Fischer, Matthias J.

Working Paper
A note on the construction of generalized Tukey-type transformations

Diskussionspapier, No. 73/2006

Provided in Cooperation with:
Friedrich-Alexander-University Erlangen-Nuremberg, Chair of Statistics and Econometrics

This Version is available at:
http://hdl.handle.net/10419/29570

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

www.econstor.eu
A NOTE ON THE CONSTRUCTION OF GENERALIZED TUKEY-TYPE TRANSFORMATIONS.

MATTHIAS FISCHER

Department of Statistics and Econometrics
University of Erlangen-Nürnberg, Germany
Email: Matthias.Fischer@wiso.uni-erlangen.de

SUMMARY

One possibility to construct heavy tail distributions is to directly manipulate a standard Gaussian random variable by means of transformations which satisfy certain conditions. This approach dates back to Tukey (1960) who introduces the popular H-transformation. Alternatively, the K-transformation of MacGillivray & Cannon (1997) or the J-transformation of Fischer & Klein (2004) may be used. Recently, Klein & Fischer (2006) proposed a very general power kurtosis transformation which includes the above-mentioned transformations as special cases. Unfortunately, their transformation requires an infinite number of unknown parameters to be estimated. In contrast, we introduce a very simple method to construct flexible kurtosis transformations. In particular, manageable "super-structures" are suggested in order to statistically discriminate between H-, J- and K-distributions (associated to H-, J- and K-transformations).

Keywords and phrases: Generalized kurtosis transformation, H-transformation

AMS Classification: 62E15

1 Introduction

Assume that Z denotes a standard Gaussian random variable. In order to derive random variables with heavy-tailed distributions, Tukey (1960) suggested to directly transform Z via

$$Y = Z \cdot T(Z)^\theta,$$ \hspace{1cm} (1.1)

where $\theta \geq 0$ is a kurtosis parameter\footnote{In order to increase the tail length of Z which we focus on with this work.} and $T: \mathbb{R}_+ \rightarrow \mathbb{R}$ a suitable positive function ("transformation") which is symmetric around 0 and strictly monotone increasing on \mathbb{R}_+. Tukey (1960) discussed the H-transformation

$$T(z) = \exp(0.5z^2)$$ \hspace{1cm} (1.2)

which guarantees the existence of moments of Y up to order $1/\theta$ which in turn coincides with the (asymptotic) tail index of Y. Parametric alternatives with existing moments but still heavy tails followed up by MacGillivray & Cannon’s (1997) K-transformation, i.e.

$$T(z) = (1 + z^2),$$ \hspace{1cm} (1.3)
by Fischer & Klein (2004) who discussed the \(J \)-transformation
\[
T(z) = \cosh(z) = 0.5 (\exp(z) + \exp(-z))
\] (1.4)
and by Fischer, Horn & Klein’s (2006) \(L \)-transformation
\[
T(z) = \frac{\sinh(z)}{z} = \frac{0.5 (e^z - e^{-z})}{z}.
\] (1.5)

Until Klein & Fischer (2006), these transformations only "exist in parallel" and no "super-structure" was available. Note that the transformations given in (1.2) to (1.5) are special cases of the very general power series representation
\[
T(z) = \sum_{i=0}^{\infty} a_i z^{2i}
\] (1.6)
with certain weights \(a_i, i \geq 0 \) which guarantee that the power series in (1.6) has a finite limit. In particular, the coefficients of Tukey’s \(H \)-transformation are \(a_i = 1/(2^i i!) = 1/(2i)! \), \(i \in \mathbb{N} \), the coefficients of the \(K \)-transformation are simply \(a_0 = a_1 = 1 \) and \(a_i = 0, i > 1 \), the coefficients of the \(J \)-transformation are given by \(a_i = 1/(2i)! \) and that of the \(L \)-transformation by \(a_i = 1/(2i + 1)! \) Unfortunately, the representation in (1.6) is not very operational as we have to estimate an infinite number of unknown parameters \(a_0, a_1, \ldots \) to reveal the "data-generating transformation". This motivates the need of alternative flexible transformations which include the above-mentioned transformations, or at least some of them, as special cases.

2 A simple method to construct transformations

Given a symmetric probability density \(f \in C^2(\mathbb{R}) \) with \(f(x) > 0 \) and \(f'(x) \leq 0 \) for \(x \in \mathbb{R} \) (briefly \(f \in \mathcal{F} \)), define
\[
T(x; f) \equiv \frac{f(0)}{f(x)}.
\] (2.1)

We next show that \(T(x; f) \) is actually a Tukey-type transformation which can be used to construct heavy-tailed distributions.

