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summary

One possibility to construct heavy tail distributions is to directly manipulate a
standard Gaussian random variable by means of transformations which satisfy
certain conditions. This approach dates back to Tukey (1960) who introduces the
popular H-transformation. Alternatively, the K-transformation of MacGillivray
& Cannon (1997) or the J-transformation of Fischer & Klein (2004) may be used.
Recently, Klein & Fischer (2006) proposed a very general power kurtosis trans-
formation which includes the above-mentioned transformations as special cases.
Unfortunately, their transformation requires an infinite number of unknown pa-
rameters to be estimated. In contrast, we introduce a very simple method to
construct flexible kurtosis transformations. In particular, manageable ”super-
structures” are suggested in order to statistically discriminate between H-, J-
and K-distributions (associated to H-, J- and K-transformations).
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1 Introduction

Assume that Z denotes a standard Gaussian random variable. In order to derive random
variables with heavy-tailed distributions, Tukey (1960) suggested to directly transform Z

via
Y = Z · T (Z)θ, (1.1)

where θ ≥ 0 is a kurtosis parameter1 and T : R+ → R a suitable positive function (”trans-
formation”) which is symmetric around 0 and strictly monotone increasing on R+. Tukey
(1960) discussed the H-transformation

T (z) = exp(0.5z2) (1.2)

which guarantees the existence of moments of Y up to order 1/θ which in turn coincides
with the (asymptotic) tail index of Y . Parametric alternatives with existing moments but
still heavy tails followed up by MacGillivray & Cannon’s (1997) K-transformation, i.e.

T (z) = (1 + z2), (1.3)
1In order to increase the tail length of Z which we focus on with this work.



by Fischer & Klein (2004) who discussed the J-transformation

T (z) = cosh(z) = 0.5(exp(z) + exp(−z)) (1.4)

and by Fischer, Horn & Klein’s (2006) L-transformation

T (z) =
sinh(z)

z
=

0.5(ez − e−z)
z

. (1.5)

Until Klein & Fischer (2006), these transformations only ”exist in parallel” and no ”super-
structure” was available. Note that the transformations given in (1.2) to (1.5) are special
cases of the very general power series representation

T (z) =
∞∑

i=0

aiz
2i (1.6)

with certain weights ai, i ≥ 0 which guarantee that the power series in (1.6) has a finite limit.
In particular, the coefficients of Tukey’s H-transformation are ai = 1/(2ii!) = 1/(2i)!, i ∈
N, the coefficients of the K-transformation are simply a0 = a1 = 1 and ai = 0, i >

1, the coefficients of the J-transformation are given by ai = 1/(2i!) and that of the L-
transformation by ai = 1/(2i + 1)! Unfortunately, the representation in (1.6) is not very
operational as we have to estimate an infinite number of unknown parameters a0, a1, . . . to
reveal the ”data-generating transformation”. This motivates the need of alternative flexible
transformations which include the above-mentioned transformations, or at least some of
them, as special cases.

2 A simple method to construct transformations

Given a symmetric probability density f ∈ C2(R) with f(x) > 0 and f ′(x) ≤ 0 for x ∈ R
(briefly f ∈ F), define

T (x; f) ≡ f(0)
f(x)

. (2.1)

We next show that T (x; f) is actually a Tukey-type transformation which can be used to
construct heavy-tailed distributions.

Lemma 1. Assume that f ∈ F . It follows that T (0, f) = 1, T (−x, f) = T (x, f) and that
T (x, f) is strictly monotone increasing on (0,∞). Moreover,

T ′′(x, f) ≥ 0 ⇐⇒ 2f ′(x)2 ≥ f ′′(x)f(x).

Proof: The assertions follow from the first and second derivative of T (x, f),

T ′(x) = −f(0)
f ′(x)
f(x)2

and T ′′(x) = f(0)
2f ′(x)2 − f ′′(x)f(x)

f(x)3
. ¤

Applying a Taylor series expansion to T (x, f) around x0 = 0 and using the symmetry of
T (x, f), we obtain the coefficients of the power series representation from above which are
completely determined by the density and its derivatives (provided that all derivatives exist).
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Lemma 2. The power series representation of T (x, f) is given by

T (x, f) =
∞∑

i=0

aiz
2i with ai =

1
(2i)!

d(2i)

dx(2i)

(
f(0)
f(x)

)∣∣∣∣
x=0

. (2.2)

In particular, with ψ(x) ≡ −f ′(x)/f(x), the first three coefficients are

a0 = 1, a1 =
1
2

(
ψ′(0)− ψ(0)2

)
,

a2 =
1
24

(
ψ′′′(0) + 2ψ′(0)ψ′′(0)− ψ′(0)ψ(0)2 − ψ′(0)2 + ψ(0)ψ′(0)2

)
.

