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A B S T R A C T   

While pandemic waves are often studied on the national scale, they typically are not distributed evenly within 
countries. This study presents a novel approach to analyzing the spatial-temporal dynamics of the COVID-19 
pandemic in Germany. By using a composite indicator of pandemic severity and subdividing the pandemic 
into fifteen phases, we were able to identify similar trajectories of pandemic severity among all German counties 
through hierarchical clustering. Our results show that the hotspots and cold spots of the first four waves were 
relatively stationary in space. This highlights the importance of examining pandemic waves on a regional scale to 
gain a more comprehensive understanding of their dynamics. By combining spatial autocorrelation and spatial- 
temporal clustering of time series, we were able to identify important patterns of regional anomalies, which can 
help target more effective public health interventions on a regional scale.   

1. Introduction 

The COVID-19 pandemic, like any other pandemic, followed a 
pattern of acceleration and deceleration concerning case incidences 
among populations and regions. Over the course of a pandemic, this 
creates a temporal pattern in the form of logistic curves often described 
as wave(s). These waves consist of (fast) ascents, (up to several) peaks, 
and declines, indicating several stages or phases of a pandemic. While 
pandemic waves are often analyzed on the national scale, they typically 
are not distributed evenly within territories (Cliff et al., 2009; Teller 
2021; Boterman 2022; Keeler and Emch 2018). 

The spread of a disease is determined by its characteristic trans
mission dynamics on the one side and the measures implemented for 
public health control, such as vaccinations and non-pharmaceutical in
terventions (NPIs) on the other hand. Initially, disease diffusion of 
COVID-19 was significantly influenced by overdispersion and super
spreading events, especially before NPIs were introduced (Kuebart and 
Stabler 2020; Schmitz et al., 2023). Furthermore, environmental factors 
such as seasonal effects have been found to influence COVID-19 trans
mission rates (Coccia 2022). 

As a result, the spatial patterns of infections and pandemic severity 
vary over time, which is why a spatio-temporal perspective is necessary 

to understand the spread of infectious diseases (Ghosh and Cartone, 
2020). In the case of COVID-19, several studies have found COVID-19 
infections to be clustered within countries (Scarpone et al., 2020; Mur
gante et al., 2020; Rodríguez-Pose and Burlina 2021), within greater 
urban areas (Boudou et al., 2023) and even within cities or districts 
(Siljander et al., 2022; Lambio et al., 2023). The findings on how these 
clusters change over time are less consistent. While Kim et al. (2021) 
find wavelike patterns in space for the case of South Korea, Boterman 
(2022) finds no consistent patterns for the case of the Netherlands, and 
D’Angelo et al. (2021) find the trajectories of Italian regions to be 
relatively independent of each other. However, all these studies focus on 
the early stage of the pandemic. They consider the first months or the 
first year of the pandemic and give valuable insights into the complex 
dynamics of the diffusion of COVID-19. To reflect the context of timely 
changing variables of the pandemic, a longer study period may be 
beneficial. Similarly, in the German context studies dealing with 
COVID-19 from a spatial perspective explored the propagation effect of 
commuting patterns as channels of disease transmission (Mitze and 
Kosfeld 2022), spillover effects of German border regions (Chilla et al., 
2022), pandemic developments in association with variants of concern 
(Mitze and Rode 2022), epidmiological analysis of the first wave 
(Küchenhoff et al., 2021) and spatio-temporal disease monitoring 

* Corresponding author at: Leibniz Institute for Research on Society and Space, Flakenstraße 29-31, Erkner 15537, Germany. 
E-mail address: andreas.kuebart@leibniz-irs.de (A. Kuebart).  

Contents lists available at ScienceDirect 

Spatial and Spatio-temporal Epidemiology 

journal homepage: www.elsevier.com/locate/sste 

https://doi.org/10.1016/j.sste.2023.100605 
Received 31 December 2022; Received in revised form 5 June 2023; Accepted 14 July 2023   

mailto:andreas.kuebart@leibniz-irs.de
www.sciencedirect.com/science/journal/18775845
https://www.elsevier.com/locate/sste
https://doi.org/10.1016/j.sste.2023.100605
https://doi.org/10.1016/j.sste.2023.100605
https://doi.org/10.1016/j.sste.2023.100605
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sste.2023.100605&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Spatial and Spatio-temporal Epidemiology 47 (2023) 100605

2

(Rohleder and Bozorgmehr 2021). Again, these studies have opted for 
examining the initial phase of the pandemic and restricting their anal
ysis to concise temporal periods. 

