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Abstract

Kirman’s “ant model” has been used to characterize the expectation
formation of financial investors who are prone to herding. The model’s
original version suffers from the problem of N -dependence: its ability
to replicate the statistical features of financial returns vanishes once
the system size N is increased. In a generalized version of the ant
model, the network structure connecting agents turns out to determine
whether or not the model is N -dependent. We investigate a class of
hierarchical networks in the generalized model that presumably reflect
the institutional heterogeneity of financial markets. These network
structures do overcome the problem of N -dependence, but at the same
time they also increase system-wide volatility. Thus network structure
becomes an auxiliary source of volatility in addition to the behavioral
heterogeneity of interacting agents.
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1 Introduction

Inspired by entomological experiments concerning ants’ foraging behavior,

Kirman (1991, 1993) proposed a stochastic model of opinion formation among

financial investors. The model endogenously creates swings and herding be-

havior in aggregate expectations through agent interaction, while the station-

ary distribution of the stochastic process of opinion formation corresponds

to the statistical equilibrium of the model. The “ant model” has been rea-

sonably successful in replicating the statistical features of financial returns,

like volatility clustering and power-law tails of the returns distribution (see,

e.g., Alfarano et al., 2005), but Alfarano et al. (2008) have shown analytically

that Kirman’s original model suffers from the problem of N -dependence: the

model’s ability to replicate the stylized facts vanishes for a given parametriza-

tion once the system size N is increased, a feature that although not un-

common in agent-based models, has received relatively minor attention so

far (see Aoki, 2008; Egenter et al., 1999; Lux and Schornstein, 2005; Alfi

et al., 2008).1 Alfarano and Milaković (2009) establish a direct link between

the problem of N -dependence and network structure among agents in a gen-

eralized version of Kirman’s ant model. They prove that the model is immune

to N -dependence if the relative communication range of agents remains un-

changed under an enlargement of system size.2 Put differently, the average

number of neighbors per agent has to increase linearly with the total num-

ber of agents N in order to overcome N -dependence. Among the standard

1Aoki utilizes the terms (non) self-averaging in lieu of N -(in)dependence.
2Interestingly, and rather counter-intuitively, other network features like the functional

form of the degree distribution, the average clustering coefficient, the graph diameter, or
the extent of assortative mixing have no impact on the N -dependence property.
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prototypical network structures (see, e.g., Newman, 2003), such as regular

lattices, small-world or scale-free networks, it is only the random graph with

constant linking probability that exhibits this feature, but random graphs are

hardly a realistic way of describing socio-economic relationships. Alfarano

and Milaković conclude that hierarchical core-periphery structures might be

capable of overcoming N -dependence, having the additional advantage that

they are likely to be more realistic representations of the institutional or

structural relationships of socio-economic interaction.

In the present paper we build on these insights and investigate whether

certain core-periphery structures are indeed immune to N -dependence. The

core-periphery networks that we consider here consist of a core with bi-

directional links between core agents, or opinion leaders, and a relatively

large number of followers who are uni-directionally linked to core agents.

We vary the number of followers per core agent by randomly drawing from

various distributions, and study the aggregate behaviour of system-wide opin-

ion dynamics under an increasing dispersion in the number of followers. It

turns out that the analytical mean-field prediction used by Alfarano and

Milaković, which yields accurate predictions among standard network struc-

tures, now significantly underestimates the volatility in system-wide opinion

dynamics. One noteworthy implication of this result is that behavioral het-

erogeneity among interacting agents is not the only source of endogenously

arising volatility, but that the network structure describing the very feasibil-

ity of agent interaction is another potential source of volatility as well.

It appears reasonable that hierarchical core-periphery networks resemble

the institutional structures in fund investment behavior, therefore we will
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use the terms hierarchy and institutional heterogeneity interchangeably. In-

vestors who are not wealthy enough to afford a broadly diversified portfolio

of assets, those who participate in retirement plans, or those who simply feel

that they lack the skills or time to make investment decisions, often invest in

some type or other of managed fund. Effectively such agents, who correspond

to followers in the network, transfer their wealth to fund managers in the core,

and put them in charge of subsequent investment decisions on their behalf.