The kurtosis transformations stated in equation (1.2), (1.3), (1.4) and (1.5) correspond to
well-known probability densities, as the next example shows. Additionally, a new transfor-
mation similar to the J-transformation is obtained.

Example 2.1 (H-/K-/J-transformation).

1. Assume that f(x) = ϕ(x), the standard Gaussian density. Obviously, f(0) = (
√

2π)−1

and the H-transformation from (1.2) is recovered.

2. Plugging the Cauchy density into (2.1), the K-transformation is obtained:

f(x) =
1

π(1 + x2)
⇐⇒ T (x, f) =

1/π

1/(π(1 + x2))
= 1 + x2.

3. Similarly, the hyperbolic secant distribution is associated to the J-transformation of
Fischer & Klein (2004):

f(x) =
1

π cosh(x)
⇐⇒ T (x, f) =

1/π

1/(π cosh(x))
= cosh(x).

4. Plugging the logistic density into (2.1) reveals a ”new” transformation which is as-
ymptotically equivalent to the J-transformation:

f4(x) =
exp(x)

(1 + exp(x))2
⇐⇒ T (x, f4) =

1/4
exp(x)

(1+exp(x))2

=
(1 + exp(x))2

4 exp(x)
.

Conversely, given a transformation T (x), the associated ”generating density” boils down to

f(x; T ) =
(∫ ∞

−∞

dx

T (x)

)
1/T (x).

Example 2.2 (L-transformation). Starting from the L-transformation T (x) = sinh(x)
x and

noting that ∫ ∞

−∞

x

sinh(x)
dx =

π2

2
,

the resulting distribution is the convolution of two hyperbolic secant with density given by

f5(x) =
2
π2

x

sinh(x)
=

4
π2

x

ex − e−x
.
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3 Generalized families of transformations

In order to obtain generalized transformations which include some of these transformations
as special cases we simply have to select generalized symmetric distributions which include
the corresponding distributions (i.e. Gaussian, Cauchy, logistic, hyperbolic secant distribu-
tion) as special cases and apply equation (1.6). We focus on four transformation families,
henceforth:

1. The Student-t transformation family which nests both H- and K-transformation,

2. the GED transformation family which generalizes Tukey’s H-transformation,

3. the GSH transformation family which generalizes Fischer & Klein’s J-transformation,

4. the Meixner transformation family which nests both J- and L-transformation.

3.1 The Student-t transformation family

A popular distribution which includes the Cauchy distribution (ν = 1) as well as the normal
distribution (ν →∞) is the Student-t distribution with density

f(x; ν) =
1√
νπ

Γ((ν + 1)/2)
Γ(ν/2)

(
1 + x2/ν

)− ν+1
2 .

Consequently, the associated transformation (including H- and K-transformation) is

TS(x; ν) =
(
1 + x2/ν

) ν+1
2 > 0, ν ∈ R. (3.1)

Obviously, f ′(x; ν) ≤ 0 for x ∈ R and convexity of T (x; ν) holds because

T ′′S (x; ν) = TS(x)ν(ν + 1)
1 + x2

(ν + x2)2
> 0.

3.2 The GED transformation family

A flexible parametric density connecting both normal and Laplace distribution is given by
the generalized error (GED) distribution (see Subbotin, 1923 or Box & Tiao, 1962) with pdf

f(x; ν) =
ν

21+1/νΓ(1/ν)
exp(−0.5|x|ν), ν > 0,

also known as power exponential density under a different parameterization. The GED is
still symmetric, but quite flexible in the tails through the parameter ν: when ν < 2, tails are
heavier than the normal ones; when ν > 2, tails are thinner than the corresponding normal
tails. The associated GED-transformation generalizes the H−transformation (which itself
is recovered for ν = 2) and is given by

TGED(x; ν) = exp(0.5|x|ν), ν > 0.

