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ABSTRACT

Using the Gaussian distribution as statistical model for data sets is widely spread, espe-

cially in practice. However, departure from normality seems to be more the rule than the

exception. The H-distributions, introduced by Tukey (1960, 1977), are generated by a sin-

gle transformation (H-transformation) of a standard normal distribution (or, more general,

of a symmetric distribution) Z and allow for leptokurtosis represented by the (elongation)

parameter h > 0. In order to additionally take skewness into account by means of certain

transformations, several generalizations and extensions (HQ,HH, GH,GK, . . .) have been

proposed in the literature. Within this work we ”complete” this class of Tukey-type dis-

tributions by introducing KQ- and JQ-distributions on the one side and KK−, JJ− and

G̃J−distributions on the other side. Moreover, we empirically compare the goodness-of-fit

of such Tukey-type distributions for different symmetrical distributions Z (here: Gaussian,

logistic and hyperbolic secant distribution) in the context of financial return data. In partic-

ular, the interplay between Z and the Tukey-type transformations is investigated. Finally,

results are compared to those of popular multi-parametric distribution models with closed-

form densities.

1. INTRODUCTION

Using the Gaussian distribution as statistical model for data sets is widely spread, espe-

cially in practice. However, departure from normality seems to be more the rule than the



exception. The H-family of distributions or H-distributions, introduced by Tukey (1960,

1977), are generated by a single transformation of the standard normal distribution Z and

allow for leptokurtosis represented by the (elongation) parameter h > 0. More precisely,

H-distributions are asymptotically Pareto-heavy tailed with tail index 1/h which implies

that only moments of order less than 1/h exist. The degree of elongation can be further

increased if the parameter h is additionally allowed to be a function of Z2, Z4, ... If h is only

a function of Z2, the corresponding distribution is commonly termed as HQ-distribution

(cf., Morgenthaler and Tukey, 2000), where the second parameter Q quantifies the influence

of Z2. Alternatively, Haynes et al. (1997) proposed the K-distribution which is also heavy-

tailed but for which all moments exist. Fischer and Klein (2003) additionally suggested the

J-distribution which lies somewhere between both distributions in the sense that tails are

heavier than that of the K-distribution but moments still exist.

Typically, leptokurtic data sets also exhibit a certain amount of skewness. To capture this

phenomenon, the above-mentioned kurtosis transformations can be combined with skewness

transformations as, for example, the G-transformation of Tukey (1977) or the generalized G̃-

transformation of Haynes et al. (1997). The resulting GH-distribution, GK-distribution and

G̃K-distribution have been intensively studied in the literature (see Hoaglin, 1983, Martinez

and Iglewicz, 1984 or MacGillivray, 1981. Applications with respect to financial return

data are given by Badrinath and Chatterjee (1988, 1989) who apply GH-distributions to

the returns of stock market indices and to several US-equities. Mills (1995) demonstrates

the ”excellent fit of the GH-distributions” to the distribution of the daily returns on the

London Stock Exchange FT-SE indices). Another possibility to additionally take skewness

into account is to ”double” the transformation, i.e. to introduce a kurtosis parameter for the

positive and the negative part of the axis. This idea goes back to Morgenthaler and Tukey

(2000) who introduced the so-called HH-distribution.

Within this work we ”complete” the so-called Tukey-type distributions from above, i.e. we

introduce KQ- and JQ-distributions on the one side and QQ−, JJ− and G̃J−distributions

on the other side. Moreover, we empirically analyze the goodness-of-fit of such Tukey-type



distributions for different distributions Z (Gaussian, logistic and hyperbolic secant). In par-

ticular, the interplay between Z and the transformations is investigated. Finally, results are

compared to those of popular distribution models with closed-form densities like generalized

t-distributions (see Theodossiou, 1998 or Grottke, 2001), generalized logistic distributions

(see McDonald, 1991 or Fischer, 2001), generalized hyperbolic secant distributions (see Fis-

cher and Vaughan, 2002) and generalized hyperbolic distributions (see Prause, 1999).

