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Abstract

Alternative fuel vehicles (AFV) are gaining increasing attention as a mean to reduce greenhouse gas (GHG) emissions. One of
the most critical barriers to the widespread adoption of AFVs is the lack of sufficient refuelling infrastructure. Although it is
expected, that an adequate number of alternative fuel stations (AFS) will eventually be constructed, due to the high resource
intensity of infrastructure development, an optimal step-by-step construction plan is needed. For such a plan to be actionable,
it is necessary, that the underlying model considers realistic station sizes and budgetary limitations.

This bachelor thesis addresses this issue by introducing a new formulation of the flow-refuelling location model, that
combines multi-periodicity and node capacity restrictions (MP-NC FRLM). For this purpose, the models of Capar and Kluschke
have been extended, and the pre-generation process of sets and variables has been improved. The thesis furthermore adapts
and applies the two evaluation concepts Value of the Multi-Period Solution (VMPS) and Value of Multi-Period Planning (VMPP)
to assess the model’s relative additional benefit over static counterparts. Besides, several hypotheses about potential drivers
of the two evaluation concepts VMPS and VMPP have been made within the scope of a numerical experiment, to help central
planners identify situations, where the additional complexity of a dynamic model would be worthwhile.

While the MP-NC FRLM has proven to provide additional benefit over static counterparts, it comes at the cost of a higher
solving time. The main contributor to the higher solving is hereby the incorporation of a time module.

Keywords: Alternative fuel vehicle; refuelling infrastructure; optimal location; multi-period; fuel station.

1. Introduction and Problem Formulation

Over the last decade, the awareness of environmental
problems and climate change has grown significantly. Via the
internet and social media, it is now easier than ever for non-
governmental organizations (NGO), scientists and activists to
reach millions of people with their message: Climate Change
is real, and if humanity in its entirety does not act with all
necessary vehemence, the effects of global warming will be
devastating. Even if the goals of the Paris Climate Agree-
ment are accomplished, and global warming is held below
2◦C compared to pre-industrial times, the consequences will
still be grave. Risks to livelihoods, food security, water sup-
ply and impacts on biodiversity and ecosystems, including
species loss and extinction, are the most commonly men-
tioned consequences. Nonetheless, global greenhouse gas
(GHG) emissions continue to rise and path the way to a sig-
nificant climate crisis. In contrast to the increasing produc-
tion of greenhouse gases, GHG emissions in 2030 need to be
approximately 25% respectively 55% lower than in 2017 to

put the world on a pathway to limiting global warming to
2◦C respectively 1,5◦C (UN Environment (2018)).

Alongside the rising awareness for climate change and its
consequences, alternative fuel vehicles (AFV) are gaining in-
creasing attention. According to the IPCC, the transportation
sector accounts for 14% of global greenhouse gas emissions,
Edenhofer et al. (2014), in Europe for even 20% and rising
(Rosca, Costescu, Rusca, and Burciu (2014)) (see figure 1).
The step-wise replacement of combustion engines with, for
example, battery-electric (BEV) or fuel cell electric vehicles
(FCEV) is, hence, seen as an essential cornerstone for reduc-
ing greenhouse gases and other emissions. To become more
popular, AFVs have to overcome several barriers. The most
commonly discussed barriers are hereby the limited range of
BEVs ,Capar and Kuby (2012); Lim and Kuby (2010), and
the high cost for FCEVs (James, Huya-Kouadio, Houchins,
and Desantis (2017)). While each AFV type has its respec-
tive barriers, one common problem is the lack of alternative
refuelling infrastructure (Zhang, Kang, and Kwon (2017)).
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Figure 1: Global GHG Emissions by Economic Sector: With a share of 14% transportation contributes significantly to global
emissions. (Edenhofer et al. (2014))

Although the popularity of AFVs is rising, many poten-
tial customers hesitate to buy BEVs and FCEVs, because the
current level of refuelling infrastructure is not as mature as
that of conventional gas stations and is not widely distributed
(Zhang et al. (2017)). To facilitate the use of alternative drive
technologies, it is, therefore, essential to plan and establish
a refuelling infrastructure that is in line with the rising de-
mands (Melendez (2006)). The decision where AFS should
be placed is serious, because it has an influence on the allo-
cation of further gas stations and might be decisive for the
market success of alternative drive technologies. It becomes
more important, as establishing a refuelling infrastructure is
expensive, and decisions for a location are most probably fi-
nal due to the high costs of changing the location. Hence,
optimal allocation seems to be inevitable (Jochem, Brendel,
Reuter-Oppermann, Fichtner, and Nickel (2016)).

In consequence numerous efforts have been made to de-
termine the optimal siting of AFS alongside a road network
by the means of mathematical optimization (Kuby and Lim
(2005); MirHassani and Ebrazi (2013); Capar, Kuby, Leon,
and Tsai (2013)). The road network in these optimization
problems is represented as a Graph. Potential fuel station
locations like cities, route intersections, road service areas
are represented as the nodes. The roads are described as
edges, that link the nodes. Traffic is depicted as flow that
passes nodes and edges on a trip from an origin node to a
destination node. The main goal of the optimization models
is, to determine the optimal siting of a pre-specified num-
ber of p fuel stations so that the amount of refuelled origin-
destination (OD) trips respectively the amount of refuelled
traffic is maximal. Figure 2 shows how the trip from Cologne
to Karlsruhe via Frankfurt could be modelled as a graph. Ap-
plied to this OD trip, the AFS siting models would determine
which of the nodes would be the optimal location for a fuel
station so that traffic on the way from Cologne to Karlsruhe

is refuelled.
Over the last couple of years, models have become in-

creasingly sophisticated, and scientists have begun to con-
sider important real-world restrictions for fuel station siting
in their optimization. Some of the more recent models, for
example, consider that the possible storage amount of fuel at
gas stations is not infinite. Restraining factors are, for exam-
ple, limitations of the building land or laws that constrain the
maximum amount of fuel stored at a single location. Hence,
several authors included capacity restrictions in their model
(Hosseini and MirHassani (2017);Kluschke et al. (2020)).

Alternative fuel stations are not only capacitated, the con-
struction of such stations is also resource-intensive. There-
fore it is unrealistic to assume the construction of a larger
number of fuel stations within a short amount of time due
to, for example, limitations of budget or labour. Hence, be-
sides determining the optimal AFS placement, it is essential
to provide an efficient step-by-step construction plan for the
refuelling infrastructure. Thus, some authors have started to
extend models by a temporal dimension. Time is hereby dis-
cretized into several planning respectively construction peri-
ods of equal length.

In consequence, these multi-period models have the ob-
jective of providing an optimal period-by-period construction
plan, that respects periodic budget limitations (Chung and
Kwon (2015); Zhang et al. (2017)).

Although there exist some multi-period AFS location
models, a multi-period model that also respects budgetary
constraints and capacity restrictions of the building sites have
yet to be developed.

The main objective of this thesis is to address this is-
sue by providing an optimization model that delivers an ef-
ficient construction plan for building up an alternative fuel
station network based on empirical flow data. Therefore the
node-capacitated flow-refuelling location model (NC-FRLM)
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Figure 2: Possible transformation of a real-world road trip from Cologne to Karlsruhe into a graph.

by Kluschke et al. (2020) was extended by adding a period
module alongside a periodic budget to more realistically rep-
resent changing demands and construction capacity. The the-
sis aims at answering the following research questions:

• How can the node-capacitated FRLM be extended to
provide a multi-period construction plan for an alter-
native fuel station network while respecting changing
demands and construction capacity?

• Does a multi-period model provide benefits compared
to static modelling approaches and how can this benefit
be quantified?

The thesis is structured as follows: First, a short overview
of the existing literature for flow-refuelling location models
(FRLM) is given in section 2.1. Section 2.2 introduces the ba-
sic FRLM, as well as the node-capacitated FRLM extension by
Kluschke et al. (2020), which are explained before the new
multi-period node-capacitated FRLM modelling approach is
presented in section 2.3. To examine the benefits and the
computational complexity of the model, a numerical experi-
ment is conducted in section 2.4, before completing the the-
sis with a conclusion and suggestions for further research in
section 3.

2. Literature Review

The following Literature Review is subdivided into two
parts. The General Literature Review gives the reader a com-
prehensive overview of the current literature and thematizes
mainly the flow-refuelling location model and its expansions.
Apart from the basic FRLM and its origin, various approaches
towards capacitated and multi-period extensions will also be
discussed. The last subsection introduces the reader to the
current state of the art FRLM modelling. More specifically,
the two models on which the new FRLM extension is based,

namely the arc-cover path-cover FRLM by Capar et al. (2013)
and the node-capacitated FRLM by Kluschke et al. (2020),
are described in detail.

2.1. General Literature Review
Of all facility location problems, the FRLM is the most

commonly used model in AFV infrastructure planning. It is
based on the idea by Hodgson (1990) to model traffic as flow,
that is passing nodes along an origin-destination trip on a
graph. The nodes of the network are considered candidate
locations for fuel stations, that serve the refuelling demand.
The FRLM can either be formulated as a set covering or a
maximal covering problem. While the set covering formula-
tion determines the minimal amount of fuel stations neces-
sary to cover all OD trips, the maximal covering formulation
maximizes the path/flow coverage with a given amount of p
fuel stations. Current FRLM extensions include the consider-
ation of station and node capacity limits and the inclusion of
multiple construction periods. The two most common con-
cepts for evaluating multi-period models are the Value of the
Multi-Period Solution and the Value of Multi-Period Planning.
Both concepts quantify the relative value difference between
a multi-period model and pre-specified counterparts.

2.1.1. The Flow-Refueling Location Model
Capar et al. (2013) identify seven different models for

solving a facility location problem: p-median problem, set
covering problem, maximal covering location problem, flow
interception location problem, flow-refuelling location prob-
lem, network interdiction problem and network sensor prob-
lem. In the context of infrastructure planning for alterna-
tive drive technologies, the flow-refuelling location model
(FRLM) is the most commonly used (Kluschke et al. (2020)).
Figure 3 classifies the new MP-NC FRLM within the different
research streams for facility location models.
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Figure 3: Overview over facility location models and classification of the MP-NC FRLM

The FRLMs and their expansions are based on the idea
of Hodgson (1990) to not express demand as a stationary
node attribute but to model it as a flow, that is passing nodes
along an origin-destination (OD) trip on a graph. Within the
application of alternative fuel station placement, the demand
flow represents the vehicle traffic with its need for refuelling
on the way from origin to destination.

The nodes of the network are candidate locations for the
construction of gas stations to capture the flow and serve the
demand. On a highway network, for example, nodes refer to
highway entries, intersections or exits.

In their first formulation of the FRLM, Kuby and Lim
(2005) extended Hodgson’s model to consider the limited
range of vehicles. Contrary to prior models, a trip was no
longer refuelled, if the OD flow passes one single facility
along its path. For refuelling, the entire path had to be cov-
ered, which might include more than one refuelling stop at a
gas station, depending on the vehicle range, the path length
and the node spacing. The possible need to refuel at several
facilities required the pre-generation of valid facility combi-
nations on each OD path, which made the model potentially
difficult to solve in large networks. To address this problem,
Lim and Kuby (2010) proposed heuristic algorithms to solve
larger problems. Moreover, MirHassani and Ebrazi (2013)
both developed FRLM formulations, that did not require the
pre-generation of facility combinations and solved the model
faster than the heuristics of Lim and Kuby (2010).

The arc-cover path-cover model, Capar et al. (2013) pro-
vided a new formulation of the FRLM, that was computation-
ally more efficient than previous formulations and heuristics.
The main idea of this new formulation was to refuel each OD
path arc-wise. If all arcs on a path can be refuelled at one
of the open facilities, the whole path is seen as refuelled and
travelable.

Due to the efficiency of the formulation, Capar et al.
(2013)’s model is the base for many of today’s FRLM ex-
tensions like Hosseini and MirHassani (2017); Zhang et al.
(2017); Kluschke et al. (2020) and will therefore be further

discussed in section 2.2.
Although the FRLM initially followed a maximal coverage

approach, intending to cover the maximal possible amount of
flow through the allocation of p facilities, it can be reformu-
lated into a set-covering problem. The set covering formula-
tion aims at minimizing the number of stations necessary to
cover a given share of flow respectively demand (Jochem et
al. (2016)). Furthermore, Wang and Wang (2010) were the
first ones to reformulate the FRLM into a set covering prob-
lem. Contrary to most FRLM formulations, their model only
used origin-destination trip data as input without including
information about the demand of the OD flows. Capar et
al. (2013) also provide a set covering formulation of their
arc-cover path-cover model, that, like their maximal cover-
ing formulation, considers the OD demand.

2.1.2. Capacitated FRLMs
Most articles on the FRLM do not consider capacity lim-

its for facilities and assume, that all flows passing through
a station can be served, regardless of its dimension. As AFS
do have capacity limits and are expensive to set up, consid-
ering existing refuelling limitations is vital to improving the
informative value of the models (Hosseini and MirHassani
(2017)).

Upchurch, Kuby, and Lim (2009) were the first ones to
address this issue with their capacitated FRLM. Their model
defines the capacity of a station through the number of its
interchangeable modular refuelling units, which can serve a
certain amount of vehicles. In consequence, the main objec-
tive is not the optimal placement of p facilities, but p modular
units on nodes of the network. As Upchurch et al. (2009) do
not limit the number of modular units per node, the amount
of refuelling capacity that could be built at each node is po-
tentially infinite.

Wang and Lin (2013) provided a capacitated extension
of Wang and Lin (2009)’s model that is designed explicitly
for BEVs and considers multiple types of charging stations
as well as a constrained facility budget. Like Upchurch et
al. (2009), they model the capacity of stations through the
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number of vehicles, that they can serve. The capacity of each
station type is calculated through the recharging efficiency
of the used technology, given a pre-specified refuelling time.
Contrary to Upchurch et al. (2009), the maximum number of
facilities at the nodes is limited, so that node-specific restric-
tions, like local limitations of the power supply or the build-
ing land, can be included in the model. Therefore Wang and
Lin (2013) can be considered as the first ones to apply node
capacity restrictions to the FRLM.

Hosseini and MirHassani (2017) present a capacitated ex-
pansion of MirHassani and Ebrazi (2013)’s and Capar et al.
(2013)’s models and solved them with a heuristic method
based on Lagrangian relaxation. Hosseini and MirHassani
(2017) assumed the stations to be fast-refuelling and deter-
mined the degree of capacity utilization through the actual
amount refuelled. This approach differs from previous ones
by Upchurch et al. (2009) and Wang and Lin (2013), who
base facility capacity on the number of refuelable vehicles
and not on the total amount of refuelling, the station can
provide that. Following up on their article, the authors have
published two further expansions of their capacitated FRLM.

Hosseini and MirHassani (2015) developed a stochastic
version of their capacitated FRLM formulation, to consider
the uncertainty of the traffic flow, based on a finite number
of scenarios. As the solution time drastically increased with
the network size and the number of considered scenarios, a
solution heuristic for the stochastic model was presented and
successfully tested on an intercity network for Arizona. 1

The second expansion by Hosseini, MirHassani, and
Hooshmand (2017) adds the drivers’ willingness to devi-
ate from their pre-defined shortest path to visit an AFS to
the model. To be able to obtain a solution in a reasonable
time for larger instances of the problem, an iterative-based
heuristic algorithm was presented.

