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SUMMARY

Since the pioneering work of Embrechts and co-authors in 1999, copula models
enjoy steadily increasing popularity in finance. Whereas copulas are well-studied
in the bivariate case, the higher-dimensional case still offers several open issues
and it is by far not clear how to construct copulas which sufficiently capture
the characteristics of financial returns. For this reason, elliptical copulas (i.e.
Gaussian and Student-¢ copula) still dominate both empirical and practical ap-
plications. On the other hand, several attractive construction schemes appeared
in the recent literature promising flexible but still manageable dependence mod-
els. The aim of this work is to empirically investigate whether these models are
really capable to outperform its benchmark, i.e. the Student-t copula (which is
termed by Paul Embrechts as ”desert island copula” on account of its excellent fit
to financial returns) and, in addition, to compare the fit of these different copula
classes among themselves.

Keywords and phrases: KS-copula; Hierarchical Archimedian; Product copulas;
Pair-copula decomposition

1 Introduction

The increasing linkages between countries, markets and companies require an accurate and
realistic modelling of the underlying dependence structure. This applies to financial markets
and, in particular, to the financial assets traded there-on. For a long time both practitioners
and theorists rely on the multivariate normal (Gaussian) distribution as statistical funda-
ment, seemingly ignoring that this model assigns too less probability mass to extremal
events. In order to remove this drawback but still maintain many of the attractive proper-
ties, elliptical distributions (e.g. multivariate Student-¢ or multivariate generalized hyper-
bolic distribution) occasionally found its way into financial literature. Though being able
to model heavy tails, elliptical distributions fail to capture asymmetric dependence struc-
tures. The copula concept, in contrast, which originally dates back to Sklar (1959) but was
made popular to finance through the pioneering work of Embrechts and co-authors (1999)



provides a flexible tool to capture different patterns of dependence. Within this work we
assume that the reader is already familiar with the notion of copulas. Otherwise, we refer
to Nelsen (2006) or Joe (1997). Whereas copulas are well-studied in the bivariate case, con-
struction schemes for higher dimensional copulas are not. Recently, several publications on
high-dimensional copulas appeared (e.g. Morillas, 2005, Palmitesta & Provasi, 2005, Savu
& Trede, 2006, Liebscher, 2006, Aas et al., 2006). Each of them claims to provide a flexible
dependence model, but there is no comprehensive comparison among these approaches, as
far as we know. In particular, no references are found to the Student-t copula (i.e. the
copula associated to the multivariate Student-¢ distribution) which is sometimes termed
as ”desert island copula” by Paul Embrechts on account of its excellent fit to multivariate
financial return data.

The outline of this work is as follows: Section 2 overviews and connects several recent
construction schemes of multivariate copulas. A short digression on goodness-of-fit measures
can be found in section 3. Section 4 is dedicated to the description of the underling data
sets, whereas the empirical results are summarized and discussed in section 5.

2 Constructing multivariate non-elliptical copulas

Among the classes of non-elliptical copulas, Archimedean copulas and its generalizations
(section 2.1) enjoy great popularity. Above that, so-called pair-copula constructions are re-
viewed in section 2.2, where the joint distribution is decomposed into simple building blocks,
so-called pair-copulas. Thirdly, we pick up the copulas associated to Kohler-Symanowski
distributions in section 2.3 which have been successfully applied by Palmistesta & Provasi
(2005) as models for financial returns. Finally, Liebscher’s (2006) recent proposal to gener-
alize given d-copulas is reviewed in section 2.4.

2.1 Multivariate Archimedean copulas
2.1.1 Classical multivariate Archimedean copulas

Let ¢ : [0,1] — [0, c0] be a continuous, strictly decreasing and convex function with ¢(1) = 0,
©(0) < 0o and let ©l=1 be the so called pseudo-inverse of ¢ defined by

Sy =d e 0=t <p(0),
0 p(0) <t <o

It can be shown (see, e.g. Nelsen, 2006) that

Clur,uz) = o7 (p(ur) + ()

defines a class of bivariate copulas, the so-called Archimedean copulas. The function ¢ is
called the (additive) generator of the copula. Furthermore, if ¢(0) = oo the pseudo-inverse



describes an ordinary inverse function (i.e. ¢!~ = ¢~1) and in this case ¢ is known as a
strict generator.

Given a strict generator ¢ : [0,1] — [0, o], bivariate Archimedean copulas can be extended
to the d-dimensional case. For every d > 2 the function C : [0,1]¢ — [0, 1] defined as

C(u) = ¢ (p(wn) + o) + -+ + plua) ) (2.1)

is a d-dimensional Archimedean copula if and only if !

ie. if o= € Lo with

is completely monotonic on R,

Lo ={0: Ry = [0,1][6(0) = 1, 6(00) =0, (~1)*6M () 20, k=1,....,m, }.

