beta regression (�). The former inversely relates to an in-
dividual’s uncertainty of preference (e.g., due to the perception of incompleteness
concerning a choice scenario), whereas the latter represents the behavioral error in
stating that preference during the survey (e.g., rounding behavior). Our estimates
of the behavioral error parameter � are significantly greater than zero in all of the
fractional response models (1% level). This highlights the importance of capturing
this form of measurement error—separate to coefficient and scale heterogeneity—
when estimating preferences from elicited choice probabilities.

Finally, we use the Akaike information criterion (AIC) and the Bayesian infor-

charges, may provide a strong economic rationale for preferring vehicles with lower emissions.
27We assume that each random coefficient is independently normal. This assumption rules out

correlations in tastes for different attributes. Relaxing this assumption and estimating an unre-
stricted covariance matrix would entail the estimation of a further 105 parameters, which is im-
practical to implement in the present application.
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mation criterion (BIC) to compare the fit of the different models in our dataset.
Adding residual taste heterogeneity (F-NMXL) leads to a marked improvement
in the likelihood over F-MNL, from 538.3 to 653.4 (i.e., 115.1 points or 21%), with
corresponding improvements in both AIC and BIC. Adding scale heterogeneity
(F-GMNL-II) adds just one more parameter and leads to a 16.7% improvement in
the likelihood over F-NMXL of another 109.2 points, resulting in a further large
improvement in the AIC and BIC. This aspect of our choice probabilities data is
aligned with the results of Fiebig et al. (2010) and Keane and Wasi (2013) based
on traditional (i.e., “pick one”) choice data, which suggest that scale heterogeneity
accounts for a substantial share of interpersonal heterogeneity in choice behavior.
We also observe a small improvement in model fit when moving from F-GMNL-II
to F-GMNL.

4.3 Willingness-to-Pay (WTP) for Vehicle Attributes

The coefficient estimates reported in the previous subsection express preferences
in the abstract unit of utils, making it difficult to evaluate their fuller quantitative
implications. To convert these estimates into a more natural unit of measurement,
a standard approach is to study WTP implied by the model, derived as the ratio of
the coefficient on the respective non-price attribute to the coefficient on the price
attribute (e.g., Blass et al., 2010; Wiswall and Zafar, 2018; Koşar et al., 2022).

In Table 4, we evaluate these WTP measures at the average preference coeffi-
cients, by applying the formula �̄/�̄. Since we have coded our price attribute in
10,000s of Australian dollars, the unit for the WTP estimates is also AUD $10,000s.
Given our coding scheme for the non-price attributes, the reported numbers corre-
spond to the WTP for each of the following changes: (i) $1 increase in fuel cost per
100 kilometres; (ii) one-hour increase in recharge time (iii) 100 kilometre increase
in driving range; (iv) 100% increase in CO2 emissions (percent of average vehicle);
(v) 100% increase in refill availability (percent of service stations); (vii) switching
from small to medium or large vehicle size; and (vii) switching from conventional
to one of the five alternative fuel types.

The results largely agree with our discussion of the preference parameter es-
timates. Depending on the model specification, the average consumer’s WTP is
estimated at $1,390 to $1,860 for a $1 reduction in fuel cost per 100 kilometres;
$1,330 to $2,290 for a one-hour reduction in recharge time; $1,540 to $2,350 for
a 100 kilometre increase in driving range; $869 to $1,694 for a 10% reduction in
CO2 emissions; and $1,296 to $1,954 for a 10% increase in refill availability. The
majority of the WTP estimates for the vehicle size and fuel type dummies are not
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Table 4: WTP estimates for AFVs derived from estimated population preference
parameters using choice probabilities (AUD $10,000s).

LAD F-MNL F-NMXL F-GMNL-II F-GMNL

Medium size 0.384 0.522 0.400 0.616⇤⇤⇤ 0.336
(0.401) (0.357) (0.425) (0.220) (0.250)

Large size 0.457 0.852⇤⇤ 0.641 0.219 0.148
(0.395) (0.341) (0.455) (0.347) (0.281)

Liquid Petroleum Gas -0.739 -0.550 -0.571 -1.932⇤⇤⇤ -1.298⇤⇤⇤
(0.628) (0.518) (0.570) (0.346) (0.469)

Hybrid Electric -0.140 0.833 0.916 0.262 0.204
(0.696) (0.570) (0.561) (0.283) (0.395)

Hydrogen Fuel Cell -0.570 0.429 0.476 0.019 0.072
(0.825) (0.540) (0.574) (0.380) (0.579)

Plug-in Hybrid Electric -0.882 -0.489 -0.422 -1.419⇤⇤⇤ -0.612
(0.672) (0.694) (0.617) (0.416) (0.547)

Battery Electric -1.396⇤⇤ -0.131 -0.422 -0.019 -0.198
(0.659) (0.686) (0.711) (0.364) (0.572)

Fuel cost -0.186⇤⇤⇤ -0.179⇤⇤⇤ -0.186⇤⇤⇤ -0.139⇤⇤⇤ -0.164⇤⇤⇤
(0.036) (0.036) (0.045) (0.021) (0.029)

CO2 Emissions -0.869⇤⇤ -1.418⇤⇤⇤ -1.425⇤⇤⇤ -1.694⇤⇤⇤ -1.063⇤⇤⇤
(0.429) (0.435) (0.428) (0.446) (0.281)

Recharge time -0.227⇤⇤ -0.208⇤⇤ -0.229⇤ -0.140 -0.133
(0.096) (0.089) (0.118) (0.088) (0.082)

Refill availability 1.676⇤⇤⇤ 1.682⇤⇤⇤ 1.954⇤⇤⇤ 1.296⇤⇤⇤ 1.725⇤⇤⇤
(0.498) (0.481) (0.478) (0.452) (0.395)

Driving range 0.154⇤⇤⇤ 0.235⇤⇤⇤ 0.219⇤⇤⇤ 0.178⇤⇤⇤ 0.173⇤⇤⇤
(0.059) (0.076) (0.082) (0.035) (0.031)

Notes: WTP figures respectively correspond to the following units: vehicle size (vs. small), fuel type
(vs. conventional), $1 increase in fuel cost per 100km, 100% increase in CO2 emissions (% of average
vehicle), 1 hour increase in recharge time, 100% increase in refill availability (% of service stations),
100km increase in driving range. Standard errors in parentheses are clustered at the respondent
level (202 clusters). ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.

significantly different from zero in a consistent manner across models. Neverthe-
less, for LPG vehicles, we do find significant WTP estimates of �$1,298 (F-GMNL)
and �$1,932 (F-GMNL-II) in the two models that account for scale heterogeneity
on top of coefficient heterogeneity.

