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Portfolio Optimization and Ambiguity Aversion

Belinda Kellerer

Ludwig-Maximilians-Universität München

Abstract

This thesis analyses whether considering ambiguity aversion in portfolio optimization improves the out-of-sample performance
of portfolio optimization approaches. Furthermore, it is assessed which role ambiguity aversion plays in improving the portfolio
performance, especially compared with the role of estimation errors. This is done by evaluating the out-of-sample performance
of the approach of Garlappi, Uppal and Wang for an investor with multiples priors and aversion to ambiguity compared
to other portfolio optimization strategies from the literature not taking ambiguity aversion into account. It is shown that
considering ambiguity aversion in portfolio optimization can improve the out-of-sample performance compared to the sample
based mean-variance model and the Bayes-Stein model. However, the minimum-variance model and the model of naïve
diversification, which are both independent of expected returns, outperform the approach considering ambiguity aversion
for most of the empirical applications shown in this thesis. These results indicate that ambiguity aversion does play a role
in portfolio optimization, however, estimation errors regarding expected returns overshadow the benefits of optimal asset
allocation.

Keywords: portfolio choice; asset allocation; estimation error; ambiguity; uncertainty.

1. Introduction

1.1. Problem definition
The classical mean-variance portfolio optimization ap-

proach, established by Harry Markowitz, is based on the
assumption that expected asset moments are known. In
real-life investment decisions, these input parameters are,
however, unknown and need to be estimated. Typically, the
input parameters are estimated from realized returns and
as a result, they are inevitably estimated with error. This is
particularly important because the choice of input parame-
ters has a huge effect on the optimal portfolio weights and
consequently on the portfolio performance. As these estima-
tion errors are ignored in the classical portfolio optimization
approach, a bad out-of-sample performance is the result.
Mean-variance optimized portfolios often show a low de-
gree of diversification and extreme portfolio weights1. To
improve the performance of the classical mean-variance ap-
proach, new methods were developed that explicitly take
into account that the estimated asset moments are not the
true values. In this context, a very important class of methods

1See for example Hodges and Brealey (1973), Best and Grauer (1991)
and Black and Litterman (1992)

is the class of Bayesian approaches. Using these approaches,
the input parameters are adjusted before they are used to
determine the optimal portfolio. This is done by combining
a priori information with the historical data by the means of
Bayesian updating. Empirical studies have shown that these
adjustments lead to a better out-of-sample performance (e.g.
Jorion, 1986).

Bayesian approaches, however, assume that the proba-
bility distribution of outcomes is known and the decision-
maker has a unique prior for the outcomes, while it is ig-
nored that this is not the only possible probability distribu-
tion. From the uncertainty about the true probability distri-
bution, a new type of uncertainty arises, called ambiguity.
In this thesis, ambiguity is defined as Knightian uncertainty
(Knight, 1921), which refers to uncertainty that can’t be mea-
sured because the probability distribution is unknown and
risk refers to measurable uncertainty with a known proba-
bility distribution. In 1961, Ellsberg was the first to show
experimentally that investors are averse against this type of
uncertainty (Ellsberg, 1961). He showed that the majority of
investors prefer a risky investment to an ambiguous invest-
ment. A central Bayesian assumption is that all uncertainties
can be reduced to risks. This assumption, however, contra-
dicts Ellsberg’s empirical results. If an investor is ambiguity
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averse, his behavior in the Ellsberg experiment leads to a vio-
lation of Savage’s subjective expected utility theory (Savage,
1954), because the sure-thing-principle is disobeyed. There-
fore, ambiguity averse behavior is not rational according to
subjective expected utility theory. As a consequence, new
portfolio optimization models were developed that allow for
ambiguity aversion by weakening the sure-thing principle2.

In the center of this thesis is the multi-prior approach
introduced by Garlappi et al. (2007). They developed an
approach that takes both, parameter uncertainty about the
true asset moments and ambiguity aversion into considera-
tion. They did so by extending the classical mean-variance
approach by two main points. Firstly, they implement an
additional constraint on the expected return for each asset
to lie within a confidence interval of the estimated expected
return. Secondly, they apply an additional minimization
over the choice of possible expected returns. Ambiguity
aversion is implemented by this additional minimization.
Furthermore, the model of Garlappi, Uppal and Wang is
also able to account for model uncertainty. This is in case
the investor forms his beliefs about expected returns from a
factor model, like the Capital Asset Pricing Model (CAPM),
but is unsure whether this factor model is the true return-
generating model. Garlappi, Uppal and Wang present in
their empirical study, that accounting for ambiguity aver-
sion, when optimizing portfolios, improves the portfolio per-
formance and leads to a higher out-of-sample Sharpe ratio
compared to the classical mean-variance approach and the
Bayes-Stein approach.

This thesis focuses on the question whether the out-of-
sample performance can be improved if ambiguity aversion
is considered in portfolio optimization, and which role am-
biguity plays in improving the portfolio performance. To an-
swer these questions, an empirical study is performed to com-
pare the performance of the ambiguity-averse approach in-
troduced by Garlappi, Uppal and Wang with the performance
of several other models from the literature, like the classi-
cal mean-variance model, the minimum-variance model, the
Bayes-Stein model and the model of naïve diversification.
Additionally, the results are tested for robustness by vary-
ing important model assumptions. In this way, it is analyzed
which additional value can be generated by taking ambigu-
ity aversion into consideration. It is of particular interest
which role ambiguity aversion plays compared with the role
of estimation errors. Furthermore, the relationship between
risk aversion and ambiguity aversion is analyzed and its role
for the optimal portfolio is discussed. Besides investigating
the effect of ambiguity aversion on the out-of-sample perfor-
mance of optimized portfolios, a critical view is taken on the
topic. Crucial issues, like the rationality of ambiguity averse
investment decisions and learning under ambiguity, are dis-
cussed.

2See for example Schmeidler (1989) and Gilboa and Schmeidler (1989)

1.2. Method of investigation
To analyze the effect of ambiguity averse investment de-

cisions on the portfolio performance, an empirical study is
performed. This empirical study is based on the work of Gar-
lappi, Uppal and Wang and is divided into three parts. In the
first part, the original results of Garlappi, Uppal and Wang
are replicated with a special focus on differences in results.
With regard to this empirical application, the investor can
build his portfolio from eight international equity indices. In
the second part, important input parameters like the sample
size to determine the optimal portfolio weights, the degree
of risk aversion and the timespan are varied. Finally, in the
third part of the empirical study, the investment universe is
changed and the portfolio optimization problem is applied
to the German DAX30 stocks. Most assumptions are thereby
taken from Garlappi, Uppal and Wang to ensure the com-
parability of the results. This empirical design is chosen to
show whether incorporating ambiguity aversion to the port-
folio optimization problem leads to a better out-of-sample
performance independent of the framework conditions. Fur-
thermore, the variation of input parameters ensures that the
improved out-of-sample performance results from taking am-
biguity aversion into account and not from other character-
istics, for example time-specific or asset-specific characteris-
tics.

The rest of this thesis is organized as follows. In Chap-
ter 2, the foundations of modern portfolio theory are pre-
sented and the problems arising from the classical mean-
variance approach are discussed. Subsequently, suggestions
for improvement, like imposing additional constraints or us-
ing Bayesian approaches, are examined. Chapter 3 gives
a critical literature overview regarding ambiguity aversion
in the context of portfolio optimization. In Chapter 4, the
ambiguity-averse approach introduced by Garlappi, Uppal
and Wang, which takes ambiguity aversion as well as param-
eter and model uncertainty into account, is presented. Chap-
ter 5 describes the empirical applications and illustrates the
out-of-sample performance of different portfolio optimiza-
tion strategies in an empirical study by first replicating the
original results of Garlappi, Uppal and Wang and then chang-
ing important framework conditions. The conclusion is pre-
sented in Chapter 6. Further illustrations are collected in the
Appendix.

2. Portfolio choice

2.1. Modern portfolio theory
More than 60 years ago, Harry Markowitz established a

whole new concept of portfolio optimization by focusing on a
holistic approach of several assets to build a portfolio rather
than to restrict the investment to a single seemingly prof-
itable asset. In his article “Portfolio selection” of 1952, he
derived a normative decision rule to build efficient portfo-
lios. With this decision rule, he laid the foundation for a the-
ory, which was later called modern portfolio theory. About 40
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years later, in 1990, Harry Markowitz won the Nobel prize to-
gether with Merton H. Miller and William F. Sharpe for their
pioneering work in the theory of financial economics3.

According to Markowitz an investor should focus on two
main elements when selecting the optimal portfolio, namely
portfolio return and portfolio risk, where risk is defined as
fluctuations in returns. He argues that each investor has
different interests when choosing a portfolio, but every in-
vestor pursues the goal to achieve high returns at low risk.
“It seemed obvious that investors are concerned with risk and
return, and that these should be measured for the portfolio
as a whole” (Markowitz, 1991, p. 470). Modern portfolio
theory is based on the assumption that investors are only
willing to hold a risky asset if they are compensated with a
risk premium in addition to the return on the risk-free asset.
Therefore, Markowitz implicitly assumes that investors are
risk averse.

To determine the portfolio risk, it is important to analyze
the correlations between the assets. If assets are not per-
fectly correlated with each other, it is possible to reduce the
portfolio risk through diversification, without reducing the
expected return. As a result, the portfolio risk is always be-
low the weighted average of the individual assets’ risk. As the
number of assets in the portfolio increases, the role of the co-
variances becomes more important compared to the role of
the variances of the single assets. The direct implication of
this concept for the optimal portfolio is that “it is necessary
to avoid investing in securities with high covariances among
themselves” (Markowitz, 1952, p. 89).

Modern portfolio theory is based on numerous assump-
tions about the investor and the market. Besides the key as-
sumption that investors seek to maximize yields while min-
imizing risk, Markowitz assumes that markets are efficient,
that investors are rational and expected utility maximizers
according to Bernoulli and that they make their decisions
based on an individual risk function. Furthermore, the plan-
ning horizon in modern portfolio theory covers only one pe-
riod. At the end of each period the investor has to make a
new decision about the allocation of his capital. Asset allo-
cation according to Markowitz is therefore a static decision
with a short-term character.

In his article of 1952, Markowitz distinguishes two ma-
jor steps to determine the optimal portfolio. The first step
is to form expectations about future asset moments and the
second step is to specify the optimal portfolio. His model
is limited to the second step, which can further be divided
into identifying the set of efficient portfolios and identifying
the investor-specific optimal portfolio using the concept of
Bernoulli expected utility maximization. From the expecta-
tions about future asset moments, the set of efficient portfo-
lios is built. According to modern portfolio theory, a portfolio
is efficient if there is no other portfolio with a higher expected
return given a specific level of risk or with a lower risk given
a specific level of expected return. All portfolios that are ef-

3For further information see Nobelprize.org

ficient lie on the efficient frontier, which represents the re-
lationship between risk and return. In an efficient portfolio,
assets with high expected returns, small variances and low
correlation coefficients among each other are the ones with
the highest weights. After determining the set of efficient
portfolios, the next step is to select the investor-specific opti-
mal portfolio depending on his degree of risk aversion. The
optimal portfolio can be derived as the point of tangency be-
tween the efficient frontier and the highest possible Bernoulli
utility curve. According to Markowitz, the optimization prob-
lem given N risky assets can be written as:

max
w

wTµ−
γ

2
wTΣw (1)

in which w is the vector of portfolio weights, µ is the vec-
tor of returns, γ is the investor-specific degree of risk aversion
and Σ is the variance-covariance matrix.

Markowitz, however, only analyzed how to identify the
optimal portfolio given the information about future asset
moments, but not how these input parameters can be deter-
mined. Since information about future asset moments is un-
known, the input parameters need to be estimated. Expected
asset moments are typically estimated from realized returns
and therefore, they are inevitably estimated with error. As
opposed to that, in modern portfolio theory it is assumed that
expected returns are known and as a consequence, statisti-
cal estimations are assumed to be the true values (Kalymon,
1971). Hodges and Brealey (1973) and Jorion (1985), how-
ever, show in empirical studies that historical returns only
have a small forecasting power for future returns. Addition-
ally, Kempf et al. (2002) expose in their simulation study
that the estimated expected returns differ significantly from
the “true” values. They also show that there is a huge gap
between the optimal portfolio weights using the “true” pa-
rameters and using their estimations from historical returns.
Therefore, they argue, that a rational investor should take un-
certainty about estimated asset moments into account when
selecting a portfolio. Barry (1974) shows that if uncertainty
about future asset moments is integrated to the model, the
portfolio risk can be reduced while leaving the portfolio re-
turn unchanged, leading to increasingly efficient portfolios.
Chopra et al. (1993) argue that the estimation of variances
and covariances can be performed more precisely than the
estimation of expected returns but at the same time, estima-
tion errors in returns have a much higher quantitative influ-
ence on the portfolio weights and the resulting portfolio per-
formance compared to estimation errors regarding variances
and covariances. Therefore, they conclude that the focus of
the estimation should lie on expected returns.

One of the main drawbacks of modern portfolio theory is,
that the resulting optimal portfolios are often characterized
by instable portfolio weights and by extreme, non-intuitive
positions (Black and Litterman, 1992). A small increase in
the expected return of only one asset already leads to the re-
allocation of half of all assets in the portfolio, while the port-
folio risk and return hardly change (Best and Grauer, 1991).
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This result is not consistent with the investors’ preference
to allocate capital to stable portfolios that don’t require fre-
quent reallocations, since reallocations are associated with
high transaction costs. Furthermore, using mean-variance
optimization, the capital is allocated only to a few assets,
leading to undiversified portfolios (Black and Litterman,
1992, Green and Hollifield, 1992, Broadie, 1993). These
extreme portfolio weights conflict with the desire of diver-
sification. Finally, Jobson and Korkie (1980) and DeMiguel
et al. (2009) show that the optimal portfolio selected, us-
ing mean-variance optimization, can be even beaten by a
uniformly diversified portfolio regarding the Sharpe ratio.