Most recently Kluschke et al. (2020) present a node ca-
pacitated formulation of the arc-cover path-cover formula-
tion by Capar et al. (2013). Like Wang and Lin (2013) they
base their model on the idea, that a potentially unlimited
amount of refuelling at a single node is unrealistic. Rea-
sons for that are, for example, technical limitations (e.g. the
amount of electricity provided at a single location) or legal
limitations (e.g. the quantity of hydrogen stored at a single
location). The capacity of a station is modelled in units of the
alternative fuel (e.g. kg of hydrogen), and its use to capacity
is determined by the actual amount refuelled to serve the cap-
tured flows. Kluschke et al. (2020) successfully applied their
model to the siting of hydrogen refuelling infrastructure for
heavy-duty vehicles on the German highway network. Fur-
thermore, they can be considered the first ones to combine
node capacity restrictions, and OD demand flows in a model.
As their model serves as the base for the FRLM extension

1Even though (Hosseini and MirHassani,2017) appeared in the Novem-
ber issue of International Transactions in Operational Research, it was first
published in October 2015. Therefore the publishing order of the capac-
itated FRLM and its stochastic expansion by the authors still follows the
logical timeline

presented in this thesis, it will be further discussed in section
2.3.

2.1.3. Multi-Period FRLMs
As pointed out by Hosseini and MirHassani (2017), AFS

is not only capacitated, the construction of such stations is
also resource-intensive. Therefore it might not be useful to
assume the construction of a larger number of fuel stations
within time due to, for example, limitations of budget or
labour Chung and Kwon (2015)).

Furthermore, the development of an alternative fuel in-
frastructure constitutes a so-called "chicken-egg problem",
Kuby and Lim (2005) and Wang and Wang (2010), that might
only be solved through strategic multi-period planning con-
trolled by a central authority (Chung and Kwon (2015)). On
the one hand, companies are unlikely to invest in alternative
fuel stations until there is sufficient demand for profitable
operations. On the other hand, potential customers are less
incentivized to buy alternative fuel vehicles unless there is an
agreeable level of refuelling infrastructure (Bento (2008)).

Even though multi-periodicity seems to be an essential
aspect of AFS infrastructure planning, the existing literature
has rarely considered it.

Chung and Kwon (2015) first addressed the issue of
multi-periodicity by extending the maximal covering FRLM
formulation of MirHassani and Ebrazi (2013). They present
three different methods for multi-period planning of flow-
refuelling locations: a multi-period optimization method
(M-opt), a forward myopic method (F-Myopic) and a back-
wards myopic method (B-Myopic). All three methods were
applied for the siting of BEV charging stations along the
Korean expressways.

The M-opt method solves a multi-period optimization
model over T discrete time periods and sites nt , t ∈ T facil-
ities per period to maximize the total amount of flow covered
over all periods. Once a facility is sited, it must remain open
until the final period. nt depicts the total number of stations
that are operational in period t of which nt − nt−1 are newly
constructed in period t.

The F-Myopic method solves T single-period optimization
models successively starting in period one. Like in the M-
opt method, in each optimization problem (= time period)
nt−nt−1 facilities are allocated, given the siting of the stations
in the prior period t − 1. That means, for example, that all
stations sited in period one are automatically allocated to the
same spot in period two. Given the allocated stations from
period one, n2 facilities are sited in period two to maximize
the amount of flow covered.

The B-Myopic method follows an approach similar to the
F-Myopic method but begins the series of single-period opti-
mization problems in the last period, T . The nT nodes where
facilities have been located in period T serve as candidate
nodes for the siting of nT−1 facilities in period T − 1. The
same procedure is repeated until period one.

Chung and Kwon (2015) stated that the M-Opt method
produces the best result in all cases, but also requires the
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most computational resources. Although the myopic meth-
ods produce significantly worse results on some demand pro-
files, the B-Myopic method is recommended for larger prob-
lems as the B-Myopic solutions are nearly as good as the M-
Opt solutions in most cases.

Li, Huang, and Mason (2016) present a multi-period
multi-path refuelling location model, that seeks to minimize
the roll-out costs for refuelling infrastructure that serves all
origin-destination trips. The model takes the drivers’ will-
ingness to deviate from their shortest OD path for refuelling
into account. An OD pair is considered served, if at least one
path, either the shortest path or a path within a reasonable
deviation, is refuelled. In their model, (Li et al. (2016))
allow the costly relocation of facilities, but do not include
traffic flows between OD pairs.

In a case study for the development of a fast-charging
network in South Carolina, Li et al. (2016) applied both, a
multi-period optimization method as well as F-Myopic and B-
Myopic methods and compared the outcomes. Their findings
are consistent with the results of Chung and Kwon (2015)
as both of their myopic methods performed worse than the
multi-period optimization approach in terms of the objective
function value.

Miralinaghi, Keskin, Lou, and Roshandeh (2017)’s model
takes a different approach and aims at minimizing the total
system cost. The model includes facility construction costs,
facility operating costs and the total travel costs experienced
by the users of the network. Although Miralinaghi et al.
(2017) work with OD pairs, they pre-calculate neither the
shortest path nor a path with a reasonable deviation that a
driver would take. They implicitly assume that drivers are
willing to take any detour necessary to refuel on their trip.
They applied the model to an intra-city transportation net-
work and solved it via branch-and-bound and Lagrangian re-
laxation algorithms.

Zhang et al. (2017) base their multi-period capacitated
FRLM on the maximal covering arc-cover path-cover formu-
lation of Capar et al. (2013) and are the first ones to combine
multi-periodicity and capacity restrictions in an FRLM formu-
lation. They furthermore model demand as an endogenous
variable that depends on demand dynamics and depicts the
interaction of network users and network planners.

In their model, demand is displayed as the AFV market
share of an OD flow for path q in period t. The market share
per path and per period depends on several factors: the mar-
ket share of the prior period, the natural growth of the mar-
ket share and the path-specific flow coverage compared to
the average flow coverage in the network.

Zhang et al. (2017) model the capacity restrictions of fuel
stations according to Upchurch et al. (2009) as the number
of vehicles that can charge at a refuelling module per pe-
riod. Like Upchurch et al. (2009) the number of refuelling
modules per node was not limited, which proved to be prob-
lematic when the model was applied to a case study about
the siting of AFS in the Washington DC - New York - Boston
area. The results suggest the construction of up to 70 refu-
elling modules per single node, which seems to be unrealistic

when considering technical and legal limitations to the total
refuelling capacity per single node (Kluschke et al. (2020)).

2.1.4. Assessment of Multi-Period Models
For assessing the additional benefit of multi-period mod-

els, the two most frequently found concepts in the literature
are the "Value of the Multi-Period Solution "(VMPS) and the
"Value of Multi-Period Planning" (VMPP).

The Value of the Multi-Period Solution is a concept first
introduced by Alumur, Nickel, Saldanha-da Gama, and Verter
(2012), that aims at quantifying the additional benefit of a
multi-period model compared to a static counterpart. The
static counterpart is a model, that looks for a time-invariant
solution of the multi-period problem and scales the outcome
adequately to compensate for only solving the problem for
one single period (Laporte, Nickel, and Saldanha da Gama
(2015)).

As there are several possibilities to define the static coun-
terpart to a multi-period problem, the Value of the Multi-
Period Solution can vary along with the definition of the
counterpart. Laporte et al. (2015), for example, name sev-
eral possibilities on how to consider time-varying demands
in a static counterpart. While it is one possibility to average
all demands over the planning horizon, it is also possible to
determine a reference value, e.g. the maximum value ob-
served throughout the planning horizon, for calculating the
counterpart’s solution. The VMPS is finally calculated as the
relative difference between the multi-period model’s solution
and the one of its counterpart.

The Value of Multi-Period Planning is an evaluation con-
cept first mentioned by Ballou (1968). Although it has yet
to be precisely defined, the concept aims at quantifying the
additional benefit from considering multiple periods while
planning, contrary to continuously solving static problems
for each period, given the results of the prior calculations.
Two possible comparison models are the F-Myopic and the B-
Myopic solution approaches, that was, for example, utilized
by Chung and Kwon (2015).

For retrieving comparable results as well as for decision-
makers to consider multi-period over step-wise optimizing
models, it is essential to assume, that demand and economic
data can be accurately predicted for every considered period.
The Value of Multi-Period Planning is obtained by subtracting
the solution value of the myopic comparison model from the
value of the multi-period model and dividing it by the my-
opic model’s value. Ballou (1968) postulate, that given the
assumption of predictive accuracy the Value of Multi-Period
Planning should always be positive, which goes along with
Chung and Kwon (2015)’s findings.

2.1.5. Contribution of this thesis
In summary, there are only four studies that address the

application of the flow-refuelling location model over mul-
tiple periods. Furthermore, of those studies, Zhang et al.
(2017) are the only ones also to incorporate capacity restric-
tions in their model. However, the results of their conducted
case study indicate that their use of station capacity limits
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might be of limited practicability due to existing node-specific
capacity limitations. To provide a plan for the construction
of an AFS network over time with realistic stations sizes on
nodes, the use of node capacity restrictions is necessary.

To the author’s best knowledge, this thesis is the first piece
of work to design and test a multi-period and also node-
capacitated FRLM (MP-NC FRLM). In addition to proposing
a general model, this thesis adopts the two assessment crite-
ria, VMPS and VMPP, to fit the specific case of bench-marking
the model’s additional benefit. The thesis furthermore dis-
cusses several factors, that potentially influence the VMPS
and VMPP and in this context, addresses the issue of compu-
tational complexity.

2.2. Introduction to Current State of the Art FRLM Modelling
The previous paragraph provided a general overview of

the FRLM and its current extensions. The two most signifi-
cant extensions are the consideration of station/node capac-
ity restrictions and the optimization over multiple periods.
In the following, the two models on which the MP-NC FRLM
model extension is based, are explained in further detail.

Capar et al. (2013) take a different and more efficient way
of formulating the FRLM than previous authors. Their main
idea is to refuel each OD path arc-wise. If every arc on an OD
round-trip can be refuelled at one of the open fuel stations,
the whole path is seen as refuelled and travelable. Kluschke
et al. (2020) later extend Capar et al. (2013)’s model with
capacity restrictions, that limit the total amount of refuel-
ing at fuel stations. To better fit their case study of siting
hydrogen fuel stations for trucks along the German highway,
Kluschke et al. (2020) modify and add several model assump-
tions. Contrary to Capar et al. (2013), they use single OD
trips instead of round-trips and make detailed presumptions
about starting and ending fuel level of drivers as well as the
total amount refuelled during the trip.

2.2.1. The Basic Arc-Cover Path-Cover FRLM | Capar et al.
2013

The following section describes the arc-cover path-cover
FRLM (AC-PC-FRLM) of Capar et al. (2013) in further de-
tail, starting with the model assumptions. After introducing
the set covering formulation of the AC-PC FRLM, the calcu-
lation of the set Kq

j,k and the functionality of the model are

illustrated using a simple example. Kq
j,k represents the set of

facility locations, that could refuel the arc a j,kon path q. For
concluding, the maximal covering formulation of Capar et al.
(2013)’s AC-PC FRLM is given.

Capar et al. (2013)’s arc-cover path-cover FRLM (AC-PC-
FRLM) can be either formulated as a set covering or as a max-
imal covering problem. The main objective of the set cover-
ing problem is to determine the minimal amount of alterna-
tive fuel stations and their location on a Graph G = (N , A)
under the condition, that at least a pre-specified share of the
total fuel demand S is satisfied. On the other hand, the max-
imal covering formulation aims at maximizing the served de-
mand with p facilities. The vehicle traffic is depicted as flow,

that passes from an origin O to a destination D on the graph.
Traffic flow is considered refuelled or served if vehicles can
travel from origin to destination and back to the origin with-
out running out of fuel.

Model Assumptions and Mathematical Formulation
Capar et al. (2013) formulate their model under the fol-

lowing assumptions:

1. The traffic between an origin-destination pair flows on
the shortest path through the network.

2. The traffic volume between OD pairs is known in ad-
vance.

3. Drivers have full knowledge about the location of the
fuel stations along their path and refuel sufficiently to
complete their round trips.

4. Only nodes of the network are considered as possible
refuelling facility locations.

5. All vehicles are assumed to have similar driving ranges,
a similar fuel tank capacity and similar fuel consump-
tion.

6. The fuel consumption is directly proportional to the
distance travelled.

7. Refuelling stations are incapacitated.

Assumptions 1-3 seem reasonable because every driver
has access to a navigation system, either through car equip-
ment or a smartphone, that can provide information about
the shortest route, refuelling opportunities and traffic infor-
mation. As Capar et al. (2013) specifically apply the model to
private BEVs, the adoption of round trips rather than single
trips is comprehensible considering the fact, that the passen-
gers will want to return to their homes (=the origin) at some
point after reaching the destination. In Assumption 4, Capar
et al. (2013) limit potential station locations to the network
nodes and by that prohibit the possibility of siting a station
anywhere on an arc between two nodes. Restricting the sit-
ing to the nodes reduces the complexity of the model without
significantly negatively impacting the results when applied to
real transportation networks except in remote areas (Kuby
and Lim (2007)). Assumptions 5-7 are further technical sim-
plifications of reality.

Capar et al. (2013) define the set covering formulation of
their arc-cover path-cover FRLM as follows:

min
∑

i ∈ N

zi (2.1)

s.t.
∑

i ∈ Kq
j,k

zi ≥ yq∀ q ∈ Q, a j,k ∈ Aq (2.2)

∑

q ∈ Q

fq yq ≥ S∀ i ∈ N (2.3)

zi , yq ∈ {0,1}∀ q ∈ Q, i ∈ N (2.4)
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Sets
N Set of all nodes on the Graph G
Q Set of all OD pairs
Aq Set of all directional arcs on the OD path

q ∈ Q from origin to destination and back
Kq

j,k Set of all potential station locations, that
can refuel the directional arc a j,k ∈ Aq

Variables
zi Binary Variable that equals to one, if a re-

fuelling facility is constructed at node i
yq Binary Variable that equals to one, if the

flow on path q is refuelled
Parameters
fq Total vehicle flow on the OD path q
S Proportion of the minimal amount of total

flow refuelled

The objective function (2.1) of the model minimizes
the total number of stations built on the nodes N of Graph
G. Constraint (2.2) presents the core of the new arc-cover
path-cover formulation by Capar et al. (2013), which allows
them to formulate their FRLM without the pre-generation
of all possible facility combinations for all paths. Kq

j,k is
hereby the set of all nodes, where a constructed facility
could refill the arc a j,k on the OD-path q. (2.2) ensures,
that a path is only counted as refuelled if the built stations
zi refuel all arcs on the OD-path q. Constraint (2.3) guar-
antees the refuelling of at least S * 100% of all OD-flows
fq of all OD trips q. (2.4) defines the two binary variables
zi and yq. zi equals to one if a facility is constructed at
node i, whereas yq equals to one if a path q is refuelled.

Pre-Calculation of the Set Kq
j,k

Like mentioned in the previous paragraph, the set Kq
j,k is

the core of Capar et al. (2013)’s new FRLM formulation. For
each arc of each path, Kq

j,k provides a list of candidate nodes
for facilities, that could refuel the directional arc a j,k. A path
q can only be considered as covered, if every arc of this path
is refuelled by a gas station from their candidate set. Kq

j,k is
calculated prior to the optimization of the model by applying
the following logic, depicted in Code Listing 1:

1 for all q ∈ Q:
2 for all a j,k ∈ Aq :
3 for all nodes i on the OD round trip q,
4 that are not the destination node k of
5 the arc a j,k

6 if the distance (node i, node k) ≤
7 vehicle_range , following the round
8 trip , then
9 add node i to Kq

j,k

Code Listing 1: Algorithm for determining the set Kq
j,k in the

AC-PC FRLM

To determine the set of potential facility locations Kq
j,k,

every node i, that lies between the origin node and the des-
tination node of the arc a j,k on path q, will be inspected, to
whether it qualifies for hosting a station, that can refuel the
arc a j, k. Node I will be added as a potential location, if the
destination node of the arc a j,k is reachable leaving node i
with a full tank.

Contrary to the first FRLM formulation by Kuby and Lim
(2005), vehicles here do not start from the origin with a pre-
specified fuel level, e.g. half of the tank. Capar et al. (2013)
determine the initial tank filling based on the location of the
AFS on the path, assuming that drivers only frequent the
same OD trip. If there is a fuel station sited at the origin, the
vehicle will start with a full tank; if there is no fuel station at
the origin, the vehicle will start the trip with the remaining
fuel from the last fill-up on the same OD round trip.