In contrast, this study contributes to the literature by taking a long- 
term perspective and tracing the spatio-temporal patterns of the COVID- 
19 pandemic in Germany throughout the years 2020 and 2021. By 
employing a novel approach to analyze the spatio-temporal dynamics of 
the COVID-19 pandemic we aim to analyze the regional variation in how 
the pandemic unfolded and examine the different trajectories of 
pandemic severity between German counties. Further, we want to 
highlight the importance of examining pandemic waves not only on a 
national scale but also on a regional scale to gain a more comprehensive 
understanding of their dynamics. 

The first two years of the COVID-19 pandemic in Germany were 
analyzed by developing a novel method, for which four analytical steps 
were performed: First, we develop a composite index of ‘pandemic 
severity’, which integrates the three sub-indicators of COVID-19 case 
incidence, the incidence of death due to COVID-19, and the incidence of 
COVID-19 patients on ICU (intensive care unit). Second, a phase model 
of fifteen pandemic phases is developed based on a change point anal
ysis. Each of the fifteen stages in the model is coherent in terms of the 
trends of pandemic dynamics (e.g., rising, decreasing, stable). Third, the 
spatial pattern during each phase is analyzed by considering global and 
local spatial autocorrelation on the level of all 400 German counties. To 
analyze the spatio-temporal variation of pandemic severity we thus 
opted to analyze the spatial patterns of pandemic severity during the 
whole phases instead of relying on snapshots on specific dates. Fourth, 
hierarchical clustering was performed to identify types of similar tra
jectories of pandemic severity in German counties. 

The paper is structured as follows: The following section describes 
how we proceeded and highlights methodological reasoning for the 
pandemic severity index, the phase model, the spatial analysis, and the 
hierarchical clustering. The subsequent section presents the findings for 
each step of the analysis. The final section discusses the results and 
concludes. 

2. Materials 

Our analysis is based on a composite indicator, which is composed of 
three sub-indicators: The incidence of cases (IC) tested positive for 
COVID-19, the incidence of patients on ICU (IICU), and the incidence of 
registered deaths due to COVID-19 (ID, see Table 1). All datasets for the 
pandemic severity index were accessed via Healthcare Daten Plattform,1 

Data on COVID-19 cases and deaths originate from the federal Robert 
Koch Institute (RKI), data on patients with COVID-19 on ICU were used 
as reported by the German Association of intensive care physicians 
(DIVI). The three indicators were available at the county level (Kreise 
and Kreisfreie Städte, NUTS-3 level). There are 400 counties in 

Germany, of which 107 are independent cities. While all three sub- 
indicators were gathered at the county-level, we decided to use the 
regional average in 96 planning regions (BBSR 2017) for IICU, because 
hospitals are distributed rather unevenly over German counties and 
especially more specialized medical infrastructure such as ICUs tend to 
be concentrated in larger towns and cities, which tend to be their own 
county. 

3. Methods 

3.1. A composite index for pandemic severity 

Studies focusing on the spatio-temporal aspects of the COVID-19 
pandemic rely on the case incidence of patients who tested positive 
for COVID-19 almost exclusively as an indicator (Nazia et al., 2022). 
This is somewhat problematic, especially since the testing regime 
changed throughout the pandemic and potentially also varied region
ally. For example, during the first wave of COVID-19 in Germany (March 
through May 2020), only limited capacities of PCR testing were avail
able, whereas later PCR testing and antigen testing were widely avail
able in 2021. Further it is likely that the relationships between the 
sub-indicators vary over time. For example, Coccia (2021) discovered 
that in Italy, the first wave had more severe consequences in terms of 
deaths and intensive care if compared to the second. Following sug
gestions to combine indicators to add robustness to the spatio-temporal 
analysis of COVID-19 (Pagel and Yates 2021; Rohleder and Bozorgmehr, 
2021), we decided to develop a composite indicator of pandemic 
severity. 