Michaud (1989) argues that the classical mean-variance
approach puts high weights on assets with high expected
returns, small variances and low covariances among each
other, but at the same time, assets with these characteris-
tics are often afflicted with the highest estimation errors.
Therefore, assets with highly overestimated returns and with
highly underestimated variances are overweighted in the op-
timal portfolio. This leads to an increase of the estimation
error through optimization. For this reason, Michaud among
others states that mean-variance portfolio optimization is “er-
ror maximization”. To solve this problem, Michaud suggests
an alternative, statistical, approach to estimate future asset
moments. Michaud argues that the observable historical data
represents only one realization of the data-generating pro-
cess. Therefore, he proposes to reestimate the return distri-
bution using Monte Carlo Simulation. From each simulated
return distribution, a new set of input parameters for the sub-
sequent optimization arises, leading to resampled efficient
portfolios. Scherer (2003), however, criticizes the approach
suggested by Michaud because it does not solve the cause of
the bad out-of-sample performance of mean-variance port-
folios induced by estimation errors regarding expected asset
moments. Each portfolio, which is constructed during the
simulation, is derived using the same input data. As a re-
sult, every resampled efficient portfolio has a similar devia-
tion from the “true optimal portfolio” (Scherer, 2003). Fur-
thermore, Fletcher and Hillier (2001) compared the perfor-
mance of resampled efficient portfolios with the performance
of classical mean-variance portfolios and they don’t find any
outperformance of either strategy.

Since the bad out-of-sample performance of mean-
variance portfolios arises from estimation errors associated
with expected asset moments (Merton, 1980), alternative
approaches that are explicitly designed to reduce estimation
errors, were established. In the following Chapters, differ-
ent suggestions for improvement, like setting up additional
constraints or adjusting the input parameters by the means
of Bayesian approaches are analyzed and compared.

2.2. Implementation of additional constraints
Since different out-of-sample studies have shown that

portfolios that are optimized using the classical mean-
variance approach tend to be very undiversified, additional
constraints can be introduced to force a higher diversifica-
tion. Examples of constraints include the restriction of short

selling, upper bound constraints on the position in a single
asset or upper bound constraints on the exposure given to
a certain country or industry (Brandt, 2009). Often, these
restrictions are necessary because of legal requirements and
therefore, constraints are a realistic assumption. Introduc-
ing additional constraints limits the set of possible portfolio
combinations, leading to an efficient frontier that always
lies below the non-restricted efficient frontier. As a result,
adding constraints can never improve the ex-ante portfo-
lio performance (Grauer and Shen, 2000). However, it has
been shown that the out-of-sample portfolio performance
can be improved. Restricting portfolios has a smoothening
effect on portfolio weights, leading to a higher degree of
diversification and to less extreme asset positions (Grauer
and Shen, 2000). In a simulation study, Frost and Savarino
(1988) show that introducing short selling constraints and
upper bound constraints on assets improves the portfolio
performance. They measure performance using certainty
equivalent returns, which is the difference in portfolio utili-
ties, if the portfolio weights are based on estimated returns
and if they are based on the true parameters. Frost and
Savarino conclude that the implementation of constraints is
reasonable if estimated asset moments are afflicted with esti-
mation errors. This is because the use of constraints prevents
the inappropriate emphasis of estimation errors in portfolio
optimization (Chopra and Ziemba, 1993).

If estimation errors, however, are not the cause of badly
diversified portfolios, constraints are counterproductive,
since they predetermine the optimal portfolio to a large ex-
tent ex-ante. This fact is criticized by Banz, as he states that
constraints are implemented “to force the results which one
desires” (Banz, 1997, p. 398). Clasing and Rudd (1988) also
argue that implementing constraints is counterproductive.
They state that adding restrictions implies that the investor
doesn’t trust the input parameters. Therefore, they conclude
that it is more intuitive to directly adjust the input param-
eters instead of implicitly changing them by implementing
constraints. Grinold and Easton (1998) agree and argue
that implementing constraints doesn’t treat the cause of the
bad out-of-sample performance of mean-variance optimized
portfolios.

Out-of-sample studies have shown that the portfolio per-
formance can be improved by implementing constraints, but
the performance is still far from good. The reason for this re-
sult is that estimated asset moments are afflicted with estima-
tion errors that are so high that the adjustment of the optimal
portfolio by adding constraints is not sufficient to solve this
problem (Brandt, 2009). To overcome the counterintuitive
approach of restricting the outcome by implementing con-
straints, new techniques have been introduced that directly
adjust the input parameters. One important class of these
approaches is the class of Bayesian approaches, presented in
the next Chapter.
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2.3. Bayesian approaches
2.3.1. statistics

The founder of Bayesian statistics is Thomas Bayes (1702-
1761). The Bayes’ theorem, that was developed by him, is a
fundamental theorem in the theory of probability. Bayes’ rule
describes the probability of an event based on prior knowl-
edge, where P(A) is the prior, the initial degree of belief in
A and P(A|B) is the posterior, the degree of belief in A after
accounting for B. Bayes’ rule can be written as follows:

P(A|B) =
P(B|A)P(A)

P(B)
. (2)

In the course of portfolio optimization, the basic idea of
using Bayes’ rule is, to combine a priori available information
with the data to determine the posterior distribution of re-
turns. These returns are then subsequently used for portfolio
optimization. A priori information may result from financial
research, news, events, macroeconomic analysis or asset pric-
ing theories (Avramov and Zhou, 2010). A basic assumption
when using Bayesian approaches in portfolio optimization is
that returns are independent and identically distributed vari-
ables4. In the context of portfolio optimization, Bayes’ rule
can be written as follows (Gelman et al., 1995):

P(θ |z) =
P(z|θ )P(θ )
∫

P(θ )P(z|θ )dθ
=

P(z|θ )P(θ )
P(z)

(3)

in which z = (z1, z2, z3, . . . , zt) is a vector of realized re-
turns and θ represents the unknown parameters of the prob-
ability distribution. The value of θ shall be estimated by the
means of Bayesian statistics. Bayesian statistics considers θ
a random variable. Information that is known ex ante about
θ is combined in the a priori probability distribution P(θ ).
This a priori distribution is then combined with the informa-
tion from the historical sample to form the a posteriori dis-
tribution P(θ |z). In contrast to methods of classical statistics
where it is assumed that θ = ˆtheta and therefore a point es-
timate of θ is provided and any potentially relevant prior in-
formation is disregarded, Bayesian statistics provides a whole
distribution of θ . As a consequence, it is possible to directly
quantify the uncertainty about θ (Gelman et al., 1995). To
solve portfolio optimization problems, it is necessary to esti-
mate future asset returns z. This is done by the forecasting
distribution P(ẑ|z), in which ẑ is the estimated value of z.
The forecasting distribution results from the likelihood func-
tion of a future observation P(ẑ|θ) and the a posteriori distri-
bution P(θ |z). Using Bayesian statistics, the distribution of
future expected returns is derived by integrating over all pos-
sible values of θ weighted with their respective a posteriori
probabilities (Gelman et al., 1995):

P(ẑ|z) =
∫

P(ẑ,θ |z)dθ =
∫

P(ẑ|θ )P(θ |z)dθ (4)

4See for example Jorion (1986), Black and Litterman (1992) and Pástor
(2000).

Already during the 1970s, the idea to use Bayesian statis-
tics to account for estimation errors in portfolio optimization
was developed by Barry (1974) and Klein and Bawa (1976).
Unlike implementing constraints, Bayesian approaches ex-
hibit a decision-theoretical fundament. If a Bayesian ap-
proach is applied, the adjustment of the optimal portfolio
takes place by directly changing the input parameters. In
this way, the problem of estimation errors is directly ad-
dressed. The adjusted input parameters are then used for
portfolio optimization. Barry and Klein and Bawa assume
a non-informative diffuse a priori distribution, which means
that they assume that all values for the future returns are con-
sidered equal probable a priori. As estimation errors are inte-
grated in the Bayesian framework, assets are riskier since pa-
rameter uncertainty is an additional source of risk (Avramov
and Zhou, 2010). As a result, in the studies of Barry and
Klein and Bawa, the vector of expected returns remains un-
changed but the variance-covariance matrix is multiplied by
1 + 1/n, in which n is the sample size. Consequently, if a
non-informative prior is used, the set of efficient portfolios
doesn’t change, but the investor chooses a portfolio further
to the left on the efficient frontier compared to the optimal
portfolio under the classical mean-variance approach.

Brown (1976) concludes that using Bayesian approaches
leads to quantifiable different portfolio structures. He adds
that the results, however, depend strongly on the choice of
the prior. If a non-informative prior is used, as done by Barry
and Klein and Bawa, the only difference to the mean-variance
approach is the multiplication of the variance-covariance ma-
trix with the factor 1 + 1/n and therefore, the effect on the
optimal portfolio is very small if the sample size n is large. If n
is very large, the effect is so small that the optimal portfolio is
almost identical to the optimal portfolio under the classical
mean-variance approach. Avramov and Zhou (2010) state
that, for all practical sample sizes, the effect of diffuse priors
is negligible and therefore, in order to exploit the decisive
advantage of the Bayesian approaches, it is necessary to gain
informative priors for example from events, macro conditions
or asset pricing theories.

2.3.2. Shrinkage estimators
Shrinkage estimators go back to Charles Stein et al.

(1956). Stein points out that the sample mean is not an
optimal estimator for the mean of a multivariate normal dis-
tributed random variable. He argues, that if expected asset
returns are estimated from the sample mean, the value is
based solely on the return history of the particular asset and
other potential information from the return histories of other
assets are disregarded. To overcome this weakness, Stein de-
veloped an estimator that includes the return histories of all
assets to determine expected returns, leading to more precise
results. Stein shrinks the sample mean of each asset towards
the overall sample mean of all assets, the “grand mean”. This
approach has a smoothening effect and prevents extreme val-
ues because expected returns of assets with comparably high
or low past returns are strongest shrunk towards the grand
mean. The key element of the Stein estimator is the shrink-
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age factor, which determines how strong the sample means
are shrunk towards the grand mean. The general form of the
Stein estimator (James and Stein, 1961) can be written as
follows:

r̄ j(φ) = φr0 + (1−φ)r̄ j (5)

in which φ is the shrinkage factor, r0 is the shrinkage
target, r̄ j is the sample mean of asset j and r̄ j(φ is the ad-
justed weighted mean of asset j. The shrinkage factor in-
creases in the number of assets N , decreases in the length
of the sample size n and decreases in the distance between
the sample mean and the shrinkage target. Shrinkage es-
timators are, for example, used by Jobson (1979), Jorion
(1986), Frost and Savarino (1986) and Chopra et al. (1993).
Chopra, Hensel and Turner suggest a global index as shrink-
age target and show that a weighted average of the individual
asset mean of each country and the global index is a supe-
rior estimator of the true asset mean for each country. Frost
and Savarino specify an informative prior and assume that
all assets have a priori identical expected means and vari-
ances and that the pairwise correlation coefficient between
any two assets is the same. They shrink the estimates of each
assets’ expected return, variance and pairwise correlation co-
efficient, determined from the historical sample, towards the
average return, average variance and average correlation co-
efficient of all assets within the population. Therefore, the
approach leads to a shrinkage towards the equal weighted
portfolio and the degree of shrinkage depends on the de-
gree to which the sample is consistent with the shrinkage
target. Frost and Savarino argue that parameters with large
discrepancies between the sample estimate and the overall
mean of that parameter are more likely to contain estima-
tion errors and those values are adjusted strongest towards
the grand mean, reducing the estimation error. The authors
show that the portfolio performance can be improved by ap-
plying their informative prior compared to applying an unin-
formative prior or the classical mean-variance approach.

Jagannathan and Ma (2003) point out that certain con-
straints that were discussed in Chapter 2.2 can be interpreted
in a similar way as shrinkage estimators. They show that no
short sales constraints are equivalent to reducing the es-
timated covariances and that upper bound constraints are
equivalent to increasing the respective estimated covari-
ances. Although the effect of both methods can be very
similar, the motivation is different. While imposing con-
straints restricts the outcome exogenously, the adjustment
of the input parameters when using shrinkage estimators is
endogenous.

2.3.3. Bayes-Stein estimator
Jorion (1985) introduced the Bayes-Stein estimator, a fur-

ther development of the classical Stein estimator. In con-
trast to Frost and Savarino, he assumes that estimation errors
regarding the variance-covariance matrix are negligible and
that variances can be estimated directly from the historical

sample. Jorion argues that the minimum-variance portfolio
is the only portfolio on the efficient frontier that is free of
estimation errors since the determination of the minimum-
variance portfolio depends solely on the variance-covariance
matrix, which is assumed to be known. The more the in-
vestor moves to the right on the efficient frontier, the larger
is the influence of estimation errors regarding expected re-
turns. Therefore, the idea of Jorion is to shrink the mean-
variance portfolio towards the minimum-variance portfolio,
since it is robust to uncertainty about expected means and at
the same time it is associated with the least risk. Using the
Bayes-Stein shrinkage estimator, the sample means of the in-
dividual assets are shrunk towards the mean of the minimum-
variance portfolio. The intensity of the shrinkage depends on
the sample size n and on the precision of the sample mean v.
The shrinkage factor φ can be computed as follows (Jorion,
1986):

φ =
v

n+ v
(6)

with v =
N + 2

(r̄ − r01)TΣ−1(r̄ − r01)
(7)

in which N is the number of assets, r0 is the shrinkage
target and r̄ is the sample mean. The shrinkage factor φ is
then inserted into (5) to obtain the weighted average mean
for the individual asset. Since the values for φ and r0 are
determined directly from the sample, this approach is also
called an empirical Bayes approach.