For better understanding, the calculation of the set Kq
j,k

and the model functionality illustrated in a simple example
below.

Figure 4 shows a four-node sized network with the origin-
destination pair (1,2). The vehicle range is assumed to be
120 km. For satisfying the demand flow, each arc on the
round trip from the origin to the destination and back has
to be refuelled. Therefore, the candidate node set Kq

j,k has to
be determined before the optimization process, starting with
the arc a1,2. The origin node one is the only node on the trip
from the origin to the destination node of arc two.

As z1 lies within the vehicle range (120 km) of node z2
coming from the origin, it counts as a potential station loca-
tion for refuelling the arc a j,k. Hence, z1 is added to the set

K (z1,z4)
1,2 . Node two that is visited during the way back from the

destination to the origin is on the path a2,1 + a1,2 = 80 km ≤
120 km away from node two and counts as well a potential
station location. As the distance from node 3 is a3,2 + a2,1 +
a1,2 = 110 km ≤ 120 km, z3 is added as well as a potential
station location. Following the flow direction of the OD path,
node 4 is 140 km away from node 2 is, therefore, no station
locations. Thus, the set of potential facility sites, that could
refuel the arc a j,k is K (z1,z4)

1,2 = {z1, z2, z3}. The potential sta-
tion locations for the other arcs on the round trip are listed
in the table 1.

For refuelling the whole round trip (1,4), a facility must
be built at least one of the candidate locations of each set
K (1,4)

j,k . Although several combinations of fuel stations could
serve the vehicle flow, placing a station at node 2, with the
variable z2 = 1, is the only option, that serves the whole de-
mand with the construction of just one facility and is, there-
fore, the optimal solution of the minimization problem.

The maximal covering formulation of the arc-cover path-
cover FRLM is created by switching the objective function
of the set covering approach (2.1) with constraint (2.3) and
modify them accordingly.
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Figure 4: Exemplary graph network for illustrating the calculation of the set Kq
j,k

Sets Potential Station Locations
K (1,4)

1,2 z1 z2 z3

K (1,4)
2,3 z1 z2

K (1,4)
3,4 z1 z2 z3

K (1,4)
4,3 z2 z3 z4

K (1,4)
3,2 z2 z3 z4

K (1,4)
2,1 z2 z3 z4

Table 1: Set Kq
j,k for the graph in Figure 4.

max
∑

q ∈ Q

fq yq (2.5)

s.t.
∑

i ∈ Kq
j,k

zi ≥ yq∀ q ∈ Q, a j,k ∈ Aq (2.6)

∑

i ∈ N

zi = p (2.7)

zi , yq ∈ {0, 1}∀ q ∈ Q, i ∈ N (2.8)

p displays the number of stations that will be allocated to
maximize the total flow covered on all OD paths.

2.2.2. FRLM Extension: Node Capacity Restrictions | Kluschke
et al. 2020

In the previous paragraph, the reader was familiarised
with AC-PC FRLM by Capar et al. (2013), which is the base
model for Kluschke et al. (2020)’s extension. The AC-PC
FRLM follows the idea of seeing each path as a sequence of
arcs, that have to be refuelled for the path to be covered in its
entirety. Kluschke et al. (2020) adopt this principle for their
node-capacitated extension of the AC-PC FRLM’s set cover-
ing formulation. The following sections begin by discussing
the new FRLM assumptions, that were added by Kluschke et
al. (2020). After presenting the mathematical formulation, a
closer look is taken at the calculation of sets and parameters
in Kluschke et al. (2020)’s model. Apart from adapting the
Kq

j,k generation algorithm, Kluschke et al. (2020) introduce
the new parameter riq, that as well needs to be calculated be-
fore the optimization. The parameter riq is highly important

to the model because it depicts the amount of refuelling of
vehicles at the fuel station. If the total amount of refuelling
of all vehicles at a station reaches Kluschke et al. (2020)’s
capacity limit, it is no longer possible to fill up there.

To consider station location capacity limits, for example,
local limitations of the power supply or the building land,
Kluschke et al. (2020) added node capacity restrictions to the
set covering formulation of Capar et al. (2013)’s arc-cover
path-cover FRLM. Contrary to Capar et al. (2013), they do
not apply their node-capacitated FRLM to refuelling BEV ve-
hicles, but to fuel cell-powered heavy-duty vehicles and ad-
justed Capar et al. (2013)’s assumptions to fit their specific
case.

Model Assumptions and Mathematical Formulation
The assumptions made by Kluschke et al. (2020) are

listed below. Modified and additional assumptions are high-
lighted in italics:

1. The traffic between an origin-destination pair flows on
the shortest path through the network.

2. The traffic volume between OD pairs is known in ad-
vance.

3. Drivers have full knowledge about the location of the
fuel stations along their path and refuel efficiently to
complete their one-way origin-destination trips.

4. Only nodes of the network are considered as possible
AFS locations.

5. All vehicles are assumed to be homogeneous. The max-
imum driving range that can be achieved in a single
refuelling is similar for each vehicle.
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6. The fuel consumption is directly proportional to the
distance travelled.

7. Nodes and fuel stations are capacitated.
8. refuelling is only required on trips longer than 50 km.
9. Each vehicle starts and ends its trips with the same fuel

level, which is sufficient for a specific range. There are no
refuelling stations at the origins and destinations.

Kluschke et al. (2020) use the first six assumptions of Ca-
par et al. (2013) with one small adjustment to better fit the
model to their case study that thematizes the siting of AFS
along with the German highway network. As trucks usually
receive a delivery order to another location, once it reaches
the destination (tramp traffic), they model the OD routes as
one-way trips instead of round trips

Assumption 7 is the first general difference between the
two models, as Kluschke et al. (2020) formally introduce the
node capacity restrictions to their model. In Assumption 8, a
lower bound for OD trip lengths is introduced to reduce the
total number of considered OD trips and thus reduce the com-
putational complexity of the model. In this context, Kluschke
et al. (2020) speculate, that short trips of less than 50 km
might not require public refuelling infrastructure. Although
it is not clear how likely this speculation is, it shifts the model
focus to refuelling mainly long haul transportation. It can
easily be relaxed for an application in different contexts.

Assumption 9 simultaneously incorporates two supposi-
tions. As Kluschke et al. (2020) want to focus on public re-
fuelling infrastructure, they assume, that there are no pri-
vate AFS. In consequence, they prohibit the siting of facil-
ities at the origin and the destination nodes of the paths,
as trucks start and end their trips at the private cargo bays
of the transportation companies. Assumption 9 furthermore
implies, that truck drivers refuel efficiently and by that do
not make unnecessary refuelling stops. In consequence, they
only refuel the exact amount needed to travel their route. As
vehicles end with the same fuel level as they started with,
they have to refuel at least once per trip.

Kluschke et al. (2020) extend the arc-cover path-cover
FRLM as follows:

min
∑

i ∈ N

zi (2.9)

s.t.
∑

i ∈ Kq
j,k

zi ≥ yq∀ q ∈ Q, a j,k ∈ Aq (2.10)

∑

q ∈ Q

fq p riq yq giq x iq ≤ c zi∀ i ∈ N (2.11)

∑

i ∈ Kq
j,k

x iq = yq∀ q ∈ Q, a j,k ∈ Aq (2.12)

∑

i ∈ N

x iq = yq lq∀ q ∈ Q (2.13)

x iq ≤ zi∀ i ∈ N , q ∈ Q (2.14)

zi ∈ {0,1}∀ i ∈ N (2.15)

0 ≤ x iq ≤ 1∀ i ∈ N , q ∈ Q (2.16)

Sets
N Set of all nodes on the Graph G
Q Set of all OD pairs
Aq Set of all directional arcs on the OD path

q ∈ Q from origin to destination
Kq

j,k Set of all potential station locations, that
can refuel the directional arc a j,k ∈ Aq

Variables
zi Binary Variable that equals to one, if a re-

fuelling facility is constructed at node i
x iq Semi-Continuous Variable that indicates

the proportion of vehicles on path q that
are refuelled at node i

Parameters
p Fuel efficiency / fuel consumption per ve-

hicle range
c refuelling capacity per node
fq Total vehicle flow on the OD path q
yq Proportion of vehicles that are to be refu-

elled on path q
lq Number of refuelling occasions on path q

depending on the total path distance, lq =
ceil {total trip distance / vehicle range}

giq Binary indicator, that is set to one, if node
i is a potential station location on path q

riq refuelled driving distance at node i on path
q

For the consideration of node capacity limits, Kluschke
et al. (2020) added constraints (2.11) - (2.13) to the FRLM.
Constraint (2.11) limits the total amount refuelled at node i
to the maximum capacity of the station built there. The de-
mand served at node i is computed as the flow of trucks ( fq)
multiplied with the fuel consumption per vehicle range (p)
and the amount of refuelled km (riq). Given three exemplary
values, the total refuelling amount would be calculated like
this: 2 ∗ 0, 5 l

km ∗ 100 km = 100 l
Two trucks refuel enough fuel to travel 100 km. As they con-
sume 0,5 litres per kilometre, they in total fill up 100 l of
fuel.

The total amount refuelled is further influenced by the
proportion of vehicles that shall be refuelled on path q (yq),
the proportion of vehicles on path q that refuel at node i (giq)
and whether node i is a potential station location at all (giq).
Note, that unlike in the original AC-PC FRLM formulation by
Capar et al. (2013), yq is not a variable, but a parameter. As
Kluschke et al. (2020)’s main objective is to determine the
minimal amount of AFS that serve the total demand, yq is
set to 1 for all q ∈ Q.

Constraint (2.12) defines, that all vehicles on path q can
refuel the arc a j,k at any of the possible locations given by
the set Kq

j,k. Constraint (2.13) ensures that all vehicles of a
flow refuel at the ensured number of refuelling occasions on
path q. (2.14) states that vehicles can only refuel at node i if
there is an open facility. (2.15) and (2.16) define the decision
variables.
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Calculation of Sets and Parameters
The previous paragraph discussed Kluschke et al. (2020)’s

model assumptions and introduced the reader to their node-
capacitated FRLM formulation. As their model is an exten-
sion of Capar et al. (2013), the core of the AC-PC FRLM, the
set of fuel station candidate locations Kq

j,k, is present as well.

Kluschke et al. (2020) modified Kq
j,k due to their utilisation

of single trips instead of round trips.
Hence they use a different pre-generation algorithm,

which is explained in the following.
To compare the total amount refuelled at a station with

its capacity limit, Kluschke et al. (2020) introduce the param-
eter riq that displays the amount of refuelling of each vehicle
at gas stations. As riq needs to be computed before the op-
timization, its pre-generation process is as well illustrated in
the upcoming section.

Contrary to Capar et al. (2013), Kluschke et al. (2020)
use single trips instead of round trips. They furthermore as-
sume that vehicles end their trips with the initial fuel level.
Thus, they take a different approach in the pre-generation of
the set Kq

j,k. The main adjustments are:

• Kq
j,k is generated while iterating node-wise and not arc-

wise over each path q.

• All vehicles start with a similar, predetermined initial
fuel range (IFR). The IFR of vehicles in the AC-PC
FRLM, on the other hand, is endogenously determined
by the optimal location of fuel stations on each path.

• Arcs are divided into critical and non-critical arcs. An
arc is considered as critical, if the travelability or refu-
elling of the path is not automatically guaranteed, e.g.
through the initial fuel level.

• As vehicles start and end the trips with the same fuel
level, drivers have to refuel at their last stop enough to
not only reach the destination but to reach it with the
initial fuel level. To respect the maximum capacity of
the tank, an adjusted trip distance is used to calculate
the set Kq

j,k, every time the iteration reaches a destina-
tion node. The adjusted distance formula is calculated
as follows: ADq = TDq + IFR − DOq

The adjusted distance of path q (ADq) equals the sum of
total trip distance (TDq) and initial fuel range (IFR) mi-
nus the network access distance from the origin node
(DOq). Note, that DOq only has a value greater than
zero, if the origin node does not lie within the consid-
ered network. Else wise DOq = 0.

A pseudo-code for the generation of Kq
j,k according to

Kluschke et al. (2020) is given in the Code Listings 2 and 3.
For better clarity, the process of identifying potential station
locations was black-boxed in the code below and explained in
a separate listing. A flowchart of the algorithm can be found
in Appendix A for further illustration.

To generate the set Kq
j,k, the algorithm determines the set

of potential facility locations, in case that reaching the end

1 for all q ∈ Q:
2 for all nodes i on path q:
3 if distance (origin , node i) ≤ initial
4 fuel range :
5 """ if arc with destination node i
6 lies within IFR , it is
7 non - critical and already refuelled """
8 if node i is destination node of
9 path q:

10 identify potential station
11 locations ** using the
12 adjusted distance
13 """ before reaching the
14 destination , vehicles need
15 to refuel to end with IFR """
16 else:
17 continue with the next node in
18 the loop
19 else:
20 if node i is destination node of
21 path q:
22 identify potential station
23 locations ** using the
24 adjusted distance
25 else:
26 identify potential station
27 locations *

Code Listing 2: Algorithm for determining the set Kq
j,k in the

NC-FRLM

of an arc a j,k requires refuelling. Therefore, only arcs are
considered, whose destination node either lies outside the
initial fuel range from the origin or is as well the destination
node of the OD trip.

Apart from the set Kq
j,k it is also necessary to pre-calculate

the values of the parameter riq in the NC-FRLM. riq displays
the driveable distance, that shall be added to the current ve-
hicle range by refuelling at node i on path q, in case a gas sta-
tion is built there. Within the model, riq is used to both rep-
resent the drivers’ efficient refuelling strategy and determine
the total amount of refuelling at a gas station zi . Although
it is an essential part of Kluschke et al. (2020)’s model ex-
tension, the calculation of riq and its role as a parameter are
only partially described. The following approaches this issue
by providing a comprehensive overview of the parameter riq
and its pre-generation process.

For the NC-FRLM, Kluschke et al. (2020) assume, that ve-
hicles start and end their trips with the same fuel level and
refuel efficiently on their way. That implies that drivers only
take as many refuelling stops on the route as needed. Hence,
Kluschke et al. (2020) define the following, underlying re-
fuelling strategy for their model: A driver will always fill up
the maximal possible amount until the last stop. There, the
driver refuels the difference between the total fuel needed
to complete the trip and the total fuel filled up during the
previous gas station stops. In the end, the driver has refilled
the exact amount of fuel that he had consumed during the
trip. Hence, he ends the route with the initial fuel level in
the tank.
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1 # * if i is not the destination node of path q
2 for all nodes k, that lie on the path from

originto node i:
3 if distance (origin , node i) -distance (origin ,
4 node k) ≤ vehicle range :
5 if node k is a potential station location
6 ( parameter gkq = 1):
7 add node k to Kq

i−1,i
8

9 # ** if i is the destination node of path q
10 for all nodes k, that lie on the path from origin
11 to destination node i:
12 if adjusted distance (origin , node i) -
13 distance (origin , node k) ≤ vehicle range :
14 if node k is a potential station location
15 ( parameter gkq = 1):
16 add node k to Kq

i−1,i

Code Listing 3: Identification of potential station locations
in the Kq

j,k algorithm in the NC-FRLM

Calculating the difference between the current and the
maximum fuel level, to determine the amount of possible re-
fuelling, might seem relatively easy. Especially, as fuel con-
sumption is assumed to be directly proportional to the dis-
tance travelled. The necessary consideration of refuelling
along the route, however, adds a variable component to the
calculation.

The exact fuel level, and therefore the current vehicle
range, depends on the following three factors:

• The initial fuel range at the origin node,

• The total distance travelled from the origin node to
node i,

• Possible refuelling and the corresponding refuelling
amounts at nodes along the way from the origin node
to node i, which necessitates the modelling as a deci-
sion variable.