The components of a composite indicator need to be scaled, 
weighted, and aggregated (Libório et al., 2022). The pandemic severity 
index was calculated as follows: First, the rolling 14-day mean of each 
indicator (IC, ID, IICU) was calculated using the zoo package in R (Zei
leis and Grothendieck 2005) and they were normalized by using 
z-scores. Second, the scaling of the indicators was completed by 
minimum-maximum normalization values to a scale between 0 and 1 
(Wickham and Seidel 2022). Thus, each of the three sub-indicators was 
normalized and scaled to a dimensionless value between 0 and 1. Third, 
the three normalized and scaled sub-indicators were aggregated by 
using the arithmetic mean, in which all three indicators have the same 
weight. Subsequently, the composite index was rounded to four decimal 
places. This approach represents the common procedure to calculate 
composite indicators (Dialga and Giang 2017). The resulting pandemic 
severity index indicates the pandemic burden during a given time in 
each location through a dimensionless value indicating the mean of the 
three sub-indicators2. It was calculated for each day between 
2020–03–01 and 2021–12–31 for each German county, resulting in 268, 
400 individual values. We focused on the first two full years of the 
pandemic in Germany since we aimed to take a long-term perspective 
and considered the available data for this period as the best fit. The 
dataset has been made available on the Zenodo repository (Kuebart and 
Stabler 2023). 

3.2. Identifying change points of pandemic severity 

A comprehensible method for defining pandemic stages is rarely 
found in the literature on COVID-19. Existing phase models (Ghosh and 
Cartone, 2020; Benita and Gasca-Sanchez 2021; Li et al., 2021; Zawbaa 
et al., 2022) define the beginning of each stage relatively arbitrarily 
based on individual indicators, such as incidence rates, mortality rates, 
or the implementation of countermeasures like lockdowns and social 
distancing. Typical types of phases include ‘beginning’, ‘outbreak’, 

Table 1 
Elements of the pandemic severity composite indicator.  

Indicator Time range Spatial 
resolution 

Incidence of patients tested positive for 
COVID-19 (IC) 

2020–02–01 
− 2021–12–31 

400 counties 

Incidence of deaths of patients tested 
positive for COVID-19 (ID) 

2020–02–01 
− 2021–12–31 

400 counties 

Incidence of patients tested positive for 
COVID-19 on ICU (IICU) 

2020–03–04 
− 2021–12–31 

96 planning 
regions  

1 Healthcare Daten Plattform or formerly Corona Daten Plattform is a data 
repository that has been sponsored by the German Federal Ministry for Eco
nomic Affairs and Energy: https://www.healthcare-datenplattform.de/ 

2 Theoretically, the range is between 0 and 1, in practice between 0 and 
0.7625 because the minimum-maximum normalization was performed on the 
sub-indicators 
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‘recession’, and ‘plateau’ (Li et al., 2021). Schilling et al. (2022) used a 
multivariant approach by combining several variables for their phase 
model for Germany, although their method of delineating phases re
mains unclear. Küchenhoff et al. (2021) calculated change points in the 
early course of the pandemic from March to May 2020 using a 
back-projection for estimated daily infections in Germany. Their retro
spective exploratory analysis identified five phases for Germany within 
the first wave. In contrast to existing approaches, our phase model of the 

COVID-19 pandemic in Germany is based on a composite indicator and 
spans a longer period of several waves, during which our phases are 
trend-coherent to serve as a heuristic for further analytical steps. 

We performed a change point analysis on a time series of the 
pandemic severity index on the national scale. To establish a phase 
model on the national scale the pandemic severity indicator was 
aggregated daily to the national level. To establish trend-coherent 
phases, we first calculated the lagged difference, which is the 

Fig. 1. Pandemic severity in Germany and the fifteen phases of our phase model during the years 2020 and 2021(A). The phase model is based on the change points 
of the daily difference charts (B). The spatial autocorrelation within Germany reaches the highest levels around the peaks of the four waves (C). 
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difference between the value for pandemic severity for each day and the 
value for the day before. Then, a change point analysis using the binary 
segment approach (Scott and Knott 1974) was performed on the lagged 
difference of the pandemic severity indicator to establish the phases. A 
minimum segment length of 14 days was used in the calculation. The 
change points were calculated using the changepoint package in R 
(Killick and Eckley 2014). The resulting phase model consists of 15 in
dividual phases, ranging from 19 to 116 days in length. 