As discussed in the context of the LAD estimation of equation (7), a key draw-
back of the ratio �̄/�̄ is that it does not correspond to a usual central tendency
measure (e.g., mean or median) of the WTP distribution per se. In the case of frac-
tional response models for which we estimate the population distribution of each
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Table 5: Population WTP distribution (AUD $10,000s), simulated using 10,000
draws of preference parameters from F-NMXL.

Percentile 5th 10th 25th 50th 75th 90th 95th �̄/�̄

Medium size -2.905 -1.438 -0.404 0.111 0.681 1.770 3.513 0.400
Large size -2.878 -1.208 -0.072 0.327 0.793 1.844 3.524 0.641
Liquid Petroleum Gas -6.084 -3.277 -1.380 -0.477 0.327 2.206 4.825 -0.571
Hybrid Electric -1.737 -0.766 0.136 0.251 0.481 1.038 2.004 0.916
Hydrogen Fuel Cell -2.691 -1.376 -0.532 -0.110 0.293 1.084 2.339 0.476
Plug-in Hybrid Electric -11.11 -5.668 -2.239 -0.475 1.153 4.597 10.44 -0.422
Battery Electric -13.06 -6.632 -2.380 -0.257 1.807 5.718 12.04 -0.422
Fuel cost -1.242 -0.672 -0.278 -0.101 0.050 0.423 1.013 -0.186
CO2 Emissions -10.63 -5.499 -2.210 -0.602 0.862 3.876 8.424 -1.425
Recharge time -1.020 -0.537 -0.234 -0.091 0.024 0.340 0.806 -0.229
Refill availability -9.162 -3.936 -0.552 0.938 2.762 6.478 11.91 1.954
Driving range -1.674 -0.713 -0.116 0.142 0.455 1.093 2.044 0.219

Notes: For variable definitions, see notes to Table 4. The simulation is based on the population
distribution of preference parameters characterized by the mean (Table 3) and standard deviation
(Table C1 in Appendix C) estimates for the F-NMXL model. The final column (�̄/�̄) reproduces
the average consumer’s WTP reported in the F-NMXL column of Table 4, to facilitate comparisons
with the simulated percentiles of �n/�n.

preference parameter on top of their averages, we are able to make draws of �n

and �n from their estimated distributions. The results therefore allow us to derive
and examine the implied WTP distributions concerning �n/�n.

To demonstrate, in Table 5 we present the simulated distribution of WTPs based
on the F-NMXL preference estimates in Table 3. To facilitate comparisons with
the percentiles of this distribution, we also reproduce the average consumer’s
WTPs (i.e., �̄/�̄) reported in the F-NMXL column of the preceding table. The
mean WTP does not possess finite moments in this model, but the median WTP
is well-defined. In general, differences between the median WTP and the average
consumer’s WTP within the F-NMXL model tends to be larger than differences
between the LAD and F-NMXL estimates of the average consumer’s WTP. For
example, consider again the average consumer’s WTP for a 10% increase in refill
availability, which was estimated at $1,676 (LAD) or $1,954 (F-NMXL). The median
of the WTP distribution under F-NMXL, however, occurs at a much lower amount
of $938, which underscores the potential importance of examining the WTP dis-
tribution directly. Nevertheless, quantifying the WTP distribution in this manner
has its limitations, as draws of �n near zero result in implausibly large magnitudes
of WTP values. In Table 5, this issue is evident from the several-fold increases in
percentile values observed when moving to the left of the 25th percentile or to the
right of the 75th percentile.
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Table 6: Population WTP distribution (AUD $10,000s), simulated using 10,000
draws of WTP parameters from F-NWTP.

Percentile 5th 10th 25th 50th 75th 90th 95th

Medium size -1.220 -0.872 -0.301 0.330 0.972 1.579 1.920
Large size -1.108 -0.790 -0.273 0.307 0.894 1.414 1.697
Liquid Petroleum Gas -2.634 -2.279 -1.648 -0.983 -0.290 0.318 0.678
Hybrid Electric -1.432 -1.143 -0.649 -0.094 0.446 0.948 1.244
Hydrogen Fuel Cell -2.889 -2.249 -1.141 0.072 1.273 2.347 2.983
Plug-in Hybrid Electric -4.188 -3.523 -2.429 -1.208 -0.009 1.070 1.692
Battery Electric -5.045 -4.094 -2.428 -0.513 1.345 2.994 3.949
Fuel cost -0.474 -0.408 -0.300 -0.178 -0.056 0.054 0.118
CO2 Emissions -5.886 -4.639 -2.640 -0.459 1.752 3.743 4.951
Recharge time -0.764 -0.660 -0.482 -0.286 -0.091 0.085 0.184
Refill availability -2.090 -1.198 0.282 1.943 3.594 5.062 5.950
Driving range -0.365 -0.245 -0.051 0.172 0.391 0.586 0.703

Notes: For variable definitions, see notes to Table 4. The simulation is based on the population
distribution of WTP parameters characterized by the mean and standard deviation estimates for the
F-NWTP model. The F-NWTP estimates are reported in Appendix C (Table C2). Since the model
assumes normally distributed WTP parameters, the average consumer’s WTP coincides with the
median (50th percentile).