For the benefit of the model complexity, Kluschke et al.
(2020) desist from precisely calculating the current fuel
level and modelling the refuelling through additional deci-
sion variables and constraints. Instead, they estimate the
values of the refuelling amount riq.

Kluschke et al. (2020) therefore subdivide each OD path
into lq route sections. lq is the model parameter that indicates
the number of refuelling occasions on path q. lq is calculated
as lq = ceil {total trip distance / vehicle range}. As lq de-
picts the number of refuelling occasions on path q as well
as the number of route sections, each vehicle refuels only
once per route section. Although the refuelling capacity of
the tank, the difference between the current and the max-
imal fuel level, varies between nodes, the values of riq are
identical for each node within a route section. Following the
refuelling strategy, drivers will refuel the maximal tank ca-
pacity in every route section, but the last one. Depending on
the location of the fuel stations along the route, it is likely to

happen, that the vehicle’s tank is not empty when refuelling
the maximal tank capacity. Refuelling then leads to exceed-
ing the maximal tank capacity and therefore to overflowing.

Kluschke et al. (2020) assume, that due to their definition
of the set Kq

j,k and the model’s objective of minimizing the to-
tal amount refuelling stations, facilities will be built prefer-
ably at the end of the subdivided route sections so that the
minimal amount of facilities can refuel every arc of the OD
path. In consequence, vehicles would fill up instead at the
end of the sections and with only a small amount of rest fuel
left in the tank, so that the overflowing would not be substan-
tial. In the model, the overflowing is not considered, and the
refuelled amount is added to the tank.

For the calculation of riq, Kluschke et al. (2020) differen-
tiate between three cases:

• if lq = 1 (one refuelling stop, one route sections) vehi-
cles shall fill up the amount of fuel necessary to cover
the total trip distance at any of the potential station
locations.

• if lq = 2 (two refuelling stops, two route sections) in the
first section, defined by the initial fuel range, vehicles
shall refuel the maximal vehicle range. In the second
section, vehicles shall refuel the difference between the
total trip distance and the already refuelled amount.

• if lq ≥ 2 (multiple refuelling stops, multiple route sec-
tions) in every route section, apart from the last one,
vehicles shall refuel the maximal vehicle range. On the
last stop, vehicles refuel the difference between the to-
tal trip distance and the already refuelled distance. The
first lq − 1 route sections are defined by the vehicle
range.

The pseudo-code for the algorithm, that determines the
parameter riq is displayed in Code Listing 4:

According to the algorithm, vehicles will refuel the max-
imum tank capacity in every route section, but the last one.
In the last gas station stop, they will fill up the difference be-
tween the total fuel needed to travel the OD path and the
refuelled amount in the previous gas station stops.

In case the trip has only one route section, the amount
of fuel needed to travel the whole distance will be refuelled
in the only fill-up. As vehicles refuel once per route section,
drivers refuel precisely the amount needed to travel the OD
path and therefore end the trip with the initial fuel level.

For a better understanding, the parameter riq and its role
in the model is illustrated in a simple example below:

Figure 5 shows a five node network with the origin-
destination pair (1,5). The total trip distance is 250 km. The
maximal vehicle range amounts to 200 km, and the initial
fuel range is 100 km. Therefore the number of necessary
refuelling stops lq is two.

The Parameter riq is calculated to constitute the driving
distance a vehicle would refuel the nodes of the trip, in case
there was an operating fuel station. According to the above-
presented algorithm, the OD trip is subdivided into two sec-
tions, of which the first one has the length of the initial fuel
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Figure 5: Exemplary calculation of the parameter riq for a five node graph network

1 for all paths q ∈ Q:
2 for all nodes i on the path q:
3 if the total number of refuelling stops
4 lq = 1:
5 riq = total path distance
6 else:
7 if the total number of refuelling
8 stops lq = 2:
9 if the distance (origin , node i) ≤

10 initial fuel range :
11 riq = maximal vehicle range
12 else:
13 riq = ( total path distance -
14 vehicle range )
15 else:
16 if the distance (origin , node i) ≤
17 ( vehicle range * (lq - 1)):
18 riq = maximal vehicle range
19 else:
20 riq = ( total path distance -
21 ( vehicle range * (lq - 1)))

Code Listing 4: Algorithm for determining riq in the NC-
FRLM

range. The length of the second and final section accounts
for the difference between the total trip distance and the dis-
tance of the prior section. As described, the value of riq is sim-
ilar for each node of the corresponding section and amounts
to the vehicle range in the first one. The refuelled distance in
the final section equals the difference between the total trip
distance and the total amount refuelled in the prior sections.
As drivers in total filled up precisely the amount needed to
travel the trip distance, they end with the initial fuel level.

Given an optimal solution of the problem, z3, z4 = 1,
fuel stations are constructed at nodes three and four. When
a vehicle refuels at node three according to the model, it has
fuel for 10 km left in the tank and would overflow while re-
fuelling 200 km. Kluschke et al. (2020) hereby pretend that
refuelling more than the maximal refuelling capacity is pos-

sible, and the excess fuel is not wasted.
Kluschke et al. (2020)’s general idea of estimating the re-

fuelling amount rather than precisely calculating it through
decision variables to benefit the model complexity is reason-
able. Although the tank level and the refuelling amount is
not accurate, the share of overflowing in the total amount
refuelled, and therefore the inaccuracy, is small due to the
model setting. Thus, the capacity utilization of the station
can still be approximated rather well. Although the extent of
the inaccuracy and its possible impact on the optimal solution
have not been further examined by Kluschke et al. (2020), it
seems like a fair trade-off for the reduced model complexity.

As the calculation of riq, the corresponding assumptions
and their motivation seem comprehensible, the multi-period
node-capacitated FRLM applies the same logic with minor
corrections to the riq generation algorithm.

3. New FRLM Extension: The Multi-Period Node-
Capacitated FRLM

The previous chapter provided the reader with a compre-
hensive overview of the current FRLM literature in the first
part and subsequently introduced the reader to the current
state of the art FRLM modelling. Most importantly, profound
knowledge about the MP-NC FRLM predecessor models, the
AC-PC FRLM by Capar et al. (2013) and the NC-FRLM by
Kluschke et al. (2020), was conveyed.

Capar et al. (2013)’s model refuels the OD trips arc-wise.
If every arc on a trip can be refuelled at one of the operating
fuel stations, the whole path is considered refuelled and trav-
elable. Kluschke et al. (2020) extend Capar et al. (2013)’s
AC-PC FRLM with capacity restrictions, that limit the total
amount of refueling at fuel stations.

The multi-period node-capacitated FRLM is formulated
as a maximal covering problem and seeks to maximize the
number of refuelled OD trips given fuel station construction
costs and a periodic budget. The model considers the possible
value change of parameters over time and in turn provides a
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period-by-period plan for the step-wise development of an
AFS refuelling infrastructure.

In the following sections, the model assumptions, the
mathematical formulation, possible problems and the calcu-
lation of the sets and parameters are discussed and explained.
The chapter is concluded by adapting the two multi-period
model evaluation concepts, the VMPS and the VMPP, to the
MP-NC FRLM and discussing further situational model as-
sumptions and their impact on the model.

3.1. Model Assumptions
The following paragraph explains and discusses the as-

sumptions made in the MP-NC FRLM. Apart from adapting
previous assumptions by Capar et al. (2013) and Kluschke et
al. (2020), assumptions that have been used by Kluschke et
al. (2020) but are not explicitly stated in their assumption
list, have also been added. Furthermore, additional MP-NC
FRLM modelling presumptions, have been appended along-
side further suppositions, that provide a better understand-
ing of the model circumstances and possible use cases. The
assumptions are thus subdivided into General Modeling As-
sumptions, which define the general model setting and are
needed for obtaining a feasible solution, and Case Specific
Assumptions. The below-listed assumptions describe a more
general modelling framework than Kluschke et al. (2020),
as they have specifically tailored their model assumptions to
their case study.

The General Modeling Assumptions are listed below, mod-
ified and additional assumptions are highlighted in italics. It
is important to note that Assumptions 9 and 10 have already
been used by Kluschke et al. (2020).

Kluschke et al. (2020) do not address these assumptions
in their assumption listing, but chose to introduce them later
within their application context. In the interests of complete-
ness, they are added to the General Modeling Assumptions and
also highlighted in italics, as they have not yet formally ap-
peared in assumption form.

1. The traffic between an origin-destination pair flows on
the shortest path through the network.

2. The traffic volume between OD pairs is known in ad-
vance for all periods.

3. Drivers have full knowledge about the location of the
fuel stations along their path and refuel efficiently to
complete their trips. To minimize the number of refu-
elling stops on the road, drivers will always refuel the
maximum tank level until their last stop.

4. Only nodes of the network are considered as possible
refuelling facility locations.

5. All vehicles on the same OD path are assumed to be ho-
mogeneous in terms of maximal driving range, initial
fuel level and fuel consumption.

6. The fuel consumption is directly proportional to the
distance travelled.

7. Nodes and fuel stations are capacitated.
8. The initial fuel level and the ending fuel level have to

be known in advance for every path.

9. A station constructed at a node i will always have the
maximal possible size, and the station capacity, therefore,
equals the node-specific capacity limit.

10. The OD path is subdivided into lq = ceil
�

dq / θq

	

route
sections, with dq being the total distance of path q and θq
displaying the vehicle range. The amount of refuelling per
vehicle is similar for each node of the corresponding route
section if a station is built there. Each vehicle refuels once
per route section.

11. The distances between two connected nodes are suffi-
ciently small.

12. The number of periods is predetermined and each period
has an equal length.

13. Once a facility is built at a node i, it has to remain open
until the final period.

14. A periodic budget limits the number of fuel stations con-
structed per period.

15. The situation is modelled from a central planner’s per-
spective.

The first eight assumptions were taken from Kluschke et
al. (2020) with two minor adjustments so that further para-
metric specification is possible. Assumption 5 relaxes the pre-
sumption that all vehicles on all paths have to be homoge-
neous and represents the minimal vehicle requirements for
obtaining a feasible solution. While it is not possible to dif-
ferentiate between vehicles on one path, path specific vehicle
characteristics, like the maximal range or the fuel consump-
tion, can be respected. In the context of transportation, an
example of different vehicle characteristics on different OD
paths would be the use of different truck types for long-haul
transportation and local good distribution.

With a similar relaxation, Assumption 6 allows a path-
wise specification of the vehicles’ initial and ending fuel level.
As there are no conditions on the choice of the initial and end-
ing fuel levels, the siting of fuel stations at the origin and des-
tination nodes of paths is contrary to Kluschke et al. (2020)
allowed. Even though it is not necessary for obtaining a feasi-
ble solution, it is still reasonable to assume that drivers refuel
only the total trip distance and therefore end the trip with the
initial fuel level.

Assumption 9 defines that the capacity of a station will
always equal the maximum capacity of the corresponding
node. Although the MP-NC FRLM hereby applies the same
logic as Kluschke et al. (2020), the maximal node capacity
in the MP-NC FRLM is not unitary and can be defined node-
wise. Although the partial utilization of the maximal node
capacity is not possible in this case, it could theoretically be
modelled through different station sizes going along with ad-
ditional variables and constraints.

Assumptions 10 and 11 provide the foundation for the
heuristic calculation of the refuelling amount at a gas sta-
tion represented through the previously discussed parameter
riq. For the benefit of the model complexity, the refuelling
amount at node i on path q is estimated and not precisely cal-
culated through decision variables similarly to Kluschke et al.
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(2020). When the network edges are relatively long (com-
pared to the vehicle range) or the total trip distance of an
OD path is close to an integral multiple of the vehicle range
it can occur, that the number of refuelling occasions lq is not
sufficient for refuelling the path. In that case, it is advised to
incrementally increase the path specific lq value to be able to
cover the trip entirely. This peculiarity is further discussed in
the next section.

For formulating a multi-period optimization problem, the
number of considered periods has to be known in advance.
As dividing time into periods of equal length is common in
optimization models and general planning, Assumption 12
can be considered as a relatively standard assumption.

It is further assumed that a gas station, once opened, can-
not be closed or relocated due to the high cost involved in the
process (Assumption 13).

Assumption 14 limits the number of stations constructed
per period. Limiting the station numbers seems reasonable
because the construction of fuel stations is resource-intensive
and resources, like budget or labour, are limited. Finally, it
is essential to, once again, emphasize, that the model aims
at providing a plan for developing a refuelling infrastructure
over time from a central planner’s perspective. The MP-NC
FRLM in its current form is not suited for profit maximization
for, e.g., a gas station operating firm.

The Case Specific Assumptions are a non-definite set of as-
sumptions, that are made in the context of the application
case. They, for example, contain information about the pre-
sumed development of parameters over time, like the vehicle
flow on a path, or the definition of the sets. In the below-
presented base formulation of the MP-NC FRLM, only three
Case Specific Assumptions are considered. A more compre-
hensive list of possible Case Specific Assumptions and their
impact on the model can be found in section 2.3.4.

1. The vehicle flow is expected to rise periodically due to
an increase in the AFV market share.

2. The model mainly considers construction costs. Oper-
ating costs are not respected.

3. Different node capacities do not impact the facility con-
struction cost.

Considering the fact, that AFVs currently stand at the be-
ginning of their product life cycle and are mainly bought by
"Early Adopters", it seems reasonable to assume an increase
in market share and therefore a rise of the AFV vehicle flow
(Assumption 1). The MP-NC FRLM models the development
of alternative fuel refuelling structures from the perspective
of a central planner who constructs fuel stations respectively
subsidizes their construction. As the central planner is as-
sumed not to be the operator of the fuel stations, Assumption
2 limits the budgetary expense to the siting of the facilities.

Even though drastic differences in node capacity limits,
and thus large differences in the station sizes, have an impact
on the facility construction costs, it is not considered in this
model to reduce the estimation effort for parameters. The
further Case Specific Assumptions and the extended model in

section 2.3.4, on the other hand, do include the impact of
station capacity on construction costs.

3.2. Mathematical Formulation and Possible Problems
In the upcoming section, the mathematical formulation

of the MP-NC FRLM is presented as further explained. The
main differences to the node-capacitated FRLM by Kluschke
et al. (2020) are as follows:

• A maximal covering objective has been selected instead
of a set covering.

• A time module has been added to consider multiple
construction periods.

• A periodic budget was introduced, that limits the num-
ber of fuel stations constructed per period.