We end up with a stylized hierarchical network of the type described above

if fund managers are indeed influencing each other in their decision making,

and recent empirical evidence by Hong et al. (2005) in fact documents that

fund managers who work in geographical proximity are prone to what they

term “word-of-mouth” effects. Essentially core-periphery networks lead to

an increase of system-wide volatility, relative to a collection of independently

acting agents, because fluctuations in a disproportionately small but central

part of the network are amplified on a system-wide level if the network is

characterized by the structural or institutional heterogeneity outlined above.

Therefore it seems rather ironic that investors who want to “play it safe” by

investing in managed funds will actually contribute to systemic risk if they

delegate investment decisions to socially interacting fund managers.

2 The Model

In a prototypical interaction-based herding model of the Kirman type, the

agent population of size N is divided into two groups, say, X and Y of

sizes n and N − n, respectively. Depending on the model setup, the two
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groups are typically labeled as fundamentalists and chartists, or optimists

and pessimists, or buyers and sellers. The basic idea is that agents change

state for personal reasons or under the influence of their neighbors, with

whom they interact during a given time period. The transition rate for an

agent i to switch from state X to state Y is

π−i ≡ ρi(X → Y ) = ai + λi

∑
j 6=i

DY (i, j), (1)

where ai governs the possibility of self-conversion due to idiosyncratic factors,

e.g. the arrival of new information, while λi governs the interaction strength

between i and neighbor j. The function DY (i, j) is an indicator function

serving to count the number of i’s neighbors that are in state Y ,

DY (i, j) =

 1 if j is a Y-neighbor of i,

0 otherwise,
(2)

hence the sum captures the (equally weighted) influence of the neighbors on

agent i. Symmetrically, the transition rates in the opposite direction are

given by

π+
i ≡ ρi(Y → X) = ai + λi

∑
j 6=i

DX(i, j) . (3)

If all links are bi-directional, bi > 0∀i ∈ {1, . . . , N}, Alfarano and

Milaković (2009) demonstrate that the transition rates for a single switch

on the system-wide level are given by

π− = n

(
a +

λD

N
(N − n)

)
, (4)
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for a switch from X to Y , and

π+ = (N − n)

(
a +

λD

N
n

)
, (5)

for the reverse switch, where the parameters a and b are now the ensemble

averages of the corresponding individual parameters ai and bi, and D is the

average number of neighbors per agent.

If the relative communication range D/N remains constant under an en-

largement of system size, the model is immune to N -dependence. In the

jargon of Alfarano et al. (2008), this case corresponds to “non-extensive”

transition rates, while the “extensive” transition rates in Kirman’s original

model are N -dependent. Notice that non-extensive transition rates depend

on the respective occupation numbers n and N − n, while extensive transi-

tion rates depend on the concentrations n/N and (N − n)/N of agents in

the opposite state. This apparently minor modification has a crucial im-

pact on the macroscopic properties of the herding model, as illustrated in

Figure 1. Hence, in contrast to Kirman’s original model, the generalized

transition rates (4) and (5) illustrate that network structure matters because

the average number of neighbors shows up explicitly in the transition rates.

At any time, the state of the system refers to the concentration of agents

in one of the two states, say, z = n/N . None of the possible states of z ∈ [0, 1]

is an equilibrium in itself,3 nor are there multiple equilibria in the orthodox

sense. Equilibrium rather refers to the stationary distribution of the process

given by (4) and (5), yielding the proportion of time the system spends in

3Notice that for large N , the concentration can be treated as a continuous variable.
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state z. This statistical equilibrium distribution turns out to be (see Alfarano

and Milaković, 2009, for a detailed derivation) a Beta distribution,

pe(z) =
1

B(ε, ε)
zε−1(1− z)ε−1, (6)

where B(ε, ε) = Γ(ε)2/Γ(2ε) is Euler’s Beta function, and the shape param-

eter of the distribution is given by

ε =
aN

λD
. (7)