The NWTP model of Train and Weeks (2005), presented in equation (4), ad-
dresses these limitations directly by parameterizing and estimating the model in
terms of the WTP distribution rather than the utility parameter distribution. In Ta-
ble C2 of Appendix C, we report a fractional response model which incorporates
the NWTP preference structure (F-NWTP).28 In Table 6, we present the simulated
distributions of population-level heterogeneity in WTPs based on the F-NWTP
model. Consistent with findings in studies estimating the NWTP preference struc-
ture from stated choices, we observe that the tails of the distribution are pulled in
towards the median compared to those in NMXL. The median WTP coincides with
the mean WTP in this model, as the population distribution of each WTP measure
is specified to be normal. The issue of whether the mean WTP in the F-NWTP
model aligns more closely with the average consumer’s WTP or the median WTP
in F-NMXL calls for a case-by-case assessment. However, in many instances, the
mean falls within or slightly outside an interval between the two estimates, with
relative proximity to each end of the interval varying from one attribute to another.

28The same table also presents a special case of F-NWTP which assumes homogeneous WTP
coefficients for all individuals, which we dub F-WTP. The F-WTP estimates are simply provided
to facilitate comparisons; in terms of substance, they are numerically identical to the WTP values
implied by the F-MNL column in Table 3 by construction. As explained by Train and Weeks (2005),
whether one specifies the model in the WTP space or utility space is irrelevant as the model does
not involve random coefficients to represent interpersonal preference heterogeneity.
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Figure 2: Posterior distributions of individual-level preference parameters for the
choice attributes Fuel cost and Refill availability in F-NMXL (column 1) and F-GMNL
(column 2). Posterior distributions for the remaining numeric choice attributes and
for the F-GMNL-II model are reported in Appendix C (Figures C1 and C2).

4.4 Individual-level Preferences

In this subsection, we evaluate individual-level parameters implied by the frac-
tional response models of preference heterogeneity. The results will help us to
better understand the behavioral reasons why scale heterogeneity, in addition to
coefficient heterogeneity, improves model fit in the data (cf. Table 3). These pa-
rameters take the form of individual-specific posterior means, derived by applying
Bayes’ rule to combine information available from the estimated population dis-
tributions, which act as priors, with information from a given individual’s stated
responses to the DCE. Train (2009, §11) offers an accessible guide to this approach.
In the case of the F-NMXL model, each prior is a normal distribution. In the cases
of F-GMNL-II and F-GMNL, we evaluate the aggregated effects of scale and coef-
ficient heterogeneity (e.g., posterior mean of �n�n in F-GMNL-II rather than that of
�n alone). As Fiebig et al. (2010) and Keane and Wasi (2013) point out, each prior
in this case may be interpreted as a more flexible distribution characterizable as a
continuous mixture of scaled normals.
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To demonstrate the implications of modelling scale heterogeneity in addition to
coefficient heterogeneity, Figure 2 summarizes the distributions of the individual-
level parameters for the fuel cost and refill availability choice attributes in the F-
NMXL and F-GMNL models. The posterior distributions for the remaining four
numeric choice attributes and all corresponding distributions for the F-GMNL-II
model are reported in Appendix C (Figures C1 and C2). In general, the distribu-
tions for the F-NMXL model tend to be more bell-shaped and so are not well-suited
to accommodating consumers with lexicographic preferences, in a broad sense
of placing great weight on a single choice attribute. This is because the normal
prior is less flexible for capturing outliers in the dataset. The distributions of the
individual-level parameters in the F-GMNL and F-GMNL-II models depart sub-
stantially from normality and can account for the pronounced left or right skew-
ness in the data. Indeed, this is observed for preferences over the fuel cost and refill
availability choice attributes in Figure 2. This flexibility is important for variables
where we simultaneously observe individuals who have strong preferences over a
particular attribute and a distinct group of individuals who exhibit a low respon-
siveness to variation in this attribute. Incorporating scale heterogeneity allows for
such a pattern to emerge by allocating a small scale parameter value to the former
group of individuals and a large scale parameter value to the latter group of in-
dividuals. The ability to address this source of heterogeneity is an advantage that
the fractional response model has over the LAD estimation, as we have explained
in the context of equation (8).

4.5 Comparison with Standard DCE Using Choice Format

We have provided evidence of substantial choice uncertainty in our dataset. This
observation alone suggests that deterministic choices, which standard DCEs elicit,
would be inherently restrictive in the AFV setting and points to the value of elicit-
ing choice probabilities. As explained in Section 3, participants in our study were
randomly allocated to either the probability elicitation format, the data from which
we have been analyzing so far, or the standard pick-one choice format. We now
study data on the latter group of 525 respondents who submitted a total of 4,200
conditional choices (eight choices each). This gives us an opportunity to evaluate
how different our results would be with the standard elicitation format.

Before turning to the results, we note that in general, empirical identification of
preference structures featuring scale heterogeneity (that is, NWTP, GMNL-II, and
GMNL) is fragile when we use the stated choice data, suggesting that allowing re-
spondents to express their uncertainty in the form of choice probabilities facilitates
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estimation of rich behavioral models in the AFV settings that would otherwise not
be estimable. We employed computational compromises to estimate these models
using the stated choice data that we had not applied earlier and despite the larger
sample size. Specifically, for NWTP and GMNL-II, we had to assume homoge-
neous preferences for the vehicle size and fuel type attributes, and only allow for
heterogeneity concerning the numerical attributes. In the case of the full GMNL
model, identification is more dubious as we had to set a small number of Halton
draws (50) to accomplish numerical convergence.29

With these caveats in mind, Table 7 presents the population level WTP at mean
estimates, �̄/�̄, for the stated choice data using the MNL, NMXL, GMNL-II and
GMNL models.30 A direct comparison with Table 4 tells us that the WTP estimates
for the numeric attributes remain largely unchanged in terms of signs and signifi-
cance, although they exhibit different magnitudes which can be important from a
non-market valuation perspective. Concerning the vehicle size dummies, we ob-
tain positive and significant (p-values < 0.01) estimates in all four models of stated
choice data, in contrast to our earlier results based on choice probabilities data
where they were insignificant at the 10% level in four out of five specifications.
One possible explanation for this sensitivity is that the size of vehicle required in
the future depends on factors such as family size and lifestyle needs, which may
entail a relatively high level of uncertainty. We would also expect preferences for
vehicle size to be highly heterogeneous for these reasons; however, evidence that
preferences for these attributes are heterogeneous is less equivocal in the stated
choice data (Table C4) than in the choice probabilities data (Table C1).