The Gumbel copula derives from the generator p(t) = (—1Int)?,6 > 1 and the Clayton
copula is generated by ¢(t) = #(t7% —1),6 > 0. For an overview of further Archimedean
copulas and the properties of the aforementioned ones, we refer the reader to the monographs
by Nelson (2006) and Joe (1997).

2.1.2 Non-exchangeable Archimedean copulas

In order to increase flexibility and to allow for non-exchangeable dependence structures, sev-
eral generalizations emerged in the recent literature: A simple one — the so-called fully nested
Archimedean (FNA) copulas — can be found in Joe (1997, p. 89), Whelan (2004) and Savu &
Trede (2006), and requires d — 1 generator functions ¢1, ..., p4—1 with gofl, .. 790;_11 € Lo
and @, 1109, (1) = wir1(p; (1)) € L for

L= {¢> Ry — Ry | ¢(0) =0, ¢(00) =00, (1) M (t) >0, k=1,....d, }

The structure of FNA d-copulas is rather simple: One first couples u; and us. One then
couples the copula of u; and us with uz to a new copula which is coupled afterwards with
uy4 and so on. Hence the FNA 4-copula is of the form

C(u) = ¢35 3 (902_1 [p2 (901_1 [1(u1) + @1(u2)]) + @2(us)]) + @3(uq)] - (2.2)

Figure 1 illustrates one possible FNA copula for dimension d = 5.

Secondly, mixing ordinary Archimedean and FNA copulas, partially nested Archimedean
(PNA) copulas may be used. Again, for ease of notation, we focus on the 4-variate case

C(u) = ¢ o (o713 [12(u1) + @12(u2)]) + ¢ (034 [p3a(us) + psa(ua)])] - (2.3)

Note that ¢, @12, p34 are generators with =1, ¢}, v34 € Loo and @ o 5, p o <p§41 e L.
Obviously, one first couples the pairs uy, us and ug, ug with distinct generators. The resulting
copula pair is then coupled using a third generator ¢ (which in turn might be coupled with
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Figure 1: FNA copula (left) and PNA copula (right) for d = 5.

an additional variable us using a fourth generator v for an extension to the 5-dimensional
case). Another possible structure of a PND copula is illustrated in figure 1.

Thirdly, copula C' from (2.3) is also an example of a so-called hierarchical Archimedean
(HA) copulas. The basic idea of this approach (see, e.g. Savu & Trede, 2006) is to build a
hierarchy of Archimedean copulas. Let there be L hierarchy levels indexed by . At each

level I =1,...,L one has n; distinct objects with index j =1,...,n;. The uj,...,uq are
located at the lowest level, [ = 0. At level [ = 1 the uy, ..., uq are grouped into ny ordinary
multivariate Archimedean copulas Cy ;, j = 1,...,n1, of the form

Cyj(ur ) = 901_]1 (Z <P1,j(u1,j))

where ¢ ; denotes the generator of copula C; ;. Let u;; denote the set of elements of
Ui,...,uq belonging to copula Cy; for j =1,...,n;. The copulas Cy1,...,C ,, might
belong to different Archimedean families. All copulas of level [ = 1 are in turn aggregated
into copulas at level | = 2. The na copulas Cs ;, j = 1,...,no are generalized Archimedean
copulas, whose dependence structure is only of partial exchangeability. They consist of
copulas from the previous level (as elements) and can be represented as

C3,;(Ca ) = SDE; Z ©2,i(Caj) |,
ngj

where @7 ; denotes the generator of copula C ;, and Csy ; represents the set of all copulas
from level [ = 1 entering copula C5 ; for j = 1,...,n2. We can proceed in this manner until
attaining level L with the hierarchical Archimedean copula Cp, ; as single object.

In order to ensure that Cp,; is a proper copula, we have to proclaim that gofj € Lo
for I=1,...,L and j=1,...,n;, and that ¢;4;, o %017,]'1 € Lk for all I=1,...,L and
j=1,...,n,%=1,...,m41 such that C; ; € C;y1 ;. Moreover, a hierarchy is established if
the number of copulas decreases at each level, if the top level contains only a single object
and if at each level the dimensions of the copulas add up to d. Figure 2 displays the possible
construction of a 5-dimensional HA-copula.
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Figure 2: HA copula for d = 5.