Furthermore, two problems of the formulation are discussed.
To maximize the path coverage it can occur, that even though
a majority of the paths is covered, only a small part of the
total flow is covered. Two possible solutions are the intro-
duction of a lower bound for periodic flow coverage in the
constraints and the maximization of the flow instead of the
path coverage. The second part of the problem discussion
examines specific parametric constellations, where the pre-
specified number of lq fuel stations are insufficient to cover
the OD trip.

max
∑

t ∈ T

∑

q ∈ Q

y t
q (3.1)

s.t.
∑

i ∈ Kq
j,k

z t
i ≥ y t

q∀ q ∈ Q, a j,k ∈ Aq, t ∈ T (3.2)

∑

q ∈ Q

f t
q p riq giq x t

iq ≤ ci z t
i ∀ i ∈ N , t ∈ T (3.3)

∑

i ∈ Kq
j,k

x t
iq = y t

q∀ q ∈ Q, a j,k ∈ Aq, t ∈ T (3.4)

∑

i ∈ N

x t
iq = y t

q lq∀ q ∈ Q, t ∈ T (3.5)

x t
iq ≤ z t

i ∀ i ∈ N , q ∈ Q, t in T (3.6)

z t
i ≤ z t+1

i ∀ i ∈ N , t ∈ T\{n} (3.7)

z t
i − z t−1

i ≤ kt
i∀ i ∈ N , t ∈ T\{1} (3.8)

z1
i ≤ k1

i ∀ i ∈ N (3.9)
∑

i ∈ N

o kt
i ≤ bt∀ t ∈ T (3.10)

∑

t ∈ T

kt
i ≤ 1∀ i ∈ N (3.11)

z t
i , kt

i ∈ {0, 1}∀ i ∈ N , t ∈ T (3.12)

0 ≤ x t
iq ≤ 1∀ i ∈ N , q ∈ Q, t ∈ T (3.13)

0 ≤ y t
q ≤ 1∀ q ∈ Q, t ∈ T (3.14)
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Sets
N Set of all nodes on the Graph G
Q Set of all OD pairs
T Set of all time periods
Aq Extended set of all critical arcs on the path

q ∈ Q from origin to destination
Kq

j,k Set of all potential station locations, that
can refuel the directional arc a j,k ∈ Aq

Variables
z t

i Binary Variable that equals to one, if a re-
fuelling facility is open at node i in time
period t

kt
i Binary Variable that equals to one, if a re-

fuelling facility is constructed at node i in
time period t

x t
iq Semi-Continuous Variable that indicates

the proportion of vehicles on path q that
are refuelled at node i in time period t

y t
q Semi-Continuous Variable that indicates

the proportion of flow served on path q in
time period t

Parameters
p Fuel efficiency / fuel consumption per ve-

hicle range
o Facility opening costs / construction costs
ci refuelling capacity at node i
dq total distance of path q
θq vehicle range of vehicles on path q
lq Number of refuelling occasions on path q

depending on the total path distance, lq =
ceil

�

dq / θq

	

bt Available budget in period t
f t
q Total vehicle flow on the OD path q in time

period t
giq Binary indicator, that is set to one, if node

i is a potential station location on path q
riq refuelled driving distance at node i on path

q

Contrary to Kluschke et al. (2020), the MP-NC FRLM does
not seek to minimize the total number of stations necessary
to cover 100 % of the flow. The objective function (3.1) aims
at maximizing the total number of refuelled paths over all
periods. Thus, the early coverage of paths is rewarded, and
a refuelling network is planned, that covers as many OD trips
as possible as early as possible.

Constraints (3.2) - (3.6) are similar to Kluschke et al.
(2020) except that it is now possible in (3.3) to set the node
capacity limits node-wise to be more responsive to the local
capacity restrictions.

Constraint (3.7) ensures, that once a facility is opened at
a node i, it has to remain open until the final period. Con-
straints (3.8) and (3.9) define, that a facility is constructed,
if it is either open in a period t, but has not been open in the
previous period or if it is open in the first period. Constraint
(3.10) states that the total amount spent on the construction

of fuel stations in a period t must be within the scope of the
budget of the corresponding period. According to (3.11), a
station can be constructed only once at a node over all pe-
riods. (3.12) - (3.14) conclude the model by defining the
decision variables.

Objective Function and Model Purpose
Following the logic of the objective function, the MP-NC

FRLM attempts to site fuel stations in a way that, at best, fa-
cilities contribute to refuelling multiple OD paths. In conse-
quence, the model tends to construct a network of connected
refuelled OD paths. As only the number of covered OD paths
and not the covered flow volume is taken into account, it is
possible, that even though a majority of the paths in a final
period T is covered, the share of refuelled flow might be rel-
atively low. This can be problematic, as a central planner,
on the one hand, aims at covering a wide area, but on the
other hand, wants as many drivers as possible to profit from
the constructed fuel stations. An exemplary situation demon-
strating this conflict is illustrated below.

Figure 6 shows a ten node network with the OD pairs
(1,5), (1,6), (7,5) and (8,10). The periodic budget is suf-
ficient to build one fuel station per period, and two periods
are considered in this case. While the flow on OD paths (1,5),
(1,6) and (7,5) amounts to two in every period, the flow on
(8,10) is considerably greater with a value of 100.

As can be seen in table 2, constructing stations at nodes 3
and 4 is the optimal solution of the problem, as it covers the
maximal possible amount of three OD paths while respect-
ing the budgetary constraints of constructing only one station
per period. For the optimal solution, it is irrelevant whether
station 3 or 4 is constructed first. In the final period, even
though 75 % of all OD trips are covered, only 5.67 % of the
total flow is served.

Two possible approaches to address this issue are:

• Setting a lower bound to the minimum flow covered
per period

A possible approach to respecting the flow volume
while maximizing the number of paths covered is the
introduction of a new constraint, that sets a lower
bound for the fraction of total flow covered in period t.
v t represents this new lower bound, with v t ∈ [0,1].

s.t.

∑

q ∈ Q
y t

q ∗ f t
q

∑

q ∈ Q
f t
q

≥ v t , ∀ t ∈ T (3.15)

When applying constraint (3.15) to the MP-NC FRLM,
the proper selection of v t is essential. In case the avail-
able budget is not sufficient to cover the predetermined
minimal fraction of flow, the model becomes infeasible.
While the dimensioning of v t falls to the preferences of
the central planner, the maximal lower bound is deter-
mined through solving the maximal flow covering for-
mulation of the MP-NC FRLM (c.p.). The formulation
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Figure 6: Exemplary display of potential problems with the max. path coverage objective function

Sets Potential Station Locations OD Trip Possible station combinations
K (1,5)

3,4 z1 z2 z3 (1,5) (z1,z4), (z2,z4), (z3,z4)

K (1,5)
4,5 z4 (1,6) (z3)

K (1,6)
3,6 z3 (7,5) (z4)

K (7,5)
4,5 z4 (8,10) (z9)

K (8,10)
9,10 z9

Table 2: Set Kq
j,k and potential facility combinations, that could cover the OD trips in the problem in figure 6

of the MP-NC FRLM including constraint (3.15) can be
found in Appendix A.

• Maximizing the flow coverage instead of maximiz-
ing the path coverage in the objective function

Another possible approach to considering the flow vol-
ume in the MP-NC FRLM is to weigh the OD paths
with the corresponding flow in the objective function.
Weighting the OD paths leads to a maximization of the
flow coverage instead of the number of paths covered.

max
∑

t ∈ T

∑

q ∈ Q

f t
q y t

q (3.16)

While the base model has the natural tendency to cre-
ate a coherent network of refuelled OD paths, the con-
nectivity of refuelled OD paths in the maximal flow
covering MP-NC FRLM solely depends on whether the
OD paths with a high flow volume are linked. As re-
fuelling paths with a higher flow volume are preferred
over covering OD trips, that share the same route for
most of their trip, the served OD paths can be scattered
throughout the network. Thus, the refuelled routes
are less likely to be interconnected in early construc-
tion stages, which, in turn, restrains the possibilities

of free-roaming travel within the underlying road net-
work. The formulation of the maximal flow covering
MP-NC FRLM can be found in Appendix A.

Parameter lq and the Coverability of Routes
Another potential problem for the functionality of the

model can be posed by the current definition of the parame-
ter lq. As mentioned above, it can occur, that in some cases lq
refuelling locations are not enough to cover an OD trip. Al-
though an insufficient number of ensured refuelling locations
does not lead to an infeasible model, the optimal allocation
of refuelling stations along the way becomes trivial, and the
path will not be respected during the optimization. An exem-
plary situation demonstrating this problem is shown below.

Figure 7 shows a five node network with a single OD pair
(1,5). The vehicle range is 200 km, the initial fuel range 100
km and the total trip length accumulates to 380 km. Accord-
ing to the above-defined formula, lq = ceil

�

dq / θq

	

= 2.
Although two stations are assigned to this path, three would
be necessary to cover the whole path. Due to the topologi-
cal structure of the underlying network, drivers would have
to refuel before every, but the first arc. In case the IFR was
lower than the length of the first arc, 100 km, even four sta-
tions would be needed to refuel the OD path.

In consequence it is not possible to cover the path with
lq = 2 stations and the optimal solution is therefore yq = 0.
It is important to note that this result is a feasible solution and
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Figure 7: Illustration of the problems with the definition of lq in the MP-NC FRLM.

does not violate the model constraints.
While the 380 km long OD trip can not be covered under

this parametric constellation, it is possible to refuel a similar
path with two fuel stations, after changing the arc lengths of
a3,4 and a4,5 (see figure 8).

While it has not been possible to identify non-coverable
paths before the calculation reliably, one can say, that in gen-
eral, lq fuel stations are insufficient to cover an OD path, if
the character respectively the length of the path edges make
extra refuelling stops necessary. Additional refuelling stops
become necessary, if the total amount of wasted but refilled
fuel, exceeds a certain critical level. The amount of fuel
wasted equals the total overflowing amount at the refuelling
stops (fuel overflowing is further explained within the con-
text of the definition of the parameter riq in section 2.2.).

The critical level respectively, the tolerable refuelling er-
ror margin declines, the closer the total trip distance gets to
the next greater integral multiple of the vehicle range. In
the extreme case, that the path length is only infinitesimally
shorter than an integral multiple of the vehicle range, the er-
ror margin becomes zero. Then, every bit of fuel is needed
to reach the destination with the IFR left in the tank. There-
fore, the path edges would need to be entirely in line with
the refuelling, meaning that every vehicle has to arrive at the
gas stations with an entirely empty tank.

This issue becomes more evident when taking a closer
look at the borderline example in figure 9.

Figure 9 shows two similar OD paths. The length of
the first one is infinitesimally shorter than the doubled vehi-
cle range, whereas the second path length is infinitesimally
longer. In consequence, lq equals two in the first case and
three in the second case.

As can be seen in the figure, path one is not coverable, as
three gas stations are needed, while only two are allowed by
lq. Two refuelling stops are insufficient because drivers need
to fill up at z3, even though they still have enough fuel in the
tank to travel another 100 km. If the arcs were perfectly in
line with the refuelling, meaning a3,4 = 100 and a4,5 =

100 − ξ, the OD trip would be fully refuelable. On the
other hand, path two is fully coverable and has the maximal
tolerable refuelling error, as its trip distance is as far away
from the next greater integral multiple of the vehicle range
as possible.

With the concept of non-coverable paths in mind, it is
possible to find an upper bound for the number of necessary
gas stations on a path. Therefore a generic path setting can
be constructed, that maximizes the amount of overflowing
by forcing the vehicle to refuel before every arc of the path,
but one. Within this setting, every pair of adjacent arcs has
to have a combined length that is greater than the vehicle
range, except for the last pair of arcs. This way, every path
length is representable in such a form.

In the exemplary path setting in figure 10, the length of
every pair of arcs, except for the last one, is subdivided into
vrange

2 and vrange
2 + ξ. The IFR is insufficient, to travel the

first arc, so vehicles have to refuel right at the beginning.
Although the value of the IFR does not influence the upper
bound, it does influence the location of the stations. In case
the IFR is sufficient to travel the first arc of the path, vehicles
have to refuel at every node but the first one. If the IFR is
smaller than the length of the first arc, vehicles fill up at every
node except for the destination node.

For the case, that the IFR equals the length of the first
arc, it depends on the length of the two final arcs, whether
vehicles refuel at the destination node.

The upper bound of lq is calculated as following with θq
representing die vehicle range on path q and dq representing
the total path distance of path q:

lmax
q = ceil

�

dq

0,5 θq

�

(3.17)
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Figure 8: Illustration of the problems with the definition of lq in the MP-NC FRLM 2

Figure 9: Borderline Case for the tolerable refuelling error margin in the MP-NC FRLM.

Hence, the difference between lq and its maximal value
is:

∆max = lmax
q − lq (3.18)

= ceil

�

dq

0,5 θq

�

− ceil

�

dq

θq

�

(3.19)

= ceil

�

dq

θq

�

(3.20)

In consequence, the maximal possible discrepancy be-
tween lq and its maximal value grows, the greater the total
path distance and the smaller the vehicle range is.

The search for a better path-specific calculation method
for lq has not yet been successful, but would be of great ben-
efit for the model. As lq constitutes the number of refuelling
occasions on a path q, it is crucial to find a method, so that
lq matches precisely the number of necessary fuel stations,
because every excess fuel station built unnecessarily stresses

the periodic budget.
Although the current calculation method does not achieve

fitting results for every OD path, it will work for most, under
the assumption of sufficiently short edges. Until there is a
better method, it is advised to keep a closer look at the OD
paths with a length close to an integral multiple of the vehi-
cle range, check for their coverability and manually increase
lq as necessary, even though this might be laborious on larger
problems.

3.3. Calculation of Sets and Parameters
In the previous section, the reader was familiarised with

the mathematical formulation of the MP-NC FRLM and its
main differences to Kluschke et al. (2020)’s formulation. The
second part discusses two problems that go along with the
model formulation: For once the difficult choice between a
maximal path and maximal flow covering problem and for
second the illustration of topological circumstances, where
lq facilities are insufficient to cover an OD trip.
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Figure 10: Construction of the lq upper bound in the MP-NC FRLM.

The following section thematizes the calculation of
sets and parameters in the multi-period node-capacitated
FRLM. Although the model components, that require a pre-
calculation, namely the set Kq

j,k and the parameter riq, have
been discussed before, their computation differs from Capar
et al. (2013) and Kluschke et al. (2020).

For the calculation of Kq
j,k, the MP-NC FRLM follows

Jochem, Szimba, and Reuter-Oppermann (2019)’s idea of
splitting the pre-generation of the set into two parts. In the
first part, the set of critical arcs Aq is derived by removing all
non-critical arcs from the set of all arcs on path q. Besides, a
new virtual destination arc technique is applied to Aq to ad-
dress the shortcomings of Kluschke et al. (2020)’s Adjusted
Distance method in guaranteeing the equality of starting and
ending fuel levels. In the second part, Kq

j,k is calculated by
determining all possible refuelling locations for the critical
arcs in Aq.

Furthermore, an improved algorithm for the calculation
of the parameter riq is presented. The new algorithm is more
compact and solves a shortcoming in Kluschke et al. (2020)’s
route sectioning, which can lead to a violation of the initial
equals ending fuel level assumption.

Extended Set of all Critical Arcs Aq
The calculation of the extended set of critical arcs Aq is

subdivided into two parts. In the first step, a new virtual arc
technique is applied to Aq to ensure that the initial and ending
fuel levels can be identical. The technique adds a virtual arc
with the length of the initial fuel range (IFR) to each path
that has to be fully travelable by the vehicles. In the second
step, the set of critical arcs is determined by removing all
non-critical arcs from Aq, according to Jochem et al. (2019).

In the first part of the Aq calculation, a virtual arc with
the length of the initial fuel range is added at the end of each
path q and thus appended to Aq. Following the addition, the
new virtual arc has to be treated as a real arc, although vehi-
cles will end their OD at the OD path’s destination node. In
the end, the remaining fuel in the tank must equal the exact
amount necessary to fully travel the virtual arc. Adding this

virtual arc and respecting it in the Kq
j,k serves as a measure to

ensure that the initial fuel level equals the ending fuel. This
method is used instead of the Adjusted Distance method by
Kluschke et al. (2020), as its use can lead to an infeasible
model in some cases, which is illustrated below.

Problems of the Adjusted Distance method
As demanded in Assumption 8, drivers have to refuel in

such a way, that they do not only reach the destination node
but reach it with the initial fuel level left in the tank. Kluschke
et al. (2020) solve this difficulty, through artificially prolong-
ing the last arc of the OD paths.

While vehicles refuel sufficiently to exactly reach the des-
tination node via the adjusted distance, drivers end the trip
with the initial fuel level left in the tank, as the actual dis-
tance of the last arc is shorter than the Adjusted Distance.
The Adjusted Distance is calculated as follows:

ADq = dorigin,i + di,destination + IFRq − DOq

The Adjusted Distance consists of the path distance from
the origin to node i, (dorigin,i), the length from node i to the
destination (di,destination), the initial fuel range (IFRq) and the
access distance from the origin node to the network (DOq).
DOq is a case-specific parameter, that only has a value > 0,
if the origin node does not lie within the examined network.