If the Bayes-Stein estimator is used to determine the opti-
mal portfolio, the efficient frontier and the portfolio weights
of the efficient portfolios don’t change, but the investor will
choose a portfolio more to the left on the efficient frontier,
closer to the minimum-variance portfolio (Jorion, 1986). Jo-
rion concludes that using the Bayes-Stein shrinkage estimator
leads to a significantly improved out-of-sample performance.
Chopra et al. (1993) confirm this result.

2.4. Model Uncertainty
The approaches, that have been introduced in Chapter

2.3.2 and 2.3.3, dealt with the adjustment of the sample as-
set moments by shrinking them towards a grand mean, by
the means of Bayesian statistics. All approaches presented in
the previous Chapters have in common, that solely the histor-
ical sample is used as input data to determine expected asset
moments. Findings from asset pricing theory haven’t been
taken into account so far. In this Chapter, an alternative ap-
proach to estimate expected asset moments based on factor
models is presented. Chan et al. (1999) show that using fac-
tor models to determine the input parameters for portfolio
optimization significantly improves the performance of the
resulting portfolios. They add, that the resulting portfolios
also show a higher degree of diversification compared to a
solely data-driven approach.
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Pástor (2000) and Pástor and Stambaugh (2000) ar-
gue that if expected asset moments are determined exclu-
sively from historical returns, potential information from
asset-pricing models are ignored. They developed the data
and model approach, in which they combine information
from historical data with implications from the CAPM by the
means of Bayesian statistics. They define a distinction of
cases, with ω = 0 meaning the investor does not believe in
the return-generating model andω= 1 meaning the investor
believes dogmatically in the CAPM, where ω can take values
between 0 and 1. In the data and model approach, the sam-
ple means are shrunk towards the market portfolio and the
degree of shrinkage depends on the shrinkage factor. The
shrinkage factor measures the importance that is assigned to
the CAPM and depends on the investors beliefs in the validity
of the CAPMω and on how well the historical returns can be
explained by the CAPM (Pástor, 2000). Pastor and Pastor and
Stambaugh argue that the investor’s uncertainty about the
models pricing ability can be represented by an informative
a priori distribution of Jensen’s alpha. If the a priori distri-
bution of Jensen’s alpha is located around zero, there is only
a low degree of uncertainty and the optimal portfolio will
be close to the market portfolio. If the a priori distribution
of Jensen’s alpha, however, is diffuse, the investor is highly
uncertain about the models pricing ability and the optimal
portfolio is mainly based on realized returns.

When comparing different factor models, Chan et al.
(1999) show that no clear favorite specification emerges.
A simple single factor model like the CAPM can’t be es-
sentially outperformed by a complex multi-dimensional k-
factor model. Although the CAPM performs quite well in the
study of Chen et. al., it can’t capture all of the covariation
among assets which could result in a systematically biased
estimate of asset moments (Brandt, 2009). Consequently,
the difficulty of implementing a factor model in practice is
the choice of factors, since there are huge disagreements
among researchers about the predictability of returns. Fi-
nancial economists have identified several economic vari-
ables that predict future asset returns. However, there are
large disagreements about the “true” predictive regression
specification. These disagreements lead to a major source of
uncertainty – model uncertainty (Avramov and Zhou, 2010).
If the estimation of asset moments is based on assumptions
that don’t correspond with reality, estimation errors occur be-
cause of model uncertainty. The focus on one single model
fails to include model uncertainty and therefore the overall
uncertainty is underestimated (Cremers, 2002). If posterior
odds ratios are used to rank several models and only the best
model is used, it is implicitly assumed that the chosen model
is true with a unit probability and model uncertainty isn’t
considered. Subsequently, insights from all other models are
completely ignored resulting in a loss of important informa-
tion (Brandt, 2009). Pástor (2000) adds that in general a
model will neither be a complete reflection of reality nor will
it be completely useless.

In Chapter 2.3, Bayesian approaches were introduced
that incorporate parameter uncertainty by generating a

weighted average of the data and the prior. This approach
will now be extended to incorporate model uncertainty to
portfolio optimization by implementing a weighted average
of the competing return-generating models. Taking model
uncertainty into account means that not only parameters,
but also models, are implemented using probability distribu-
tions (Hoeting et al., 1999). The Bayesian model averaging
approach (BMA), presented by Hoeting et al. (1999) deter-
mines posteriori probabilities to a set of competing models
and then these probabilities are used as weights for the re-
spective model to form an overall composite model. This
overall model is then used to solve portfolio choice prob-
lems. The weights depend on the ability of the model to fit
the data and on prior beliefs in the model (Hoeting et al.,
1999; Raftery et al., 1997). In this context, a Bayesian ap-
proach is preferred because it allows to directly incorporate
model uncertainty and is robust to model misspecification
(Avramov and Zhou, 2010). Model averaging leads to higher
estimates of variances compared to approaches that don’t ac-
count for model uncertainty. This is why ignoring model
uncertainty leads to overconfident decisions (Nigmatullin,
2003). Avramov (2002) and Cremers (2002) each intro-
duce a Bayesian model averaging approach which integrates
out both, parameter and model uncertainty. In this context,
Avramov states that investors who ignore model uncertainty
suffer from significant utility losses. He shows for six portfo-
lios over the time period 1953 to 1998, that the composite
model outperforms the individual model with the highest
posterior probability for any model selection criterion used.
Cremers stresses the high importance of taking model un-
certainty into account and shows that BMA provides an
improved forecasting ability compared to model selection
approaches. Anderson and Cheng (2016) develop a BMA
approach in which the investor updates the probabilities of
each model after every period using Bayes’ rule. They con-
clude that accounting for model uncertainty improves the
out-of-sample portfolio performance.

3. Ambiguity aversion

3.1. Concept of ambiguity aversion
3.1.1. A definition of ambiguity

It is well known that agents are risk averse and are will-
ing to sacrifice expected return in order to reduce risk. But
what is meant by risk? Knight (1921) was the first to note
that not all sources of uncertainty can be quantified prob-
abilistically and therefore risk is radically different from un-
certainty. Knight distinguishes between two different types of
uncertainty. Risk is referred to situations in which the proba-
bilities of the outcomes are known, whereas ambiguity is re-
ferred to situations in which the probability distribution is un-
known. Ambiguity might occur because the decision maker is
unable or unwilling to summarize the available information
by a unique probability distribution, due to a lack of infor-
mation.
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3.1.2. The Ellsberg-experiment
While Knight was the first to differentiate between risk

and ambiguity, Ellsberg (1961) was the first to show in his
experiments that decision makers behave ambiguity averse.

In his first two-color urn-experiment there are two urns
with 100 balls each. Urn1 contains exactly 50 red balls and
50 black balls while Urn2 also contains 100 balls, but the
distribution of red balls and black balls is unknown and all
combinations, ranging from 100 red balls and 0 black balls
to 0 red balls and 100 black balls, are possible. Urn1 is a
risky urn since the probability distribution is known. Urn2,
however, is an ambiguous urn because the decision maker
is unable to form a unique prior distribution over Urn2 with
certainty, due to a lack of information. Decision makers were
then asked whether they preferred (i) to bet on a red ball
from either Urn1 or Urn2 and whether they preferred (ii) to
bet on a black ball from either Urn1 or Urn2. In Ellsberg’s
experiment, most decision makers preferred a bet on a red
ball from Urn1 to a bet on a red ball from Urn2, and a bet on a
black ball from Urn1 to a bet on a black ball from Urn2. These
results indicate that decision makers act ambiguity averse, in
the sense that they prefer situations with known probabilities
to situations with unknown probabilities.

In the second three-color urn-experiment, there is one urn
that contains 90 balls. There are exactly 30 red balls in the
urn and 60 balls that are either black or yellow and the dis-
tribution of black and yellow balls is unknown. The decision
maker has to choose between a bet on (iii) a red ball and a bet
on a black ball and between a bet on (iv) a ball that is either
red or yellow and a bet on a ball that is either black or yellow.
In this experiment, most decision makers preferred to bet on
a red ball in situation (iii) and to bet on a ball that is either
black or yellow in situation (iv). This behavior confirms the
result that decision makers are ambiguity averse.

While Ellsberg’s urn-experiments show the relevance of
ambiguity in decision making, ambiguity averse behavior vio-
lates axioms that are necessary to derive the decision maker’s
subjective expected utility (Ellsberg, 1961). An agent who
prefers a bet on a red ball from Urn1 to a bet on a red ball
from Urn2 (i) indicates that he believes that a red ball from
Urn1 is more probable than a red ball from Urn2. If the same
agent prefers a bet on a black ball from Urn1 to a bet on a
black ball from Urn2 (ii), this choice indicates that he believes
that a black ball from Urn1 is more probable than a black ball
from Urn2, which corresponds to the belief that a red ball
from Urn1 is less probable than a red ball from Urn2. These
two beliefs apparently contradict each other. The typical re-
sponse from the second three-color urn-experiment directly
violates Savage’s sure-thing principle (Savage, 1954). The
sure-thing principle requires that rankings of acts are inde-
pendent of common parts. In the Ellsberg-experiment, situa-
tion (iii) is extended by the yellow ball in situation (iv), which
is the common part. Since adding the yellow ball shifts the
preference from a bet on the red ball towards a bet on a ball
which is either black or yellow, this behavior violates Savage’s
subjective expected utility theory.

3.1.3. Ambiguity aversion in the stock market
Ellsberg has shown that agents behave ambiguity averse

in an experimental urn setting. Bossaerts et al. (2010) show
that ambiguity aversion also plays an important role in as-
set markets. Investing in the stock market involves risk and
ambiguity, risk whether the price will rise or fall and ambigu-
ity about the probability distribution of outcomes. Bossaerts
et al. (2010) show that ambiguity aversion has an influence
on the size and the structure of the optimal portfolio hold-
ings and also on asset prices. They show that if ambiguity
is present in competitive markets, an ambiguity averse deci-
sion maker wants to hedge against this ambiguity. This de-
sire leads to increasingly diversified portfolios as ambiguity
increases. In the study of Bossaerts et. al., a significant frac-
tion of decision makers is sufficiently ambiguity averse so that
they even refuse to hold an ambiguous portfolio. Koziol et al.
(2011) show that private, but also institutional investors are
ambiguity averse and as a result, they reduce their alloca-
tions to risky and ambiguous portfolios. In their empirical
study, the allocation to ambiguous assets is rather small and
significantly below the theoretical optimal allocation. Anto-
niou et al. (2015) add that the willingness to invest decreases
as ambiguity in the stock market increases. In their empirical
study, they use dispersion in analysts’ forecasts about future
returns as a measure of ambiguity and equity fund flows as a
measure of market participation. If ambiguity in the stock
market increases, market participation strongly decreases.
These results indicate that ambiguity aversion doesn’t only
play a role in an artificial urn environment but also in the
everyday investment decisions of private and institutional in-
vestors.

3.2. Ambiguity averse behavior under the subjective ex-
pected utility theory

Expected utility theory assumes that the probabilities of
outcomes are known and that decision makers’ preferences
can be presented by an individual utility function. The utility
can then be computed as the expected utility of the possi-
ble outcomes weighted by their probabilities (Von Neumann
and Morgenstern, 1945). In contrast, the subjective expected
utility theory (SEU) introduced by Savage (1954) recognizes,
that probabilities may not be objectively known. In this case,
the decision maker forms his own subjective probabilities
that are used for decision making. Subjective probabilities
go back to Ramsey (1931), who argues that an agent’s be-
liefs can be measured by his willingness to bet. With SEU,
Savage introduced the axiomatic derivation of a Bayesian de-
cision problem, in which probabilities and utilities are not
objectively given. In the Bayesian paradigm, any source of
uncertainty can be quantified probabilistically. This means,
that in order to satisfy the set of axioms, even if the prob-
abilities are not objectively known, it is necessary to com-
pute expectations with respect to the return distribution. The
Bayesian quantification of uncertainty implies that all uncer-
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tainties can be reduced to risks5 and therefore the decision
maker has a unique prior probability. As a result, the investor
is only exposed to risk and trades off this risk against ex-
pected returns to maximize his expected utility (Aït-Sahali
and Brandt, 2001).

Knight and Ellsberg criticize the Bayesian approach and
argue that decision makers might not have enough infor-
mation to form subjective expectations about the probabil-
ity distribution. In this case, uncertainty can’t be quantified
probabilistically, which is exactly the definition of Knight-
ian uncertainty. They argue that if investors are confronted
with Knightian uncertainty, they might not be able to form
a unique prior, leading to ambiguity averse behavior, as has
been shown in the Ellsberg-experiment. Furthermore, the
Bayesian approach does not differentiate between risk and
ambiguity and therefore subjective probabilities are treated
in the same way as certain probabilities. Consequently, the
Bayesian approach does not represent the confidence the de-
cision maker has in his own probabilistic assessments (Ep-
stein and Wang, 1994). Ultimately, ambiguity averse behav-
ior, as has been shown in the Ellsberg-experiment, cannot be
modeled using Savage’s Bayesian approach.

One potential path, as argued by Gilboa and Mari-
nacci (2016), is to incorporate ambiguity aversion into the
decision-making process by relaxing the assumption that de-
cision makers are Bayesian. They state that a non-Bayesian
approach doesn’t require the decision maker to form a unique
prior probability about expected returns and allows the de-
cision maker to incorporate his uncertainty about the proba-
bilities.

3.3. Decision-making under ambiguity
When decision makers form a belief about the probability

distribution of returns, they take information like statistical
models or analysis of fundamentals into account. However,
the distribution of returns may remain uncertain. In this case
the ambiguity averse decision maker will account for this am-
biguity in his decisions.