For ε < 1, the distribution is bimodal, with probability mass having maxima

at z = 0 and z = 1. For ε > 1, the distribution is unimodal, and in the

“knife-edge” scenario ε = 1 the distribution becomes uniform. The mean

value of z, E[z] = 1/2, is independent of ε but the system exhibits very

different characteristics depending on the modality of the distribution. In

the bimodal case, the system spends least of the time around the mean,

mostly exhibiting very pronounced herding in either of the extreme states,

as shown in the top panel of Figure 1. Finally, the variance of z,

V ar(z) = E(z2)− E(z)2 =
1

4(2ε + 1)
=

[
4

(
2aN

λD
+ 1

)]−1

, (8)

is a convenient summary measure of the model properties with respect to

an enlargement of system size. If the variance of z remains constant (or

even increases) when the system is enlarged, the leptokurtosis and volatility

clustering of returns will be preserved in a simple Walrasian market clear-

ing scenario, while a decrease of the variance under enlargement of system
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size leads to counter-factual Gaussian properties of returns, as shown in the

bottom panel of Figure 1.

3 Hierarchical Network Structure

The relative communication range D/N in the transition rates (4) and (5) de-

termines whether or not the model is N -dependent. Alfarano and Milaković

(2009) consider prototypical networks with bi-directional links, in particular

regular lattices, random graphs, small-world networks of the Watts and Stro-

gatz (1998) type, and the scale-free networks of Barabási and Albert (1999).

Among these it is merely the random graph that exhibits a constant relative

communication range since in that case D = N `, where ` designates the con-

stant linking probability among agents in the random graph. On the other

hand, D/N approaches zero for an increasing system size in the other net-

work structures, unless one appropriately changes the respective parameters

in the generating mechanisms of these networks.

From a socio-economic viewpoint, however, it is hard to see how or why

a complex system composed of many interacting agents could possibly coor-

dinate an appropriate system-wide change in these parameters. The random

graph is not a convincing mapping of socio-economic relationships either,

because it implies that the average connectivity of agents increases linearly

with system size.4 A simple way to preserve immunity from N -dependence,

without taking recourse to fully connected or random networks, is to in-

4A simple example illustrates this implausibility. Suppose you live in Smallville, where
you closely interact with, say, thirty people. Moving to Metropolis, with a population
about three hundred times the size of Smallville, a constant linking probability would
imply that you now closely interact with a number of agents on the order of 105.
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Figure 1: The two panels on the top illustrate the time evolution of aggregate
opinion dynamics measured as the fraction of agents in one of the two states,
say, z = n/N . The two panels on the bottom show the corresponding time
series of (log) returns generated from a Walrasian pricing function where the
level of excess demand depends on z. An enlargement of system size under
extensive transition rates leads to counter-factual Gaussian returns. Non-
extensive transition rates can reproduce the extensive “small N” scenario
for any system size such that the pronounced swings in aggregate opinion
dynamics and the resulting statistical properties of returns, like leptokurtosis
and volatility clustering, are preserved under an enlargement of system size
(see Alfarano et al., 2008, for more details).
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Figure 2: A stylized representation of a hierarchical core-periphery network,
where core agents (black; bi-directional links) influence each other in their
opinion formation, while peripheral agents (grey; uni-directional links) simply
mimic their respective core agents.

troduce a hierarchical core-periphery structure. Suppose N core agents are

bi-directionally linked among themselves, and each has a constant number

M of followers in the periphery, with uni-directional links emanating from

the core to the periphery. The uni-directional links imply that the state

of peripheral agents simply corresponds to the state of their respective core

agents. Then the total number of followers is M N = F , with a total of F +N

agents in the entire network. In this case, the system-wide concentration of

agents in state X will be

z =
Mn + n

F + N
=

n(M + 1)

N(M + 1)
=

n

N
, (9)

which amounts to a relabeling of variables. Notice that now the system

size can be expanded without running into the problem of N -dependence by

simply adding followers at will.