2. KURTOSIS AND SKEWNESS TRANSFORMATION: REQUIREMENTS

AND EXAMPLES

2.1 Generating leptokurtosis

Let Z be a random variable which is symmetric around the median 0 and which has contin-

uous distribution function. Define

X ≡ µ + δT(Z) = µ + δZ ·W(Z), µ ∈ R, δ > 0 (1)

where T is a suitable kurtosis transformation. Hoaglin (1983) postulated some plausible

requirements to T, that is

K1 Symmetry: If W(z) = W(−z) for z ∈ R, i.e. W is preserving symmetry and we can

restrict discussion to the positive axis.

K2 Invariance in the center: The initial distribution T should hardly be transformed in

the center, i.e. T(z) ≈ z for z ≈ 0.

K3 Smoothness: T(z) should be a sufficiently smooth function with continuous second

derivative.

K4 Tail elongation: To assure that T is accelerated strictly monotone increasing for positive

z > 0, i.e. T′(z) > 0 and T′′(z) > 0 for z > 0. Consequently, T is strictly monotone

increasing and convex for z > 0.



Example 1 (H−, K− and J−transformation) The H−transformation

Th(z) ≡ z exp(hz2/2), h ≥ 0

was proposed by Tukey (1960). The K-transformation of Haynes et al. (1998) is given by

Tk(z) ≡ z(1 + z2)k, k ≥ 0

and the J-transformation of Fischer and Klein (2003) by

Tj(z) ≡ z cosh(z)j =
z

2
(exp(z) + exp(−z))j , j ≥ 0.

Note that all tree transformations are nested in the so-called kurtosis power transformation

of Klein and Fischer (2003) which is given by

Tr(z) = zA(z) with A(z) ≡
( ∞∑

i=0

aiz
2i

)r

for r ≥ 0,

with specific weights ai.

Example 2 (HQ−, KQ− and JQ−transformation) In order to further increase the tails,

Morgenthaler and Tukey (2000) added the term qz4/4 to the exponent (this is equivalent to

allow h to be a function of z2, i.e. setting h(z) = h + 0.5qz2). The corresponding transfor-

mation was termed as HQ-transformation

Th,q(z) ≡ z exp(hz2/2 + qz4/4), h, q ≥ 0.

Similarly, we define the KQ-transformation by

Tk,q(z) ≡ z(1 + z2)k+qz2

, k, q ≥ 0

and the JQ-transformation by

Tj,q(z) ≡ z(cosh(z))j+qz2

, j, q ≥ 0

Clearly, for q = 0, the transformations of examples 1 are obtained.



Lemma 1 The first derivatives of the HQ−, the JQ− and the KQ−transformations are

given by

T′
h,q(z) = Th,q(z)(1/z + hz + qz3),

T′
j,q(z) = Tj,q(z)

(
1/z + j tanh (z) + q

(
2 z ln (cosh (z)) + tanh (z) z2

))

and

T′
k,q(z) = Tk,q(z)

(
1/z +

2zk

1 + z2
+ q

(
2z ln

(
1 + z2

)
+

2 z3

1 + z2

))
.

The strength of the tail-elongation of a transformation can be determined by the so-called

elongation generating function (EGF) f(x) which was introduced by Fischer and Klein (2003)

as a C2−function living on the real line with f(−x) = −f(x), f(x) > 0 for x > 0 and

xf ′(x)
f(x)

≥ −2 for x > 0. The EGF is linear for the H−transformation, asymptotically constant

for the J−transformation and asymptotically zero for the K−transformation (”The higher

the slope of the EGF the higher the elongation”). Its relation to the kurtosis transformation

is given by

Tθ,f (z) = z exp

(
θ

∫ z

0

f(u) du

)
. (2)

Using lemma 1 we can calculate the elongation generating functions f(z) for the generalized

transformations of example 2.

Lemma 2 The elongation generating functions for the HQ−, JQ− and KQ−transformations

are given by

fHQ(z; q∗) = z + q∗z3 (”cubic EGF”)

fJQ(z; q∗) = tanh (z) + q∗
(
2 z ln (cosh (z)) + tanh (z) z2

)
(”quadratic-type EGF”)

fKQ(z; q∗) =
z

1 + z2
+ q∗ · 2z ((1 + z2) ln (1 + z2) + z2)

1 + z2
(”linear-type EGF”),

where q∗ = q/θ. Note that setting q ≡ 0 results in the EGF’s of the standard H−, J− and

K−transformation.