Lemma 1. Assume that \(f \in \mathcal{F} \). It follows that \(T(0, f) = 1, T(-x, f) = T(x, f) \) and that \(T(x, f) \) is strictly monotone increasing on \((0, \infty)\). Moreover,
\[
T''(x, f) \geq 0 \iff 2f'(x)^2 \geq f'''(x)f(x).
\]

Proof: The assertions follow from the first and second derivative of \(T(x, f) \),
\[
T'(x) = -f(0) \frac{f'(x)}{f(x)^2} \quad \text{and} \quad T''(x) = f(0) \frac{2f'(x)^2 - f'''(x)f(x)}{f(x)^4}.
\]

Applying a Taylor series expansion to \(T(x, f) \) around \(x_0 = 0 \) and using the symmetry of \(T(x, f) \), we obtain the coefficients of the power series representation from above which are completely determined by the density and its derivatives (provided that all derivatives exist).
Lemma 2. The power series representation of $T(x, f)$ is given by

$$T(x, f) = \sum_{i=0}^{\infty} a_i z^{2i} \quad \text{with} \quad a_i = \frac{1}{(2i)!} \frac{d^{(2i)}}{dx^{(2i)}} \left(\frac{f(0)}{f(x)} \right) \bigg|_{x=0}. \quad (2.2)$$

In particular, with $\psi(x) \equiv -f'(x)/f(x)$, the first three coefficients are

$$a_0 = 1, \quad a_1 = \frac{1}{2} \left(\psi'(0) - \psi(0)^2 \right), \quad a_2 = \frac{1}{24} \left(\psi'''(0) + 2\psi'(0)\psi''(0) - \psi'(0)\psi(0)^2 - \psi'(0)^2 + \psi(0)\psi'(0)^2 \right).$$

The kurtosis transformations stated in equation (1.2), (1.3), (1.4) and (1.5) correspond to well-known probability densities, as the next example shows. Additionally, a new transformation similar to the J-transformation is obtained.

Example 2.1 (H-/K-/J-transformation).

1. Assume that $f(x) = \varphi(x)$, the standard Gaussian density. Obviously, $f(0) = (\sqrt{2\pi})^{-1}$ and the H-transformation from (1.2) is recovered.

2. Plugging the Cauchy density into (2.1), the K-transformation is obtained:

$$f(x) = \frac{1}{\pi(1 + x^2)} \iff T(x, f) = \frac{1/\pi}{1/(\pi(1 + x^2))} = 1 + x^2.$$

3. Similarly, the hyperbolic secant distribution is associated to the J-transformation of Fischer & Klein (2004):

$$f(x) = \frac{1}{\pi \cosh(x)} \iff T(x, f) = \frac{1/\pi}{1/(\pi \cosh(x))} = \cosh(x).$$

4. Plugging the logistic density into (2.1) reveals a "new" transformation which is asymptotically equivalent to the J-transformation:

$$f_4(x) = \frac{\exp(x)}{(1 + \exp(x))^2} \iff T(x, f_4) = \frac{1/4}{\exp(x)(1 + \exp(x))} = (1 + \exp(x))^2/4 \exp(x).$$

Conversely, given a transformation $T(x)$, the associated "generating density" boils down to

$$f(x; T) = \left(\int_{-\infty}^{\infty} dx \frac{T(x)}{T(x)} \right) 1/T(x).$$

Example 2.2 (L-transformation). Starting from the L-transformation $T(x) = \frac{\sinh(x)}{x}$ and noting that

$$\int_{-\infty}^{\infty} \frac{x}{\sinh(x)} dx = \frac{\pi^2}{2},$$

the resulting distribution is the convolution of two hyperbolic secant with density given by

$$f_5(x) = \frac{2}{\pi^2 \sinh(x)} = \frac{4}{\pi^2} \frac{x}{e^x - e^{-x}}.$$
3 Generalized families of transformations

In order to obtain generalized transformations which include some of these transformations as special cases we simply have to select generalized symmetric distributions which include the corresponding distributions (i.e. Gaussian, Cauchy, logistic, hyperbolic secant distribution) as special cases and apply equation (1.6). We focus on four transformation families, henceforth:

1. The Student-t transformation family which nests both H- and K-transformation,
2. the GED transformation family which generalizes Tukey’s H-transformation,
3. the GSH transformation family which generalizes Fischer & Klein’s J-transformation,
4. the Meixner transformation family which nests both J- and L-transformation.