Additionally, the battery electric dummy variable is negative and significant at
the 5% level in the stated choice data, but negative and insignificant at the 10%
level in four out of five specifications for the choice probabilities data. The future
market prospect for battery electric vehicles, which might affect factors such as ex-
pected resale price, was highly uncertain at the time of the survey implementation
in 2017 (and remains uncertain today).

The above results are aligned with what we observe in the WTP space models
for the stated choice data (see Table C5 in Appendix C).

29The exact value of a simulated likelihood function is sensitive to the number of Halton draws
used. Therefore, we cannot directly compare model fit where there is a varied number of Halton
draws.

30The corresponding population preference parameter mean and standard deviation estimates
are reported in Appendix C (Tables C3 and C4).
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Table 7: WTP estimates for AFVs derived from estimated population preference
parameters using stated choices (AUD $10,000s).

(1) (2) (3) (4)
MNL NMXL GMNL-II GMNL

Medium size 1.263⇤⇤⇤ 0.784⇤⇤⇤ 0.716⇤⇤⇤ 0.749⇤⇤⇤
(0.226) (0.179) (0.166) (0.201)

Large size 1.278⇤⇤⇤ 0.711⇤⇤⇤ 0.675⇤⇤⇤ 0.743⇤⇤⇤
(0.222) (0.188) (0.114) (0.201)

Liquid Petroleum Gas -0.057 -0.440 -0.450⇤⇤⇤ -0.444
(0.380) (0.350) (0.168) (0.396)

Hybrid Electric 0.221 -0.046 0.118 0.195
(0.385) (0.320) (0.217) (0.376)

Hydrogen Fuel Cell -0.213 -0.246 -0.104 -0.223
(0.375) (0.319) (0.237) (0.332)

Plug-in Hybrid Electric -0.621 -0.803⇤⇤ -0.537⇤⇤⇤ -0.655⇤
(0.383) (0.327) (0.189) (0.398)

Battery Electric -0.597⇤ -0.778⇤⇤ -0.682⇤⇤⇤ -0.732⇤⇤
(0.346) (0.310) (0.209) (0.350)

Fuel cost -0.189⇤⇤⇤ -0.168⇤⇤⇤ -0.182⇤⇤⇤ -0.188⇤⇤⇤
(0.019) (0.017) (0.020) (0.020)

CO2 Emissions -1.133⇤⇤⇤ -0.969⇤⇤⇤ -1.254⇤⇤⇤ -1.149⇤⇤⇤
(0.266) (0.221) (0.268) (0.254)

Recharge time -0.362⇤⇤⇤ -0.281⇤⇤⇤ -0.350⇤⇤⇤ -0.346⇤⇤⇤
(0.058) (0.051) (0.047) (0.064)

Refill availability 2.497⇤⇤⇤ 1.949⇤⇤⇤ 1.805⇤⇤⇤ 1.983⇤⇤⇤
(0.319) (0.269) (0.281) (0.285)

Driving range 0.344⇤⇤⇤ 0.268⇤⇤⇤ 0.269⇤⇤⇤ 0.292⇤⇤⇤
(0.039) (0.035) (0.032) (0.035)

Notes: For variable definitions, see notes to Table 4. Standard errors in parentheses are clustered at
the respondent level (525 respondents). ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.

4.6 Comparisons with Maximum Score (MS) Estimator

The MS estimator (Manski, 1975, 1985) offers an attractive alternative to the LAD
estimator when one’s interest lies in the semi-parametric estimation of the aver-
age consumer’s WTP coefficients, �̄/�̄. As summarized in Section 2.4, the MS
estimator can accommodate more flexible model specifications that feature any
form of scale heterogeneity and non-logit forms of error terms. Moreover, it can
be applied to both choice probabilities and stated choice data, enabling us to draw
semi-parametric comparisons between the two data sources.

Table 8 presents the MS estimates of �̄/�̄ for the choice probabilities data, and
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Table 9 presents corresponding results for the standard choice data. Since the ob-
jective function is a step function, following Fox (2007) and Yan and Yoo (2019),
we compute the parameter estimates by applying differential evolution (DE) algo-
rithms rather than usual numerical maximization methods. A main drawback of
the MS estimator is that it is only interval-identified, meaning that different sets
of parameter values may result in the same maximum. In light of this property,
we restart the DE algorithms 1,000 times for the choice probabilities data, and re-
port descriptive statistics on multiple solutions found therefrom. Executing the
1,000 restarts took us approximately 10 days of computer run time.31 The standard
choice data includes more than 2.5 times as many choice sets (4,200 versus 1,612)
and each restart took approximately twice as much run time. For practical reasons,
we therefore limit the number of restarts for the standard choice data to 500.

We first consider the results in Table 8 for the choice probabilities data. We ob-
serve that the the MS estimates are often more aligned with the fractional response
model estimates than with the LAD estimates. We previously found the five nu-
meric attributes to be robust predictors of WTP (see Table 4). The new MS estimate
concerning fuel cost occurs in the short interval [�0.136,�0.123]; for comparison,
the closest point estimate found previously was in F-GMNL-II (�0.139). The MS
estimate for CO2 emissions occurs in the interval [�0.220,�0.135], which spans a
far smaller range of values (in absolute terms) than the point estimates found pre-
viously, even compared to the closest estimate which is based on LAD (�0.869).
For recharge time, the MS estimate occurs in the interval [�0.344,�0.307]; the clos-
est point estimates found previously were in LAD (�0.227) and F-NMXL (�0.229).
The MS estimate concerning refill availability occurs in the interval [1.810, 2.385]
and the F-NMXL model estimate was contained in this interval (1.954). Finally,
the MS estimate concerning driving range occurs in the interval [�0.111,�0.081];
in contrast, all previous estimates indicated that the average consumer’s WTP for
driving range was positive (although, as we observed in Section 4.3, this masks
substantial heterogeneity in the population distribution).