The assumption of a constant number of followers per core agent, however,

is quite artificial and unsatisfactory. Therefore we investigate more general
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core-periphery structures by randomly drawing the number of followers from

various distributions, studying whether or how the opinion dynamics change

when the dispersion of followers increases. Notice that the respective numbers

of followers have to act as weights in the opinion formation process among

core agents, otherwise we would merely recover the already well-understood

cases resulting from the generalized transition rates (4) and (5).

Figure 2 provides a stylized representation of the resulting core-periphery

networks that presumably reflect the organizational structure of fund invest-

ment. On one hand, agents who invest in a fund effectively delegate all

subsequent investment decisions to fund managers until they decide to with-

draw their capital. On the other hand, fund managers in the core influence

each other and are prone to herding effects, an assumption that is in fact sup-

ported by the empirical results of Hong et al. (2005) and Wermers (1999).

We can also interpret the number of followers per core agent as the size

distribution of funds, thereby implicitly assuming that the influence of fund

managers on each other in the opinion formation dynamics is proportional

to the size of the fund they are managing. While we have no direct evidence

to support this assumption, the empirical size distribution of funds indeed

exhibits wide dispersion and even leptokurtosis (see, e.g., Gabaix et al., 2006;

Schwarzkopf and Farmer, 2008).

4 The Simulation

It is paramount to realize that we can study the N -dependence property

without actually increasing the number of agents in our subsequent simula-
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tions. The simple reason being that the addition of followers corresponds to

changing relative core agent weights.5 The introduction of weights, however,

prevents a straightforward application of analytical mean-field techniques if

the weights are widely dispersed because the average number of followers per

core agent no longer provides a good approximation. Therefore we simulate

the opinion dynamics in the hierarchical core-periphery models with an in-

creasing dispersion of weights, and compare the outcomes to the mean-field

prediction of Alfarano and Milaković (2009). If the variance of z decreases

relative to their benchmark case, hierarchical networks will still suffer from

the problem of N -dependence. Conversely, if the variance increases or re-

mains unchanged, the hierarchical model will be immune to N -dependence.

4.1 Network-adapted transition rates

At the individual level, contrary to the mesoscopic description of the system

in (4) and (5), an agent either remains in its current state, or switches to the

other state. To implement individual transition probabilities in the absence

of followers, corresponding to the transition rates (1) and (3), Alfarano and

Milaković posit the transition probability p̃i = (a + λ ni(j))∆t for switching

states on the individual level, where ni(j) counts the number of i-neighbors

j that are in the opposite state. To ensure that all agents act on the same

time scale, and also that 0 ≤ p̃i ≤ 1∀i, this necessitates that

∆t ≤ 1/(a + λ nmax) ,

5Adding core agents instead of followers corresponds to the scenario that Alfarano and
Milaković (2009) already studied in detail, where the structure of the bi-directional (core)
network determines whether the model is N -dependent or not.
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where nmax designates the number of neighbors of the node(s) with the high-

est degree in the network. Since an agent can be connected at most to all

other agents, they utilize the transition probability

p̃i =
a + λni(j)

a + λN
(10)

for individual switches, and correspondingly an agent’s probability to remain

in the current state is 0 ≤ 1− p̃i ≤ 1.

In order to ensure that our simulation results are comparable with the

mean-field prediction arising from (10), we adapt the individual transition

probabilities so as to reflect the presence of followers in our hierarchical net-

works. Let fi denote the number of followers of core agent i ∈ {1, . . . , N},

where F =
∑

i fi is the total number of followers in the network, and let

〈f〉 = F/N be the average number of followers per core agent. If fi(j) de-

notes the number of followers of an i-neighbor j, then the adapted probability

pi to observe a change in the state of agent i is now given by

pi =
a + λ

∑ni(j)
j=1 fi(j)/ 〈f〉

a + λN
(11)

Notice several points about the formulation of the sum in (11). First, using

the definition of 〈f〉, we can rewrite the sum as

N

ni(j)∑
j=1

fi(j)/F ,

and realizing that 0 ≤
∑ni(j)

j=1 fi(j)/F ≤ 1, we see that the denominator
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in (11) ensures 0 ≤ pi ≤ 1∀i. Put differently, since 0 ≤ ni(j) ≤ N , the new

measure should have the same boundaries, which is true for the sum in (11).