3.1 The Student-t transformation family

A popular distribution which includes the Cauchy distribution ($\nu = 1$) as well as the normal distribution ($\nu \to \infty$) is the Student-t distribution with density

$$f(x; \nu) = \frac{1}{\sqrt{\nu\pi}} \frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)} (1 + x^2/\nu)^{-\frac{\nu+1}{2}}.$$

Consequently, the associated transformation (including H- and K-transformation) is

$$T_S(x; \nu) = (1 + x^2/\nu)^{-\frac{\nu+1}{2}}, \quad \nu \in \mathbb{R}. \quad (3.1)$$

Obviously, $f'(x; \nu) \leq 0$ for $x \in \mathbb{R}$ and convexity of $T(x; \nu)$ holds because

$$T_S''(x; \nu) = T_S(x; \nu) \nu(\nu + 1) \frac{1 + x^2}{(\nu + x^2)^2} > 0.$$

3.2 The GED transformation family

A flexible parametric density connecting both normal and Laplace distribution is given by the generalized error (GED) distribution (see Subbotin, 1923 or Box & Tiao, 1962) with pdf

$$f(x; \nu) = \nu^{\frac{\nu}{2+1/\nu}} \frac{1}{\Gamma(1/\nu)} \exp(-0.5|x|^{\nu}), \quad \nu > 0,$$

also known as power exponential density under a different parameterization. The GED is still symmetric, but quite flexible in the tails through the parameter ν: when $\nu < 2$, tails are heavier than the normal ones; when $\nu > 2$, tails are thinner than the corresponding normal tails. The associated GED-transformation generalizes the H-transformation (which itself is recovered for $\nu = 2$) and is given by

$$T_{GED}(x; \nu) = \exp(0.5|x|^\nu), \quad \nu > 0.$$

Assuming $x > 0$ and $\nu \geq 1$ makes sure that the transformation is convex because then

$$T_{GED}''(x; \nu) = 0.5\nu x^{\nu-2}T_{GED}(x; \nu)(\nu(\nu - 1) + 0.5x^\nu) > 0.$$
3.3 The GSH transformation family

The generalized secant hyperbolic (GSH) distribution – which is able to model both thin and fat tails – was introduced by Vaughan (2002) and has density

\[f_{GSH}(x; t) = \frac{c_1(t) \exp(x)}{\exp(2x) + 2a(t) \exp(x) + 1} = \frac{c_1(t)}{2 \cosh(x) + 2a(t)}, \quad x \in \mathbb{R} \quad (3.2) \]

with

\[a(t) = \cos(t), \quad c_1(t) = \frac{\sin(t)}{t}, \quad \text{for } -\pi < t \leq 0, \]
\[a(t) = \cosh(t), \quad c_1(t) = \frac{\sinh(t)}{t}, \quad \text{for } t > 0. \]

Setting \(t = 0 \) results in the logistic distribution, \(t = -\pi/2 \) corresponds to the hyperbolic secant distribution. Application of (1.6) to the GSH density provides another family of transformation indexed by the parameter \(t \in (-\pi, \infty) \), i.e.

\[T_{GSH}(x; t) = \frac{\cosh(x) + a(t)}{1 + a(t)}, \quad t \in (-\pi, \infty). \]

The GSH-transformation is strictly monotone and convex noting that for \(x > 0 \)

\[T'_{GSH}(x; t) = \frac{\sinh(x)}{1 + a(t)} > 0 \quad \text{and} \quad T''_{GSH}(x; t) = \frac{\cosh(x)}{1 + a(t)} > 0. \]

3.4 The Meixner transformation family

A flexible but not so prominent distribution family is the GHS or symmetric Meixner distribution family. Originally, Meixner (1934) introduced this families based on certain polynomials. Many properties are discussed by Harkness and Harkness (1968). The GHS distribution is obtained as \(\lambda \text{-th}-\)convolution of the hyperbolic secant family. Its density with kurtosis parameter \(\lambda > 0 \) is

\[f(x; \lambda) = \frac{2^{2d}}{2\pi \Gamma(2d)} |\Gamma(\lambda + ix)|^2 = \frac{2^{2d}}{2\pi \Gamma(2d)} \Gamma(\lambda + ix) \Gamma(\lambda - ix), \quad (3.3) \]

where \(i \) denotes the imaginary number. Using the relationship

\[|\Gamma(n + ix)|^2 = \frac{\pi P_n}{x \sinh(\pi x)} \quad \text{for} \quad n = 1, 2, \ldots, \]