Savu & Trede (2006) also derive the HA-copula density

adCL’l . Z 8d—iCL,1 ”ﬁl Z 8‘1}1'0[,71,7“ aIUTICLfl,r
- ke kn,L—1 yeeey s
duy ... Jug 6CL1—1,1 ce aCfL—l,nL,l r=1 u=v1,...,ur Oy vy
where the outer sum extends over all sets of integers k1,...,k, -1 € Ny such that max;

k; < dp—1,; and Z?ifl kj=d—iforalli=0,...,d —np_q1. These terms are the outer
derivatives of the copula with respect to the elements of Cy, 1, i.e., the ny_; copulas from
level L — 1. The second part of the formula are the inner derivatives, corresponding to the

derivatives of the copulas at level L — 1 with respect to their arguments uz_1 ;.

2.1.3 Generalized multiplicative Archimedean copulas

In this section we focus on methods recently proposed by Morillas (2005) and Liebscher
(2006). Both approaches are based on a second functional representation of Archimedean
copulas via so called multiplicative generators (see Nelsen, 2006). Setting ¥(t) = exp(—p(t))
and 9171 (t) = oI~ (= 1nt), equation (2.1) can be rewritten as

Cluy,. .. ug) =01 (19(u1) Dus) - ... ~19(ud)>. (2.4)

The function 9 is called multiplicative generator of C. Due to the relationship between ¢
and 9, the function ¢ : [0,1] — [0,1] is continuous, strictly increasing and concave with
9(1) = 1 and 9[71(t) = 0 if 0 < ¢ < 9(0) and I () = 91 (t) if 9(0) <t < 1.

Equation (2.4) can also be expressed using the independence copula C*(u) = H?Zl U;:

Clur,.. ua) =9 (CH@D(w), .. D(ua)) ).
Morillas (2005) substitutes C+ by an arbitrary d-copula C' in order to obtain
Cour,.. ua) = 971 (C@(wn), D(w2), ..., 9(ua)) (2.5)

and proves that Cy is a d-copula if 91=1 is absolutely monotonic of order d on [0,1], i.e. if
I (1) satisfies (9I71)®) (1) = % >0fork=1,2,...,dand ¢t € (0,1).



Examples of generator functions are stated in Morillas (2005). Notice that not every gen-
erator given there is absolutely monotonic for arbitrary d > 1: As one can easily verify,
the generator ¥(t) = t"/(2 —t"),r € (0,1/3] (see table 1, no. 9 in Morillas, 2005) has no
absolutely monotonic pseudo-inverse of order d > 3, because the third derivative of 9~
becomes negative. Hence this generator is suitable only for a construction of generalized
bivariate copulas. Concerning the basic properties of such Morillas copulas we refer to Mo-
rillas (2005).

Another way of generalizing Archimedean copulas is the method proposed by Liebscher
(2006) who introduces the following copula representation

Cuy,...,uq) =¥ %Zwﬂ(ul) “Pja(u2) - Yjalua) | (2.6)

where ¥ and v, : [0,1] — [0, 1] are functions satisfying the following conditions: Firstly,
it is assumed that U(? exist with ¥*)(u) > 0 for k = 1,2,...,d and u € [0,1], and that
U(0) = 0. Secondly, 95 is assumed to be differentiable and monotone increasing with
¥;£(0) = 0 and 9;,(1) =1 for all k,j. Thirdly, Liebscher’s construction requires that

1 m
v(= : —v for k=1,2,...,dand v € 0,1].
m;%k(v) v for and v € [0, 1]

The three conditions guarantee that C' defined in (2.6) is actual a copula.

It is easily seen that the approaches of Morillas (2005) and Liebscher (2006) coincide for
m =1, 971 = ¥ in (2.6) and Cy = C* in (2.5).

Liebscher (2006) also states a general method for deriving appropriate functions ;5. Let
hjk 0,1 = [0,1],5 =1,...,m,k =1,...,d be a differentiable and bijective function such
that A% (u) > 0 for u € (0,1), hjr(0) = 0, hje(1) = 1 and mu = 377 hjr(u), wu €
[0,1], k =1,...,d. Let » = ¥~! be the differentiable inverse function of ¥. An appropriate
choice is setting ;i (u) = hji(¥(u)), since % (u) = Iy (P(u)) - ¢'(u) > 0 for j =1,...,m
and u € [0, 1].

Considering m = 2, define

hip(u) = u’*,  hop(u) = 2u —u’  with & € [1,2]. (2.7)
Choosing further
W(t) = (1 — (1 — e)) du}()—ﬂ >0
= 9 n e , an u) = 1_¢0 )

and defining v, (u) = h;(¥(u)) a generalized Frank copula (GMLF) is obtained. Setting
0 = 1 for all but one k, k=1,...,d, it is easily verified that the GMLF copula reduces to



the common Frank copula. Setting m = 2 and hj; as in (2.7) but now choosing (see table
2, no. 2, p. 8 in Liebscher (2006))

=

U(t)=——+———, and w(u)zé—(5*9(1—u)+u(5—1)*9)7 ,0>00>1

a copula is obtained, which will be termed as GML2 copula henceforth.