Under the principle of insufficient reason, going back to
Jakob Bernoulli, the decision maker assumes that there is no
reason to expect one event to be more likely than the other
and therefore one should assume that probabilities are dis-
tributed equally. Based on this assumption, the alternative is
chosen which generates the highest expected utility. Gilboa
and Marinacci (2016) argue that in most real-life situations
there is too much information available to apply the princi-
ple of insufficient reason, but too little information to form
a unique prior probability distribution as required by SEU.
This dichotomy led to the development of decision rules un-
der ambiguity, for example by taking multiple priors into ac-
count.

Many decision rules under ambiguity are based on Wald’s
rule (Wald, 1950). Wald’s rule, which is also called minimax

5Ramsey (1931) states that „For a rational man all uncertainties can be
reduced to risks”.

rule, is very conservative, as the decision is based solely on
the worst possible outcome while all other outcomes are ig-
nored. Wald’s decision rule is based on the decision maker’s
a priori lack of confidence in his information. Using Wald’s
rule, the ambiguity averse decision maker assesses all acts
by the minimum expected outcome associated with the re-
spective act and then chooses the act leading to the high-
est minimum expected outcome (Mukerji and Tallon, 2001).
Ellsberg (1961) criticizes, that if the decision is based solely
on the worst possible outcome, probabilities that are known
are completely ignored. He argues that in this way, the ap-
plication of Wald’s rule leads to a distortion of the decision
maker’s best estimate of probabilities towards less favorable
probabilities, in which the degree of distortion depends on
the level of confidence the decision maker has in his own
estimated probability distribution. The less confident he is,
the more he will rely on the worst possible outcome. Never-
theless, Ellsberg states that the minimax criterion might be a
good starting point for a conservative decision maker in the
presence of high ambiguity. Wald concludes that “a minimax
solution seems, in general, to be a reasonable solution of the
decision problem when an a priori distribution does not exist
or is unknown” (Wald, 1950, p. 18). Applying the minimax
rule can lead to a violation of Savage’s sure-thing principle
and is consistent with the results of the Ellsberg-experiment.

3.4. Incorporating ambiguity aversion into portfolio opti-
mization

3.4.1. Choquet expected utility
The Choquet expected utility model (CEU), introduced

by Schmeidler (1989) was the first axiomatically sound
non-Bayesian decision model for portfolio choice problems.
Schmeidler’s starting point was that probabilities should re-
flect the decision maker’s willingness to bet and, under this
definition, probabilities don’t need to be necessarily addi-
tive. Schmeidler defines an expected utility maximization
criterion for the nonadditive case, which allows the deci-
sion maker’s beliefs to be presented by a unique, but not
necessarily additive probability distribution. In his model,
Schmeidler weakens Savage’s sure-thing principle and he
models probabilities by a capacity v, a set function that is
not necessarily additive. If probabilities are nonadditive, the
sum of the probabilities of several mutually exclusive out-
comes is not necessarily equal to the probability that one of
the outcomes will occur. If the sum of probabilities is smaller
than the probability that one of the outcomes will occur,
ambiguity aversion is reflected (Dow and da Costa Werlang,
1992). Schmeidler defines a notion of ambiguity aversion,
given non-additive probabilities v as follows:

v(A) + v(B)≤ v(A∪ B) + v(A∩ B). (8)

Schmeidler uses the notion of integration suggested by
Choquet (1954) to generalize the case in which the capacity
v is additive. Since the capacity is not necessarily additive,
the weight of an outcome is determined by its place in the
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ranking of all possible outcomes. According to Schmeidler, a
decision maker with CEU preferences is ambiguity averse if
his capacity v is convex and his utility function is concave or
linear.

3.4.2. Maxmin expected utility
The idea of maximizing the minimum expected outcome

was formalized in the model of Maxmin expected utility
(MEU), introduced by Gilboa and Schmeidler (1989). The
model is based on the idea that if there is not enough infor-
mation available to form a single probability distribution, it
is preferable to ask the decision maker to form a whole set
of probability distributions P. Gilboa and Schmeidler argue,
that if investors are uncertain about the true probability dis-
tribution, they shouldn’t restrict themselves to one particular
distribution as a proxy for the true probability distribution.
Furthermore, considering multiple priors is advantageous,
since portfolio weights react very sensitive to the choice of a
certain prior and investors demand portfolios, that perform
good for a whole set of possible probability distributions.
The Maxmin expected utility model takes uncertainty about
the true probability distribution into account by maximiz-
ing the expected utility under the worst-case scenario in the
set P. An investor with MEU preferences evaluates each act
based on the expected utility given the worst-case probability
distribution in the set of prior distributions. However, the
model is less conservative than Wald’s rule, since not all pos-
sible prior distributions, but only a certain choice of priors is
considered.

The MEU model is based on an Anscombe-Aumann
framework (Anscombe et al., 1963) in which outcomes are
modeled as lotteries. Gilboa and Schmeidler extend Savage’s
axioms by an uncertainty aversion axiom, which is the key
axiom behind their model. The uncertainty axiom weakens
the independence axiom of Anscombe-Aumann and states
that, if the decision maker is indifferent between two un-
certain acts f and g, the decision maker’s preference can be
written as

a f + (1−α)g ≥ f (or g) (9)

in which α is a factor between 0 and 1 (Gilboa and
Schmeidler, 1989). The uncertainty axiom states that if the
decision maker prefers a combination of two indifferent acts
to either of the two acts, the decision maker is ambiguity
averse. If the two uncertain acts f and g are combined, a
new act arises which is not uncertain. Therefore, the two un-
certain acts can be reduced to one risky act and the investor
can hedge against the uncertainty by mixing the two acts
(Etner et al., 2012). It can be shown that CEU is a particu-
lar case of MEU given that the decision maker is ambiguity
averse. The CEU model, however, doesn’t require the deci-
sion maker to be ambiguity averse and is compatible with
any capacity.

3.4.3. Literature overview
Following the seminal works of Schmeidler and Gilboa

and Schmeidler, many further models incorporating ambigu-
ity aversion, mostly based on CEU and/or MEU, were devel-
oped. In the following, important models are presented that
give insights on how uncertainty about parameters and/or
models can be incorporated to portfolio choice problems.
The models introduced in this Chapter show a similar ap-
proach as the multi-prior model of Garlappi et al. (2007) pre-
sented in Chapter 4, which is used for the empirical analysis
in Chapter 5.

Goldfarb and Iyengar (2003) present an optimization
model under ambiguity, which is robust to parameter uncer-
tainty. In their model, possible deviations from the expected
asset moments, which are estimated from historical data, are
modeled as unknown, but bounded. All parameters lie within
uncertainty sets that match with confidence regions around
the estimate of the parameters. The size of the uncertainty
set reflects the confidence level of the decision maker. The
optimal portfolio is then determined by assuming worst-case
specifications of the parameters.

Tütüncü and Koenig (2004) introduce a robust asset al-
location model, in which expected asset moments are mod-
eled as uncertainty sets, which are used to obtain portfolios
with the best worst-case behavior. The uncertainty sets cor-
respond to confidence regions and are determined by boot-
strapping. For expected returns, the worst-case is defined as
the minimum value of the chosen confidence interval, while
for the variance, the worst-case is defined as the maximum
value of the chosen confidence interval. Tütüncü and König
show that using this robust worst-case approach leads to a
significantly better out-of-sample portfolio performance and
to an increased portfolio stability compared to the mean-
variance portfolio. They conclude that their approach is a
reasonable alternative for conservative investors.

Wang (2005) presents a minimax approach, in which he
determines the optimal portfolio numerically in a Bayesian
setting, accounting for parameter and model uncertainty. In
his model, uncertainty is depicted as a set of possible priors
with different degrees of precision. Wang uses a shrinkage
approach, in which the prior probability distribution incor-
porates data as well as prior beliefs generated from an asset
pricing model. The resulting expected mean is a weighted av-
erage from insights of the asset pricing model and the data.
Wang shows that the optimal portfolio for an investor who is
ambiguity averse differs strongly from the market portfolio
underlying the CAPM and also from the portfolio based solely
on the sample estimate. This result indicates that model un-
certainty is as important as parameter uncertainty.

Pflug and Wozabal (2007) also introduce a minimax ap-
proach, in which confidence sets are used to determine the
probability distribution. The size of the confidence sets de-
pends on the amount of information available. The more
data is available, the tighter is the confidence set and the
smaller is the resulting cost of ambiguity. Their approach
points out the tradeoff between return, risk and model ro-
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bustness.6

All models, introduced in this Chapter, have in common
that they want to formulate optimization problems in a way,
that they result in a good portfolio performance for all pos-
sible realizations of the unknown parameters. This is why
these approaches are also called robust approaches. Tütüncü
and Koenig (2004) and Scherer (2007) state that robust port-
folio rules create portfolios which react less sensitive to new
information and therefore are more robust to changes in ex-
pected returns. This is because robust decision rules lead to a
shift in the portfolio from assets with high parameter uncer-
tainty and large potential losses associated with parameter
uncertainty to assets with less uncertainty, leading to an in-
creased performance (Zhang et al., 2017). The performance
of classical mean-variance estimators drops strongly even if
the sample distribution differs only slightly from the assumed
distribution. The performance of robust estimators reacts
much weaker to deviations from the assumed distribution.
However, the classical mean-variance estimator outperforms
the robust estimator if the underlying distribution is correct
(DeMiguel and Nogales, 2009). Chen et al. (2014) show in
their empirical study that, if an ambiguity averse decision
maker ignores ambiguity, welfare costs can exceed 15% com-
pared to decision-making under robust models.

3.4.4. Smooth models incorporating ambiguity aversion
The models discussed in the previous Chapter have in

common that they use a minimax approach and adopt an ab-
solute worst-case. Lim et al. (2012) criticize this approach
because only the performance in the worst case is consid-
ered, ignoring the concern of underperforming in other, pos-
sibly more probable, cases. They argue that adopting an ab-
solute worst-case approach is overly pessimistic and sensitive
to the choice of the uncertainty set. In this Chapter, a smooth
model incorporating ambiguity aversion is presented which
is less conservative than absolute worst-case models.

Klibanoff et al. (2005) were the first to introduce a
smooth model incorporating ambiguity aversion7. The main
characteristic of their model is the separation between am-
biguity, which represents the decision maker’s subjective
beliefs and the ambiguity attitude, which represents the de-
cision makers tastes8. As a consequence of this separation,
the decision maker doesn’t have to select the act that maxi-
mizes the minimum expected utility, but is allowed to be less
pessimistic. Klibanoff, Marinacci and Mukerji assume that
the decision maker has a subjective prior probability over the
set of possible probability distributions. The decision maker
then computes a certainty equivalent with regard to expected

6Further models that extend the models of Schmeidler and Gilboa and
Schmeidler include Chen and Epstein (2002), Uppal and Wang (2003), Deng
et al. (2005), Maccheroni et al. (2006), Ma et al. (2008) and Qu (2015). All
these models have in common, that they include CEU and/or MEU as special
cases.

7The model has been extended in Klibanoff et al. (2009) to a setting
involving dynamical decision making.

8Ambiguity aversion is investor-specific and doesn’t change over time,
while ambiguity is asset-specific and does change over time.

utility for each probability distribution. Ultimately, the deci-
sion maker maximizes the expected utility of the conditional
certainty equivalents with regard to a second utility func-
tion, which indicates the ambiguity attitude of the decision
maker. Therefore, the focus is shifted from the minimum ex-
pected utility towards an aggregation of all possible expected
utilities. The more ambiguity averse the decision maker is,
the higher are the weights he attaches to the less favorable
probability distributions. Thimme and Völkert (2015) show
in their empirical study that the smooth model of Klibanoff,
Marinacci and Mukerji improves the fit of the data.

The main difference to the MEU model is, that the deci-
sion maker considers various probability distributions, while
Gilboa and Schmeidler only consider the worst-case dis-
tribution. Consequently, MEU is an extreme case of the
smooth model when extreme ambiguity aversion is assumed
(Klibanoff et al., 2005).

3.5. Ambiguity aversion and stock market puzzles
3.5.1. Limited market participation

Ambiguity aversion plays a key role in explaining some of
the most important asset pricing puzzles, like limited market
participation, the equity premium puzzle or the size effect.
Epstein and Schneider (2008) and Pataracchia (2011) state
that ambiguity aversion affects the way how investors pro-
cess information. They argue that if the quality of informa-
tion is not known, investors react ambiguity averse and take
a worst-case assessment of quality. In case of good news, the
worst-case is that the information is noisy whereas in case
of bad news, the worst-case is that the information is pre-
cise. This asymmetric reaction to information leads to a shift
in mass probabilities from favorable outcomes towards less
favorable outcomes (Pataracchia, 2011). In this context, sev-
eral authors have shown that ambiguity aversion has an ef-
fect on market participation and can lead to a situation in
which investors find it rational not to participate in the stock
market at all.

Dow and da Costa Werlang (1992) state that, for a deci-
sion maker with CEU preferences, there exists a price interval
of non-zero length, for which the decision maker prefers nei-
ther to buy nor to sell the risky asset and instead he strictly
prefers to hold a zero position in the risky asset. They argue
that this is because the decision maker acts as if he assigns
different probability distributions to the long and the short
position in the asset. This can lead to a situation in which
the decision maker’s minimum asking price for a short posi-
tion in the asset, is higher than his maximum bid price for a
long position in the asset. If the asset price lies somewhere
in between, the decision maker does not trade at all. This
behavior strongly contradicts the SEU framework, in which
the decision maker buys the risky asset if the price is below
his certainty equivalent and he sells the risky asset if the price
is above his certainty equivalent. Under the SEU framework
there is no no-trade interval. Cao et al. (2005) and Bossaerts
et al. (2010) add that ambiguity aversion among investors
is heterogeneous and, as a result for every ambiguity averse
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investor, there exists an individual price region, for which
he prefers not to participate in the market. The size of this
region depends on the investor-specific degree of ambiguity
aversion. This mechanism explains why ambiguity aversion
can lead to limited stock market participation.