We next consider the results in Table 9 for the stated choices data. We previ-
ously found the size dummies and the five numeric attributes to be robust predic-
tors of WTP (see Table 7). We now find that the MS estimates occur in the inter-
vals [0.272, 0.666] for the medium size dummy and [0.492, 1.094] for the large size
dummy. The corresponding point estimates for the models with preference hetero-

31Our estimation was executed on a Windows workstation, using Stata 17/MP to utilize 6 CPU
cores for parallel computing. We applied the usual computational configuration of the DE algo-
rithms. The population size was set to 40 times the number of coefficients (that is, set to 480 in our
application), and the number of generations was set to 10 times the population size. The cross-over
probability was set to 0.8 and the amplification factor to 0.4.
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Table 8: Maximum score estimation of WTP using choice probabilities (AUD
$10,000s).

Mean SD Min Max IQR

Medium size -0.579 0.005 -0.583 -0.576 0.007
Large size 0.615 0.314 0.393 0.837 0.444
Liquid Petroleum Gas 3.560 0.055 3.521 3.598 0.078
Hybrid Electric 2.252 0.380 1.984 2.521 0.537
Hydrogen Fuel Cell 0.754 0.265 0.567 0.941 0.374
Plug-in Hybrid Electric 1.412 0.244 1.239 1.584 0.345
Battery Electric 0.195 0.234 0.029 0.361 0.332
Fuel cost -0.130 0.009 -0.136 -0.123 0.013
CO2 Emissions -0.177 0.061 -0.220 -0.135 0.086
Recharge time -0.326 0.026 -0.344 -0.307 0.037
Refill availability 2.097 0.407 1.810 2.385 0.575
Driving range -0.096 0.022 -0.111 -0.081 0.031

Mean score 0.720
No. of choice sets 1612

Notes: For variable definitions, see notes to Table 4.

Table 9: Maximum score estimation of WTP using stated choices (AUD $10,000s).

Mean SD Min Max IQR

Medium size 0.468 0.101 0.272 0.666 0.118
Large size 0.734 0.164 0.492 1.094 0.187
Liquid Petroleum Gas -0.756 0.404 -1.398 0.078 0.573
Hybrid Electric -3.660 0.280 -4.112 -3.249 0.549
Hydrogen Fuel Cell -3.035 0.456 -3.863 -2.366 0.552
Plug-in Hybrid Electric -3.454 0.268 -4.121 -3.188 0.353
Battery Electric -2.966 0.272 -3.516 -2.626 0.360
Fuel cost -0.068 0.006 -0.080 -0.058 0.008
CO2 Emissions -0.064 0.216 -0.451 0.270 0.324
Recharge time -0.132 0.033 -0.169 -0.065 0.027
Refill availability 1.540 0.348 0.981 2.225 0.479
Driving range 0.247 0.022 0.190 0.280 0.024

Mean score 0.731
No. of choice sets 4200

Notes: For variable definitions, see notes to Table 4.

geneity (NMXL, GMNL-II and GMNL) are all contained in the large size interval
and moderately to the right of the medium size interval; the MNL estimates are
somewhat larger. We find that the MS estimate concerning fuel cost occurs in the
short interval [�0.080,�0.058]. Our previous point estimates were found moder-
ately to the left of this interval. The MS estimate concerning CO2 emissions occurs
in the long interval [�0.451, 0.270], which, as with the choice probabilities data,
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spans values to the right of the point estimates found previously. For recharge
time, the MS estimate occurs in the interval [�0.169,�0.065]; the closest point es-
timate found previously was in the F-NMXL model (�0.281). Finally, the MS esti-
mates of refill availability and driving range occur in the intervals [0.981, 2.225] and
[0.190, 0.280], respectively. The previous estimates for the models with preference
heterogeneity were contained in (or just outside) these intervals.

Turning to the WTP for fuel types—Liquid Petroleum Gas through Battery
Electric)—we observe sign reversals across the board between the two datasets.
In many instances, the MS estimates also yield implausibly large values, surpass-
ing AUD $30,000 in magnitude. Our analyses above have indicated that the WTP
for these attributes is generally insignificant, using a less flexible semi-parametric
method (LAD) for the probabilities data, as well as parametric methods for both
types of data. The new MS results suggest that it is particularly challenging to ob-
tain stable estimates concerning such attributes under more flexible semi-parametric
assumptions. This contextualization of the MS results further highlights the com-
plementary advantages of applying both semi-parametric and parametric methods
in non-market valuation studies.

We conclude by comparing the overall prediction success rates between the two
data sets. For choice probabilities, a correct prediction occurs if the MS estimator
of the utility index favors the option that attracted 50% or higher probabilities. For
stated choices, a correct prediction occurs if the MS estimator of the utility index
favors the actual choice. Since the score for an observed response is equal to 1 in
those scenarios where the prediction is correct in these senses and 0 otherwise, the
MS estimator can be seen as an estimator that maximizes the prediction success
rate for each type of data. The maximized sample mean scores indicate that our
MS estimates can correctly predict responses on 72% of scenarios in the choice
probabilities data and on 73.1% of scenarios in the standard choice data.

5 Conclusions

The inherent parsimony of DCE designs often results in choice scenarios that may
seem incomplete from the respondent’s perspective. In such settings, asking re-
spondents to state their choice expectations, in the form of probabilities with which
they would make particular decisions, is a more natural elicitation format than ask-
ing them to state their preferred choices. The current method for analyzing elicited
choice probabilities primarily employs semi-parametric estimation of population
average preferences within the mixed logit framework, without fully specifying
preference distributions. However, this flexibility in distributional assumptions
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presents challenges in drawing inferences about preference heterogeneity, which
is a central focus of research in various fields of applied microeconomics.

To complement the semi-parametric method, we introduce a fractional response
model based on a mixture of beta distributions. This model enables researchers
to uncover preference heterogeneity under the same set of parametric assump-
tions concerning preference heterogeneity as those used in the analysis of elicited
choices. In particular, the model can accommodate multi-faceted preference struc-
tures which cannot be consistently estimated by the semi-parametric method (e.g.,
GMNL and mixed logit in the WTP space, which exhibit both coefficient and scale
heterogeneity). We present an empirical analysis using data from a DCE on alter-
native fuel vehicles, illustrating the complementary roles of the two approaches.
For simple preference structures, to which the semi-parametric method is robust,
our findings show a close alignment between semi-parametric estimates and frac-
tional response model estimates. Nevertheless, all specifications of the fractional
model indicate substantial preference heterogeneity, highlighting the importance
of considering more than average preferences. Additionally, our analysis of a com-
panion DCE with the traditional choice elicitation format suggests that identifying
multi-faceted preference structures is more computationally tenable with elicited
probabilities, further emphasizing the benefits of this elicitation format.