In the field of insurance pricing the function v, is known as a distortion function (for a
definition see Freez & Valdez, 1998) and the methods proposed by e.g. Freez & Valdez
(1998) or Wang (1998) appear as special cases in (2.6). The same holds for the approach
given by Morillas (2005) where the function ¢ also satisfies the requirements of a distortion
function.

2.2 Pair-copula decompositions

2.2.1 Pair-copula decomposition: The general case

One way of calculating a multivariate density is by decomposing it into a product of marginal
densities and conditional densities. The latter can be stepwise replaced by so-called pair-
copulas. Again, let X = (X,..., X4)" have the joint density function

f(x1, .. xa) = f(2a) - f(wa—1|za) - f(Ta—slxa—1,24) ...  f(xi|T2,. .. Ta) (2.8)
which is unique up to a relabelling of the variables. Because of
f(@1,. . 2a) = croea(Fi(21), - Fa(za)) - fi(z1) - fa(za),

with ¢19...4(+) being the d-variate copula density, f(zq|zi—1), €.g., may also be expressed by
c12(Fi(x1), Fa(z2)) - f1(z1). c12(-,-) is called pair-copula density for the respecting trans-
formed variables. f(z4—2|T4—1,4), again, can be decomposed into

ca—2)djd—1 (Fi—2ja—1(@a—2|a-1), Fya—1(xa, Ta-1)) - f(xa—2|T4-1).
Using f(2q—2|Ta—1) = c(a—2)d—1)(Fa—2(Ta—2), Fa—1(ra-1)) - fa—2(xa—2) results in

f@a—2|ra-1,24) = c—2)aja—1(Fa—21a—1(Ta—2|Ta-1), Faja—1(za,Ta-1))

cd—2)(d—1)(Fa—2(2q—2), Fa—1(4-1)) - fa—2(ra—2).

But this is not unique anymore, because, while splitting up, conditioning on x4 instead of
Tq—1 is also possible. This leads to a different decomposition. The general formula reads

f(@|v) = copy v, (F(@|v_j, F(vjlv_j)) - f(x|v_;) (2.9)

for a d-dimensional vector v with components v;. v_; denotes v excluding the component
v;. For methods and formulas to calculate F'(z|v) we refer to Joe (1996).



As seen above, every (conditional) d-dimensional density can be split up into a pair-copula
and a (d — 1)-dimensional (conditional) density. For d > 2 you can iteratively repeat this
splitting for the (d — 1)-dimensional conditional density. Eventually, you will get a product
of univariate densities and pair-copulas. Like shown in the trivariate case, this decomposi-
tion is not unique but there are various ways to do so.

In order to sort the different decomposition constructs, so-called regular vines (see Bedford
and Cooke, 2001 and 2002) are defined. Vines are graphical models that present complete
decomposition schemes. Following Aas et al. (2006) we choose the structure of the D-vine,

since there is no dominating variable. The joint density f(z1,...,z4) can be expressed as
d d—1d—j

IT £ TT T ciitstionivims (F@ilmisn, - s @igjo1), F(@iggl@iga, - @ieio1)-

k=1 j=1i=1

The decomposition of a four-dimensional density according to the D-vine scheme is

f(@1,20,23,24) = f(21) - f(z2) - flzs) - flaa)
-c12(F(w1), F'(22)) - cos(F(22), F(23)) - caa(F(x3), F(74))
-er3)2(F(z1]72), F(23]22)) - Coajs(F(22]|23), F(74]|23))
-Crape3(F(w1|w2, 23), F(24]22, 73)). (2.10)

2.2.2 Pair-copula decomposition of a copula

Originally, the pair-copula decomposition (PCD) decomposes the common density f of d
random variables. Of course, one may also apply the pair-copula decomposition to the
underlying copula density ¢, as we will show in this subsection. To simplify notation, we
restrict ourselves to d = 4 and the D-vine decomposition. As an immediate consequence of
Sklar’s (1959) theorem,

f($17l'2,m3,x4)

f(@1) - f2) - flas) - flza)

Substituting the common density by its PCD given in (2.10),

c(F(x1), F(x2), F(x3), F(z4)) =

c(F(x1), F(x2), F(x3), F'(24)) = c12(F(w1), F(22)) - cos(F(x2), F(23)) - caa(F(x3), F'(74))
cpzp(F(w1|z2), F23|22)) - coq3(F(22|23), F'(24]73))