3.3. Local and global autocorrelation 

First, we used the global autocorrelation of pandemic severity, which 
was calculated for each day in the study period in form of the Moran’s I 
metric (Moran 1950). Moran’s I and the related test statistic were 
calculated by using the sfdep package in R (Parry 2022). The global 
Moran’s I statistic describes the spatial autocorrelation over the study 
area with values ranging from − 1 to +1. Positive values indicate the 
clustering of similar values. Second, each of the fifteen phases (Fig. 1) 
was analyzed in terms of local spatial autocorrelation. Local indicators 
of spatial association (LISA) were calculated for each phase using 
localized Moran’s I using the sfdep package in R (Parry 2022). LISA is a 
tool to detect geographical clustering of high and low values in a dataset 
by calculating local spatial autocorrelation at each county and indi
cating how similar an observation is to others nearby (Anselin 1995; 
Sokal et al., 1998). The contiguity matrix for the LISA analysis was 
established based on the k-nearest neighbor criterium with k = 6, which 
is the average number of neighboring counties in our dataset, to reflect 
the irregular configuration of territorial borders (Ghosh and Cartone 
2020), since many German counties have just one neighbor. A simula
tion of 1499 iterations resulted in a pseudo p-value for the results of the 
LISA analysis, which were capped at p = 0.05. The LISA method has been 
used before to identify significant clusters of pandemic outbreaks (e.g., 
Scarpone et al., 2020; Siljander et al., 2022; Ghosh and Cartone 2020). 
However, to our knowledge, this study is the first to use this approach 
based on a composite indicator of pandemic severity instead of case 
incidence or mortality as a single indicator. 

The results of a LISA analysis grouped the spatial units (here German 
counties) relative to their neighbors in local clusters of high values 
(high–high/ HH) or low values (low–low/ LL), and identified spatial 
outliers with (high–low/ HL) or (low–high/ LH) values. If a region was 
classified as HH or LL it was part of a statistically significant cluster of 
high or low values, respectively. Since the geography of the COVID-19 
pandemic is uneven in space (Scarpone et al., 2020; Rodríguez-Pose 
and Burlina 2021), the pandemic severity index can also help to reveal 
the complex spatio-temporal patterns of how the pandemic unfolded 
better compared to case numbers. Supplementary Materials 1 contains 
the equations for Morans’I and LISA. Visualizations of LISA results were 
created in R using the ggplot2 (Wickham 2016), and sf (Pebesma 2018) 
packages. 

3.4. Hierarchical clustering of lisa sequences 

To identify temporal patterns of spatial association, we further 
analyzed the results of the LISA analysis through hierarchical clustering. 
Hierarchical clustering is usually performed in a two-step procedure. 
First, a dissimilarity matrix between all n observations of the input 
dataset (e.g., regions) is calculated using a distance metric. Second, the 
hierarchical clustering algorithm sorts the observations according to 
their distance to all other observations. We followed a principle used by 
Bucci et al. (2022) and Mattera (2022), both of which used 
spatio-temporal dissimilarity of time series data between regions as 
input for hierarchical clustering, analog to a sequence analysis. We 
deviated from this by using the results of the LISA analysis for each 
county during each of the fifteen phases to calculate the dissimilarity 
matrix, which was used for the hierarchical clustering. Thus, the simi
larity of German counties is established in terms of how well their LISA 

values are aligned. Two regions with the identical combination of LISA 
values over the fifteen phases are considered as most similar. To 
establish the dissimilarity matrix, we used Gower’s distance (Gower 
1971) for the dissimilarity matrix. Only counties, which were classified 
into one of the four LISA categories during four or more of the fifteen 
phases (n = 142) to avoid a sparse dissimilarity matrix. Then hierar
chical clustering was performed based on the average linkage method. 
Both steps were performed using the cluster package in R (Maechler 
et al., 2022). The resulting dendrogram was capped at the height of 1.0 
to receive six relatively coherent clusters. The formula for Gower’s 
distance can be found in Supplementary Materials 1. 