To proof lemma 1, you have to solve equation (2) for f(z), i.e.

f(z) =
1

θ

(
T′

f,θ(z)

Tf,θ(z)
− 1

z

)
.



Typical plots of such EGF’s are given in figure 1, below.

Figure 1: EGF for different transformations
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(a) HQ-transformation
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(b) HL-transformation
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(c) JQ-transformation
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(d) KQ-transformation

Finally the H-transformation can be generalized by generalizing its EGF to a function of

type ”x log(x)” (i.e. which produces heavier tails than the H−transformation but lighter

than the JQ− and the HQ−transformation):

fHL(z; l∗) ≡ z(1 + l∗ log(1 + z2)), z ∈ R, l∗ = l/h > 0. (3)

Clearly, for l = 0, equation (3) reduces to the EGF of the H-transformation. Applying

formula (2), the corresponding transformation (”HL-transformation”) is given by

Th,l(z) ≡ z
(
1 + z2

)l/2(1+z2)
e0.5 z2(h−l).

with first derivation given by

T′
h,l(z) = Th,l(z)

(
1/z + l ln

(
z + z2

)
z + zh

)
.



2.2 Generating kurtosis and skewness

Hoaglin’s requirements to a skewness transformation are the following:

S1 Invariance in the center: the initial distribution T should hardly be transformed in the

center, i.e. T(0) = 0, T(z) ≈ z for z ≈ 0.

S2 Smoothness: T(z) should be a sufficiently smooth function with continuous second

derivative.

S3 Monotony: T has to be strictly increasing and convex (T′(z) > 0 and T′′(z) > 0), or

strictly increasing and concave (T′(z) > 0 and T′(z) < 0). If T is strictly increasing

and convex, T′(0) = 1 implies that T′(z) > 1 for z > 0 and 0 < T′(z) < 1 for z < 0.

This means that the left tails of X are shortened and the right tails are made longer

(i.e. an increase of the skewness to the right).

Example 3 (G- and G̃-transformation) The G-transformation of Tukey (1960) is of the

form

Tg(z) = z

(
egz − 1

g

)
for g ∈ R. (4)

Obviously, Tg(z) > −1/g if g > 0, and Tg(z) < −1/g if g < 0. Consequently, the range

of Tg(z) is restricted one-sided. This is a desirable property at least for left-skewed return

distributions because losses larger than 100 percent are impossible. When g converges to zero,

Tg(z) → z, i.e. X and Z coincide. A transformation with nearly identical fit but which is

defined on the whole real line is the generalized G or – in our notation – the G̃-transformation

of Haynes, MacGillivray and Mengersen (1997)

Teg(z) = z

(
1 + c · 1− e−egz

1 + e−egz

)
for g ∈ R. (5)

where c is typically set to 0.8.

Combining the skewness transformations from example 3 and the kurtosis transformation

from example 1 via

T(z) ≡ TSkew(z)/zTKurt(z) (6)



enables us to generate flexible asymmetric heavy-tailed distributions.

”Doubling” is another method to additionally take skewness into account. Morgenthaler and

Tukey (2000) chose a pair (h1, h2) of positive constants to transform separately for Z ≤ 0

and Z ≥ 0. The resulting transformation

Th1,h2(z) ≡




z exp(h1z
2/2) for z ≤ 0

z exp(h2z
2/2) for z ≥ 0

(7)

is called the HH−transformation. It is is straightforward to transform this idea to both the

K− and the J−transformation. So we define the KK−transformation by

Tk1,k2(z) ≡




z(1 + z2)k1 for z ≤ 0

z(1 + z2)k2 for z ≥ 0
(8)

and the JJ−transformation by

Tj1,j2(z) ≡




z cosh(z)j1 for z ≤ 0

z cosh(z)j2 for z ≥ 0.
(9)

3. TRANSFORMATION OF SYMMETRIC DISTRIBUTIONS

Let Z denote an arbitrary symmetrical distribution and Tθ(Z) one of the Tukey-type trans-

formation which have been discussed in the last section. Then we can generate a random

variable X by means of

X ≡ µ + δTθ(Z), µ ∈ R, δ > 0

which allows for skewness and/or (excess) kurtosis. The probability density function fX

and the quantile function of such a Tukey-type distribution can be calculated via variable

transformation as stated in the next proposition:

Proposition 1 (Density and quantiles of X) Let Tθ denote an arbitrary Tukey-type trans-

formation and T−1
θ the inverse mapping of Tθ.