: C14\23(F($1|$27$3)7F($4\$2,$3))

with ¢;|;(-,-) being a pair-copula density and its indices i, j refer to x; and ;. According
to Joe (1996),
0 Co v, (F([v_j), Fuvjlv_;))

Flev) = 9 F(vj|v—;)




with v_; being the vector v except the element v;. In the univariate case (i.e. v =),

_ 9 Cp(Fx(2), Fy (v))
d Fy(v)

F(z|v) = h(z,v,0),

where ¢ being the parameter vector of the copula C; ,. The copula density decomposition
can be written as follows: It is obvious that F(z1|ze) = h(x1,z2,012) with 15 is the
parameter (vector) of the of copula C13. Analogously, F'(z3|zs) = h(xs, x2, 023), F(z2|z3) =
h(zxa,x3,b23) and F(x4|x3) = h(zy, x3,0s4). F(x1|x2,x3), again, can be iteratively simplified
to

0 Chz2(F(21|22), F(23]22))
(9 F($3|l‘2)

= h(h(x1, 2, 012), h(73, T2, 032), O13)2)-

Analogously, F(x4|x2,x3) can be written as

0 Coyj3(F(w4z3), F(22]23))
8 F(I2|I3)

= h(h(24, 73, 043), h(w2, 73, 023), Oo43)-

Finally, define w; = F(x1), us = F(x3), us = F(x3), uy = F(x4). The formula for the
4-dimensional PCD copula density now reads as

c(u) = cio(ur,uz) - caz(uz,us3) - caa(us, ug)
- c1zja(h(ur, ug, 012), h(usz, ug, 023)) - coajz(h(uz, us, 023), h(ug, us, 034))
- c1a23(R(h(u1, u3, 013), h(ug, us, 023), 013)2), h(h(ua, us, 043), h(uz, us, 023), O24)3))

To summarize, in order to specify a d-dimensional (copula) density, two main steps have
to be taken (see Aas et al., 2006): Firstly, an appropriate decomposition scheme has to be
selected as follows: use the canonical vine scheme, if there is a key-variable. If not, use the
D-vine scheme. Secondly, the pair-copulas have to be specified: e.g. Gaussian, Student’s ¢,
Archimedean or Gumbel copula. It is possible, to use one copula model for all pair-copulas
or decide individually.

2.3 Koehler-Symanowski (KS) copulas

Koehler & Symanowski (1995) introduce a multivariate distribution as follows: With the
index set V. ={1,2,...,d}, V being the power set of V and Z = {I € V with |I| > 2} let X
denote a d-dimensional random vector with univariate marginal distributions F;(z;),i € V.
For all subsets I € T let oy € RS’ and «; € Rar for all ¢ € V such that a; = oszZIeI a;r >0
for ¢ € I. Then the common cdf F' is defined by

_ HieV Fi(x;)
[liez [Zie] [ier i Fi(@)®+ — (| = 1) [ Ligy Filzi) >+

The terms K; = >, [jeq ju Fi(@)% = (|[I] = 1) [[;; Fi(w:)**+ are called association
terms. Moreover, Koehler & Symanowski (1995) showed that the joint density function

F(z1,...,2q) = - (2.11)



exists if the marginal density functions f; exist for all ¢ € V. Due to the design of the
Koehler-Symanowski distribution the corresponding copula has a similar functional form:
Setting u; = F;(x;) for all i € V| the KS copula is

_ [Licv us
- . . (27
Irez | Xier Hje],j;éi U?ﬁ = (=D ILes “?Jr}

In contrast to the cumulative distribution function the functional representation of the
density is quite complicated due to complex factors with additive components. Koehler
& Symanowski (1995) gave an explicit formula for the special case of a so called KS(2)-
distribution (Caputo, 1998), where all parameters a; are set equal zero for |I| > 2. The
corresponding copula will be termed as KS(2) copula henceforth. Assuming that a;; =
aj; > 0 for all (4,5) € VxV and a4 = o + g + -+ + ;g > 0 for all i € V, the
KS(2)-copula simplifies to

d
Clur,ug, ... ua) = [Jus J]]] 55 (2.13)
i=1

1<j

C’(ul, . ,ud) (2.12)

with K;; = u:/a” + ujl-/&j+ - u;/()”*u]l-/%”r = Kj;.

Palmitesta & Provasi (2005) apply this particular KS copula to weekly log-returns. They
also argue that this copula has the ability to model complex dependence structures among
subsets of marginal distribution but they do not present any goodness-of-fit measure or any
comparison with other copulas. We seize the proposal by Palmitesta & Provasi but set the
association parameter ay > 0 for |I| = 2 and |I| = 4 in (2.12), while all parameters «; are
set equal to zero for |I| = 3, i.e. we include a global dependence parameter and refer to this
copula as augmented KS(2) copula (aKS(2)). Additionally, we use the KS-Copula (KSC)
as defined in (2.12).