From the pseudo-code in figure 11 follows, that a node
i counts as a potential station location, if the Adjusted Dis-
tance from i to the destination node is smaller than the vehi-
cle range θq:

di,destination + IFRq − DOq ≤ θq

In cases, where i is the starting node of the last arc of a
path q and di,destination + IFRq − DOq > θq, no node satisfies
the condition for being a potential station. In consequence,
the final arc, and therefore the whole path, is not refuelable
and the model is hence infeasible. As Kluschke et al. (2020)
applied their model to cases with heavy-duty vehicles, that
have a range of 800 km and an initial fuel level around 50
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Figure 11: Implementation of the Adjusted Distance method by Kluschke et al. (2020).

%, a situation where no node satisfies the condition for re-
fuelling the last arc of a path never occurred. A possible sit-
uation, where the last arc is not refuelable, is illustrated in
figure 12.

Figure 12 shows a five node network similar to the one in
figure 14, except, that in this example, the initial fuel range
is 150 km. Both origin and destination node, lie in the con-
sidered network. DOq is, therefore, 0.

The constraint for node z4 to be a potential station loca-
tion, that can refuel the final arc a4,5, is as follows:

60 km (di,destination) + 150 km (IFRq) ≤ 200 km

As this inequality is not right for the case-specific values,
neither z4 nor other nodes (di,destination is greater for other
nodes) can refuel the final arc. Therefore the whole path q is
not refuelable.

Extended Set of all Critical Arcs Aq - Step 1
The shortcoming of the Adjusted Distance method is

solved in the MP-NC FRLM by adding a virtual arc with the
length of the initial fuel range at the end of each trip. Con-
trary to Kluschke et al. (2020), the ending fuel range is not
seen as a part of the last arc. It is rather seen as an own
edge at the end of the trip, that has to be travelled. In conse-
quence, an own set Kq

j,k is created for the virtual last arc. As
the destination node of the trip is then the starting node of
the virtual edge, it is a potential station location for refuelling
this virtual arc. That way, all initial fuel levels, including 100
%, can be modelled. Contrary to Kluschke et al. (2020), it
is, therefore, possible to model cases with private refuelling
infrastructure and high IFRs with the MP-NC FRLM. One
example would be BEV passenger car cases, where vehicles
start fully loaded, as they can be charged at home.

Figure 13 shows the addition of the virtual arc aVD to the
OD trip from the previous example in figure 12.

Extended Set of all Critical Arcs Aq - Step 2
When removing all non-critical arcs in the second part

of the Aq calculation, Jochem et al. (2019), unlike other au-
thors, not only consider nodes within the initial fuel range as
non-critical. For the case, that there is only one valid site for

a fuel station zi , that can refuel a critical arc a j,k on a path q,
it is certain, that this fuel station zi will be built. If a j,k is not
the last arc of the path and zi therefore not the last refuelling
stop on the route, it is also known, that drivers will refuel
the maximal tank level according to the refuelling strategy
(Assumption 3). In consequence, the travelability of all a j,k ’s
subsequent arcs al,m, that lie within the vehicle range of zi , is
guaranteed. Hence, these subsequent arcs can be considered
as non-critical and can as well be deleted from the set Aq.

The pseudo-code for the removal of all non-critical arcs
from the set Aq is displayed in code Listing 5. For further il-
lustration, a flowchart of the algorithm is added to Appendix
A.

1 for all OD trips q ∈ Q:
2 create an empty delete-items} list for all non -

critical arcs on Aq

3 for all arcs a j,k ∈ Aq :
4 # arcs within the vehicle range are
5 deleted from Aq

6 if arc a j,k is travelable with the initial
7 fuel level :
8 add a j,k to the delete-items list
9 else:

10 if a facility at node i is the only
11 valid possibility to refuel a j,k :
12 add all arcs al,m ,with m > l ≥ k,
13 to the delete-items list that
14 are as well refuelled by the fuel
15 station at node i and are not the
16 last arc on path q
17 remove all arcs from the delete-items list
18 from Aq

Code Listing 5: Algorithm for determining the set of neces-
sary arcs Aq in the MP-NC FRLM

As can be seen in the pseudo-code, for every new path q,
that the algorithm iterates over, an empty delete-items list is
created. Every time the algorithm identifies an arc on path q
as non-critical, the arc is added to this list. After iterating over
all arcs of the extended path q, the arcs on the delete-items list
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Figure 12: Permissibility problem of the Adjusted Distance method by Kluschke et al. (2020).

Figure 13: Addition of a virtual arc in the new Aq calculation method.

are removed from the set Aq, before the algorithm continues
with the next path. It is important to note, that although it
is possible to delete the non-critical arcs directly after their
identification, removing items from a list, that is currently be-
ing iterated over will most likely produce non-desired results.
Therefore the delete-items list functions as temporary storage
so that the non-critical arcs can be deleted from the set after
iterating over it. Thus results are not negatively impacted.

For a better understanding of the algorithm, that removes
the non-critical arcs from Aq, its functionality is illustrated in
a simple example.

Figure 14 shows a 320 km long, five node network with a
single OD pair (1,5) and the newly added virtual destination
node from the first part of the Aq calculation. The maximal
vehicle range is 200 km, and the initial fuel range 150 km %.
To convert Aq from the set of all arcs on path q to the set of
critical arcs, all non-critical arcs have to be removed. As z2
is the only station location, that can refuel the arc a2,3, it is
marked as a certain station location. Hence, all arcs within
vrange of the certain station are travelable and therefore non-
critical. Table 3 shows the arc-wise iteration of the algorithm
along with the changes in the delete-items list.

Set of all Potential Station Locations Kq
j,k

In the previous paragraph, the set of critical arcs Aq was
obtained through appending a virtual arc with the length of

the IFR at the end of each trip and afterwards removing all
non-critical arcs from Aq. In the following, the Aq is used to
calculate Kq

j,k.

The MP-NC FRLM algorithm for determining Kq
j,k equals

the Identifying potential station locations sequence of Kluschke
et al. (2020)’s Kq

j,k generation algorithm, which is marked
blue in the flowchart in figure 22 (Appendix A). While
Kluschke et al. (2020) iterate over every node on the way
from origin to the destination node of the critical arc, to
see whether it qualifies as a potential station location, the
below-presented algorithm takes a different approach.

Instead of iterating forwards from the origin, the algo-
rithm goes backwards on the path from the destination node
of the examined critical arc a j,k. If a node i is

• within the vehicle range of the destination node of the
critical arc and,

• if the node qualifies as a potential station location
(modelled through the parameter giq),

it is added to the set Kq
j,k.

When the algorithm reaches the first node, that is out-
side the vehicle range, it breaks the iteration and moves to
the next critical arc, as all succeeding nodes would also be
outside the vehicle range.
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Figure 14: Usage of certain station placements on OD paths to identify further non-critical arcs

Step Arc delete-items list Explanation

1 a1,2 {a1,2}
a1,2 lies within vehicle range and is not the last
arc of path (1,5)
->add to delete-items

2 a2,3 {a1,2, a3,4 }

As a station at z2 is the only possibility to refuel
the arc a2,3, subsequent arcs of a2,3
are checked for their criticalness
1) a3,4 is within vrange of z2 and not the last arc
of path (1,5)
->add to delete-items
2) a4,5 is not within vrange of z2

3 a3,4 {a1,2, a3,4 } a3,4 is already in the delete-items list
4 a4,5 {a1,2, a3,4 } a4,5 is not within vrange of z2 and therefore critical
5 aV D {a1,2, a3,4 } aV D is not within vrange of z2 and therefore critical

6 Aq = {a2,3, a4,5, aV D}
All arcs from the delete-items list are removed
from Aq

Table 3: Set of all critical arcs Aq of the example in figure 14

The pseudo-code for the generation of the set Kq
j,k is given

below. A flowchart of the algorithm can be found in Appendix
A.

1 for all OD trips q ∈ Q:
2 for all arcs a j,k ∈ Aq :
3 for all nodes i on the reversed path q
4 with i ≤ k:
5 if distance (i,j) ≤ vrange and
6 a potential station location :
7 add node i to Kq

j,k

8 else:
9 break

Code Listing 6: Algorithm for determining the set Kq
j,k in the

MP-NC FRLM

Refuelled Driving Distance rq
i

The last part illustrated the pre-generation process of the
set Kq

j,k, which is split into the calculation of the set of crit-

ical arcs Aq and the computation of Kq
j,k. While the calcula-

tion of Aq and Kq
j,k in the MP-NC FRLM follows a different

approach than Kluschke et al. (2020), the algorithm for the
generation of riq adapts and improves Kluschke et al. (2020)
pre-calculation process. The new and improved algorithm is
more compact and solves existing problems by harmonizing
the route sectioning.

As described in section 2.2.2, Kluschke et al. (2020)
subdivide the OD paths for the estimation of the refuelling
amounts, riq, in lq route sections. A vehicle is supposed to
refuel once per section and fill up the maximal tank capacity,
respectively enough fuel, to reach the end of the last section
with the initial fuel level. When refuelling once per route
section, the vehicles fill up in total the exact amount of fuel
consumed during the OD trip.

Although this works well for most cases with lq = 1 and
lq = 2, the definition of the route sections for lq > 2 can
cause vehicles to refuel twice in the penultimate, but not at all
in the last route section. In consequence, vehicles refuel more
than the amount of fuel consumed on the trip. Therefore
Kluschke et al. (2020)’s assumption, that each vehicle starts
and ends its trip with the same fuel level is violated, and more
than the necessary amount is refuelled. Depending on the
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path’s flow value, this can lead to greater distortions in the
degree of capacity utilization and hence the model outcome.

As can be seen in the commented pseudo-code in figure
15, Kluschke et al. (2020) define the first route sections for
the cases with multiple refuelling stops, lq = 2 and lq ≥ 2,
differently. lq = 2’s first route section has the length of
the initial fuel range and is therefore fully travelable from
the origin. Contrary to that, all of lq > 2’s route sections,
except the last one, are defined by the maximal vehicle range,
which makes the first route section not fully travelable with
the initial fuel level, unless the vehicle’s tank is full at the
beginning.

In case the total trip length is close to lq θq km, lq ≥ 2,
with the destination node being the only node in the last sec-
tion, all refuelling opportunities for refuelling the last arc lie
in the penultimate section, which leads to a double refuelling
there. As the applied refuelling logic causes drivers to fill up
maximal tank capacity in every section except for the last, the
ending vehicle range is lq θq − dq higher than the initial fuel
range. For better illustration, an example is given below.

Figure 16 shows a six node network with the OD trip (1,6)
of length 450 km. The vehicle range is 200 km and the initial
fuel range 100 km. Thus, lq is 3, and the route is subdivided
according to Kluschke et al. (2020)’s algorithm. As the ve-
hicle is supposed to finish the trip with an ending fuel range
of 100 km, possible refuelling locations can only be within
100 km of the destination node 6. Therefore z5 is the only
location for refuelling the final arc of trip q, but lies in the sec-
ond, and not the last route section and will refill the maximal
vehicle range, 200 km.

When optimizing this problem with the solver Gurobi, the
optimal solution is the construction of stations z2, z4 and z5.
Thus, drivers would refuel 600 km instead of the trip length
of 450 km.

The here proposed algorithm for the generation of the riq
in Code Listing 7 addresses this shortcoming by harmonizing
the route sectioning for all paths with lq ≥ 2 ß and refor-
mulating the algorithm compactly. The primary adjustment
is that the first route section for lq > 1 will always have the
length of the initial fuel range and vehicles refuelling at any
node within this first section will fill up the maximum tank
capacity. Furthermore, all potential route sections between
the first and the last one (case lq > 2) are defined by the
vehicle range, and drivers will refuel the maximum tank ca-
pacity as well. Like in Kluschke et al. (2020), drivers will fill
up the difference between the total trip distance and the sum
of the previous refuelling amounts on the trip.

Figure 17 shows the route sectioning of the OD trip from
figure 16 according to the improved algorithm for determin-
ing the parameter riq. While z2, z4 and z5 remain the optimal
station location in this problem, due to the new definition of
the route sections, the refuelling amount is equal to the total
trip distance. The initial and ending fuel range are therefore
equal.

1 for all OD trips q ∈ Q:
2 for all nodes i on path q:
3 if the number of refuelling occasions
4 lq ≤ 1:
5 riq = total path distance
6 else:
7 if the distance (origin ,i) ≤ ( initial
8 fuel range + vehicle range *
9 max {0, lq - 2}:

10 riq = vehicle range
11 else:
12 riq = total path distance -
13 vehicle range * (lq - 1)

Code Listing 7: Algorithm for determining the parameter riq
in the MP-NC FRLM

3.4. Measuring the MP-NC FRLM’s Additional Benefit
In the previous section, the calculation of sets and param-

eters for the MP-NC FRLM was illustrated. Although no addi-
tional set respectively parameter that requires pre-generation
was added compared to Kluschke et al. (2020), their compu-
tation differs. The set Kq

j,k is calculated in two steps. In the
first step, a virtual arc is added to Aq before removing all non-
critical arc from the set. Subsequently, Kq

j,k is generated on
bases of Aq. The new riq pre-generation algorithm is more
compact than Kluschke et al. (2020)’s formulation and has
harmonized the route sectioning. For lq ≥ 1 the first route
section now has the length of the IFR. For assessing the ad-
ditional benefit of the MP-NC FRLM over non-multi-period
models, the following paragraph introduces two of the most
frequently found evaluation concepts, the "Value of the Multi-
period Solution" and the "Value of Multi-Period Planning" and
discusses their calculation in the context of the MP-NC FRLM.
VMPS and VMPP respectively display the relative value differ-
ence between the MP-NC FRLM and pre-specified comparison
models.

Value of the Multi-Period Solution
As stated in section 2.1.4, "Assessment of multi-period

models", the VMPS is defined as the relative improvement
of a multi-period model compared to its static counterpart.
Laporte et al. (2015) While there are several ways to define
the counterpart, for the application in context with the MP-
NC FRLM, it is calculated as follows:

In the first step, the static counterpart is defined as the
optimal solution of a single period NC-FRLM, that consid-
ers only the last period of the planning horizon. While the
time-invariant parameters remain constant and the model
flow equals the flow of the last period f n

q , the budget in the
counterpart has to be altered so that the potential amount of
constructed stations in the dynamic and the static problem
are equal. The outcome is a set of facilities that maximizes
the value of the objective function in the static counterpart.

For the static counterpart to be comparable to be the MP-
NC FRLM solution, it is necessary to determine a step-wise
construction plan for the set of optimal facilities, that respects
the budgetary constraints bt for each period. Therefore, the



A. Böhle / Junior Management Science 6(4) (2021) 790-825814

Figure 15: Definition of the lq route sections in Kluschke et al. (2020).

Sets
T = n Only the last period n of the planning hori-

zon is considered in the static counterpart
Parameters

b =
n
∑

t = 1
bt The budget of the static counterpart is the

sum of the periodic budgets from periods
1 to n

fq = f n
q The vehicle flow in the static counterpart

equals the vehicle flow in the last period
t = n

MP-NC FRLM is optimized with the set of optimal facilities
from the static counterpart being the only possible station lo-
cations. In case the set of optimal facilities in the multi-period
model and the static counterpart are identical, the solution
values will be identical as well.

In the last step, the Value of the Multi-Period Solution
is obtained by subtracting the value of the objective func-
tion of the static counterpart MP-NC FRLM from the value of
the objective function of the MP-NC FRLM and standardizing
the difference with the counterpart’s solution. For a VMPS
greater than zero to occur, it is necessary, that the set of op-
timal facilities in the MP-NC FRLM and its counterpart dif-
fer. The variable V represents the value of the multi-period
model, respectively of its counterpart.

Nonetheless, a difference in the set of optimal facilities
does not necessarily mean that there is a VMPS greater than
zero. On the other hand, if the two sets are identical, the
VMPS is always zero. After all, the static counterpart can
be seen as a building-site constrained version of the MP-NC

FRLM. Its solution value will be lesser than or equal to the one
of the original model with the full set of available building
sites.