Eliciting subjective choice expectations is relatively new in DCE research, yet
it has already led to a small but influential body of empirical studies (e.g., Blass
et al., 2010; Wiswall and Zafar, 2018; Koşar et al., 2022). We are optimistic that our
contribution will enable researchers to more fully exploit this elicitation format,
by reducing the analytic cost associated with this approach, which often involves
bypassing the analysis of preference heterogeneity.
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Appendix A: Likelihood Functions

Continuing with our notation in Section 2 of the main text, let Vnjt denote the utility
index for alternative j 2 {1, 2} that respondent n 2 {1, 2, · · · , N} evaluates in
choice scenario t 2 {1, 2, · · · , T}. This index is a function of preference parameters
✓n which are randomly distributed between individuals. The exact content of ✓n

varies from model to model, for example ✓n = {�n,�n} for the NMXL model in
equation (3) and ✓n = {�n,�n, �n} for the GMNL-II model in equation (5).

Consider first respondents who completed the standard choice tasks. Condi-
tional on ✓n, the likelihood of respondent n’s choice in task t is given by a logit
density function of the form

mnt[dn2t;✓n] =
⇣ exp[Vn2t]

(exp[Vn1t] + exp[Vn2t])

⌘dn2t
⇣ exp[Vn1t]

(exp[Vn1t] + exp[Vn2t])

⌘(1�dn2t)

(A1)

where dn2t is a binary indicator which is equal to 1 if their choice is alternative 2 and
0 if alternative 1. Let f[✓n;⇥] denote a density function that describes the popula-
tion distribution of ✓n as a function of population-level distributional parameters
⌦, such as the population mean and standard deviation in the case of a normally
distributed random parameter. The unconditional likelihood of T observations on
respondent n is then given by

Mn[⇥] =

Z TY

t=1

mnt[dn2t;✓n]f[✓n;⇥]d✓n (A2)

which does not have an analytic expression. We construct a simulated analogue
to the unconditional sample log-likelihood function,

PN
n=1 ln

⇥
Mn[⇥]

⇤
, by following

the procedure outlined in Train (2009, §6.7). Our MSL estimates of ⇥ are computed
by maximizing this simulated analogue.

Consider next respondents who completed the probability elicitation task. The
conditional likelihood of respondent n’s stated choice probability in task t is given
by the beta density function lnt[yn2t;✓n,�] in equation (9) of the main text. Accord-
ingly, the unconditional likelihood of T observations on respondent n takes the
form of

Ln[⇥,�] =

Z TY

t=1

lnt[yn2t;✓n,�]f[✓n;⇥]d✓n (A3)

which does not have an analytic expression either. We apply the same procedure
as we do with the choice tasks to simulate the sample log-likelihood function,
PN

n=1 ln
⇥
Ln[⇥,�]

⇤
, and compute the MSL estimates of ⇥ and �.
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Appendix B: Participant Instructions

B1. Instructions for Standard Choice Tasks

For the next set of questions we would like you to imagine that you are purchasing
a new car.

You will be shown 8 imaginary situations. In each situation, you will have a
choice between 2 different cars. Each car is described with a list of 8 features. You
are asked to look at all the features and think about how important they are to you.
You task is to indicate which car you would purchase if you had to choose between
these 2 options.

Some of the car features may be unfamiliar to you. This information sheet ex-
plains what each feature means. You may keep it open as you complete the task or
you may choose to print it.

There are no right or wrong answers; we are simply interested in your views.

Figure B1: Choice set example

B2. Instructions for Probability Elicitation Tasks

For the next set of questions we would like you to imagine that you are purchasing
a new car.

You will be shown 8 imaginary situations. In each situation, you will have a
choice between 2 different cars. Each car is described with a list of 8 features. You
are asked to look at all the features and think about how important they are to you.

For each scenario, you are asked to indicate the chance in percentage terms of
choosing each of the 2 options. The chance of choosing each option should be a
number between 0 and 100 and the chances given to the two alternatives should
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add up to 100. For example, if you give a 5% chance to one alternative it means
that there is almost no possibility that you will choose that option. On the other
hand, if you give an 80% or over chance to an option it means that you will almost
surely choose it.

Some of the car features may be unfamiliar to you. This information sheet ex-
plains what each feature means. You may keep it open as you complete the task or
you may choose to print it.

There are no right or wrong answers; we are simply interested in your views.

Figure B2: Choice set example

B3. Information sheet for both types of tasks

In both sets of instructions, the word ‘information sheet’ is underlined. Clicking it
will open a PDF document with the following information.

Car sizes
Small car – Engine size typically 1.3-2.0 cubic litres and length less than 7.5 me-

ters. Popular models of small car include Toyota Corolla and Mazda 3.

Medium car – Engine size typically 2.0-3.0 cubic litres and length between 7.5
and 8.3 meters. Popular examples of medium sized cars include Mazda 6 and Sub-
aru Liberty.

Large car – Engine size typically >3.0 cubic litres and length greater than 8.3
meters. Popular example of large cars includes Toyota Camry and Holden Com-

B2



modore. For the purpose of this study, sports utility vehicles and 4WDs can be
treated as large cars.

Fuel types
Conventional fuel – In this study, conventional fuel means either petrol (un-

leaded) or diesel. These vehicles used standard internal combustion engines.

Liquid petroleum gas (LPG) – These vehicles use the same engine as conven-
tional fuel vehicles with small modifications to the fuel system to accept liquified
petroleum gas. For the purpose of this study, assume that LPG vehicles are dedi-
cated LPG (i.e. not dual fuel).

Hybrid electric vehicles – These vehicles run on a combination of electricity
and conventional fuel. They do not require plugging-in to recharge and switch
between an internal combustion engine and electric propulsion system.