1. The probability density function of X is given by

fX(x; µ, σ, θ) =
fZ(T−1

θ (x−µ
σ

))

T′
θ(T

−1
θ (x−µ

σ
))

.

2. The p-quantiles of X can be obtained from the p-quantiles of Z by means of

xp = µ + σ · Tθ(zp). (10)

4. APPLICATION TO FINANCIAL RETURN DATA

In order to compare Tukey-type distributions towards their fit, we focus on the series of

aluminium and zinc from January 1990 to December 2002 (N = 3279 observations for each

series) which can be obtained from the London Metal Exchange 1 (LME) the world’s premier

non-ferrous metals market. The series of prices and corresponding log-returns is given in

figure 1, below.

The (sample) mean of the log-returns of aluminium is −0.0067 with a (sample) standard

deviation of 1.1986. Moreover, there seems to be no remarkable skewness in the data set

(the skewness coefficient – measured by the third standardized moments – is given by by

0.0075), whereas the kurtosis coefficient – in terms of the fourth standardized moments – is

8.00, reflecting the high leptokurtosis of the data. This is the reason why we first apply and

compare only kurtosis transformations to different symmetric distribution (i.e. Gaussian,

logistic and hyperbolic secant distribution).

On the other hand, the returns of zinc with sample mean of −0.0001929 and standard de-

viation of 0.0141 has a skewness coefficient of −0.94 with a high kurtosis of 14.07. Even

if we remove the three smallest values, skewness coefficient is about −0.30 and kurtosis

coefficient about 7.56. This data set is chosen to compare the goodness-of-fit of transfor-

mations which also take skewness into account (i.e. G̃H−, HH−, G̃J−, JJ−, KK− and

G̃K−transformation) .

1Download under http://www.lme.co.uk/.



Figure 2: Prices and log-returns
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(a) Aluminium prices
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(b) Zinc prices
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(c) Aluminium returns
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(d) Zinc returns

Four criteria have been employed to compare the goodness-of-fit of the different candidate dis-

tributions. The first is the log-Likelihood value (LL) obtained from the Maximum-Likelihood

estimation. The LL-value can be considered as an ”overall measure of goodness-of-fit and al-

lows us to judge which candidate is more likely to have generated the data”. As distributions

with different numbers of parameters k are used, this is taken into account by calculating

the Akaike criterion given by

AIC = −2 · LL+
2N(k + 1)

N − k − 2
.

The third criterion is the Kolmogorov-Smirnov distance as a measure of the distance between

the estimated parametric cumulative distribution function, F̂ , and the empirical sample



distribution, Femp. It is usually defined by

K = 100 · sup
x∈R

|Femp(x)− F̂ (x)|. (11)

Finally, Anderson-Darling statistic is calculated, which weights |Femp(x) − F̂ (x)| by the

reciprocal of the standard deviation of Femp, namely

√
F̂ (x)(1− F̂ (x)), that is

AD0 = sup
x∈R

|Femp(x)− F̂ (x)|√
F̂ (x)(1− F̂ (x))

. (12)

Instead of just the maximum discrepancy, the second and third largest value, which is com-

monly termed as AD1 and AD2, are also taken into consideration. Whereas K emphasizes

deviations around the median of the fitted distribution, AD0,AD1 and AD2 allow discrep-

ancies in the tails of the distribution to be appropriately weighted. The estimation results

are summarized in table 1 to table 5.