VMPS=
VMP−NC−FRLM − VCounterpart

VCounterpart
, VMPS ≥ 0

Value of Multi-Period Planning
The value of Multi-Period Planning quantifies the addi-

tional benefit of considering future periods while planning,
contrary to continuously solving static problems for each
period, given the results of the prior calculations. Although
this definition would fit for the Forward-Myopic and the
Backwards-Myopic method alike, it seems, from an eco-
nomic point of view, more reasonable to optimize from the
current period on forwards.

For retrieving comparable results and measuring the ad-
ditional benefit, it is essential to assume that demand and
economic data can be accurately predicted for every consid-
ered period. The Value of Multi-Period Planning is obtained
by subtracting the solution value of the F-Myopic method
from the value of the multi-period model and standardizing it
with the F-Myopic value. The variable V represents the value
of the multi-period model, respectively of its counterpart.

Compared to the multi-period model, its counterpart for
the VMPP calculation can be considered as a greedy algo-
rithm, as it makes the locally optimal choice for each period.
Hence, the VMPP is zero, only if the locally optimal station
placements in each period are as good as respectively identi-
cal to the siting choices made when considering other periods
as well.
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Figure 16: Illustration of the problem of the lq definition by Kluschke et al. (2020)

Figure 17: Implications of the adjusted lq calculation method.

VMPP=
VMP−NC−FRLM − VF−Myopic

VF−Myopic
, VMPP ≥ 0

3.5. Further Case-Specific Assumptions and their Impact on
the model

In the previous chapter, the two evaluation concepts for
multi-period models, the VMPS and the VMPP have been in-
troduced and adapted for assessing the MP-NC FRLM’s ad-
ditional benefit. The VMPS displays the relative value dif-
ference between the MP-NC FRLM and its static counterpart.
On the other hand, the VMPP displays the difference between
the MP-NC FRLM and a corresponding F-Myopic model.

As briefly discussed in section 2.3.1, assumptions for the
multi-period node-capacitated FRLM are subdivided into two
groups. While the General Modeling Assumptions define the
general model setting and are needed for obtaining a feasi-
ble solution, the Case Specific Assumptions are a non-definite
set of assumptions, that are made in the context of the ap-
plication case. Although only three Case Specific Assump-
tions are made in the base case defined in section 2.3.2, a

more comprehensive list of possible further situational as-
sumptions and their impact on the model is presented below:

1. The vehicle flow is expected to rise periodically due to
an increase in the AFV market share.

2. The driving range is assumed to increase due to tech-
nological advances.

3. Fuel station construction costs are assumed to be linear
depending on the storage capacity.

4. Fuel station construction costs are influenced by local
characteristics of the building site (e.g. topography).

5. Fuel station construction costs are expected to decline
over time due to economies of scale and learning ef-
fects.

6. Certain nodes (e.g. origins, destinations, route inter-
sections) are discarded as station locations.

7. refuelling is only required on trips longer/shorter than
XX km.

The MP-NC FRLM considers the OD flows of alternative
fuel vehicles, which currently stand at the beginning of their
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product life cycle. It is possible to include changes in the
vehicle flow into the model by adding a temporal dimension
to the vehicle flow on path q. The two main drivers of the
AFV flow on path q in period t, f t

q are

• the total vehicle flow and

• the AFV market share.

As both drivers, total vehicle flow and AFV market share, are
expected to rise all around the world, Ahlswede (2020); FEV
(2018), it is reasonable to assume an increase in AFV flow
like in Assumption 1.

Assumption 2 thematizes the possible changes in vehi-
cle range over time, which might be worth considering when
applying the MP-NC FRLM to a BEV case. In the model, the
vehicle range consists of

• the maximal tank/battery capacity and

• fuel/energy consumption per km.

An increase in the vehicle range has multiple implications for
the model and causes the addition of a temporal dimension
to Aq, Kq

j,k, riq, lq and p. While adding an index t to the fuel
consumption parameter p seems rather obvious, the neces-
sity for adjusting the rest of the parameters mentioned above
becomes clearer at a second glance.

When determining the set of critical arcs from Aq, all arcs,
that lie within the vehicle range of the origin node or another
certain fuel station, are considered uncritical and therefore
removed. Hence, the set of critical arcs must be updated ev-
ery time, the vehicle range changes.

The set Kq
j,k is influenced by a changing vehicle range not

only through an adjusted set of critical arcs At
q. Furthermore,

a greater vehicle range can enlarge the set of potential facility
locations, that can refuel an arc a j,k on path q. Therefore an
updated set Kq

j,k is needed for every period t ∈ T .
lq is the number of necessary refuelling stops on a path

q. It is calculated by rounding up the solution of dividing the
total path distance through the vehicle range and thus needs
a temporal dimension as well. Apart from ensuring the num-
ber of refuelling occasions on a path in a model constraint,
lq and the vehicle range influence the route sectioning when
calculating the parameter riq. Among possible changes in the
route sectioning, the values for riq change alongside the ve-
hicle range.

Like in the base model, it is still assumed, that the con-
structed fuel station at a node i will always have the maximal
possible capacity (= node capacity). While the base model
does not consider the impact of station capacity on construc-
tion costs, it is possible to do so. Assumption 3 presumes
a correlation between the capacity of a station and its con-
struction costs and assumes it for simplification purposes to
be linear. In consequence the construction cost of a fuel sta-
tion is calculated as follows: oi = ci cost per kg stored H2.

To provide a more accurate estimation of the utilized bud-
get, Assumption 4 gives the possibility to respect the impact

of local characteristics of the building site on the station cost
at a node i via a parameterαi , αi ≥ 0. An exemplary factor
with an impact on the construction costs is the topography of
the building land.

While it is more expensive to construct a station on hilly
ground compared to the baseline cost oi , with α > 1, a plane
construction site might be cost-wise more attractive, α < 1.
Possible other local factors influencing the construction costs
could be the energy grid connection, forest vegetation or pre-
existing stations.

Assumption 5 considers the possibility of economies of
scale and learning effects, that might arise due to a large
number of alternative fuel stations constructed within the
project time. The parameter β t , with β t ∈ {0,1}, displays a
time-dependent cost reduction factor for oi . Like in Kluschke
et al. (2020), it might be desired to discard specific nodes,
e.g. origins, destinations or route intersections as a station
location. (Assumption 6) Discarding can be achieved by set-
ting the parameter giq for the discarded locations to zero.
Assumption 7 restricts the set of all OD paths Q, considering
only paths, whose lengths exceed respectively are below a
certain threshold. Limiting the set of considered trips can be
reasonable when focusing, e.g. on long-haul transportation
or reducing Q to benefit the solving time of the model, like
in Kluschke et al. (2020).

The following formulation is an extended version of the
MP-NC FRLM that respects the above mentioned, possible
Case Specific Assumptions.

max
∑

t ∈ T

∑

q ∈ Q

y t
q (3.21)

s.t.
∑

i ∈ Kq,t
j,k

z t
i ≥ y t

q∀ q ∈ Q, a j,k ∈ Aq, t ∈ T (3.22)

∑

q ∈ Q

f t
q pt r t

iq giq x t
iq ≤ ci z t

i ∀ i ∈ N , t ∈ T (3.23)

∑

i ∈ Kq,t
j,k

x t
iq = y t

q∀ q ∈ Q, a j,k ∈ Aq, t ∈ T (3.24)

∑

i ∈ N

x t
iq = y t

q l t
q∀ q ∈ Q, t ∈ T (3.25)

x t
iq ≤ z t

i ∀ i ∈ N , q ∈ Q, t in T (3.26)

z t
i ≤ z t+1

i ∀ i ∈ N , t ∈ T\{n} (3.27)

z t
i − z t−1

i ≤ kt
i∀ i ∈ N , t ∈ T\{1} (3.28)

z1
i ≤ k1

i ∀ i ∈ N (3.29)
∑

i ∈ N

αi β
t oi kt

i ≤ bt∀ t ∈ T (3.30)

∑

t ∈ T

kt
i ≤ 1∀ i ∈ N (3.31)

z t
i , kt

i ∈ {0, 1}∀ i ∈ N , t ∈ T (3.32)

0 ≤ x t
iq ≤ 1∀ i ∈ N , q ∈ Q, t ∈ T (3.33)

0 ≤ y t
q ≤ 1∀ q ∈ Q, t ∈ T (3.34)
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Sets
N Set of all nodes on the Graph G
Q Set of all OD pairs
T Set of all time periods
Aq Set of all directional arcs on the path q ∈ Q

from origin to destination
Kq,t

j,k Set of all potential station locations, that can
refuel the directional arc a j,k ∈ Aq in period
t

Variables
z t

i Binary Variable that equals to one, if a refu-
elling facility is open at node i in time period
t

kt
i Binary Variable that equals to one, if a refu-

elling facility is constructed at node i in time
period t

x t
iq Semi-Continuous Variable that indicates the

proportion of vehicles on path q that are re-
fuelled at node i in time period t

y t
q Semi-Continuous Variable that indicates the

proportion of flow served on path q in time
period t

Parameters
pt Fuel efficiency / fuel consumption per ve-

hicle range in period t
oi Facility opening costs / construction costs

for a facility at node i, oi = ci ∗ cost per
kg stored H2

v t Fraction of the minimal amount of flow
covered in period t

ci refuelling capacity at node i
dq total distance of path q
θq vehicle range of vehicles on path q
lq Number of refuelling occasions on path q

depending on the total path distance, lq =
ceil

�

dq / θq

	

bt Available budget in period t
f t
q Total vehicle flow on the OD path q in time

period t
giq Binary indicator, that is set to one, if node

i is a potential station location on path q
riq refuelled driving distance at node i on path

q
αi Semi-Continuous parameter, that depicts

the impact of local factors (e.g. topography
of the building land,...) on the construction
cost of a station

β t Semi-Continuous parameter, that indicates
the general cost reduction for construction
fuel stations compared to t = 0 due to
learning effects and possible economies of
scale

4. Numerical Experiment: Additional Benefit and Com-
putational Complexity

The previous chapter introduced the new FRLM extension
of Capar et al. (2013)’s and Kluschke et al. (2020)’s models,
the multi-period node-capacitated FRLM, to the reader. The
section discussed the new MP-NC FRLM model assumptions
and presented the model’s mathematical formulation. After
addressing two modelling problems, the calculation of the
sets Aq and Kq

j,k and the parameter riq was illustrated. The
chapter concludes by adapting the two multi-period model
evaluation concepts, the VMPS and the VMPP, to the MP-NC
FRLM and discussing further case-specific assumptions and
their impact on the model.

To understand the implications of the MP-NC FRLM and
to identify cases and parametric constellations, where the
use of the MP-NC FRLM provides the most additional ben-
efit, a numerical experiment is conducted. The two applied
assessment criteria are the concepts of the Value of the Multi-
Period Solution (VMPS) and the Value of Multi-Period Planning
(VMPP), which are defined above in section 2.3.4. In the first
step, the VMPS and the VMPP are illustrated through an ex-
emplary network. After proving the existence of a VMPS,
respectively a VMPP greater than zero, several hypotheses
about parametric constellations driving the values of the as-
sessment criteria are discussed. As the benefits of applying
a multi-period model come at the cost of increased complex-
ity and hence, a higher solving time, the final paragraph will
assess the maximal complexity for the problem to be solved
efficiently within ten minutes.

4.1. Illustrating the Benefits: VMPS and VMPP in the MP-NC
FRLM

In the following, the VMPS and the VMPP are illustrated,
each through an exemplary network. In a first step, the ex-
istence of a VMPS, respectively VMPP, greater than zero is
proven, before taking a closer look at why and how VMPS and
VMPP greater than zero occur and which factors might ben-
efit these two assessment values. For a better understanding
of the VMPS and VMPP, the chosen examples will only have
a value greater than zero for the assessment criterion, that
is examined in the particular paragraph. While it is likely,
that larger problems have both, a VMPS and a VMPP greater
than zero, this is also possible on smaller networks, as shown
in Appendix A (Appendix A: network in figure 25, OD flows
in table 12, solution values in table 13). All of the below-
presented problems were solved with Gurobi Version 9.0.

Value of the Multi-Period Solution
Figure 18 shows the thirteen node network, which is used

for further examining the VMPS. There are seven OD trips, of
which the four trips, (1,5), (1,6), (1,7) and (1,13), share the
same edges for their first 350 km. The maximal vehicle range
is 400 km, and the initial fuel level 50 %. The considered
time horizon is three periods, and the budget is sufficient for
building one fuel station per period. Each OD trip has a flow
amount of ten in the first period, fifteen in the second and
twenty-five in the third and final period.
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Figure 18: Exemplary problem in the numerical experiment with VMPS > 0 and VMPP = 0

While the MP-NC FRLM and the F-Myopic model have the
same solution (leading to a VMPP of zero), the results of the
multi-period model and its static counterpart differ. Follow-
ing its definition, a VMPS greater zero could occur, as the set
of optimal facilities in the multi-period model and its static
counterpart differ.

As described in section 2.3.4, the set of optimal facilities
in the counterpart is determined, by solving the static prob-
lem, given the OD flows from the last period and the possi-
bility of building three facilities. Even though the flows of
(1,6), (1,7) and (1,13) cannot be fully served due to the lim-
ited capacity of the fuel stations, it is optimal to serve them,
as these three OD flows can be served with the two stations
z1 and z5 (see table 4). Hence, the yq value for these paths
is below one.

After solving botch, the multi-period problem and the
static counterpart, the total number paths covered over all
periods,

∑

t ∈ T
yq appears to be equal. The solution value of

the static counterpart is smaller than the one of the multi-
period model because the stations in the counterpart can not
serve all flows on the refuelled paths as shown in table 4. The
VMPS, therefore, amounts to 6.51 (see table 5).

While a disparity in the sets of optimal facilities is neces-
sary for a VMPS greater than zero, the sole existence of this
discrepancy does not make any predictions about the amount
of the benefit. Although exact VMPS drivers have not yet
been scientifically identified and confirmed, some parametric
constellations and patterns frequently occurred while testing
the model. This leads to the following hypotheses about the
VMPS:

Although it is certain, that other factors, like the number
of possible fuel station constructions per period or the length
of the deviation paths, do influence the VMPS, it has not been
easy to assess their exact effects. One of the primary reasons

for that is that changing these factors also has consequences
on other model parameters.

A good example is the possible influence factor "con-
structed fuel stations per period". The differences in the
sets of optimal facilities mainly occur, because in the static
model, station placements are optimal that cover multiple
and mostly overlaying paths at the same time. In the multi-
period model, these paths might be suboptimal, as it, for
example, takes more time to cover them entirely. Hence,
it seems logical, that the more time it takes to cover them,
the longer it takes for the path to contribute to the solution
value. In consequence, the solution value of the counterpart
would decline and the VMPS rise.

However, this is difficult to prove because changing the
number of constructed stations per period has consequences
on at least either the total number of stations built or the
number of considered periods. In case the number of periods
remains constant, the total number of stations built changes,
which affects the set of optimal facilities in both, the multi-
period model and the static counterpart. When keeping the
number of stations constant, while altering the number of
periods, the solution values will differ significantly from the
previous ones, as the objective function sums over all yq vari-
ables over all periods.

Nonetheless, further analysis of VMPS drivers and influ-
ence factors might be useful for further research.

Value of Multi-Period Planning
For the illustration of the VMPP, the thirteen node net-

work from above is extended by two nodes. OD trips, as
well as their flows, have also been adapted (see figure 19.
In this problem, there are six considered OD trips, (1,5),
(1,6), (1,7), (1,12), (1,13) and (2,9). All of them have a
flow amount of five in the first period, ten in the second and
fifteen in the third period. The maximal vehicle range is 400
km, and the initial fuel level 50 %. The considered time hori-
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Stations constructed Paths Covered
z8 y1,6 = 0.817
z1 y1,7 = 0.816
z5 y1,13 = 0.816

y1,9 = 1
y2,9 = 1

Table 4: Operating Stations and covered paths of the static counterpart of the numerical experiment in figure 18.