2.4 Multiplicative Liebscher copulas

By now, different methods have been reviewed how to construct d-variate copulas. Liebscher
(2006), in contrast, discusses how to combine or connect a given set of k possibly different
d-copulas C1,...,C to a new d-copula C in order to increase flexibility and/or introduce
asymmetry. His proposal focusses on multiplicative connections of d-copulas of the form

k
Clur,... ua) = [] Cilgn(w), ... gja(ua)) (2.14)
j=1
with a set of k - d admissible functions ¢11,...,91d,---,9k1,-- -, 9kd, €ach of which being

bijective, monotonously increasing or identically equal 1 satisfying

k
[[oiw) =v, i=1,....4 (2.15)
j=1
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Note that (2.15) reduces to g1;(v) = v for k =1 and i = 1,...,d, and C is recovered. In
accordance to Liebscher (2006), possible choices are

k
g5i(v) = v’ with 6;; > 0and Y 0, =1fori=1,....d (2.16)

=1

—0;0\

) =0, ) =0 s S0 = (T2 ) 00 ac0) @D
We consider four different generalized Clayton copulas based on (2.14). The ” Generalized
Clayton of Liebscher type I” (L;) is obtained by setting k = 2, choosing the clayton copula
for C, the independence copula for Cy and g¢;;(v) as in (2.16). Applying (2.17) rather than
(2.16), the ”Generalized Clayton of Liebscher type II” (L) copula with d 4+ 2 dependence
parameters is constructed. Similarly, combining two d-variate Clayton copulas and using g
from (2.16) we obtain the d-dimensional copula family with d + 2 parameters, termed as
the ”Generalized Clayton of Liebscher type III” (Ls) in the sequel. Finally, applying again
(2.17) rather than (2.16), the ” Generalized Clayton of Liebscher type IV” (L4) is obtained.

3 Goodness-of-fit measures

We now tackle the problem to compare the goodness-of-fit (GOF) of the different copula
models from section 2, noting that most of them are not nested. As we apply maximum
likelihood (ML) methods to obtain estimators for the unknown parameter vector, the first
choice is the log-likelihood value ¢ or — in order to take the different numbers of parameters
in account — the information criterion of Akaike AIC = —2¢+ 2N (K +1))/(N — K —2),
where K and N denote the number of parameters to be fitted and the number of obser-
vations, respectively. However, comparing log-likelihood values for non-nested models may
produce misleading conclusions. Therefore, certain GOF tests may come to application.
Following Breymann, Dias & Embrechts (2003), Chen, Fan & Patton (2004) or recently
Berg & Bakken (2006), the main idea is to project the multivariate problem into a set of
independent and uniform U (0, 1) variables, given the multivariate distribution and to calcu-
late the distance (e.g. Anderson-Darling, Kolmogorov-Smirnov, Cramér-von Mises, Kernel
smoothing) between the transformed variables and the uniform distribution. In contrast to
the authors above, we are not primarily interested whether the data stem from the specified
copula model but we use these distances as citerion itself. The proceeding is roughly as
follows:

By means of the Rosenblatt (1952) transformation the random vector X = (X1,...,Xg) is
mapped onto a random vector Z* = (Z7,...,2Z}) via

ZTEFl(Xl) and Z;k EFX7|X1,7X7_1(X'L|X1a7X171)a 2227,d (31)
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It can be shown that Z* is uniformly distributed on [0,1]¢ with independent components
Zt, ..., Z;. Assume that the cumulative distribution function of X admits the decomposi-
tion

Fx(xl,. .. ,l‘d) = C(FXl(xl), .. .,de(l‘d)),
where C(-) denotes a parametric copula which is the common distribution function of U =
(U1,...,Uq)" with U; = Fx,(X;). Define C(uy,...,u;) = C(u1,...,u;,1,...,1) for j < d.

Furthermore, the conditional distribution of U;|Uy,...,U;_1 is given by
Cl(’u» — 8i_1C(u1, . ,ul)/ Oi_lC(ul, Cey ui,1> .
8U1 N 3ui_1 8u1 e aui_l

According to (3.1), the variables

Z1 EC(U1) =U1 and ZlECl(Ul), i:2,...,d (32)
are independent and uniform on [0, 1]. Consequently, the sample X,..., X y from a para-
metric copula and with marginals given by Fi,..., F; can be mapped onto an iid sample
Zy,...,Zy from a uniform distribution on [0, 1]¢.
Breymann et al. (2003) suggest to transform each random vector Z; = (Z;1,...,Z;q)" in a
(univariate) chi-square variable x; with d degrees of freedom through y; = Zgzl =1(Z;:)?,
j=1,...,N, where ® 1 (u) denotes the standard normal quantile function. If the margins

are unknown, they may be replaced by the corresponding empirical counterparts. Breymann
et al. state that "we do assume that the y2-distribution will not be significantly affected by
the use of the empirical distribution functions used to transform the marginal data”.