4. Results 

4.1. Phase model and global spatial autocorrelation 

We developed a pandemic phase model for the first two years of the 
pandemic using change point analysis of the pandemic severity index. 
Our model consists of fifteen phases, each defined by trend coherence 
and varying in length (Fig. 1). On average, each phase lasts about 47 
days, with the longest phase lasting 116 days (summer plateau 2020) 
and the shortest lasting only 19 days (surge of the first wave). Pandemic 
waves consisted of at least two phases (increase and decrease), but more 
complex waves can have several intermediate phases of acceleration and 
deceleration. For example, the second COVID-19 wave in Germany 
consisted of four individual phases. The periods between phases are also 
considered individual phases. Of the fifteen phases during the study 
period, seven were characterized by increasing pandemic severity, four 
by decreasing severity, and four were stable. This fine-grained phase 
model provides a heuristic for gaining more specific insights into spatio- 
temporal patterns. 

Moran’s I was positive throughout the study period, indicating a 
spatial association of similar values rather than a spatial association of 
high and low values. The value of Moran’s I ranged from 0.076 in March 
2020 to 0.629 during the peak of the fourth wave (Fig. 1A), indicating 
the presence of spatial structure and non-random distribution of 
pandemic severity. There were notable variations in the indicator, with 
five peaks in weeks 2020-w16 (0.452), 2020-w49 (0.484), 2021-w14 
(0.342), 2021-w33 (0.361), and 2021-w47 (0.629). Interestingly, 
these peaks roughly correlated with peaks in pandemic severity (Chart 1 
A and D), while periods with low pandemic severity tend to have lower 
overall spatial autocorrelation. This pattern suggested that during the 
four waves of high pandemic severity, areas with similar pandemic 
severity (e.g., hotspots or cold spots) were located close to each other. 
We further analyzed specific patterns of local spatial autocorrelation. 

4.2. Local spatial association during the different phases 

The LISA analysis compared the level of pandemic severity in each 
county with that in its neighboring counties. As a result, each county is 
associated with high-high (HH), low-low (LL), low-high (LH), or high- 
low (HL) values for each phase and a level of significance for this 
value (Fig. 2). It should be noted that pandemic severity varied sub
stantially between phases. For example, an HH value during a phase of 
high pandemic severity (such as phases B, G, or I) would indicate a dire 
situation with many cases, deaths, and high pressure on the local 
healthcare system, while an HH value during a phase with modest 
pandemic severity would indicate a less tense situation. 

The resulting maps of LISA values show that the pattern of local 
spatial autocorrelation varied substantially throughout the study period, 
although subsequent phases usually have similar patterns. During 2020 
(phases A-H), the overall picture changed several times, while during 
2021 the situation was more stable. Most phases were dominated by one 
or more areas with several counties of HH and LL values, while HL and 
especially LH values were much rarer. Interestingly, the two largest 
counties, Berlin and Hamburg, both featured HL values relatively often, 
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indicating that they were somewhat decoupled from the development 
around them. 

While the overall pattern showed some variation, some regions had 
relatively stable values over time. LL values were mostly concentrated in 
Northern Germany for much of the study period. On the other hand, a 
concentration of HH values was found in east-central Germany during 
phases F-K and N–O, corresponding to a repetitive pattern during waves 
two, three, and four of COVID-19 in Germany (Fig. 2). This area, which 
includes much of Saxony and Thuringia and parts of Saxony-Anhalt and 
Brandenburg, covers virtually all of the counties in Germany that were 
hardest hit by the pandemic overall. The LISA analysis results suggest 
the existence of stable patterns of high and low pandemic severity, 
respectively, some of which appear to be relatively stable in place. 

Significant values from the LISA analysis were somewhat unevenly 
distributed in space. Only a quarter of the possible results (fifteen phases 
in 400 counties) were significant, and about half of the 400 counties had 
significant values for two or fewer phases. Additionally, 52% of all 
significant results were concentrated in 25% of the counties. The pro
portion of significant results varied substantially among phases, with 13 
out of 400 counties having received a significant result in phase A and 
150 out of 400 having received a significant result in phase M. We 
further explored the spatio-temporal trajectories of counties by per
forming hierarchical clustering on the LISA analysis results to identify 
patterns of similar trajectories of pandemic severity. 