Epstein and Miao (2003) use this mechanism, triggered
by ambiguity aversion, to explain the home bias, the limited
participation in foreign markets compared to the home mar-
ket. They argue that investors are more certain about the
stock returns of companies in their home country and there-
fore they prefer to invest in the home market.

3.5.2. Equity premium puzzle
The equity premium puzzle describes the disproportion-

ate high premium for risky assets compared to the return on
the risk-free asset. Although it is intuitive that there exists
an equity premium because of different degrees of risk, the
high amount of the equity premium is not consistent with
theoretical predictions. However, most theoretical predic-
tions take only risk into account and ignore ambiguity. Cao
et al. (2005) argue that the total equity premium can be de-
composed into a risk premium and an ambiguity premium.
Accordingly, there exists a separate premium for bearing am-
biguity additional to the premium for taking risks, explain-
ing the high amount of the total equity premium. Izhakian
(2012) defines the ambiguity premium as the amount the
decision maker is willing to pay in order to replace a bet
with unknown probabilities by a bet with known probabil-
ities, given the same expected outcomes for the ambiguous
and the risky bet. Pataracchia (2011) shows that asset prices
decrease as ambiguity increases, because investors demand a
higher ambiguity premium in order to prefer to hold the am-
biguous portfolio. Anderson et al. (2009) show that excess
market returns are strongly associated with ambiguity, while
they are less strongly associated with risk. They conclude
from their findings that the risk premium is dominated by
the ambiguity premium. This result is confirmed by the em-
pirical study of Thimme and Völkert (2015), who show that
the risk premium contributes to the total equity premium by
31%, while the ambiguity premium contributes to the overall
equity premium by 69%.

3.5.3. Size effect
Antoniou et al. (2014) use ambiguity aversion to explain

the size effect, a market anomaly, which describes that com-
panies with a small market capitalization outperform com-
panies with larger market capitalizations. The authors argue
that analysts’ forecasts about expected earnings of smaller
companies are more ambiguous, since analysts find it harder
to estimate the accuracy of forecasts for smaller companies,
due to a lack of information. This leads to a large dispersion
in analysts’ forecasts about future returns. Due to the high
degree of ambiguity in earnings forecasts, ambiguity averse
investors will react pessimistically and overweight the worst-
case scenario. Therefore, the authors show that the stock
prices of small companies are reduced, compared to a situ-
ation without ambiguity aversion. At the end of the quar-

ter, the pessimism is resolved as more information gets avail-
able and consequently ambiguity regarding expected returns
decreases. This reduction of ambiguity then results in in-
creasing stock prices. Antoniou, Galariotis and Read show
empirically that this behavior leads to the size effect around
earnings announcements.9

3.6. Is ambiguity aversion rational?
In Chapter 3.4, models were presented that incorporate

ambiguity aversion into portfolio optimization and, in Chap-
ter 3.5, ambiguity aversion was used to explain some of the
most important puzzles in finance, indicating that ambiguity
aversion does play an important role in real life investment
decisions. But even if investors behave ambiguity averse,
does that also mean that it is rational?

Raiffa (1961) was the first to argue that a rational deci-
sion maker should not be ambiguity averse. Scherer (2007)
agrees that investors who are ambiguity averse behave ir-
rational. He especially criticizes the MEU approach intro-
duced by Gilboa and Schmeidler, because their model vio-
lates Savage’s sure-thing principle and the model can lead to
a Dutch Book outcome, a situation where the decision maker
agrees to a combination of bets that guarantees him to lose.
Sims (2001) agrees that violating the sure-thing principle on
purpose shouldn’t be recommended to decision makers. Al-
Najjar and Weinstein (2009) add that admitting ambiguity
averse behavior as rational can not only lead to a Dutch Book
outcome, but also to situations in which the decision maker
reacts sensitive to irrelevant sunk costs or is averse to infor-
mation, situations that are clearly irrational. Najjar and We-
instein further criticize that in the ambiguity aversion litera-
ture the sure-thing principle is relaxed, while other aspects of
Savage’s framework are kept. They argue that, if ambiguity
aversion is not rational but a behavioral anomaly, it doesn’t
seem to make sense to assume a rational decision maker in
any other aspect of the model. Scherer (2007) concludes,
that these drawbacks of MEU are more severe than the Ells-
berg paradoxon is for subjective expected utility theory.

Al-Najjar and Weinstein (2009) give an alternative expla-
nation for Ellsberg choices, in which the decision maker be-
lieves that the odds of the experiment are adversarial ma-
nipulated and therefore he prefers the perceived safer, risky
option10. They argue that this behavior may be rational in
real life situations, in which the counterpart might have su-
perior knowledge about the odds, but in an experimental set-
ting, like the Ellsberg-experiment, ambiguity averse choices
are irrational and might arise from a misapplication of real
life situations to the experimental setting.

9While Antoniou, Galariotis and Read show empirically how ambiguity
aversion can create the size effect, Epstein and Schneider (2008) show theo-
retically, that prices under conditions with a high level of ambiguity are lower
in the beginning of the quarter because investors are ambiguity averse. This
pessimism about expected returns is then corrected leading to increasing
prices, as soon as ambiguity starts to resolve as the quarter comes to a close.

10This alternative explanation of the Ellsberg paradoxon is also known as
deceit aversion mechanism
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A different alternative explanation for Ellsberg choices is
given by Kovarik, Levin and Wang (2016), based on com-
plexity aversion. They introduce a model in which complex-
ity aversion, and not ambiguity aversion, is the reason why
decision makers prefer the risky urn to the ambiguous urn
in the Ellsberg-experiment. In their experiment, they relate
complexity to the compoundness and the number of alterna-
tives of the lotteries. They assume that decision makers want
to avoid the cognitive effort related to the reduction of com-
pound lotteries and therefore they estimate the probabilities
and afterwards they discount the final value. In this way, the
decision maker considers the ambiguous urn to be more com-
plex than the risky urn. Since decision makers are assumed to
be complexity averse, a higher degree of complexity reduces
the utility of the lottery. As a result, a complexity averse de-
cision maker prefers the unambiguous, less complex lottery.
According to this model, Ellsberg choices don’t necessarily
contradict SEU, because complexity aversion affects the in-
vestor’s utility and not his beliefs.

While there is some doubt about the rationality of ambi-
guity aversion and there exist also alternative explanations
for Ellsberg choices like the deceit aversion mechanism or
complexity aversion, the major part of the literature agrees
that ambiguity aversion should be incorporated into portfo-
lio choice problems. If investors care about ambiguity in the
stock market and their utility depends on the degree of am-
biguity, the portfolio decision rule should incorporate ambi-
guity. For an investor who is not ambiguity averse, however,
a different, less conservative, model might be more appropri-
ate.

3.7. Learning under ambiguity
Does ambiguity dissolve as the decision maker learns

about his environment? If ambiguity occurs because of a
lack of information about the true probability distribution,
investors can learn about the missing information and am-
biguity will vanish in the long run. Investors are uncertain
about many parameters in financial markets and can learn
about these parameters by observing data. Although huge
amounts of financial data are available, the ability to learn
might be limited due to the huge amount of randomness in fi-
nancial markets (Pastor and Veronesi, 2009). Consequently,
there might be circumstances that make it impossible for
the decision maker to fully learn about the true probability
distribution.

Marinacci (2002) shows that if there is repeated sampling
with replacement from the same ambiguous Ellsberg urn, the
decision maker learns about the true color distribution and
ambiguity resolves asymptotically. However, this in only true
in the special case of unambiguous signals. Several models of
learning under ambiguity were established which show that
ambiguity does not need to vanish completely in the long run
if signals are ambiguous. Epstein and Schneider (2007) in-
troduce a model of learning under ambiguity, which is based
on the Maxmin expected utility model introduced by Gilboa
and Schmeidler (1989). In their model, they distinguish be-
tween noisy signals and ambiguous signals. They argue that

the draw from the ambiguous urn is an ambiguous signal,
while the draw from the risky urn is a noisy signal. Since
ambiguity averse decision makers presume the worst-case,
the ambiguous signal is treated as if it was less precise than
the noisy signal. Regarding the ambiguous urn, signals about
new data are always viewed as ambiguous, also in the long
run. Therefore, ambiguity about the true probability distri-
bution may persist forever. Epstein and Schneider conclude
that if ambiguous signals are considered, a learning process
can be observed and ambiguity might be resolved over time,
however, it doesn’t vanish completely in the long run because
at some point in time, the decision maker can’t learn anymore
about the true parameters.

Campanale (2011) introduces a model of life-cycle port-
folio choice, in which investors have minimax preferences
and they assume that there is a whole set of possible return
distributions. Campanale shows that part of the ambiguity
vanishes over time, as investors learn about the true return
distribution by observing realized returns. Consequently, the
set of possible return distributions shrinks, but investors are
not able to identify the true return distribution with certainty.
Therefore, Campanale concludes that ambiguity must also be
considered in long-term investment decisions.

Branger et al. (2013) show that investors who ignore am-
biguity aversion or who refuse to learn experience a utility
loss. However, the loss from not learning is much smaller
compared to the utility loss from ignoring ambiguity aver-
sion11. The authors conclude that taking ambiguity aversion
into account is of first order importance, especially since the
utility loss from not learning is even reduced as ambiguity
aversion increases. Binmore et al. (2012) and Guidolin and
Rinaldi (2013) agree and state that learning only has a mod-
erate effect on investment decisions.

Chapter 3 dealt with the topic of ambiguity aversion in
portfolio choices. It was shown, that ambiguity aversion
plays an important role in experimental settings but also in
the stock market. While there is some doubt about the ra-
tionality of ambiguity aversion, and also alternative expla-
nations were offered, the major part of the literature agrees
that ambiguity aversion should be incorporated into portfolio
optimization problems. Different models taking ambiguity
aversion into account were presented, for example the CEU
model introduced by Schmeidler, the MEU model introduced
by Gilboa and Schmeidler or the smooth model incorporating
ambiguity aversion introduced by Klibanoff, Marinacci and
Mukerji. It was also shown that ambiguity aversion helps to
explain some of the most important puzzles in finance, like
limited market participation or the equity premium puzzle.
The last section dealt with learning under ambiguity, how-
ever, it was argued that learning only has a moderate effect
on investment decisions.

11Branger, Larsen and Munk show that the utility loss from refusing to
learn is below 4% of the initial portfolio value even in case of a long in-
vestment horizon, while the utility loss from ignoring ambiguity aversion
amounts to more than 50% of the initial wealth for an investment horizon
of 20 years.
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4. Portfolio Selection with Parameter and Model Uncer-
tainty: A Multi-Prior Approach (Garlappi et al., 2007)

4.1. Theoretical framework
This Chapter deals with the multi-prior approach intro-

duced by Garlappi et al. (2007), that incorporates parameter
and model uncertainty and takes ambiguity aversion into ac-
count. In Chapter 5, this model is then tested against other
models in the literature. The model shows similarities with
the models of Goldfarb and Iyengar (2003), Tütüncü and
Koenig (2004) and Wang (2005), which were presented in
Chapter 3.4.3. One important feature of the model is that it
is able to account for parameter uncertainty and model un-
certainty. Therefore, the model can be implemented if the
investor estimates future returns from historical observations
but also if the investor relies on a certain factor model to
generate expected returns and he is uncertain whether this is
the true return-generating model. Another important feature
is that the model is based on a solid axiomatic foundation,
since it adopts the multi-prior approach (MEU) introduced
by Gilboa and Schmeidler (1989).

However, the model takes only estimation errors re-
garding expected returns into account, while the historical
variance-covariance matrix is not adjusted. Therefore, it is
assumed that Σ = Σ̂. Although, as mentioned in Chapter
2.1, estimation errors regarding returns have a larger impact
on the optimal portfolio weights than estimation errors re-
garding variances, it is still important to estimate variances
precisely, especially because the number of covariances is in
a quadratic proportion to the number of estimated returns
(Ledoit and Wolf, 2003).12 The model also does explicitly
not consider learning. While there exists some evidence that
ambiguity changes over time through learning, as argued in
Chapter 3.7, most researchers agree that learning only has a
moderate effect.

Starting from the classical mean-variance optimization
model, Garlappi, Uppal and Wang (GUW) made two ma-
jor adjustments to (1). Firstly, they implement an additional
constraint on the expected return for each asset to lie within
a confidence interval of the estimated expected return. The
larger the confidence interval is, the less does the investor
rely on the estimated return and as a consequence, the cor-
responding portfolio weight declines. If the size of the con-
fidence interval equals 0, that is the return is estimated with
perfect precision, the portfolio weights are equal to the port-
folio weights of the classical mean-variance portfolio. Sec-
ondly, to account for ambiguity aversion, they implement a
minimax approach, by introducing an additional minimiza-
tion over the multiple priors of expected returns and/or mod-

12To account for estimation errors regarding the variance-covariance ma-
trix, Frost and Savarino (1986) and Ledoit and Wolf (2003) use a shrinkage
estimator not only for expected returns, but also for the variance-covariance
matrix.

els. The adjustments to (1) can be written as follows13

max
w

min
µ̂

wT µ̂−
γ

2
wTΣw, (10)

subject to f (µ̂,Σ)≤ ε, (11)

wT 1N = 1 (12)

with (12) restricting the portfolio weights to sum to 1
and with ε being the ambiguity parameter, reflecting both,
ambiguity and ambiguity aversion. In this model, no sepa-
ration between preferences and beliefs regarding ambiguity
takes place and the degree of ambiguity aversion is normal-
ized to 1. By varying ε, different degrees of ambiguity about
the expected returns can be represented. GUW show that if
the set of priors is assumed to be Gaussian, the factor ε di-
rectly presents the size of the confidence intervals. Function
(11) depicts the additional constraint and can take different
forms, depending on whether ambiguity is estimated asset by
asset, jointly for all assets or for subsets of assets14. Which
form is used depends on whether parameter uncertainty only
or both, parameter and model uncertainty are considered.