What are the major drawbacks? Let’s first focus on the symmetric case. Firstly, there is a

trade-off between the kurtosis parameter of the transformation and the amount of kurtosis of

the underlying distribution (i.e. which is to be transformed). The higher the kurtosis of the

underlying distribution the lower the value of the kurtosis parameter. It should be pointed

out that the combination of the hyperbolic secant distribution (which has higher kurtosis

than the logistic or the normal distribution) with an arbitrary kurtosis transformation fits

worse than the corresponding combinations of the normal and the logistic distribution. In

general, there is no need or improvement to start with a distribution which is more leptokurtic

than the normal distribution, unless the j− or the k−transformation is used. Secondly, if we

only consider the one-parameter-transformations, the H−distribution dominates the other

competitors. Tails of the j−distribution and the k−distribution seem to be too ”moderate”.

Considering the corresponding two-parameter transformation this result is no longer valid:

There is seemingly no difference (concerning the goodness-of-fit) between the HQ−, KQ−,

JQ− or HL−distribution. Tails of the underlying return data are best approximated (in

terms of the AD-statistics) by EGF’s of the type ”x log(x)”, i.e. by the HL−distribution.



Moreover, comparing table 1 with table 4, symmetric Tukey-type distributions exhibit nearly

identical goodness-of-fit results than the generalized t-distribution (GT) and better results

than popular parametric distribution models like the symmetric generalized logistic (EGB2)

distribution (see McDonald, 1991), the symmetric generalized hyperbolic secant (GSH, GHS)

distribution (see Fischer and Vaughan, 2002) or the symmetric generalized hyperbolic (GH)

distribution (see Prause, 1999) which have been proposed in the context of financial return

data in the recent literature. Consequently, the results support the hypothesis that moments

of financial return data only exist up to a certain order.

The results of the asymmetric case are similar. However, GH− and HH−distribution now

outperform the corresponding versions based on the K− and the J−transformations. In par-

ticular, GK− and KK−distribution are not so promising. Whether skewness is introduced

via doubling or via combination of skewness and kurtosis transformation has no remarkable

effect on the estimation results. Finally, skew Tukey-type distributions dominate the corre-

sponding parametric distribution with closed-form densities except the skewed generalized

t-distribution (SGT2) of the second kind (see Grottke 2001).

5. SUMMARY

Tukey-type distributions are generated by a single transformation of the standard normal

(or, more general, of any symmetric) distribution. These distributions are able to model

leptokurtic and/or skew data. By means of elongation generating functions the strength

of tail elongation of these Tukey-type distributions can be compared. Within this work we

reviewed Tukey-type distributions which have been proposed in the literature up to now.

Moreover, we proposed alternative Tukey-type distributions corresponding to alternative

Tukey-type transformations. Finally, we are empirically investigated the goodness-of-fit of

such distribution families in the context of financial return data most which exhibit high

kurtosis and a certain amount of skewness. In particular, goodness-of-fit measures were

compared to that of popular parametric distribution models whose density is given in closed

form. The main results with respect to the underlying return data are:



• It is not necessary to start with a distribution which is more leptokurtic than the

normal distribution.

• The H−transformation dominates the other one-parameter kurtosis transformations.

• There is no significant difference between the two-parameter kurtosis transformations

which have been considered.

• Introducing skewness by doubling or by combination of skewness and kurtosis trans-

formations makes no difference.

• Combining the H/J−transformation with the G−transformation seems more promis-

ing than combining the K−transformations with it.

• There is a high similarity between the fit of Tukey-type distributions and that of

(skewed) generalized t-distributions. Moreover, Tukey-type distributions dominated

distribution families with closed-form densities and existing moments like the gener-

alized logistic family, the generalized hyperbolic family or the generalized hyperbolic

secant family.