4.3. Types of regional trajectories 

The results of hierarchical clustering suggest that there are several 
relatively stable patterns of trajectories of pandemic severity among 
German counties. Six types of county trajectories were identified 
(Fig. 3), characterized by similar temporal patterns of pandemic 
severity. Four types were characterized by relatively persistent values of 
HH (types 4, 2, and 6) or LL (type 1), while the other two types were 
characterized by combinations of HH and LL (types 3 and 5). Interest
ingly, each type also had a relatively stable spatial pattern and was 
dominant in specific regions of Germany (Fig. 3B). 

The largest type in terms of included counties was type 4, consisting 
of 34 counties that were classified as HH during the second (phases E-H), 
third (phases I-J), and fourth waves (phases M-O) of COVID-19 in Ger
many. However, none of the counties in this group were classified as HH 
during the first wave (phases A-C), which had a spatial pattern unlike 
the subsequent waves. Geographically, this type included all counties in 
Saxony and some in neighboring Thuringia and Saxony-Anhalt. This 
area included metropolitan areas around Dresden and Leipzig as well as 
rural areas. 

In contrast, the second-largest type, type 1, was characterized by 32 
counties that were classified as LL for most of the study period. This 
cluster of low pandemic severity persisted throughout all four waves of 
COVID-19 in 2020 and 2021 and was only absent during the first two 
phases. Geographically, this type was present in northwestern Germany 
and included large parts of Schleswig-Holstein and Lower Saxony, as 
well as one county in Mecklenburg-West Pomerania. While this area is 

Fig. 2. Local indicators of spatial autocorrelation of pandemic severity for the fifteen phases of the pandemic during 2020 and 2021 (A-O).  
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predominantly rural, it also includes parts of the Hamburg metropolitan 
region. Another somewhat similar type was type 3, dominated by LL 
values during much of 2020 and in the summer of 2021. However, most 
counties of this type had HH values during the peak of the second wave 
and during the fourth wave in late 2021. This type was present in 22 
counties in northeastern Germany and south of Berlin in predominantly 
rural areas in Mecklenburg-West Pomerania, Brandenburg, and Saxony- 
Anhalt. 

Type 5 was somewhat similar, characterized by counties that were 
hotspots during the first wave in early 2020 but were classified as LL for 
subsequent phases. This type was present in northern Bavaria and parts 
of Rhineland-Palatinate. These 23 counties are mostly rural areas and 

small towns but also included the Nuremberg metropolitan region. Type 
5 was also characterized by counties that showed HH values during the 
first wave. However, unlike the previous type, these counties also had 
HH values during the fourth wave in late 2021, although the phases in 
between were largely insignificant. Geographically, this type was found 
in southeast Bavaria and two counties in Baden-Württemberg. The 15 
counties of this type are mostly rural but relatively dense areas at the 
edge of the Munich and Stuttgart metropolitan regions. 

Finally, type 2 arguably deviated most both in terms of the temporal 
pattern of pandemic severity and geographically. While all other types 
were either patterns of HH or LL values or a combination of both, the 15 
counties of type two featured dominantly HL values, indicating that they 

Fig. 3. Six types of spatio-temporal 
trajectories of pandemic severity 
among German counties during the 
years 2020–2021. Each county with 
more than four significant LISA results 
represents a row in Fig. 3A and is color 
coded by the LISA value for each of the 
fifteen phases. Thus, counties sharing 
the same colors during a phase of the 
pandemic (vertical; A to O) has a similar 
trajectory. Hierarchical clustering 
revealed six types of spatio-temporal 
trajectories. The counties in chart 3B 
are color coded by the type of spatio- 
temporal trajectory.   
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deviated from their immediate surroundings. Interestingly, this type was 
almost an inverse of type 4, with HL values concentrated not during 
overall peaks of pandemic severity but right in between, during periods 
of lower pandemic severity. Type 2 differed geographically from other 
types as it was the most dispersed of all six types. It included mostly 
urban and sub-urban counties in the Rhine-Ruhr metropolitan region 
around Düsseldorf and in the Rhine-Main metropolitan region around 
Frankfurt, as well as the city of Hamburg. Generally, temporal patterns 
of pandemic severity align with spatial patterns in so far as the spatial 
patterns repeatedly occurred over several waves. In the following sec
tion, these results are further discussed. 