Assuming x > 0 and ν ≥ 1 makes sure that the transformation is convex because then

T ′′GED(x; ν) = 0.5νxν−2TGED(x; ν)((ν − 1) + 0.5xν) > 0.
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3.3 The GSH transformation family

The generalized secant hyperbolic (GSH) distribution – which is able to model both thin and
fat tails – was introduced by Vaughan (2002) and has density

fGSH(x; t) =
c1(t) exp(x)

exp(2x) + 2a(t) exp(x) + 1
=

c1(t)
2 cosh(x) + 2a(t)

, x ∈ R (3.2)

with





a(t) = cos(t), c1(t) = sin(t)
t , for − π < t ≤ 0,

a(t) = cosh(t), c1(t) = sinh(t)
t , for t > 0.

Setting t = 0 results in the logistic distribution, t = −π/2 corresponds to the hyperbolic
secant distribution. Application of (1.6) to the GSH density provides another family of
transformation indexed by the parameter t ∈ (−π,∞), i.e.

TGSH(x; t) =
cosh(x) + a(t)

1 + a(t)
, t ∈ (−π,∞).

The GSH-transformation is strictly monotone and convex noting that for x > 0

T ′GSH(x; t) =
sinh(x)
1 + a(t)

> 0 and T ′′GSH(x; t) =
cosh(x)
1 + a(t)

> 0.

3.4 The Meixner transformation family

A flexible but not so prominent distribution family is the GHS or symmetric Meixner
distribution family. Originally, Meixner (1934) introduced this families based on certain
polynomials. Many properties are discussed by Harkness and Harkness (1968). The GHS
distribution is obtained as λth-convolution of the hyperbolic secant family. Its density with
kurtosis parameter λ > 0 is

f(x; λ) =
22d

2πΓ(2d)
|Γ(λ + ix)|2 =

22d

2πΓ(2d)
Γ(λ + ix)Γ(λ− ix), (3.3)

where i denotes the imaginary number. Using the relationship

|Γ(n + ix)|2 =
πPn

x sinh(πx)
for n = 1, 2, . . . ,

with P1 = (02 + x2), P2 = (02 + x2)(12 + x2), P3 = (02 + x2)(12 + x2)(22 + x2), . . .

and |Γ(0.5 + ix)|2 =
π

cosh(πx)

it is straightforward to derive the hyperbolic secant distribution (λ = 0.5) and the density
of the convolution of two hyperbolic secant distributions (λ = 1), among others:

f(x; 0.5) =
1

cosh(πx)
, f(x; 1) =

2x

sinh(πx)
, f(x; 3) =

4
15

x(1 + x2)
sinh(πx)

, . . .
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Scaling the density by π and combining (1.6) and (3.3) finally leads to the Meixner trans-
formations

TM (x;λ) =
Γ(λ)2

Γ(λ + ix/π)Γ(λ− ix/π)
=

Γ(λ)2

|Γ(λ + ix/π)|2 , λ > 0. (3.4)

Using the digamma function ψ(x) = Γ′(x)/Γ(x), the first derivative of the Meixner trans-
formation is given by

T ′M (x; λ) = TM (x;λ) · i
π

[
ψ

(
λ− ix

π

)
− ψ

(
λ +

ix
π

)]
= TM (x; λ) ·H(x;λ)

Using the series representation of the digamma function we obtain

H(x; λ) = − i
π

∞∑

k=0

2x/πi
x2/π2 + (λ + k)2

=
2
π

∞∑

k=0

x/π

x2/π2 + (λ + k)2
> 0.

Exemplarily, different Meixner, GED, GSH and Student-t transformations are plotted in
figure 1, below.
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Figure 1: Selected Tukey-type transformations.

6



4 Application of generalized Tukey-type transformations

4.1 Generalized Tukey-type distributions and its estimation

Starting with a standard normal variable Z, we now focus on the distribution of Y = K(Z) =
µ + δZ · T (Z)θ from (1.1), where T is one of the generalized Tukey-type transformations
considered before and µ ∈ R, δ > 0 denote the location and scale parameter, respectively.
Applying standard methods of variable transformation, the density of Y requires the inverse
transformation of T – which is typically not available in closed form – and is given by

fY (y) =
fZ(K−1((y − µ)/δ))/δ

K ′(K−1((y − µ)/δ))
with K ′(z) = T (z)θ−1(T (z) + θzT ′(z)).