4 The data set

The data sets we used used to compare the different copula models come from three dif-
ferent markets (German stock market, foreign exchange (FX) market and commodity mar-
kets). From each market, four typical representatives were selected, provided that the
corresponding sample period is sufficiently large. Instead of analyzing the prices them-
selves, we calculated and considered (percentual) continuously compounded returns ("log-
returns”) R; = 100(log P, — log P,—1), t = 2,...,N. In order to account for possible
time-dependencies (which are common to most financial return series), we also fitted uni-
variate GARCH models of the form R; = p+v1Ri—1 + ... + Y Re—r + hee, with variance
equations hf = a9+ a1 R} | + ...+ a1 R}, + B1hi | + ...+ B4h7_, to each of the series
and considered standardized residuals €; rather the original returns R;. Secondly, as we are
primarily not interested in parametric models for the marginal distributions, all observations
(i.e. returns or standardized residuals) were transformed into uniform ones by means of the
(empirical) probability integral transform, i.e.
_ {#R|R, <z}

Ut = FN(Rt) with FN(,IJ) = #—R and Ut* = FN(Et)-
t

12



4.1 German stock returns

From the German stock market, we selected prices of HVB AG, BMW AG, Allianz AG
and Munich Re AG, all of them being part of the German stock market index DAX which
measures the performance of the Prime Standard’s 30 largest German companies in terms
of order book volume and market capitalization. Figure 3 contains the series of prices and
returns. Table 1 summarizes descriptive and inductive statistics. All series feature negative

HVB BMW HVB BMW
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Figure 3: German stock prices and stock returns.

skewness and high kurtosis (measured by the third and fourth standardized moment S and
K). Morerover, there is empirical evidence for (slight) serial correlation and GARCH effects
as the Ljung-Box statistic LB and Engle’s Lagrange multiplier statistic LM indicate.

Start End N Stocks 1 52 S K  £B(10) L£M(10)
02-01-90 | 12-11-03 | 3486 | HVB 0.004 561 -0.033 816  24.45 621.08
02-01-90 | 12-11-03 | 3486 | BMW 0.046 4.33 -0.132 7.19  28.96 366.49
02-01-90 | 12-11-03 | 3486 | Allianz -0.002 4.87 -0.07 837  29.74 517.14
02-01-90 | 12-11-03 | 3486 | MunichRe | 0.02  5.06 -0.027 875  50.53 508.59

Table 1: German stock returns.

4.2 Exchange rate returns

Data from foreign exchange markets (FX-markets) are available from the PACIFIC Ex-
change Rate Service'. This service offered by Prof. Werner Antweiler at UBC’s Sauder
School of Business provides access to current and historic daily exchange rates through an
on-line database retrieval and plotting system. In contrast to the volume notation, where
values are expressed in units of the target currency per unit of the base currency, the price

'Download under the URL-link http://pacific.commerce.ubc.ca.
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notation is used within this work which corresponds to the numerical inverse of the volume
notation. All values are expressed in units of the base currency (here US-Dollar) per unit of
the target currency. Table 2 summarizes the statistics of the four exchanges rates (Canadian
Dollar, Japanese Yen, Swiss Franc, British Pound) which are used later on. Again, prices
and log-returns in figure 4, below.
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Figure 4: Exchange rates: Prices versus Returns.

Start End N FX Rate m 52 S K LB(10)  LM(10)
02-01-90 | 31-12-04 | 3794 | CAD 0.002 0.09 -0.004 6.75 12.65 912.18
02-01-90 | 31-12-04 | 3794 | YEN -0.015  0.56 -0.002  6.11 12.5 429.24
02-01-90 | 31-12-04 | 3794 | SFR 0.003 036 0.132 6.84  55.79 485.26
02-01-90 | 31-12-04 | 3794 | BRP -0.013 044 -0.723 13.33  34.48 176.20

Table 2: Exchange rates

4.3 Metal returns

The London Metal Exchange? (LME) is the world’s premier non-ferrous metals market with
a turnover value of some US$2000 billion per annum. For a detailed introduction on metal
markets with emphasis on the London metal exchange see Crowson & Sampson (2001).
Among the different metals, emphasis is placed on aluminium, copper, lead and nickel.
All prices are quoted in US-Dollar per tonne. Table 3 contains again the basic summary
statistics. Prices and log-returns are displayed in figure 5.