with \(P_1 = (0^2 + x^2), \quad P_2 = (0^2 + x^2)(1^2 + x^2), \quad P_3 = (0^2 + x^2)(1^2 + x^2)(2^2 + x^2), \ldots \)

and \(|\Gamma(0.5 + ix)|^2 = \frac{\pi}{\cosh(\pi x)} \)

it is straightforward to derive the hyperbolic secant distribution (\(\lambda = 0.5 \)) and the density of the convolution of two hyperbolic secant distributions (\(\lambda = 1 \)), among others:

\[f(x; 0.5) = \frac{1}{\cosh(\pi x)}, \quad f(x; 1) = \frac{2x}{\sinh(\pi x)}, \quad f(x; 3) = \frac{4x(1 + x^2)}{15 \sinh(\pi x)}, \quad \ldots \]
Scaling the density by π and combining (1.6) and (3.3) finally leads to the Meixner transformations

$$T_M(x; \lambda) = \frac{\Gamma(\lambda)^2}{\Gamma(\lambda + i x/\pi)\Gamma(\lambda - i x/\pi)} = \frac{\Gamma(\lambda)^2}{[\Gamma(\lambda + i x/\pi)]^2}, \quad \lambda > 0.$$

(3.4)

Using the digamma function $\psi(x) = \Gamma'(x)/\Gamma(x)$, the first derivative of the Meixner transformation is given by

$$T'_M(x; \lambda) = T_M(x; \lambda) \cdot \frac{i}{\pi} \left[\psi \left(\lambda - \frac{ix}{\pi} \right) - \psi \left(\lambda + \frac{ix}{\pi} \right) \right] = T_M(x; \lambda) \cdot H(x; \lambda)$$

Using the series representation of the digamma function we obtain

$$H(x; \lambda) = -\frac{i}{\pi} \sum_{k=0}^{\infty} \frac{2x/\pi i}{x^2/\pi^2 + (\lambda + k)^2} = \frac{2}{\pi} \sum_{k=0}^{\infty} \frac{x/\pi}{x^2/\pi^2 + (\lambda + k)^2} > 0.$$

Exemplarily, different Meixner, GED, GSH and Student-t transformations are plotted in figure 1, below.

![Figure 1: Selected Tukey-type transformations.](image-url)
4 Application of generalized Tukey-type transformations

4.1 Generalized Tukey-type distributions and its estimation

Starting with a standard normal variable Z, we now focus on the distribution of $Y = K(Z) = \mu + \delta Z \cdot T(Z)$ from (1.1), where T is one of the generalized Tukey-type transformations considered before and $\mu \in \mathbb{R}$, $\delta > 0$ denote the location and scale parameter, respectively. Applying standard methods of variable transformation, the density of Y requires the inverse transformation of T – which is typically not available in closed form – and is given by

$$f_Y(y) = \frac{f_Z(K^{-1}((y - \mu)/\delta))/\delta}{K'(K^{-1}((y - \mu)/\delta))} \text{ with } K'(z) = T(z)^{\theta-1}(T(z) + \theta z T'(z)).$$

Traditionally, quantile-based methods are applied to obtain estimates of the unknown parameters (see, for instance, Tukey, 1960). Due to the increasing computing power, maximum likelihood estimation (MLE) which had been thought intractable can now be tackled numerically. Refering to Rayner & MacGillivray (2002) for both theoretical and computational details, MLE maximizes the logarithm of the likelihood (as a function of the unknown parameters represented by the vector Θ) for a simple random sample y_1, \ldots, y_n, given by

$$LL(\Theta; y_1, \ldots, y_n) = \sum_{i=1}^{n} \ln \left(\frac{f_Z(K^{-1}((y_i - \mu)/\delta))/\delta}{K'(K^{-1}((y_i - \mu)/\delta))} \right).$$

4.2 Modelling financial return distributions

We focus on the continuously compounded returns (e.g. differences of consecutive log prices) of ALLIANZ AG over the period 1 January 1990 to 31 December 2003 (3485 observations). The (sample) mean of the log-returns (which are depicted in figure 2, below) is -0.00002 with a (sample) standard deviation of 0.0221. Moreover, the data set exhibits only a small amount of skewness (the skewness coefficient – measured by the third standardized moments – is given by by -0.069), whereas the kurtosis coefficient – in terms of the fourth standardized moments – is 5.362, reflecting the remarkable leptokurtosis.