Plug-in hybrid electric vehicles – Similar to hybrid electric vehicles, plug-in
hybrid electric vehicles run on a combination of electricity and conventional fuel.
However, they can be plugged into power outlets to recharge, which allows the
electricity store to be topped up while parked reducing reliance on the internal
combustion system.

Battery electric vehicles – These vehicles run on electricity stored in recharge-
able battery packs and must be recharged at a power outlet. They use an electric
motor (not use an internal combustion engine).

Hydrogen fuel cell electric vehicles – These vehicles use an electric motor pow-
ered by a hydrogen fuel cell (a tank of compressed hydrogen). The tanks must be
refuelled from a hydrogen refuelling station.

Driving range
This is the maximum distance the car can be driven before refuelling/recharging.
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Appendix C: Additional Empirical Results

Table C1: Standard deviations of residual taste heterogeneity for population-level
preference estimates using choice probabilities (paired with Table 3).

F-NMXL F-GMNL-II F-GMNL

Medium size 0.029 0.302⇤⇤⇤ 0.323⇤⇤⇤
(0.140) (0.076) (0.055)

Large size 0.209⇤⇤⇤ 0.112⇤⇤⇤ 0.110⇤⇤⇤
(0.070) (0.039) (0.027)

Liquid Petroleum Gas 0.197 0.636⇤⇤⇤ 0.546⇤⇤⇤
(0.133) (0.094) (0.083)

Hybrid Electric 0.260 0.099⇤ 0.178⇤⇤⇤
(0.221) (0.060) (0.048)

Hydrogen Fuel Cell 0.257 0.075 0.009
(0.165) (0.080) (0.117)

Plug-in Hybrid Electric 0.311⇤⇤ 0.279⇤⇤⇤ 0.374⇤⇤⇤
(0.123) (0.057) (0.056)

Battery Electric 0.521⇤⇤⇤ 0.730⇤⇤⇤ 0.619⇤⇤⇤
(0.194) (0.084) (0.095)

Fuel cost 0.039⇤⇤⇤ 0.053⇤⇤⇤ 0.049⇤⇤⇤
(0.007) (0.006) (0.006)

CO2 Emissions 0.298⇤ 0.470⇤⇤⇤ 0.368⇤⇤⇤
(0.176) (0.106) (0.053)

Recharge time 0.058⇤⇤ 0.143⇤⇤⇤ 0.162⇤⇤⇤
(0.024) (0.021) (0.020)

Refill availability 0.309⇤⇤ 0.135 0.169
(0.152) (0.171) (0.114)

Driving range 0.057⇤⇤⇤ 0.095⇤⇤⇤ 0.080⇤⇤⇤
(0.017) (0.010) (0.010)

-1 * Price 0.186⇤⇤⇤ 0.216⇤⇤⇤ 0.191⇤⇤⇤
(0.018) (0.020) (0.019)

Notes: Standard errors in parentheses are clustered at the respondent level (202 respondents).
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.
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Table C2: Population-level estimates in WTP space using choice probabilities.

F-WTP F-NWTP
Mean SD

Medium size 0.522 0.334 0.945⇤⇤⇤
(0.357) (0.308) (0.295)

Large size 0.852⇤⇤ 0.305 0.857⇤⇤
(0.341) (0.391) (0.412)

Liquid Petroleum Gas -0.551 -0.973⇤⇤ 1.011⇤⇤
(0.518) (0.399) (0.409)

Hybrid Electric 0.833 -0.089 0.816
(0.570) (0.696) (0.712)

Hydrogen Fuel Cell 0.429 0.076 1.808⇤⇤⇤
(0.540) (0.567) (0.373)

Plug-in Hybrid Electric -0.489 -1.211⇤⇤ 1.749⇤⇤⇤
(0.694) (0.599) (0.407)

Battery Electric -0.131 -0.519 2.772⇤⇤⇤
(0.686) (0.512) (0.639)

Fuel cost -0.179⇤⇤⇤ -0.175⇤⇤⇤ 0.178⇤⇤⇤
(0.036) (0.029) (0.033)

CO2 Emissions -1.418⇤⇤⇤ -0.492⇤ 3.254⇤⇤⇤
(0.435) (0.256) (0.544)

Recharge time -0.208⇤⇤ -0.284⇤⇤⇤ 0.289⇤⇤⇤
(0.089) (0.084) (0.080)

Refill availability 1.682⇤⇤⇤ 1.960⇤⇤⇤ 2.480⇤⇤⇤
(0.481) (0.376) (0.306)

Driving range 0.235⇤⇤⇤ 0.171⇤⇤⇤ 0.326⇤⇤⇤
(0.076) (0.043) (0.057)

-1 * Price 0.962⇤⇤⇤
(0.076)

� 1.249⇤⇤⇤ 2.372⇤⇤⇤
(0.107) (0.317)

� 0.145⇤⇤⇤ 0.307⇤⇤⇤ 0.379⇤⇤⇤
(0.021) (0.036) (0.064)

No. of parameters 14 27
No. of choice sets 1612 1612
LL 538.296 682.318
AIC -1048.592 -1310.637
BIC -973.199 -1165.236

Notes: Standard errors in parentheses are clustered at the respondent level (202 respondents).
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.
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Table C3: Population-level preference estimates for AFVs using stated choices.

MNL NMXL GMNL-II1 GMNL2

Medium size 0.334⇤⇤⇤ 0.417⇤⇤⇤ 1.505 0.399⇤⇤⇤
(0.058) (0.092) (1.068) (0.102)

Large size 0.338⇤⇤⇤ 0.378⇤⇤⇤ 1.419 0.396⇤⇤⇤
(0.063) (0.100) (1.070) (0.113)

Liquid Petroleum Gas -0.015 -0.234 -0.947 -0.236
(0.101) (0.187) (0.808) (0.212)

Hybrid Electric 0.059 -0.024 0.247 0.104
(0.102) (0.170) (0.467) (0.207)

Hydrogen Fuel Cell -0.056 -0.131 -0.219 -0.119
(0.099) (0.170) (0.507) (0.174)

Plug-in Hybrid Electric -0.164 -0.428⇤⇤ -1.129 -0.349⇤
(0.101) (0.175) (0.858) (0.191)