Second, if core agents have the same number of followers, ∀i fi = 〈f〉, we

recover the original formulation (10), consistent with the result concerning

the relabeling of variables. Third, the ratio fi(j)/ 〈f〉 in the sum of (11)

is a measure of dispersion around the average number of followers in the

network, explicitly showing that the mean-field approximation will not be

very accurate if the followers are widely dispersed among core agents.

4.2 Simulation setup

In our simulations, we fix the number of core agents at N = 500 and draw the

number of followers from Gaussian, uniform, exponential and Pareto distri-

butions with mean 〈f〉 = 1000 such that the absolute value of each randomly

drawn number is rounded to the nearest integer value. Let N+ and F+ re-

spectively denote the number of core agents and followers that are in the

optimistic state. The system-wide concentration of agents in the optimistic

state is now z = (N+ + F+)/M , where M = F + N is the total number of

agents. For all the different scenarios, we choose the parameters a, λ in such

a way that ε = 1, which according to the mean-field prediction of a uniform

distribution of z should yield V ar(z) = 1/12 ≈ .083. One “sweep” of the

system corresponds to one round of sequential updating of all agents in the

system, thus requiring N steps per sweep, and each simulation run consists

of half a million sweeps. Finally, we successively increase the standard de-
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viation σf of the respective distribution,6 and record the variance of z for

each sequence of increasing σf . If V ar(z) increases (decreases) above (below)

one twelfth, this implies that the distribution of z transforms from a uniform

to a bimodal (unimodal) distribution. Recall that in the bimodal case, the

system is immune to N -dependence, while the unimodal case would imply

that the hierarchical network structure still suffered from N -dependence.

4.3 A fully connected core

We obtain a fairly simple representation of individual transition rates if

agents in the core are fully connected among each other since the proba-

bility to observe a switch in the state of a core agent simplifies to

pi =
a + λNFi/F

a + λN
, (12)

where Fi denotes the system-wide number of followers in the opposite state,

and we can simulate the model without explicitly keeping track of the network

structure. The simulation results for a fully connected core are shown in the

left panel of Figure 3.

As long as the heterogeneity in the number of followers is not very ex-

treme, the mean-field prediction still performs well, but pronounced devia-

tions ultimately do occur as the dispersion in the number of followers rises.

Intuitively, this happens because a few core agents become increasingly in-

6Generally, we start from distributions that are sharply peaked around 〈f〉 and increase
σf in twenty steps. In the Gaussian and uniform cases, we simply increase the variance
in constant steps. In the exponential case, we adapt the support of the distribution to
account for different variances with a mean of 〈f〉, and in the Pareto case we successively
decrease the tail index to generate a higher variance.
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fluential in the opinion formation dynamics of the system, thereby increasing

the time during which the system is near one of the two extreme states. Hence

the hierarchical network structure is not only immune to N -dependence, but

it actually amplifies volatility in the system. It is also noteworthy that the

outcome does not appear to depend on the functional form of the distribution

from which we randomly draw the number of followers.

In order to determine the limit of the variance amplification, we consider

an extreme case that we label as the one-leader scenario, where we allocate

an equal number of followers to all but one core agent (the leader), who is

then assigned a weight such that the average number of followers corresponds

again to 〈f〉 = 1000. In each new simulation run, we successively shift a

larger number of followers to the leader. The result is shown in the left panel

of Figure 4, with V ar(z) approaching a value of one-fourth, which is quite

intuitive: the leading agent will represent almost the entire system by itself,

and cannot be influenced by others anymore, thus its actions will consist of

random switches between the two states, while the few remaining core agents

mimic the leader’s behavior. Hence the system spends half its time in one

state and half in the other, leading to a variance of one-fourth. This case

also turns out to be a useful starting point for our analytical approach in

Section 5.