2Download under http://www.lme.co.uk/.
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Figure 5: Metals: Prices versus Returns.

Start End N Metal u 52 S K L£B(10) LM(10)

26-03-99 | 07-08-06 | 1093 | Lead 0.034 1.22 -0.555 8.72 29.74 161.56
26-03-99 | 07-08-06 | 1093 | Tin 0.084 4.21 -0.368 5.59 30.11 100.37
26-03-99 | 07-08-06 | 1093 | Nickel | 0.142 238 -0.139 5.13 12.95 127.66
26-03-99 | 07-08-06 | 1093 | Zinc 0.13 497 -0.618 7.9 10.72 21.45

Table 3: Metals: Prices versus Returns.

5 Empirical results

The 4-copulas under consideration are the following: Firstly, we selected the Clayton copula
(CLA), the Gumbel copula (GUM) and its rotated version (roGUM) from the Archimedean
class. From the generalized Archimedean copula family, two hierarchical copula models (i.e.
HA-CLA and HA-GUM) are included, based on the Clayton and the Gumbel copula, re-
spectively. Moreover, six representatives of Morrillas’ construction scheme (i.e. MO-CLA1,
MO-CLA2, MO-CLA3, MO-GUM1, MO-GUM2, MO-GUM3) involving the Clayton, the
Gumbel and different generator functions (no. 3, 2, 4 in Morillas, 2005) are included as
well. In addition, two version of Liebscher’s proposal (GMLF, GML2) are used. Above
that, representing the ”elliptical copula world”, the Gaussian copula (NORM) and — as
ultimate benchmark — the Student-t (T) copula are also included. From the pair-copula
decomposition we chose five representatives (i.e. PC-NORM, PC-T, PC-CLA, PC-GUM,
PC-roGUM) each of them derived from one single copula model (i.e. we used no decom-
positions based on different copulas). Finally, the KS(2)-copula and its augmented version
(which is a generalized version of Palmitesta & Provasi, 2005 because we included a general
dependence parameter) and four different types of multiplicative Liebscher copulas from
example 2.8 (L1, Lo, Ls, L4) are considered.
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The computer code for the ML-estimation was implemented in Matlab 7.1. For maximiza-
tion purposes we used the line-search algorithm of Matlab. The following tables include the
comprehensive results for the parameter estimates as well as the different goodness-of-fit
measures for all data sets (returns and GARCH-residuals) and all copulas models men-
tioned above. As stated above, goodness-of-fit is measured by the Log-likelihood value and
Akaike’s AIC criterion. Above that, two distance measures,

KS = \/NJ:I{IZ%XN |FX2(d) (Xj) - FN,x(Xj)| and

1
AKS = — F2d X_FN, X4
\/Nj:;71v| x2( )( J) x( J)|
are calculated to quantify the distance after application of the Rosenblatt transformation
(based on the different parametric copula models).

The estimation results are unique across the different data set. As known from several em-
pirical studies, the fit of the 4-variate Gaussian distributions may be considerably improved
if the 4-variate Student-t distribution is considered, instead. However, pair-copula decom-
positions based on bivariate Student-t copulas produce a similar goodness-of-fit, sometimes
even outperform the 4-variate Student-¢ distribution. Whereas ¢t-PCD dominate the likeli-
hood criteria, 4-variate Student-t distribution provide minimal distance measure in many
cases. Similar, PCD-decompositions based on Archimedean copulas may also be considered
as possible alternatives. This also applies to the three copulas L1, L3 and L4, in particular
for the exchange rate data, whereas all copulas based on Morillas’ approach and, of course,
the plain Archimedean copulas feature low goodness-of-fit measures. Considering hierarchi-
cal Archimedean copulas, instead, we found only slight improvement, at least for our data
sets. However, we have to confess that one might improve the results with another hierarchy
which might be found on the basis of cluster algorithms.

The KS(2)-copula (recommended by Palmitesta and Provasi, 2005) provides only a poor
fit to the return series. However, introducing an additional dependence parameter — which
quantifies the overall dependence in the data set — clearly improves all goodness-fit measures.
Above that, removing the GARCH effects found in the margins doesn’t change the esti-
mation results substantially. In particular, the ordering of the goodness-of-fit measures is
essentially preserved. Above that, parameter estimates of the dependence parameters are
roughly stable for most of the copulas under consideration.

To sum up, the 4-variate Student-¢ distribution still plays a predominant role. Some of
the recently proposed construction schemes are partially competitive while others are more
likely to be overestimated in the literature.
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