Traditionally, quantile-based methods are applied to obtain estimates of the unknown para-
meters (see, for instance, Tukey, 1960). Due to the increasing computing power, maximum
likelihood estimation (MLE) which had been thought intractable can now be tackled numer-
ically. Refering to Rayner & MacGillivray (2002) for both theoretical and computational
details, MLE maximizes the logarithm of the likelihood (as a function of the unknown
parameters represented by the vector Θ) for a simple random sample y1, . . . , yn, given by

LL(Θ; y1, . . . , yn) =
n∑

i=1

ln
(

fZ(K−1((yi − µ)/δ))/δ

K ′(K−1((yi − µ)/δ))

)
.

4.2 Modelling financial return distributions

We focus on the continuously compounded returns (e.g. differences of consecutive log prices)
of ALLIANZ AG over the period 1 January 1990 to 31 December 2003 (3485 observations).
The (sample) mean of the log-returns (which are depicted in figure 2, below) is −0.00002
with a (sample) standard deviation of 0.0221. Moreover, the data set exhibits only a small
amount of skewness (the skewness coefficient – measured by the third standardized moments
– is given by by−0.069), whereas the kurtosis coefficient – in terms of the fourth standardized
moments – is 5.362, reflecting the remarkable leptokurtosis.
The results for the ALLIANZ returns arising from maximum likelihood estimation of the
parameters from different Tukey-type distributions are summarized in table 1, below.
Obviously, focussing on the log likelihood value LL, the return data under consideration are
closer to the H-distribution than to the K-distribution, but closer to the J-distribution than
to the H-distribution. Concerning the estimation results based on the generalized families
from section 3, we can state the following observations.

1. Within the GSH- and Meixner transformation family, the fit of the J-distribution
cannot be improved and the J-distribution is essentially recovered (t̂ = −1.45, exact:
t = −π/2 and λ̂ = 0.53, exact: 0.5).

2. The estimation results for the distribution family derived from the Student-t density
indicate that neither the K-distribution (ν = 1) nor the H-distribution (ν = ∞) are
optimal within this family and that ν = 5.5 might be a better choice.
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3. The GED-family and its associated distributions provide an additional improvement
regarding the log-likelihood.
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Figure 2: Series of returns and kernel density estimation.

Table 1: Estimation results

T µ̂ δ̂ θ̂ LL
H −0.0084 1.465 0.2319 −7315.7

K −0.0264 1.285 0.3918 −7320.1

J −0.0201 1.385 0.4059 −7311.2

Student-t −0.0172 1.403 0.3502 ν̂ = 5.5 −7311.2

GED −0.0200 1.311 0.4732 ν̂ = 1.31 −7309.3

GSH −0.0187 1.394 0.4266 t̂ = −1.45 −7311.2

Meixner −0.0188 1.393 0.4339 λ̂ = 0.53 −7311.2
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5 Supplements

Vgl. Klein & Fischer (2006):

W (z) + zW ′(z) ≥ 0, z ≥ 0 proper distribution

2W ′(z) + zW ′′(z) ≥ 0, z ≥ 0 more kurtosis

5.1 Kurtosis Ordering

Due to theorem 1 of Klein & Fischer (2006), the parameter of the generalized kurtosis
transformation, say θ, can be interpreted as kurtosis parameter, if

T ′′(x; θ2)
T ′′(x; θ1)

≥ T ′(x; θ2)
T ′(x; θ1)

≥ T (x; θ2)
T (x; θ1)

(5.1)

provided that T (x; θ) > 0, T ′(x; θ) > 0 and T ′′(x; θ) > 0.
Plugging TGSH into (5.1), we have to show that

1 ≥ 1 ≥ cosh(x) + a(t1)
cosh(x) + a(t2)

This is true because a(t) = cos(t) is strictly monotone increasing on (−π, 0] and a(t) =
cosh(t) is also strictly monotone increasing on (0,∞].

Lemma 5.1. The parameter t of the GSH-transformation is kurtosis parameter in the sense
of van Zwet (????). The higher t, the higher is the kurtosis.

Note: GED and Student-t cannot be ordered according to van Zwet.

5.2 Psi-functions

ψt(x) =
x (ν + 1)
ν + x2

ψGSH(x) =
sinh (x)

cosh (x) + a (t)

Beachte für die erste bzw. zweite Ableitung gilt

T ′(x) = T (x)ψ(x)

T ′′(x) = T (x)(ψ(x)2 + ψ′(x)).

For the Meixner transformation we have ψMeixner(x) = H(x).
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