In summary, the fully connected benchmark case establishes two central

results. First, the mean-field approximation works reasonably well if the

dispersion in the number of followers is relatively small. Second, a hierarchi-

cal network structure actually leads to an increase in system-wide volatility,

and thereby presents an additional source of volatility in probabilistic herding
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models. The social interactions among core agents are crucial for overcoming

N -dependence, because a vanishing herding propensity would lead to inde-

pendent opinion leaders, and thereby to a degenerate distribution peaked

around the mean (of one-half) that is characteristic of N -dependence. It is

therefore the contemporaneous presence of hierarchy and core interactions

that ultimately overcomes the problem of N -dependence.

4.4 Varying the core structure

Our previous investigations show that a hierarchical network with a fully

connected core not only overcomes the problem of N -dependence, but also

amplifies volatility. A remaining issue is whether these results are robust

with respect to the network structure in the core itself. On that account,

we perform another series of simulations with varying core network struc-

tures, and record how the different core networks respond to an increasing

dispersion of weights.

For comparison with our previous findings we keep the size of the core

fixed at N = 500, and construct the following networks in the core: a circle

with neighborhood forty, a random network with linking probability of ten

percent, and a scale-free network with an average of five thousand links. For

the random and the scale-free graph we construct ten different realizations

of the core network, and run the simulations again for half a million sweeps,

subsequently averaging over the ten respective core realizations. The de-

tails of the respective network parametrizations are not crucial, because in

each scenario we adapt the behavioral parameters a and λ of the transition
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rates (11) such that the mean-field prediction would again yield a uniform

distribution (ε = 1). The simulation results in the right panel of Figure 3

demonstrate that core network structure has merely second-order effects on

the macroscopic properties of the model. As before, an increasing dispersion

of followers increases volatility, while the mean-field prediction holds true

if the dispersion of weights is not too large. The juxtaposition of the two

graphs in Figure 3 readily reveals that volatility increases on the same order

of magnitude as in the fully connected case.

We also simulated a very extreme scenario by considering a scale-free

graph with deterministically assigned core weights that are proportional to

the degree of a core agent. We can think of such a proportional weights

structure as the asymptotic limit of positive feedback effects in the evolution

of the hierarchical network, for instance if highly central core agents attract

the increasing interest of investors, or if core agents with a large weight

become increasingly connected among their peers in the core. Whatever the

ultimate reason might be for observing such a double-weighted hierarchy, it

is noteworthy that volatility increases considerably compared to the other

scenarios shown in the right panel of Figure 3, even for very small deviations

in the number of followers.

5 Analytical Benchmark

Naturally we are interested in deriving an analytical benchmark in order to

judge the plausibility of our simulation results. Essentially, our derivation of

an analytical approximation that links the degree of hierarchical organization
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to systemic volatility is inspired by the one-leader benchmark in Section 4.3

because the leader can be considered as an autonomous agent whose changes

of opinion are independent of the other agents. For the current purpose, let

us start by considering an arbitrary agent in the core who is always in a fixed

state and does not change opinion. Let 1/N < p < 1 denote the fraction of

followers that are connected to the fixed-opinion agent, or p-agent, such that

the agent has pF followers, and assume that the remaining (1−p)F followers

are shared with equal weight among the remaining core agents, indexed by

i = 1, . . . , N − 1. When p = 1/N , all core agents have the same number

of followers, F/N . Conversely when p → 1, the system is almost entirely

represented by the p-agent. Notice that the N − 1 equally weighted core

agents still obey the transition rate (12).

Now let β be an indicator function that takes on the values 0 or 1 depend-

ing on whether the state of agent i is equal to or different from the state of

the fixed-opinion agent. Then we can rewrite the herding term in Eq. (12),

NFi/F , taking into account the fixed opinion of the p-agent (say, optimistic)

N
Fi

F
=

N

F

(
Fpβ + (n− 1)

F (1− p)

N − 1

)
, (13)

which yields the modified version of the transition (12),

pi =
a + λNpβ + λ N

N−1
(1− p)n

a + λN
(14)

≈ a + λNpβ + λ(1− p)n

a + λN

for large N . Depending on the value of the indicator function β, the transition
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rates of agent i are either

pi =
ε + (1− p)n

ε + N
or (15)

pi =
ε + Np + (1− p)n

ε + N
, (16)

where we adapted ε to the definition (7) by noting that a fully connected

core implies D ≈ N .