The results for the ALLIANZ returns arising from maximum likelihood estimation of the parameters from different Tukey-type distributions are summarized in table 1, below. Obviously, focussing on the log likelihood value LL, the return data under consideration are closer to the H-distribution than to the K-distribution, but closer to the J-distribution than to the H-distribution. Concerning the estimation results based on the generalized families from section 3, we can state the following observations.

1. Within the GSH- and Meixner transformation family, the fit of the J-distribution cannot be improved and the J-distribution is essentially recovered ($\hat{t} = -1.45$, exact: $t = -\pi/2$ and $\hat{\lambda} = 0.53$, exact: 0.5).

2. The estimation results for the distribution family derived from the Student-t density indicate that neither the K-distribution ($\nu = 1$) nor the H-distribution ($\nu = \infty$) are optimal within this family and that $\nu = 5.5$ might be a better choice.
3. The GED-family and its associated distributions provide an additional improvement regarding the log-likelihood.

![Series of returns and kernel density estimation.](image)

Figure 2: Series of returns and kernel density estimation.

<table>
<thead>
<tr>
<th>T</th>
<th>$\hat{\mu}$</th>
<th>$\hat{\delta}$</th>
<th>$\hat{\theta}$</th>
<th>$\mathcal{L}{\mathcal{L}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-0.0084</td>
<td>1.465</td>
<td>0.2319</td>
<td>-7315.7</td>
</tr>
<tr>
<td>K</td>
<td>-0.0264</td>
<td>1.285</td>
<td>0.3918</td>
<td>-7320.1</td>
</tr>
<tr>
<td>J</td>
<td>-0.0201</td>
<td>1.385</td>
<td>0.4059</td>
<td>-7311.2</td>
</tr>
<tr>
<td>Student-t</td>
<td>-0.0172</td>
<td>1.403</td>
<td>0.3502</td>
<td>$\hat{\nu}=5.5$</td>
</tr>
<tr>
<td>GED</td>
<td>-0.0200</td>
<td>1.311</td>
<td>0.4732</td>
<td>$\hat{\nu}=1.31$</td>
</tr>
<tr>
<td>GSH</td>
<td>-0.0187</td>
<td>1.394</td>
<td>0.4266</td>
<td>$\hat{\iota}=-1.45$</td>
</tr>
<tr>
<td>Meixner</td>
<td>-0.0188</td>
<td>1.393</td>
<td>0.4339</td>
<td>$\hat{\lambda}=0.53$</td>
</tr>
</tbody>
</table>
References

5 Supplements

\[W(z) + zW'(z) \geq 0, \quad z \geq 0 \text{ proper distribution} \]
\[2W''(z) + zW'''(z) \geq 0, \quad z \geq 0 \text{ more kurtosis} \]

5.1 Kurtosis Ordering

Due to theorem 1 of Klein & Fischer (2006), the parameter of the generalized kurtosis transformation, say \(\theta \), can be interpreted as kurtosis parameter, if

\[
\frac{T''(x; \theta_2)}{T''(x; \theta_1)} \geq \frac{T'(x; \theta_2)}{T'(x; \theta_1)} \geq \frac{T(x; \theta_2)}{T(x; \theta_1)} \tag{5.1}
\]

provided that \(T(x; \theta) > 0, T'(x; \theta) > 0 \) and \(T''(x; \theta) > 0 \).

Plugging \(T_{GSH} \) into (5.1), we have to show that

\[
1 \geq \frac{1}{\cosh(x) + a(t_1)} \geq \frac{1}{\cosh(x) + a(t_2)}
\]

This is true because \(a(t) = \cos(t) \) is strictly monotone increasing on \((-\pi, 0]\) and \(a(t) = \cosh(t) \) is also strictly monotone increasing on \((0, \infty]\).

Lemma 5.1. The parameter \(t \) of the GSH-transformation is kurtosis parameter in the sense of van Zwet (????). The higher \(t \), the higher is the kurtosis.

Note: GED and Student-\(t \) cannot be ordered according to van Zwet.

5.2 Psi-functions

\[
\psi_t(x) = \frac{x(\nu + 1)}{\nu + x^2}
\]
\[
\psi_{GSH}(x) = \frac{\sinh(x)}{\cosh(x) + a(t)}
\]

Beachte für die erste bzw. zweite Ableitung gilt

\[
T'(x) = T(x)\psi(x)
\]
\[
T''(x) = T(x)(\psi(x)^2 + \psi'(x)).
\]

For the Meixner transformation we have \(\psi_{Meixner}(x) = H(x) \).