5. Discussion 

In this paper, we offered a comprehensive analysis of the first two 
years of the COVID-19 epidemic in Germany from a spatio-temporal 
perspective. To do so, we proceeded in four analytical steps: First, a 
novel composite index of pandemic severity was developed that enabled 
us to differentiate the dynamics of the pandemic temporally and 
spatially. Second, a phase model with fifteen temporally coherent phases 
was established through change point analysis to serve as a heuristic for 
spatial analysis. Third, measures of global and local autocorrelation 
were performed to determine regional clusters of pandemic severity for 
German counties. 

Regions with spatial concentrations of hotspots and cold spots 
respectively were identified via LISA analysis. Fourth, six types of 
similar regional trajectories of pandemic severity were identified 
through hierarchical clustering among German counties. The six types of 
trajectories offer insights into the spatio-temporal dynamics of COVID- 
19 in Germany during the years 2020 and 2021. In this section, we 
discuss our findings by presenting empirical and methodological con
tributions before concluding. 

Empirically, three observations are especially noteworthy from our 
result. First, our analysis shows that the spatial patterns of pandemic 
severity of COVID-19 varied substantially between the different phases 
of the pandemic. However, a certain pattern is visible, in that the first 
wave of COVID-19 in Germany (spring 2020) displayed a different 
pattern than the subsequent three waves, while waves two, three, and 
four were much more similar to each other. This aligns with previous 
findings that the first wave was mostly driven by relocation diffusion 
through tourist returnees (Kuebart and Stabler 2020). The three subse
quent waves emerged from a higher level of pandemic severity, which 
might somewhat explain the different spatial patterns. Second, it is 
remarkable that both hotspots and cold spots remained almost station
ary from late 2020 onwards during the three most severe waves of 
COVID-19 in Germany. The persistent hotspot areas are almost exclu
sively located within an area in central Germany, including parts of the 
states of Saxony, Thuringia, and Saxony-Anhalt. The persistent cold spot 
areas on the other hand are mostly located in Northern Germany, in the 
states of Schleswig-Holstein, Lower Saxony, and Mecklenburg-West 
Pomerania. Neither hotspots nor cold spots followed patterns that 
would suggest obvious structural differences in terms of urbanity versus 
rurality or population density. While the high level of pandemic severity 
in Saxony has been noted before (Chilla et al., 2022), it is still remark
able how stable this area returned as an area of hotspots of pandemic 
severity in each of three subsequent waves. Third, it is also noteworthy 
from a spatio-temporal perspective that the epicenter of each wave was 
within this region, although waves three and four have been driven by 
the novel alpha and delta variants of SARS-CoV-2, respectively so that 
relocation diffusion should have been an important factor. Indeed, the 
first hotspots of variant alpha transmission were found to be in western 
and northern Germany (Mitze and Rode 2022), far from the region in 
central Germany that was the region with the highest concentration of 
pandemic severity due to variant alpha only six weeks later. 

Taken together, these three empirical findings imply that the COVID- 
19 pandemic in Germany progressed wavelike just in temporal terms, 

but not spatially. This is in line with the findings of D’Angelo et al. 
(2021), who found the case evolution over time in Italian regions to be 
relatively independent of each other. As in our case, this implies that 
region-specific aspects trump expansion diffusion dynamics, although 
this does not seem to be a universal phenomenon, since Kim et al. (2021) 
find wavelike patterns in space for the case of South Korea and Boter
man (2022) finds no consistent patterns for the case of the Netherlands. 
The consistent regional patterns of pandemic severity identified in this 
study contrast these findings for the German context and contribute a 
long-term perspective to the debate. Therefore, we conclude that for the 
German case with its strict non-pharmaceutical interventions and 
largely successful vaccination campaign during the year 2021, pandemic 
severity is indeed less related to relocation diffusion. Instead, regional 
factors such as cultural or political aspects determined the effectiveness 
of counter-pandemic measures and thus the local pandemic diffusion 
seems to be more important. Further, not just the specific regional 
conditions but also the timing in the pandemic process should be 
considered when analyzing the spatio-temporal dynamics of infectious 
diseases. 