Period t=1 Period t=2 Period t=3

MP-NC
FRLM

Operating
Stations z8 z8, z3 z8, z3, z11

Paths
Covered (1,9), (2,9) (1,9), (2,9), (1,5)

(1,9), (2,9), (1,5),
(1,12)

Static
Counterpart

Operating
Stations z8 z8, z1 z8, z1, z5

Paths
Covered (1,9), (2,9) (1,9), (2,9)

(1,9), (2,9), (1,6),
(1,7), (1,13)

Solution Value Assessment Criterion
MP-NC FRLM 9.0 VMPS 6.51 %
Static Counterpart 8.45 VMPP 0 %
F-Myopic 9.0

Table 5: Solution value and assessment criteria of the numerical experiment in figure 18.

zon is three periods, and the budget is sufficient to build one
fuel station per period.

While the MP-NC FRLM and the static counterpart model
have the same solution (leading to a VMPS of zero), the re-
sults of the multi-period model and the F-Myopic differ. As
described in section 2.3.4, the F-Myopic model can be consid-
ered a greedy algorithm, that makes the optimal decision for
each period. Table 6 illustrates the differences in the decision
making between the F-Myopic model and the MP-NC FRLM:
From a holistic perspective it is optimal to first construct a
station z5, as z5 contributes to refuelling multiple paths, that
need more than one refuelling stop en route. With the con-
struction of z1 in the next period, three paths, (1,6), (1,7)
and (1,13) can be refuelled at the same time. As the F-Myopic
model, on the other hand, only aims at maximizing the pay-
off of the current period, it misses out on the opportunity of
covering the paths (1,6), (1,7) and (1,13), because the paths
take two periods to be covered.

Hence, the MP-NC FRLM achieves an overall better solu-
tion at the possible cost of a worse performance within the
time horizon. This means that whenever the MP-NC FRLM
and its F-Myopic correspondent do not have the same value,
the solution of the F-Myopic model has a higher solution
value in at least one time period.

Solving both, the MP-NC FRLM and the F-Myopic model
leads to a VMPP of 16.67%.

Although there has not been an extensive scientific study
examining potential VMPP drivers, frequently observed para-
metric constellations lead to the following hypotheses about
the VMPP:

• The VMPP strongly depends on the network and OD
trip topology as well as on OD trip quantity

For a VMPP to exist, it is necessary, that the station
placements for maximizing the benefit of the current
period and for maximizing the overall benefit differ in
at least one period. Contrary to the greedy F-Myopic
model, the MP-NC FRLM accepts a short term worse
solution value to invest into station combinations, that
refuel several paths at the same time, take several peri-
ods to build and pay off in a later period (see table 6).
As covering these paths requires "long-term planned"
investments, these paths are in the following called
"invest paths". Hence invest paths are necessary for a
VMPP greater than zero.

To be considered an invest path, OD trips have to fulfil
the following two topological requirements:

1. Invest paths can not be covered with the budget
of one period.

2. Covering an invest path refuels multiple other
paths along the way.

In the above-given example (figure 19) either (1,6),
(1,7) or (1,13) would count as an invest path, as cov-
ering one of these paths automatically covers the other
two paths along.

The more invest paths there are in a problem, and the
more OD trips are refuelled along with an invest path,
the higher the VMPP gets. The impact on the VMPP is
exemplified in table 7, as there are step-wise OD trips
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Figure 19: Exemplary problem in the numerical experiment with VMPP > 0 and VMPS = 0

Period t=1 Period t=2 Period t=3

MP-NC
FRLM

Operating
Stations z5 z5, z1 z5, z1, z8

Paths
Covered (1,6), (1,7), (1,13)

(1,6), (1,7), (1,13),
(2,9)

F-Myopic
Operating
Stations z10 z10, z8 z10, z8, z3

Paths
Covered (1,12) (1,12), (2,9) (1,12), (2,9), (1,5),

Solution Value Assessment Criterion
MP-NC FRLM 7.0 VMPS 0 %
Static Counterpart 7.00 VMPP 16.67 %
F-Myopic 6.0

Table 6: Operating stations and covered paths of the numerical experiment in figure 19.

added to the simultaneously coverable invest paths.
With each addition of the two trips (1,14) and (1,15),
the VMPP grows.

• The VMPP is negatively correlated with the amount
of non-coverable flow passing through the MP-NC
FRLM’s "invest paths"

Similar to the "deviation path effect" for the VMPS, the
lesser flow is covered on the "invest paths", the smaller
is the MP-NC FRLM’s solution value. Hence, the VMPP
declines.

This effect is illustrated in table 8 by varying the flows
of the invest paths (1,6), (1,7) and (1,13) in t = 3 in
the previous problem in figure 19. As described above,
one can see, that with the increase of the invest flows,
the MP-NC FRLM solution value declines to the point,
where the F-Myopic solution becomes optimal.

As the invest paths are already covered in period two,
it is contrary to the "deviation path" example in the

VMPS, possible to alter the MP-NC FRLM solution by
also varying the flow parameters in period two. Vary-
ing flows in prior periods has not been done for better
clarity. Either way, the minimal MP-NC FRLM solution
value hereby equals the F-Myopic value of six.

• The VMPP is positively correlated with the number
of considered periods as long as the sets of covered
paths are not identical.

As described above, whenever there is a VMPP greater
than zero, the MP-NC FRLM’s solution value will, at
least at one point in time, be lesser than the F-Myopic
value as a tradeoff for future benefit. That means that
the value of covering an invest path is greater than the
value of paths that are covered in the meantime by the
F-Myopic model. The additional value of covering an
invest path can, for example, be seen in table 6, as the
MP-NC FRLM achieves a surplus of one covered path
compared to the F-Myopic model in period two, due to
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OD trips on
invest paths

Stations
MP-NC FRLM

Value
MP-NC FRLM VMPP

(1,6), (1,7), (1,13) 5,1,8 7 16,67%
(1,6), (1,7), (1,13),

(1,14) 5,1,8 9 50,00%

(1,6), (1,7), (1,13),
(1,14), (1,15) 5,1,8 11 83,33%

Stations F-Myopic 3,8,10
Value F-Myopic 6

Table 7: Effects of network and OD trip topology on the VMPP in the problem in figure 19.

Invest Flows
in t = 3

Stations
MP-NC FRLM

Value
MP-NC FRLM VMPP

15 z5, z1, z8 7 16,67%
16,75 z5, z1, z8 6,99 16,0%

20 z5, z1, z8 6,74 12,33%
30 z5, z1, z8 6,24 4,00 %
37 z5, z1, z8 6,01 0,17%

37,5 z3, z8, z10 6 0%
40 z3, z8, z10 6 0%

Stations F-Myopic z3, z8, z10
Value F-Myopic 6

Table 8: Effects of invest flow variations on the VMPP in the problem in figure 19.

Figure 20: MP-NC-FRLM and F-Myopic solution values and VMPS development over time.
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Figure 21: MP-NC-FRLM and F-Myopic solution values and VMPP development over time.

varied parameters constant parameters
number of nodes x coordinate min/max 0/660
node connection

probability y coordinate min/max 0/880

number of OD paths start value of the OD flows 5
number of periods flow increment per period 5

construction budget 5 facilities/period
maximal vehicle range 400

initial fuel range 200

Table 9: Parameters used in the randomised problem generation in the numerical experiment.

covering the invest paths. Until these invest paths are
as well covered by the F-Myopic model, the surplus will
contribute to an increasing VMPP in each period. Once
the sets of covered paths concur, the VMPP declines
with every further period.

Figure 20 exemplifies this effect by depicting the so-
lution values of the MP-NC FRLM and the F-Myopic
model as well as the VMPP for different periods in the
problem in figure 19.

Until the two sets of covered paths are identical and the
invest paths are also covered by the F-Myopic model
(see period t = 5; all six paths are covered), the VMPP
grows. While the absolute value difference remains
constant, the relative value difference lessens with ev-
ery period.

Figure 21 shows the graph of a situation, where it is
no longer possible to build fuel stations respectively to
cover paths after period three. Since the sets of covered
paths never concur, the VMPP grows with every period.

4.2. Computational Complexity of the MP-NC FRLM
While the previous paragraph has shown, that the multi-

period model can provide even significantly better results
than its static, respectively its F-Myopic counterpart, the su-
perior performance comes at the cost of higher computa-
tional complexity.

The assessment of the model complexity in the following
section is approached from a practical standpoint. How com-
plex can a problem in terms of network topology, OD path
quantity and periods be so that it can be solved with the MP-
NC FRLM in under ten minutes?

For testing the solution time, the optimization was per-
formed on problems, where the network, as well as the OD
paths, were randomly generated. The models were run with
an Intel Core i5-6200 CPU with 2,40 GHz and 8 GB RAM.

The parameters used for the generation of the problems
are displayed in table 9.

The network is generated using the parameters "number
of nodes", "x/y coordinate maximum" and "node connection
probability". In the first step, nodes are randomly placed on
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varied parameters Results
number of nodes 1500 average solution time 10:01
node connection

probability 10% standard deviation 5:07

number of OD paths 150 minimal solution time 4:34
number of periods 10 maximal solution time 19:34

% solution time under
10 minutes 70%

Table 10: Results of the computational complexity test for ten randomly generated optimization problems with 1500 node
network with 150 OD paths, a node connection probability of 10% and ten considered periods.

varied parameters Results
number of nodes 1500 average solution time 25:32
node connection

probability 10% standard deviation 21:45

number of OD paths 175 minimal solution time 5:36
number of periods 10 maximal solution time 1:16:28

% solution time under
10 minutes 40%

Table 11: Results of the computational complexity test for ten randomly generated optimization problems with 1500 node
network with 175 OD paths, a node connection probability of 10% and ten considered periods.

an experiment plane, which is defined by the minimal maxi-
mal values of the x/y coordinates.

In this case, the plane has an expansion of 880 km on the
y-axis and 660 km on the x-axis. These values correspond to
the maximal extent of Germany in the north-south, respec-
tively the east-west direction. In a second step, the edges
of the graph are created, whereas each potential connection
between two nodes, except for self-connections, has a cer-
tain likelihood of existence. Hence, the expected amount
of edges amounts to node connect ion probabil i t y ∗
number o f nodes ∗ (number o f nodes − 1). The maximal
vehicle range is 400 km, the initial fuel range 200 km. Origin
and destination of the OD trips are randomly chosen from
the set of nodes on the graph.

As the computation varies along with the network topol-
ogy and the length of the OD trips, each parametric constel-
lation has been tested ten times of random problems.

The results of the experiment indicate that an optimiza-
tion problem over ten periods and on a 1,500 node network
with an edge probability of 10% and 150 OD paths seems to
be the largest problem, that can regularly be solved in under
ten minutes. Although the average solving time amounts to
10:01 minutes, a total of 70% of the tested problems could
be solved within the designated time. The standard deviation
for solving the problems is 5:07 (see table 10).

When increasing the number of OD paths c.p., problems
with 175 OD trips already have a considerably higher solving
time and standard deviation. Solving the randomly gener-
ated problems took an average time of 25:32 minutes with a
standard deviation of 21:45 minutes. Only 40% of the prob-
lems with 175 OD trips could be solved in under ten minutes
(see table 11. It is noteworthy that the maximal solving time

for a problem with 175 OD trips is at 1:16:28 nearly one hour
higher than for problems with 150 OD trips.

The results of the experiment indicate, that optimization
problems over ten periods and on a 1,500 node network with
an edge probability of 10% and 150 OD paths seems to be the
largest problem, that can regularly be solved in under ten
minutes with a computer with a 2.4 GHz processor and 8 GB
RAM. Furthermore, it was shown that the more complex the
problems are, the greater become average solving time and
its standard deviation. Although the results of this complex-
ity assessment are not statistically significant, they, nonethe-
less, provide general reference points for real-life application
and further research.

5. Conclusion and Recommendations for Further Re-
search

For alternative-fuel vehicles, like BEVs and FCEVs, to suc-
ceed, a comprehensive alternative fuel station network is vi-
tal. However the development of such a refuelling network
constitutes a "chicken-egg problem": On the one hand, com-
panies are unlikely to invest until AFS operations promise to
be profitable, whereas on the other hand consumers hesitate
to buy AFVs unless there is an agreeable level of refuelling in-
frastructure. One possible solution for this problem is strate-
gic multi-period planning, which is incentivized, respectively
led by a central authority.

This thesis introduces a new flow-refuelling location
model, that aims at providing a multi-period construction
plan for an alternative fuel station network. Based on the
idea of covering each arc of a path, the MP-NC FRLM max-
imizes the number of paths covered. Depending on the
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problem at hand, it is as well possible to either maximize
the total flow covered or introduce a lower bound of flow
coverage while maximizing the refuelled paths.

Besides including nodal capacity restrictions for fuel sta-
tions, the model respects changing demand flows and lim-
itations of the construction capacity and is an extension of
Kluschke et al. (2020)’s node-capacitated FRLM. Apart from
the model extension, the pre-generation process for the set
of potential station locations Kq

j,k and the heuristic estimating

the refuelling amount rq
i at the nodes has been improved.

To illustrate the benefits of the multi-period model over
a static counterpart and a comparable F-Myopic model, the
two measures "Value of the multi-period Solution" and "Value
of multi-period Planning" were adapted to this context and
applied in a numerical experiment. The VMPS and the VMPP
quantify the relative additional value of the MP-NC FRLM’s
solution to the ones of the static counterpart respectively the
F-Myopic model. The VMPS and VMPP have proven to be
positive, and several hypotheses were made about parametric
constellations and patterns, that drive VMPS and VMPP.

The additional benefit of the MP-NC FRLM, however,
comes at the cost of higher computational complexity due
to the incorporation of the time module. Another potential
problem, which has to be borne in mind, is the calculation of
the number of ensured refuelling locations alongside a route
lq. In some cases, lq locations can be insufficient to cover an
OD trip due to unfavourable topological characteristics. The
existence of unfavourable paths does not cause any calcu-
lation errors but are not respected by the model during the
optimization.

Following the findings of this thesis, there are several pos-
sible streams for further research:

• Providing further analysis of VMPS/VMPP drivers

Providing a better understanding of the VMPS/VMPP
and its value drivers might help to detect early, where
the application of the MP-NC FRLM compared to static
models provides sufficient benefit.

• Reducing the MP-NC FRLM model complexity

Reducing the model complexity, e.g. by linearising the
bi-linear constraint, leads to a decreasing calculation
time, which can prove valuable in the application.

• Finding a precise calculation method for lq
Especially in greater problems, it can be challenging to
identify whether a path was not covered, because it was
suboptimal to refuel or because the covering solution
was trivial. Finding a precise calculation method for lq,
where the number of built stations equals the minimum
number of necessary stations will eventually provide
better, cost-effective results.

• Applying the MP-NC FRLM to a real-world case set-
ting

An application of the model on a real-world case might
provide further insights into the additional model ben-

efit. It would also be useful to compare these outcomes
to other FRLM models in various settings.

• Integrating deviation paths into the MP-NC FRLM

To make the model more realistic, one option could be,
extend the MP-NC FRLM in a way, that considers the
drivers’ willingness to deviate from an optimal path to
refuel. Considering deviation paths might prove useful
especially for simulating the early stages of the AFS net-
work construction, where the network is significantly
less mature than that of conventional gas stations.

• Including the stochasticity of demand

For the comparison of the MP-NC FRLM with the F-
Myopic model, it is assumed, that future demand can
be precisely predicted, which is a substantial simpli-
fication of reality. The model’s accuracy and signifi-
cance could profit from considering the uncertainty of
demand flows.
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