If one wants to consider parameter uncertainty only, am-
biguity about expected returns can be estimated jointly for all
assets and the portfolio optimization problem can be solved
as follows15

wAA(ε) = φAA(ε)wMIN + [1−φAA(ε)]wMV (13)

in which wAA(ε) is the vector of optimal portfolio weights,
φAA(ε) is the shrinkage factor16 and wMIN and wMV are the
portfolio weights of the mean-variance portfolio and the
minimum-variance portfolio respectively. In this special case,
GUW show that the optimal portfolio weights can be writ-
ten as a weighted average of the portfolio weights of the
mean-variance portfolio and the minimum-variance port-
folio, as is precisely the case for the Bayes-Stein shrinkage
estimator. The degree of shrinkage depends on the precision
of the return estimates and on the ambiguity parameter ε.
As ε increases, the optimal portfolio is shifted stronger to-
wards the minimum-variance portfolio. GUW, however, show
that the Bayes-Stein approach is only a special case of the
ambiguity-averse model if ambiguity is estimated jointly for
all assets and not in case ambiguity about expected returns
is estimated separately for different subsets of assets.

13See Garlappi et al. (2007, p. 48).
14See Garlappi et al. (2007) Proposition 1 for the optimization problem

if ambiguity about expected returns is estimated asset by asset, Proposition
2 if ambiguity about expected returns is estimated for all assets jointly and
Proposition 3 if ambiguity about expected returns is estimated for subsets of
assets.

15See Garlappi et al. (2007, p. 61).
16For the derivation of the shrinkage factor, please see Appendix A.4.
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If the investor wants to consider both, parameter and
model uncertainty, the ambiguity about expected returns
needs to be estimated separately for different subsets of
assets. In this case, estimates about expected returns are de-
termined by a certain factor model (e.g. the CAPM) and the
investor is uncertain about the assumed return-generating
model to be the true model. With regard to the model incor-
porating parameter and model uncertainty, GUW consider
one ambiguity parameter for the risky assets and a separate
one for the factors. The parameter εa represents the ambi-
guity about the expected asset returns, while the parameter
εb represents the ambiguity about the expected returns of
the factor portfolios. GUW show that if the ambiguity about
the expected asset returns is relatively high, compared to the
ambiguity about the expected returns of the factor portfolios,
the investor prefers a portfolio that puts a higher weight on
the factor portfolios compared to the risky assets and vice
versa.

As argued earlier, GUW show, that if parameter uncer-
tainty only is considered, their model shows the same struc-
ture as the Bayes-Stein approach. Therefore, Scherer (2007)
argues that robust optimization models that incorporate am-
biguity aversion, don’t add any value to Bayesian shrink-
age estimation because the set of optimal portfolios doesn’t
change. He states that the models don’t differ from each
other since the optimal portfolio weights for both models
are a weighted average of the portfolio weights of the mean-
variance portfolio and the minimum-variance portfolio. The
only difference lies in the shrinkage factor, which again de-
pends on the ambiguity parameter ε. Scherer criticizes, that
GUW don’t state how to determine this parameter or how
it is related to the risk aversion parameter γ. Consequently,
the decision maker needs to form a subjective belief about
the ambiguity parameter ε. Although GUW fix the degree of
ambiguity aversion to 1, the investor still needs to determine
the degree of ambiguity subjectively. Furthermore, assuming
a higher degree of ambiguity about expected returns has the
same effect as increasing the degree of ambiguity aversion in
the model of GUW, since the ambiguity parameter ε is defined
as the product of ambiguity and ambiguity aversion.

Since the portfolio weights depend strongly on the choice
of the ambiguity parameter ε, it is important to find an ob-
jective measure for ambiguity and to separate ambiguity and
attitudes toward it17. One example for an objective measure
of ambiguity was introduced by Izhakian (2012). He sug-
gests to measure ambiguity by the variance of probabilities
with a parameter ranging from 0, given that all probabilities
are perfectly known to 1 in case the probability is either 0 or
1 with equal probabilities. This measure of ambiguity makes
it also possible to rank alternatives according to their degree
of ambiguity.

17See Klibanoff et al. (2005), for a model which separates between am-
biguity and ambiguity aversion. As mentioned in Chapter 3.4.4, it can be
shown that separating preferences from beliefs leads to a better fit of the
data, however, the parameters in this model also need to be determined
subjectively.

4.2. Empirical results
4.2.1. Empirical setting

GUW test their ambiguity-averse approach against var-
ious other models in the literature, like the classical mean-
variance approach, the minimum-variance approach and the
Bayes-Stein approach. As a performance measure, they use
the Sharpe ratio and therefore they test whether even a de-
cision maker with mean-variance preferences can achieve
a higher utility by taking ambiguity into account. To mea-
sure the utility of an ambiguity averse investor, it is nec-
essary to characterize ambiguity averse preferences by a
utility function, in which the utility increases as ambiguity
decreases. Izhakian (2012) developed an expected utility
framework that incorporates ambiguity, in which expected
utility increases as the expected return increases, and utility
decreases as the standard deviation increases or the degree of
ambiguity increases. Izhakian further develops an extended
measure of the Sharpe ratio, that incorporates ambiguity.
This is a better measure for an ambiguity averse investor
to compare different portfolio optimization strategies, since
investors are willing to accept a lower Sharpe ratio if the
portfolio ambiguity decreases (Koziol et al., 2011).

GUW use returns on eight international equity indices
from January 1970 to July 2001 to measure the out-of-
sample performance of the different portfolio optimization
strategies. The portfolio weights are determined using his-
torical returns from a rolling window of 120 months and
the risk aversion parameter γ is set to 1. A risk aversion
parameter of 1 corresponds to a low degree of risk aver-
sion, since empirical measures have shown that the degree
of risk aversion typically lies in a range between 2 and 418.
This low degree of risk aversion contradicts the very con-
servative approach of GUW and is not consistent with the
extreme shrinkage towards the minimum-variance portfolio
(Scherer, 2007). Scherer (2007) argues, that this contra-
diction results from the separation of risk preferences and
ambiguity preferences, since the optimal portfolio depends
strongly on the relation between risk aversion and ambiguity
aversion. Therefore, it doesn’t seem realistic to assume a low
degree of risk aversion and at the same time a high value for
the ambiguity parameter ε. To show the effect of the choice
of the risk aversion parameter γ, the empirical study of GUW
is replicated using a different value for γ in Chapter 5.3.2.

The empirical results of GUW are divided into two parts.
One part considering the model accounting for parameter un-
certainty only and the second part, in which the model that
additionally takes model uncertainty into account is consid-
ered.

4.2.2. Parameter uncertainty only
With regard to GUW’s first empirical application, it is ac-

counted for parameter uncertainty only and the ambiguity
about all assets is estimated jointly. Therefore, the optimal
portfolio weights can be expressed as (13). The investor can

18See for example Paravisini et al. (2016)
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build his portfolio from eight international equity indices and
a risk-free asset doesn’t exist. When comparing the Sharpe
ratios of the mean-variance strategy, the minimum-variance
strategy, the Bayes-Stein strategy and the ambiguity-averse
approach, the authors show that the portfolios incorporat-
ing ambiguity aversion have a higher mean, lower variance
and therefore higher Sharpe ratio compared to the classical
mean-variance portfolio. For a sufficient high degree of am-
biguity (ε > 0.25), the ambiguity-averse approach also out-
performs the Bayes-Stein model. This result, however, fol-
lows from the good performance of the minimum-variance
portfolio for this specific data set, which shows the highest
mean, lowest variance and therefore also the highest Sharpe
ratio of all portfolios. Since the ambiguity-averse portfolio
is a weighted average of the mean-variance portfolio and
the minimum-variance portfolio, and the portfolio is strongly
shifted towards the minimum-variance portfolio for a suffi-
cient high degree of the ambiguity parameter ε, this explains
the good performance of the ambiguity-averse approach.

In the empirical study of GUW, the minimum-variance
portfolio shows the best out-of-sample performance, this,
however, is not true in general. The data set GUW used for
their empirical study has specific characteristic, e.g. returns
are very noisy. Because returns are noisy, using this data
set leads to an optimal strategy, that does not take expected
returns into account at all. Therefore, these data-specific
characteristics put an advantage to the minimum-variance
approach. In Chapter 5.4, it is shown that for a different
data set, it is not optimal to only hold the minimum-variance
portfolio. This also reduces the superiority of the ambiguity-
averse approach, compared to the classical mean-variance
approach. Because of specific characteristics of historical
data, Scherer (2007) argues that applying a rolling window
analysis to a historical sample path differs from real out-of-
sample testing. Therefore, it is important to vary certain
assumptions to test the robustness of results based on his-
torical data. A variation of important model assumptions is
performed in Chapter 5.3 and in Chapter 5.4 the portfolio
optimization problem is applied to a different data set.

The authors also show that the portfolios incorporating
ambiguity aversion are more stable over time and show less
extreme portfolio weights compared to the mean-variance
portfolio and the Bayes-Stein portfolio. The higher the ambi-
guity parameter ε, the more stable are the portfolio weights
over time. This is because a high parameter ε implies a
large confidence interval resulting in a more conservative ap-
proach. In Chapter 5, a measure for portfolio turnover is
introduced to directly compare the portfolio stability of dif-
ferent portfolio optimization strategies.

4.2.3. Parameter and model uncertainty
Regarding GUW’s second empirical application, it is ac-

counted for both, parameter and model uncertainty, and am-
biguity is estimated separately for different subsets of assets.
In this case, GUW assume that returns are generated by a
factor model and investors are uncertain about the valid-
ity of the return-generating model. In their empirical study,

GUW assume the return-generating model to be the CAPM
and therefore the factor portfolio is the world market port-
folio. In this model, the investor has the possibility to invest
in eight international equity indices and in the factor port-
folio, but again the investor is not allowed to invest in the
risk-free asset. Similar to the model of Pástor (2000), dis-
cussed in Chapter 2.4, the investor’s belief about the validity
of the CAPM is reflected by the parameter ω, where ω = 0
means the investor does not believe in the factor model and
estimates expected asset returns from the historical sample
and ω = 1 means the investor believes dogmatically in the
model and he estimates expected asset returns from the fac-
tor model. The expected return of the factor portfolio is esti-
mated from the historical sample in both cases. In this appli-
cation, the investor considers ambiguity about the estimated
asset returns εa and about the estimated returns of the factor
portfolio εb. If εa and εb are both 0, the resulting optimal
portfolio is the mean-variance portfolio in case of ω= 0 and
the market portfolio in case ofω= 1. GUW show that a small
degree of ambiguity about the asset returns and the returns of
the factor portfolio leads to an improved out-of-sample per-
formance compared to the mean-variance portfolio and the
Bayes-Stein portfolio. For large values of εa and εb, however,
the performance of the ambiguity-averse portfolio declines.

Although the model incorporates model uncertainty, the
authors consider only the extreme cases where the investor
doesn’t believe in the model at all (ω = 0) or where the in-
vestor believes dogmatically in the model (ω = 1). Jacquier
and Polson (2010) argue that most investors have beliefs
somewhere in between. Avramov (2003) states that it is
neither optimal to base a portfolio on dogmatic beliefs in
a return-generating model nor to completely ignore the in-
sights from the model. He argues that, combining both
sources of information, the historical sample and the return-
generating model, results in higher out-of-sample Sharpe
ratios. Furthermore, in GUW’s approach, the investor has
to make a subjective decision about his belief in the return-
generating model. Instead of subjective beliefs, the param-
eter ω could be determined empirically, for example using
posterior odd ratios or Bayesian model averaging if more
than one return-generating model is considered, as discussed
in Chapter 2.4.

Chapter 4 introduced the model of portfolio selection in-
corporating ambiguity aversion developed by GUW. In Chap-
ter 5, the out-of-sample performance of different portfolio
optimization strategies is compared with a special focus on
investors who are ambiguity averse.

5. Empirical applications of the ambiguity-averse ap-
proach

5.1. Empirical design
The empirical analysis consists of three different parts.

In the first part, the empirical design of GUW is adopted and
their results are replicated with focus on differences in re-
sults. Both models are analyzed, the one incorporating pa-
rameter uncertainty only and the one that takes additionally
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model uncertainty into account. In the first portfolio opti-
mization problem, with parameter uncertainty only, the in-
vestor can build his portfolio from eight international equity
indices (MSCI Italy, MSCI Canada, MSCI France, MSCI Ger-
many, MSCI Japan, MSCI Switzerland, MSCI UK and MSCI
USA) and a risk-free asset doesn’t exist. With regard to the
second portfolio optimization problem, incorporating param-
eter and model uncertainty, the investor additionally has the
possibility to invest in the factor portfolio (MSCI World). In
this second case, in order to determine the expected excess
returns, the month-end US 30-day T-bill is subtracted from
the expected returns. Therefore, a risk-free asset exists but
it is not possible to invest in the risk-free asset. The data
is computed from Datastream and from the Center for Re-
search in Security Prices (CRSP) for the timespan from Jan-
uary 1970 to July 2001. The timespan is identical to the
one proposed by GUW. Following the approach of GUW, a
rolling window of 120 months is used to determine the op-
timal portfolio weights for the 121st month. These portfolio
weights are then used to compute the portfolio return in the
121st month. The resulting out-of-sample period includes
the timespan from January 1980 to July 2001 (259 observa-
tions). In Chapter 5.3.1, the window length is varied to test
the impact of the length of the sample size on the portfolio
performance and in Chapter 5.3.3 the time period is extended
to December 2016.