Table 1: Goodness-of-fit and estimated parameters: Symmetric case

Type LL AIC KS AD0 AD1 AD2 µ̂ δ̂ ĥ/ĵ/k̂ q̂, l̂

Transformed Gaussian (N)

N -5273.3 10552.7 5.17 23202 24.047 19.189 -0.007 1.44 (0.000) (0.000)

H -5051.9 10111.8 1.08 0.043 0.042 0.041 -0.028 0.92 0.149 (0.000)

J -5059.1 10126.3 1.37 0.087 0.083 0.057 -0.032 0.88 0.271 (0.000)

K -5077.9 10163.7 1.73 0.351 0.269 0.092 -0.034 0.84 0.265 (0.000)

HL -5051.4 10112.8 1.15 0.038 0.038 0.037 -0.027 0.93 0.107 0.031

HQ -5051.6 10113.2 1.12 0.039 0.038 0.037 -0.028 0.93 0.130 0.006

JQ -5051.6 10113.3 1.13 0.039 0.038 0.038 -0.027 0.93 0.131 0.020

KQ -5051.5 10112.9 1.14 0.039 0.038 0.038 -0.027 0.93 0.064 0.027

Transformed logistic (L)

L -5085.0 10176.1 2.50 0.771 0.465 0.169 -0.021 0.39 (0.000) (0.000)

H -5051.7 10111.4 1.11 0.040 0.039 0.038 -0.028 1.05 0.057 (0.000)

J -5053.3 10114.7 1.19 0.048 0.046 0.046 -0.029 1.03 0.112 (0.000)

K -5058.4 10124.8 1.27 0.099 0.090 0.054 -0.031 1.01 0.109 (0.000)

HL -5051.7 10113.4 1.11 0.040 0.039 0.038 -0.028 1.05 0.057 0.001

HQ -5051.7 10113.4 1.11 0.040 0.039 0.038 -0.028 1.05 0.057 (0.000)

JQ -5052.1 10114.2 1.10 0.040 0.039 0.039 -0.028 1.05 0.069 0.005

KQ -5051.9 10113.9 1.12 0.039 0.038 0.038 -0.027 1.05 0.032 0.009

Transformed hyperbolic cosine (HC)

HC -5064.4 10134.8 1.27 0.282 0.203 0.087 -0.028 1.34 (0.000) (0.000)

H -5054.3 10116.5 1.35 0.051 0.050 0.049 -0.030 1.12 0.026 (0.000)

J -5056.7 10121.4 1.41 0.061 0.059 0.055 -0.031 1.11 0.051 (0.000)

K -5060.1 10128.2 1.34 0.123 0.104 0.058 -0.031 1.11 0.043 (0.000)

HL -5053.1 10116.2 1.22 0.046 0.045 0.044 -0.029 1.13 0.000 0.015

HQ -5053.9 10117.9 1.23 0.047 0.046 0.045 -0.030 1.13 0.012 0.002

JQ -5053.3 10116.7 1.19 0.046 0.044 0.044 -0.029 1.13 0.001∗ 0.005

KQ -5053.2 10116.4 1.25 0.047 0.046 0.045 -0.030 1.13 0.001∗ 0.005



Table 2: Goodness-of-fit and estimated parameters: Asymmetric case (I)

Type LL AIC KS AD0 AD1 AD2 µ̂ δ̂ ĥ/ĵ/k̂ q̂

Transformed Gaussian (G)

N -5818.3 11642.7 7.05 >100 47.95 38.37 -0.019 1.413 (0.000) (0.000)

G̃ -5783.5 11574.7 7.61 >100 3271 172.8 0.015 1.399 -0.061 (0.000)

H -5462.0 10932.1 1.40 0.057 0.056 0.056 -0.035 0.985 (0.000) 0.193

J -5466.2 10940.4 1.83 0.133 0.118 0.117 -0.040 0.936 (0.000) 0.347

K -5487.1 10982.1 2.45 1.105 0.672 0.416 -0.044 0.877 (0.000) 0.342

G̃H -5459.8 10929.6 1.04 0.064 0.064 0.061 -0.038 0.983 0.063 0.195

G̃J -5465.9 10941.8 1.66 0.149 0.135 0.130 -0.040 0.935 0.021 0.349

G̃K -5486.2 10982.3 2.70 0.721 0.484 0.316 -0.043 0.880 -0.031 0.339

HH -5461.9 10933.9 1.36 0.053 0.052 0.052 -0.035 0.984 0.189 0.199

JJ -5466.2 10942.4 1.86 0.128 0.114 0.113 -0.040 0.936 0.350 0.344

KK -5486.5 10983.1 2.67 0.810 0.524 0.336 -0.044 0.879 0.353 0.327

Transformed logistic (L)