Methodologically, also three conclusions can be drawn from the 
approach presented in this paper. First, the spatio-temporal clustering of 
time series of pandemic severity is a valuable tool to explore the dy
namics of infectious outbreaks. While this approach has been success
fully applied before (Bucci et al., 2022; Mattera 2022), we combined this 
approach with LISA analysis (Anselin 1995). In our opinion, this has the 
advantage that only those regions that deviate significantly from the 
national average are considered (e.g., hotspots and cold spots of 
pandemic severity), which allows focusing on the most relevant pro
cesses or regions for each phase of the pandemic. Second, a phase model 
based on change point analysis is a valuable heuristic to further analyze 
spatio-temporal dynamics of COVID-19. The choice of which points in 
time or periods to compare is crucial for spatio-temporal analysis. Most 
studies either use relatively arbitrary units such as weekly or bi-weekly 
(Siljander et al., 2022) intervals. In contrast, we decided to develop a 
phase model that distinguished different levels of pandemic severity, 
which proved valuable to contextualize spatial differences. Third, the 
use of a composite indicator as the base for subsequent analytical steps is 
useful to add robustness to the analysis. To follow the calls for 
combining different indicators when analyzing the spread of COVID-19 
(Pagel and Yates 2021; Rohleder and Bozorgmehr, 2021), we developed 
an index of pandemic severity that incorporated the incidence of pa
tients tested positive for COVID-19, the incidence of patients with 
COVID-19 on ICU, and the incidence of registered deaths due to 
COVID-19. Although the timespan analyzed in this paper included only 
21 months, the conditions under which data were collected changed 
drastically in several regards. Factors that varied over time included the 
testing regime, the chain of reporting itself, new variants of COVID-19, 
and increasing levels of immunity within the population due to in
fections and vaccinations. Therefore, we argue that combining in
dicators enhances comparability over longer timespans and adds 
robustness to the analysis. However, this is certainly not limited to the 
sub-indicators used here. Other indicators could and should be included 
in future attempts, for example, data originating from wastewater 
monitoring. 

Some limitations of the research presented here should be consid
ered. First, we did not include demographic factors in our pandemic 
severity index. Spatial variation in factors such as age distribution or 
prevalence of chronic diseases could influence the spatial distribution of 
deaths by COVID-19 and would thus somewhat influence the spatial 
pattern of pandemic severity per our index. Relatedly, data that de
scribes the conditions of local infections would be helpful to contextu
alize local pandemic severity. Especially regional data on outbreaks and 
imported infections would be helpful but were not made available by the 
German authorities. Second, the use of data that is only reported for 
territorial administrative areas presented a limitation, since it might 
obscure patterns on a smaller scale, for example in border regions 
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(Scarpone et al., 2020; Chilla et al., 2022). On the other hand, an 
analysis of spatial patterns on an even larger scale (e.g., NUTS 2 regions) 
might be suitable to reduce noise for the hierarchical clustering. Third, 
we did not consider spatial variation in vaccinations and 
non-pharmaceutical interventions. Vaccinations became an important 
factor with the third wave in spring 2021, while non-pharmaceutical 
interventions were relatively evenly distributed during most phases. 
However, there might be regional compliance gaps that are hard to grasp 
with data (Stabler and Kuebart 2023). In conclusion, both more 
fine-grained analysis of hotspot regions and analysis on a higher spatial 
order can be helpful steps to gain a better understanding of the dynamics 
of the pandemic. 

6. Conclusion 

In conclusion, the spatio-temporal dynamics of COVID-19 offered 
fascinating insights into how pathogens spread in contemporary soci
eties. While it would have been misleading to put too much emphasis on 
the territorial dimension of space in the era of "post-Westphalian path
ogens" (Fidler 2003), the "territorial immune system" of 
non-pharmaceutical interventions visible during the COVID-19 
pandemic proved the relevance of territories and their impact on the 
pandemic process. Further, the differences in regional trajectory pat
terns found here might implicate regional anomalies in compliance to 
public health control measures that are hard to predict. Therefore, 
public health policies should consider the possibility of unforeseen 
spatial variations in effectiveness of interventions. 
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