In all empirical analyses, the models of GUW are tested
against the classical mean-variance model, the minimum-
variance model, the Bayes-Stein model and against the model
of naïve diversification, referred to as the 1/N rule. These
are the same models used by GUW, except for the 1/N rule.
This model is included because of evidence that the 1/N rule
can’t be consistently outperformed by complex models like
the one proposed by GUW (e.g. DeMiguel et al. (2009)). To
compare the performance of the different portfolio optimiza-
tion strategies, the Sharpe ratio and the turnover ratio are
computed. The Sharpe ratio is derived as follows:

Sharpe ratio=
µ− r f

σ
. (14)

The risk-free rate r f exists, however, only with regard to
the second model incorporating parameter and model uncer-
tainty for the CAPM to be valid. Therefore, the Sharpe ratio
reduces to the mean-to-standard-deviation ratio with regard
to the first model taking only parameter uncertainty into ac-
count. This approach, chosen by GUW, in the second case is
rather inconsistent, since the investor is not allowed to in-
vest in the risk-free asset, but the risk-free asset is still used
to evaluate the performance and for the CAPM to be valid.
This approach also makes a comparison of the portfolios in-
cluding and excluding the market portfolio impossible, since
different performance measures are used. Nevertheless, this
approach is adopted to make sure that the replicated results
are comparable with the original results of GUW. Further-
more, a significance test of Sharpe ratios, as suggested by
Jobson and Korkie (1981) and corrected by Memmel (2003),

is performed.
However, as already mentioned in Chapter 4.2.1, if an in-

vestor is ambiguity averse and his utility depends on the de-
gree of ambiguity, a performance measure should be imple-
mented that takes ambiguity into account. Since the Sharpe
ratio only considers risk and return, it doesn’t seem plausible
to expect ex ante a higher Sharpe ratio for portfolios that ac-
count for ambiguity aversion. If, nevertheless, the Sharpe ra-
tio is used as a performance measure, it is tested whether the
investor can achieve a higher out-of-sample performance by
taking ambiguity into account, even if he has mean-variance
preferences.

In addition to the Sharpe ratio, the portfolio turnover is
computed to measure the stability of the portfolio weights. In
practice, investors prefer stable portfolios that don’t have to
be reallocated heavily every month because they take trans-
action costs into account. The turnover ratio is calculated as
follows19

Turnover=
1

T − n

T−n
∑

t=1

N
∑

j=1

(|ŵ j,t+1 − ŵ j,t+ |) (15)

in which T − n is the length of the out-of-sample period,
with T being the total length of the data series and n be-
ing the length of the sample size, N is the number of as-
sets, ŵ j,t+ are the portfolio weights just before rebalancing
and ŵ j,t+1 are the portfolio weights right after rebalancing at
time t + 1. The turnover ratio measures the shift in portfo-
lio weights every period and is therefore also referred to as
relative turnover.

After replicating the results of GUW in Chapter 5.2, differ-
ent parameters like the sample size, the degree of risk aver-
sion and the timespan are varied in Chapter 5.3. By vary-
ing the input parameters, it is measured whether the out-of-
sample performance of the different portfolio optimization
strategies is robust to changes in the empirical design. Fur-
thermore, the robustness of the superiority of the ambiguity-
averse approach compared to other portfolio optimization
models, as found by GUW, is tested. Finally, in Chapter 5.4,
the investment universe is changed and the portfolio opti-
mization problem is applied to the German DAX30 compa-
nies.

5.2. Replication of the empirical results of Garlappi, Uppal
and Wang

5.2.1. Parameter uncertainty only
The first part of the empirical analysis deals with the repli-

cation of the empirical results of GUW. For the first empirical
application, the ambiguity-averse model incorporating pa-
rameter uncertainty only is tested against the classical mean-
variance model, the minimum-variance model, the Bayes-
Stein model and the model of naïve diversification. With
regard to this portfolio optimization problem, the investor

19See DeMiguel et al. (2009, p. 1929).
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has the possibility to invest in eight international equity in-
dices and a risk-free asset doesn’t exist. The derivation of the
portfolio weights for each strategy can be found in Appendix
A. The optimal portfolio weights for the portfolios incorpo-
rating ambiguity aversion are determined from (13). Using
(13), different values of the ambiguity parameter ε ranging
from 0 to infinity are applied. However, GUW don’t give any
guidance on how ε can be determined. Therefore, the choice
of ε remains a subjective choice of the investor. Just as done
by GUW, two cases are considered, one, where short selling
is allowed (Panel A) and one, where short selling is not al-
lowed (Panel B). The original results and the replication of
the results are presented in Table 1.

The replicated results are very similar to the original re-
sults of GUW. The main difference is that the mean of the
mean-variance strategy in Panel A is somewhat higher, while
the mean of the minimum-variance strategy in both Pan-
els is slightly below the one found by GUW. This reduces
the superiority of the minimum-variance strategy over the
mean-variance strategy, but the Sharpe ratio of the minimum-
variance strategy is still considerably higher and therefore,
the findings presented by GUW are still observable.

The ambiguity-averse portfolios show in both Panels a
higher Sharpe ratio compared to the mean-variance portfo-
lio and compared to the Bayes-Stein portfolio, given a de-
gree of ambiguity of 0.5 or higher. If ε is about 0.25, the
shrinkage factor of the ambiguity-averse portfolio is approx-
imately equivalent to the Bayes-Stein shrinkage factor while
for higher values of ε, the shrinkage factor of the ambiguity-
averse portfolio increases. In Figure 1, the shrinkage factor
of the Bayes-Stein portfolio φBS and the shrinkage factors
of two portfolios incorporating ambiguity aversion φAA with
ε = 1 and ε = 3, in case that short selling is allowed, are
compared20. From Figure 1 it can be seen that the portfo-
lios incorporating ambiguity aversion are shrunk much more
towards the minimum-variance portfolio and the shrinkage
factors are more stable over time. This result is consistent
with the results found by GUW. The strong shrinkage towards
the minimum-variance portfolio explains the superior perfor-
mance to the Bayes-Stein approach for high values of ε.

From Table 1, however, it can be seen that the out-of-
sample performance of the ambiguity-averse approach de-
pends strongly on the degree of ambiguity ε. It is therefore
necessary to measure ambiguity objectively and to separate
between ambiguity (belief) and ambiguity aversion (taste).
Only ambiguity aversion should depend on the subjective
preference of the decision maker. Without any guidance on
how to determine ε, it can’t be shown that a portfolio opti-
mization strategy incorporating ambiguity aversion outper-
forms other models, like the mean-variance model or the
Bayes-Stein model, in general.

A model of naïve diversification was additionally tested.
The out-of-sample Sharpe ratio of the uniformly diversified

20The derivation of the Bayes-Stein shrinkage factor can be found in Ap-
pendix A.3, while the derivation of the shrinkage factor of the ambiguity-
averse portfolios can be found in Appendix A.4.

portfolio, in case short selling is allowed, is higher than the
Sharpe ratio of the mean-variance portfolio and the Bayes-
Stein portfolio and is only outperformed by the minimum-
variance portfolio and by the portfolios incorporating ambi-
guity aversion for extreme high levels of ambiguity (ε > 3).
The 1/N rule, however, is outperformed by the Bayes-Stein
approach and the ambiguity-averse approach in case short
selling is not allowed and a sufficient high amount of am-
biguity is considered (ε ≥ 0.25). If short selling is prohib-
ited, the difference in out-of-sample Sharpe ratios decreases,
since imposing a short sale constraint improves the out-of-
sample performance of the mean-variance portfolio, as dis-
cussed in Chapter 2.2. At the same time, the performance of
the minimum-variance portfolio changes only little since the
portfolio weights are less extreme and the Sharpe ratio of the
uniformly diversified portfolio doesn’t change at all. Conse-
quently, the superiority of the minimum-variance approach
and the 1/N rule decreases if short selling is prohibited.

Table 2 shows the results of the Jobson-Korkie signifi-
cance test of Sharpe ratios for the different portfolio opti-
mization strategies when short selling is allowed. While the
Sharpe ratios of the ambiguity-averse portfolios (with ε = 1
and ε = 3) are significantly higher than the Sharpe ratios of
the mean-variance portfolio and the Bayes-Stein portfolio on
the 5%-confidence level, they don’t differ significantly from
the Sharpe ratio of the minimum-variance portfolio. This is
because the ambiguity-averse portfolios are shrunk strongly
towards the minimum-variance portfolio and therefore the
portfolio structures are very similar. The Sharpe ratio of the
mean-variance strategy is not significantly different from the
Sharpe ratio of the minimum-variance strategy on the 5%-
confidence level, however, this is true for the 10%-confidence
level.21

From the significance test, it can be observed that the
Sharpe ratios of the ambiguity-averse portfolio with ε = 3
and the uniformly diversified portfolio are very similar, since
the value of the z-statistic is very low (p-value = 0.9656).
This indicates that the performance of the simple strategy of
naïve diversification does not differ significantly from the per-
formance of a complex model incorporating ambiguity, even
if a high degree of ambiguity is considered. Note, however,
that the degree of ambiguity is not taken into account in the
performance measure. Therefore, this conclusion is only true
for an investor with mean-variance preferences. In order to
test the validity of the results for an investor who is ambigu-
ity averse, it is necessary to develop a performance measure
which accounts for ambiguity.

Additionally, to the Sharpe ratio, the turnover ratio was
computed as a performance measure. In both cases, whether
short selling is allowed or not, the portfolio turnover is high-
est for the mean-variance portfolio and lowest for the uni-
formly diversified portfolio. Besides the uniformly diversified

21However, Jobson and Korkie (1981) state that the statistical power of
the Jobson-Korkie significance test is low. Thus, a z-statistic which indicates
that the Sharpe ratios are significantly different is a strong evidence.
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Table 1: Replication with parameter uncertainty only

This table reports the out-of-sample mean-to-standard-deviation ratio and turnover ratio for the returns on different portfolio optimization strategies. The
parameter ε presents the ambiguity parameter and varies between 0 and infinity. The values for the means and the standard deviations are expressed as
percentage per month. Turnover is expressed as shift in portfolio weights per month. The degree of risk aversion γ is assumed to be 1.

Strategy Original results of GUW Replication of results
Mean SD Mean/SD Mean SD Mean/SD Turnover

Panel A: Short sales allowed

Mean-Variance 0.0049 0.2557 0.0190 0.0064 0.2550 0.0252 2.0584
Minimum-Variance 0.0118 0.0419 0.2827 0.0109 0.0421 0.2589 0.0723
Bayes-Stein 0.0071 0.1058 0.0671 0.0066 0.1203 0.0552 0.9298
Naive Diversification - - - 0.0097 0.0439 0.2214 0.0000

Ambiguity-averse

ε = 0.00 0.0049 0.2557 0.0190 0.0064 0.2550 0.0252 2.0584
ε = 0.25 0.0065 0.1307 0.0495 0.0068 0.1323 0.0515 1.0343
ε = 0.50 0.0080 0.0953 0.0841 0.0080 0.0981 0.0813 0.7136
ε = 0.75 0.0091 0.0765 0.1190 0.0088 0.0796 0.1112 0.5411
ε = 1.00 0.0098 0.0654 0.1491 0.0094 0.0682 0.1375 0.4374
ε = 1.50 0.0104 0.0545 0.1909 0.0099 0.0562 0.1755 0.3208
ε = 2.00 0.0107 0.0501 0.2144 0.0101 0.0511 0.1977 0.2582
ε = 2.50 0.0109 0.0480 0.2281 0.0103 0.0487 0.2107 0.2211
ε = 3.00 0.0111 0.0467 0.2369 0.0104 0.0473 0.2189 0.1973
ε→∞ 0.0118 0.0419 0.2827 0.0109 0.0421 0.2589 0.0723

Panel B: Short sales not allowed

Mean-Variance 0.0104 0.0587 0.1774 0.0103 0.0587 0.1752 0.2072
Minimum-Variance 0.0117 0.0412 0.2831 0.0107 0.0415 0.2568 0.0481
Bayes-Stein 0.0106 0.0511 0.2074 0.0101 0.0435 0.2322 0.1090
Naive Diversification - - - 0.0097 0.0439 0.2214 0.0000

Ambiguity-averse

ε = 0.00 0.0104 0.0587 0.1774 0.0103 0.0587 0.1752 0.2072
ε = 0.25 0.0113 0.0511 0.2214 0.0101 0.0446 0.2270 0.1183
ε = 0.50 0.0115 0.0482 0.2391 0.0103 0.0427 0.2402 0.0906
ε = 0.75 0.0115 0.0467 0.2472 0.0104 0.0421 0.2458 0.0774
ε = 1.00 0.0116 0.0457 0.2533 0.0104 0.0419 0.2487 0.0702
ε = 1.50 0.0116 0.0446 0.2607 0.0105 0.0417 0.2516 0.0629
ε = 2.00 0.0117 0.0440 0.2647 0.0105 0.0416 0.2531 0.0592
ε = 2.50 0.0117 0.0436 0.2671 0.0106 0.0416 0.2539 0.0570
ε = 3.00 0.0117 0.0433 0.2695 0.0106 0.0416 0.2544 0.0556
ε→∞ 0.0117 0.0412 0.2831 0.0107 0.0415 0.2568 0.0481

portfolio, which does not show any relative turnover at all22,
the minimum-variance portfolio has the lowest turnover ra-
tio and the turnover ratios of the Bayes-Stein portfolio and
the ambiguity-averse portfolios lie between the turnover ra-
tio of the mean-variance portfolio and the minimum-variance
portfolio. Since the shrinkage factors of the ambiguity-averse
portfolios for a sufficient high level of ε are higher than the
shrinkage factor of the Bayes-Stein portfolio, this explains the

22The uniformly diversified portfolio, however, shows absolute turnover.
The portfolio weights don’t change over time, but absolute prices change and
therefore also the 1/N rule requires monthly reallocation (DeMiguel et al.,
2009).

lower turnover of portfolios accounting for ambiguity aver-
sion compared to the Bayes-Stein portfolio. If short selling
is not allowed, the turnover of the mean-variance portfo-
lio declines strongly, but is still considerably higher than the
turnover of the minimum-variance portfolio. This reduction
of turnover can again be explained by the improvement of
the mean-variance strategy by imposing a short selling con-
straint. If short sales are prohibited, portfolio weights are less
extreme and the portfolio turnover decreases. A graphical
representation of the fluctuation of portfolio weights for the
different portfolio optimization strategies, as was also pre-
sented by GUW, can be found in Appendix B.
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Figure 1: Comparison of the shrinkage factors
This figure compares the shrinkage factors of the Bayes-Stein portfolio and two portfolios incorporating ambiguity aversion. The blue line shows the shrinkage
factor of the Bayes-Stein approach, the red line shows the shrinkage factor if the ambiguity parameter ε is set to 1 and the yellow line shows the shrinkage
factor if the ambiguity parameter ε is set to 3. The degree of risk aversion γ is assumed to be 1.