L -5534.6 11075.3 4.00 9.852 4.768 2.117 -0.022 0.708 (0.000) (0.000)

G̃ -5531.8 11071.6 3.39 3.023 1.837 0.968 -0.017 1.284 -0.028 (0.000)

H -5463.4 10934.9 1.43 0.064 0.062 0.062 -0.033 1.139 (0.000) 0.089

J -5462.1 10932.3 1.52 0.061 0.059 0.059 -0.037 1.103 (0.000) 0.176

K -5467.0 10942.0 1.85 0.161 0.157 0.135 -0.040 1.063 (0.000) 0.178

G̃H -5461.1 10932.2 1.16 0.054 0.052 0.051 -0.036 1.136 0.064 0.092

G̃J -5461.5 10933.1 1.28 0.071 0.070 0.070 -0.038 1.101 0.031 0.179

G̃K -5466.9 10943.9 1.91 0.150 0.143 0.126 -0.039 1.064 -0.008 0.177

HH -5463.4 10936.9 1.43 0.064 0.063 0.062 -0.033 1.139 0.089 0.088

JJ -5462.1 10934.3 3.39 0.068 0.061 0.059 -0.037 1.103 0.175 0.177

KK -5467.0 10944.0 1.82 0.166 0.162 0.138 -0.040 1.063 0.176 0.180



Table 3: Goodness-of-fit and estimated parameters: Asymmetric case (II)

Type LL AIC KS AD0 AD1 AD2 µ̂ δ̂ ĥ/ĵ/k̂ q̂

Transformed hyperbolic secant (HS)

HS -5493.7 10993.5 1.94 2.558 1.535 0.817 -0.032 1.308 (0.000) (0.000)

G̃ -5491.1 10990.3 2.16 0.912 0.673 0.419 -0.029 1.308 -0.032 (0.000)

H -5461.6 10931.2 1.47 0.056 0.054 0.054 -0.036 1.224 (0.000) 0.048

J -5463.3 10934.6 1.64 0.080 0.076 0.071 -0.039 1.200 (0.000) 0.104

K -5468.3 10944.7 1.88 0.197 0.189 0.151 -0.041 1.176 (0.000) 0.107

G̃H -5460.6 10931.2 1.17 0.061 0.061 0.057 -0.037 1.220 0.042 0.051

G̃J -5463.2 10936.5 1.57 0.085 0.080 0.074 -0.039 1.198 0.008 0.105

G̃K -5467.8 10945.7 2.04 0.150 0.147 0.124 -0.040 1.178 -0.022 0.104

HH -5460.8 10931.6 1.64 0.066 0.064 0.064 -0.036 1.230 0.056 0.033

JJ -5462.9 10935.8 1.78 0.067 0.064 0.063 -0.039 1.203 0.114 0.088

KK -5468.2 10946.5 1.96 0.178 0.173 0.139 -0.041 1.177 0.112 0.101

Table 4: Goodness-of-fit: Symmetric case

Type LL AIC KS AD0 AD1 AD2

Alternative symmetric distribution models

GT -5051.5 10113.0 1.15 0.038 0.038 0.038

GH -5051.5 10113.0 1.10 0.041 0.039 0.039

GSH -5061.7 10131.4 1.28 0.174 0.136 0.061

GHS -5060.9 10129.8 1.29 0.149 0.120 0.058

EGB2 -5063.4 10134.8 1.29 0.231 0.172 0.068



Table 5: Goodness-of-fit: Asymmetric case

Type LL AIC KS AD0 AD1 AD2

Alternative asymmetric distribution models

SGT2 -5457.9 10927.8 0.98 0.064 0.064 0.060

GH -5461.8 10935.6 1.23 0.064 0.063 0.061

SGSH -5471.1 10952.3 1.55 0.560 0.429 0.280

SGHS -5469.5 10949.1 1.54 0.414 0.341 0.236

EGB2 -5479.2 10968.5 1.77 1.482 0.967 0.553
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