Fixing the opinion of one agent is equivalent to creating an asymmetry

in the autonomous component that stems from the additional term Np in

the modified transition rates. Put simply, the system exhibits a tendency

towards the fixed opinion that depends on p. A straightforward mean-field

argument (see, e.g., Alfarano and Milaković, 2009) results in the following

system-wide transition rates, analogous to an extensive version of the tran-

sitions (4) and (5),

π− =
n

N

ε + (1− p)(N − n)

ε + N
, (17)

π+ =
(N − n)

N

ε + Np + (1− p)n

ε + N
. (18)

The equilibrium distribution of such a unary Markov process is (see, e.g.,

Garibaldi et al., 2003) the Polya distribution P (ε1, ε2; z), with z = n/N and

shorthands7

ε1 =
ε + Np

1− p
, ε2 =

ε

1− p
. (19)

Increasing the value of the control parameter p leads to an increasingly asym-

7The Polya distribution converges to the Beta distribution for large N . The results
of this section, however, do not significantly depend on whether we use a continuous or
discrete approach (material upon request).
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metric distribution peaked around the opinion of the p-agent. Fixing the

opinion of one agent, however, yields a very unsatisfactory approximation for

the simulations in the previous section, where the p-agent (leader) is not in a

fixed state but rather switches states as well. Therefore we proceed by assum-

ing that the p-agent switches opinion randomly, without being influenced by

other agents, which basically means that the autonomous term in the mean-

field transitions (17) and (18) is now stochastic and time-dependent, hinging

on the random realizations of the p-agent’s state.

Such a situation is harder to tackle analytically because it leads to a

stochastic differential equation with random coefficients. In order to ap-

proximate the full mathematical problem, we employ a so-called adiabatic

approximation that neglects the adjustment of the system to the switching

of the leader by assuming that the leader’s switches are slow enough in order

for the N − 1 agents to reach statistical equilibrium. Then we can consider

the system as being in statistical equilibrium most of the time and, conse-

quently, the resulting equilibrium distribution Pe becomes the superposition

of two independent equilibrium distributions, corresponding to the two pos-

sible configurations of the p-agent,

Pe =
1

2
P (ε1, ε2; z) +

1

2
P (ε2, ε1; z) , (20)

which is an average of the previous asymmetric distributions among the two

alternative configurations of the p-agent. The equilibrium distribution is now

symmetric (note the interchange of the parameters ε1 and ε2) and U-shaped.

From Eq. (20), the second moment of the equilibrium distribution M2,e is
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given by

M2,e =
1

2
M2(ε1, ε2) +

1

2
M2(ε2, ε1) , (21)

where M2(·, ·) denotes the second moment of the respective asymmetric Polya

distribution with parameters ε1, ε2, and the variance of the equilibrium dis-

tribution for a given p is

V ar[z]p =
1

2
V ar[ε1, ε2] +

1

2
V ar[ε2, ε1]

+
1

2

{
M2

1 [ε1, ε2] + M2
1 [ε2, ε1]

}
−

(
1

2

)2

, (22)

where M1 designates the first moment of the respective asymmetric Polya

distribution, and 1/2 is obviously the mean of the equilibrium distribution

Pe. The two variances are equal since they are the same under an exchange

of the two parameters ε1, ε2, hence the previous equation can be written as

V ar[z]p = V ar[ε1, ε2] +
1

2

{
M2

1 [ε1, ε2] + M2
1 [ε2, ε1]

}
− 1

4
. (23)

It is possible to show (see, e.g., Garibaldi et al., 2003) that

M1[ε1, ε2] =
ε1

ε1 + ε2

, (24)