Battery Electric -0.158⇤ -0.414⇤⇤ -1.433 -0.390⇤⇤
(0.090) (0.165) (1.013) (0.168)

Fuel cost -0.050⇤⇤⇤ -0.090⇤⇤⇤ -0.382 -0.100⇤⇤⇤
(0.004) (0.010) (0.274) (0.021)

CO2 Emissions -0.300⇤⇤⇤ -0.516⇤⇤⇤ -2.636 -0.612⇤⇤⇤
(0.069) (0.118) (1.703) (0.188)

Recharge time -0.096⇤⇤⇤ -0.150⇤⇤⇤ -0.735 -0.184⇤⇤⇤
(0.015) (0.027) (0.595) (0.053)

Refill availability 0.661⇤⇤⇤ 1.037⇤⇤⇤ 3.794 1.057⇤⇤⇤
(0.075) (0.138) (2.661) (0.192)

Driving range 0.091⇤⇤⇤ 0.143⇤⇤⇤ 0.566 0.156⇤⇤⇤
(0.009) (0.018) (0.401) (0.028)

-1 * Price 0.265⇤⇤⇤ 0.532⇤⇤⇤ 2.102 0.533⇤⇤⇤
(0.018) (0.051) (1.666) (0.098)

⌧ -1.688⇤⇤⇤ -0.682⇤⇤
(0.467) (0.282)

� 0.662⇤
(0.365)

No. of parameters 13 26 20 28
No. of choice sets 4200 4200 4200 4200
LL -2355.1 -2232.7 -2218.2 -2227.1
AIC 4736.2 4517.5 4476.5 4510.1
BIC 4818.7 4682.4 4603.3 4687.7

Notes: Standard errors in parentheses are clustered at the respondent level (525 respondents).
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.
1The variance parameters on the seven dummy variables are constrained to zero.
2Simulation of the likelihood function is based on only 50 Halton draws, instead of 500 draws used
elsewhere.
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Table C4: Standard deviations of residual taste heterogeneity for population-level
preference estimates using stated choices (paired with Table C3).

(1) (2) (3)
NMXL GMNL-II1 GMNL2

Medium size 0.063 0.026
(0.101) (0.114)

Large size 0.489⇤⇤⇤ 0.197
(0.179) (0.215)

Liquid Petroleum Gas 1.113⇤⇤⇤ 0.699
(0.416) (0.598)

Hybrid Electric 0.571 0.579
(0.545) (0.423)

Hydrogen Fuel Cell 0.011 0.110
(0.234) (0.252)

Plug-in Hybrid Electric 0.278 0.316⇤
(0.361) (0.192)

Battery Electric 0.372⇤ 0.302
(0.193) (0.195)

Fuel cost 0.098⇤⇤⇤ 0.383 0.077⇤⇤⇤
(0.014) (0.296) (0.013)

CO2 Emissions 1.316⇤⇤⇤ 5.209 1.327⇤⇤⇤
(0.226) (3.956) (0.268)

Recharge time 0.225⇤⇤⇤ 1.058 0.231⇤⇤⇤
(0.045) (0.850) (0.039)

Refill availability 1.276⇤⇤⇤ 4.438 0.763⇤
(0.227) (3.355) (0.439)

Driving range 0.143⇤⇤⇤ 0.533 0.115⇤⇤⇤
(0.024) (0.384) (0.040)

-1 * Price 0.464⇤⇤⇤ 1.917 0.414⇤⇤⇤
(0.049) (1.522) (0.050)

Notes: Standard errors in parentheses are clustered at the respondent level (525 respondents).
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.
1The variance parameters on the seven dummy variables are constrained to zero.
2Simulation of the likelihood function is based on only 50 Halton draws, instead of 500 draws used
elsewhere.
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Table C5: Population-level estimates in WTP space using stated choices.

WTP NWTP1

Mean SD

Medium size 1.263⇤⇤⇤ 0.634⇤⇤⇤
(0.226) (0.161)

Large size 1.278⇤⇤⇤ 0.530⇤⇤
(0.222) (0.252)

Liquid Petroleum Gas -0.058 -1.274⇤⇤⇤
(0.380) (0.341)

Hybrid Electric 0.221 -0.268
(0.385) (0.341)

Hydrogen Fuel Cell -0.213 -0.407
(0.375) (0.275)

Plug-in Hybrid Electric -0.621 -1.065⇤⇤⇤
(0.383) (0.348)

Battery Electric -0.598⇤ -1.144⇤⇤⇤
(0.346) (0.353)

Fuel cost -0.189⇤⇤⇤ -0.203⇤⇤⇤ 0.138⇤⇤⇤
(0.019) (0.015) (0.015)

CO2 Emissions -1.133⇤⇤⇤ -0.990⇤⇤⇤ 1.860⇤⇤⇤
(0.266) (0.207) (0.189)

Recharge time -0.362⇤⇤⇤ -0.374⇤⇤⇤ 0.419⇤⇤⇤
(0.058) (0.062) (0.072)

Refill availability 2.497⇤⇤⇤ 1.659⇤⇤⇤ 0.684⇤⇤⇤
(0.319) (0.368) (0.160)

Driving range 0.344⇤⇤⇤ 0.287⇤⇤⇤ 0.244⇤⇤⇤
(0.039) (0.031) (0.028)

-1 * Price 1.990⇤⇤⇤
(0.424)

� 0.265⇤⇤⇤ 12.11 86.931
(0.018) (17.50) (200.196)

No. of parameters 13 19
No. of choice sets 420 420
LL -2355.122 -2258.031
AIC 4736.244 4554.062
BIC 4818.700 4674.576

Notes: Standard errors in parentheses are clustered at the respondent level (525 respondents).
⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01.
1The variance parameters on the seven dummy variables are constrained to zero.
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Figure C1: Posterior distributions of individual-level preference parameters for the
choice attributes Price, Recharge time, Driving range and CO2 emissions) in F-NMXL
(column 1) and F-GMNL (column 2). Paired with Figure 2.
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Figure C2: Posterior distributions of individual-level preference parameters for the
numeric choice attributes in F-GMNL-II. Paired with Figure 2.
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