V ar[ε1, ε2] =
ε1ε2

(ε1 + ε2)2

ε1ε2 + N

N(ε1ε2 + 1)
, (25)

and utilizing these in Eq. (23) yields

V ar[z] =
1

4
− ε1ε2

(ε1 + ε2)(ε1 + ε2 + 1)
. (26)
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Finally, recalling the shorthands in (19), we obtain the variance as a function

of the control parameter p,

V ar[z]p =
1

4
− 1 + pN

(2 + pN)(3 + pN − p)
, (27)

under the parameter choice ε = 1, i.e. λ = 1 and a = 1. For N � 1, we

immediately see that Eq. (27) provides boundary values that are consistent

with our previous findings: if p = 1/N , the variance tends to 1/12, repre-

senting the correct value for the uniform distribution (recall the parameter

choice ε = 1); if p → 1, the variance tends to 1/4, representing a distribution

concentrated either in 0 or 1 that corresponds to the extreme one-leader case.

We simulated the modified model with a randomly switching p-agent,

successively increasing the control parameter p in a fully connected core of

size N = 500 with a total of F = 500, 000 followers. As before, we simulated

each parametrization with half a million sweeps. The results, along with

the prediction (27), are shown in the right panel of Figure 4. For easier

comparison with the original simulation results in the left panel of Figure 4,

we also calculated the standard deviation in the number of followers for

each parametrization of p. While the p-agent scenario exhibits a quicker

convergence to the limiting variance of one-fourth than the original model,

both versions are nevertheless qualitatively very similar. The main difference

between the p-agent and one-leader scenarios is that the p-agent switches

randomly and independently between the two states, while the switches of

the one-leader in Section 4.3 still depend on the states of the other core

agents, which intuitively slows down the variance amplification relative to
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the p-agent case. As far as the creation of systemic risk is concerned, the

important common feature of both models is that they exhibit a sudden and

pronounced increase in system-wide volatility as soon as a relatively small

number of core agents obtains a disproportionately large weight in the core

network.

6 Conclusions

Hierarchical core-periphery structures turn out to overcome the problem of

N -dependence in probabilistic herding models of the Kirman type. On one

hand, this is good news from the viewpoint of the model’s asymptotic prop-

erties, because one is able to replicate the stylized facts of financial returns

with behaviorally heterogeneous agents for any system size, without having

to tune any of the behavioral parameters. On the other hand, our findings

have somewhat stark implications from the viewpoint of investment strat-

egy, and they also raise pressing new questions about the potential origins of

hierarchical network structures.

The introduction of hierarchical network structures leads to an additional

source of volatility, on top of the behavioral heterogeneity that has previously

been considered as the exclusive source of volatility in the ant model. If one

accepts our premise that hierarchical networks are a useful representation

of fund investor relationships in financial markets, then popular and tradi-

tional investment advice to “diversify one’s portfolio” has to be judged with

caution. Investors who are not wealthy enough to broadly diversify their

portfolios, those who participate in funded retirement plans, or those who
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simply feel that they lack the skills or time to make appropriate investment

decisions might very well delegate their investment decisions to institutional

investors. But if these fund managers are socially interacting and influenc-

ing each other in their investment decisions, as the quoted empirical evi-

dence suggests, this becomes a self-defeating strategy since we have shown

that system-wide volatility increases under such circumstances. Put in more

provocative terms, all the good intentions of investors to diversify risk can

lead to the opposite effect if fund managers are prone to herding. Moreover,

the presence of positive feedback effects in the time evolution of hierarchical

network structures seems to further worsen the situation as it significantly

increases the level of volatility.

From the viewpoint of policy-making, our study indicates that a reduc-

tion of financial volatility would require a shrinking degree of hierarchical

organization in financial markets, corresponding to a decentralization of in-

vestment decisions. While such advice sounds straightforward in principle,

its implementation would most likely be more painful and complex because

our analytical results show that values on the order of p ≈ 10−2 already lead

to a sudden and pronounced increase in volatility. Keeping p very close to

zero, on the other hand, would more or less imply getting rid of managed

funds altogether, which still hardly appears as a feasible option, notwith-

standing the popularly accepted global mechanisms that led to the current

financial turmoil.
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