Table 2: Jobson-Korkie significance test – replication

This table reports the values of the z-statistics according to the significance test of Sharpe ratios suggested by Jobson and Korkie (1981) and corrected by
Memmel (2003). The Sharpe ratios of the mean-variance strategy (MV), the minimum-variance strategy (MIN), the Bayes-Stein strategy (BS), the 1/N rule
(ND), the ambiguity-averse approach with ε = 1 (ε = 1.00) and the ambiguity-averse approach with ε = 3 (ε = 3.00) are tested. One star * means that
the p-value indicates that the Sharpe ratios are significantly different on the 5%-confidence level, while two stars ** indicate that the Sharpe ratios are
significantly different on the 1%-confidence level.

Jobson-Korkie significance test

Strategy MV MIN BS ND ε = 1.00 ε = 3.00
Mean-Variance 1.0000 -1.9474 -0.9388 -1.6444 -2.2130* -2.3380*
Minimum-Variance 1.0000 1.8858 -0.8964 1.4216 0.8728
Bayes-Stein 1.0000 1.5252 -2.8397** -2.3352*
Naive Diversification 1.0000 0.9438 0.0432
ε = 1.00 1.0000 -1.8133
ε = 3.00 1.0000

5.2.2. Parameter and model uncertainty
With regard to the second empirical application, the

ambiguity-averse approach incorporating both, parameter
and model uncertainty, is tested against the mean-variance
model, the minimum-variance model, the Bayes-Stein model
and the model of naïve diversification. GUW also include Pas-
tor’s data and model approach presented in Chapter 2.4, but
since it is nested in the ambiguity-averse approach (in case εa
and εb are both 0), this approach isn’t explicitly considered
here. With regard to this portfolio optimization problem, the
investor has the possibility to invest in the market portfolio
in addition to the eight international equity indices. For the
CAPM to be valid, a risk-free asset is introduced, but the

investor is not allowed to invest in the risk-free asset.
The optimal portfolio weights for the ambiguity-averse

portfolios are determined from the equation system (A.5),
which can be found in Appendix A.5. Using (A.5), different
values for the ambiguity about the expected asset returns εa
and about the expected returns of the factor portfolio εb are
applied. The equation system (A.5) doesn’t restrict the port-
folio weights to sum to 1 and, at the same time, the investor
is not allowed to invest in the risk-free asset. Therefore, in
order to solve for the optimal portfolio weights, the resulting
weights for the risky assets wa and the factor portfolio wb
need to be upscaled to one. This procedure seems to be im-
plausible because, if the portfolio weights are very small or
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very large, they are strongly modified to make sure that the
investor invests his whole wealth in the stock market. Fur-
thermore, if the ambiguity about the expected asset returns
εa is very high and at the same time the ambiguity about the
expected returns of the market portfolio εb is very high, the
investor might not want to participate in the stock market at
all. This result of limited market participation, in case that
ambiguity is sufficiently high, was discussed in Chapter 3.5.1.
GUW, however, don’t give any guidance on how the investor
should behave if the degree of ambiguity is so high that he
prefers not to participate in the stock market at all.

The original results of the portfolio optimization problem
with parameter and model uncertainty and the replicated re-
sults are shown in Table 3. Following the approach of GUW,
the tables are divided into two parts. One, where the investor
does not believe in the CAPM (ω = 0) and the expected ex-
cess returns of the assets µ̂a are estimated from the historical
sample, and one, where the investor believes dogmatically in
the CAPM (ω = 1) and m̂ua is estimated from the CAPM in
which m̂ua = β̄ µ̂b and β̄ is the N x 1 vector of betas. The ex-
pected excess return of the market portfolio µ̂b is estimated
from the historical sample in both cases.

From Table 3 it can be seen, that GUW show in their
results that the out-of-sample Sharpe ratio of the mean-
variance portfolio and the Bayes-Stein portfolio can be im-
proved by allowing for a moderate level of ambiguity. How-
ever, the Sharpe ratio of the ambiguity-averse portfolio de-
clines if εa and εb are large. If εa is relatively high compared
to εb, the investor prefers a portfolio which puts high weights
on the world market portfolio. In the extreme case, the op-
timal portfolio equals the world market portfolio and the
Sharpe ratio is 0.1239. If, however, εb is relatively high
compared to εa, the portfolio is shifted towards a portfolio
consisting only of the risky assets. This effect is stronger in
case the investor does not believe in the CAPM (ω = 0),
while the portfolio structure, in case the investor believes
dogmatically in the CAPM (ω= 1) depends only little on εa,
whereas it is strongly affected by changes in εb.

The results of the replication show a different, how-
ever, intuitive picture of the out-of-sample performance of
the different portfolio optimization strategies. The first dif-
ference to be noted is that the Sharpe ratios of the mean-
variance portfolio and the Bayes-Stein portfolio are consid-
erably higher compared to the original results of GUW. For
the replication, when applying these two strategies, it was
assumed that the investor has the possibility to invest in
nine different assets, the eight international equity indices
plus the world market portfolio and a separation between
the risky assets and the world market portfolio didn’t take
place. The missing separation when applying the mean-
variance strategy, also explains why the Sharpe ratio of the
mean-variance portfolio differs from the Sharpe ratio of the
ambiguity-averse portfolio with εa = 0 and εb = 0.

The main difference between the original results and the
replicated results, however, is the difference in Sharpe ratios
of the portfolios incorporating ambiguity aversion. If εb = 0
and εa > 0, the investor is uncertain about the returns of

the risky assets, while he is not uncertain about the returns
of the market portfolio. This leads to a shift of the optimal
portfolio towards the world market portfolio. The replicated
results show that in case ω=

0, already an increase in εa from 0 to 0.25 leads to an
optimal portfolio, which equals the market portfolio and the
Sharpe ratio is 0.1156. Given that εb = 0 and ω = 1, the
investor prefers to invest all his wealth in the world market
portfolio, even if he is certain about the asset returns (εa =
0). The shift towards the world market portfolio in case that
εb = 0 and εa > 0 is consistent with the results of GUW.
However, in case that ω = 0, the original results show that
the optimal portfolio equals the world market portfolio only
for sufficient high values of εa (≥ 2.5) and otherwise the
optimal portfolio consists of both, the risky assets and the
world market portfolio.

If, on the other hand, εa = 0 and εb > 0, the investor
is certain about the returns of the risky assets, but uncertain
about the returns of the world market portfolio. This leads to
a shift of the optimal portfolio towards a portfolio consisting
only of the risky assets. Again, an increase in the ambiguity
parameter εb from 0 to 0.5 is sufficient in order for the in-
vestor to prefer not to invest in the world market portfolio
at all and instead to invest all his wealth in the risky assets.
This is true for both cases, ω = 0 and ω = 1. However,
in case the investor believes dogmatically in the CAPM, the
Sharpe ratios are considerably higher. This result arises be-
cause the portfolio weights are less extreme if expected asset
returns are determined from the CAPM instead of estimat-
ing them from the historical sample. Because of estimation
errors, these extreme portfolio weights lead to a poor out-of-
sample performance. The shift towards a portfolio consisting
of only risky assets is consistent with the original results of
GUW, the Sharpe ratios, however, differ strongly.

In the general case of εa > 0 and εb > 0, the investor is
uncertain about the asset returns and also uncertain about
the returns of the world market portfolio. The replicated re-
sults show that this leads to a situation, in which the investor
doesn’t want to participate in the stock market at all and in-
stead he prefers to invest all his wealth in the risk-free asset.
This result is confirmed by Boyle et al. (2012), who apply the
ambiguity-averse approach as proposed by GUW and show
that, if ambiguity reaches a certain level, the investor prefers
to invest only in the risk-free asset. This preference, how-
ever, contradicts the construction of the portfolio optimiza-
tion problem incorporating parameter and model uncertainty
presented by GUW, because they don’t allow for an invest-
ment in the risk-free asset. This is especially inconsistent,
because a risk-free asset is introduced to determine the ex-
cess returns and for the CAPM to be valid, but the risk-free
asset is not an investment option. As a result, the investor
doesn’t invest any wealth and the Sharpe ratio is set to 0.
This result differs from the original result of GUW, who show
that in the general case of εa > 0 and εb > 0, the investor
chooses a portfolio that consists of both, the risky assets and
the world market portfolio.

GUW showed in their empirical study that, most of the
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Table 3: Replication with parameter and model uncertainty

This table reports the out-of-sample Sharpe ratio for the returns on different portfolio optimization strategies. The parameter εa presents the ambiguity about
the asset returns and varies between 0 and 3 and εb presents the ambiguity about the returns of the factor portfolio, also varying between 0 and 3. The
parameter ω presents the investor’s beliefs in the validity of the CAPM, where ω = 0 means the investor doesn’t believe in the CAPM and ω = 1 means the
investor believes dogmatically in the CAPM. The values for the Sharpe ratios are expressed as percentage per month.

Results of Garlappi, Uppal and Wang

Strategy Sharpe ratio
Mean-Variance -0.0719
Minimum-Variance 0.1490
Bayes-Stein -0.0528
Naive Diversification -
Ambiguity-averse With ω = 0 εb

0.00 0.50 1.00 1.50 2.00 2.50 3.00

εa = 0.00 -0.0853 0.1127 0.1127 0.1127 0.1127 0.1127 0.1127
εa = 0.25 -0.0774 0.1032 0.1043 0.1043 0.1043 0.1043 0.1043
εa = 0.50 -0.0475 0.0824 0.0815 0.0824 0.0839 0.0842 0.0842
εa = 0.75 -0.0113 0.0604 0.0568 0.0524 0.0477 0.0489 0.0481
εa = 1.00 0.0930 0.0655 0.0601 0.0566 0.0562 0.0556 0.0447
εa = 1.50 0.1219 0.1218 0.0814 0.0503 0.0391 0.0319 -0.0435
εa = 2.00 0.1223 0.1252 0.0874 0.0643 0.0487 0.0341 -0.0492
εa = 2.50 0.1239 0.1275 0.0909 0.0465 0.0126 0.0091 -0.0870
εa = 3.00 0.1239 0.1284 0.0943 0.0551 0.0197 0.0364 -0.0647

With ω = 1

εa = 0.00 0.1239 0.1202 0.1202 0.1202 0.1202 0.1202 0.1202
εa = 0.25 0.1239 0.1284 0.0943 0.0551 0.0197 0.0383 0.0383
εa = 0.50 0.1239 0.1284 0.0943 0.0551 0.0197 0.0364 -0.0647
εa = 0.75 0.1239 0.1284 0.0943 0.0551 0.0197 0.0364 -0.0647
εa = 1.00 0.1239 0.1284 0.0943 0.0551 0.0197 0.0364 -0.0647
εa = 1.50 0.1239 0.1284 0.0943 0.0551 0.0197 0.0364 -0.0647
εa = 2.00 0.1239 0.1284 0.0943 0.0551 0.0197 0.0364 -0.0647
εa = 2.50 0.1239 0.1284 0.0943 0.0551 0.0197 0.0364 -0.0647
εa = 3.00 0.1239 0.1284 0.0943 0.0551 0.0197 0.0364 -0.0647

Replication of results
Strategy Sharpe ratio
Mean-Variance 0.0238
Minimum-Variance 0.1295
Bayes-Stein 0.0261
Naive Diversification 0.0994
Ambguity-averse With ω = 0 εb

0.00 0.50 1.00 1.50 2.00 2.50 3.00

εa = 0.00 -0.0616 0.0295 -0.0295 -0.0295 -0.0295 -0.0295 -0.0295
εa = 0.25 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 0.50 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 0.75 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 1.00 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 1.50 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 2.00 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 2.50 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 3.00 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(Continued)
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Table 3—continued

With ω = 1

εa = 0.00 0.1156 0.0950 0.0950 0.0950 0.0950 0.0950 0.0950
εa = 0.25 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 0.50 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 0.75 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 1.00 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 1.50 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 2.00 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 2.50 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
εa = 3.00 0.1156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

time, allowing for ambiguity in portfolio optimization im-
proves the out-of-sample performance, even if ambiguity is
not included in the performance measure. In the following
Chapter, several input parameters like the sample size, the
degree of risk aversion and the timespan are varied to test
the robustness of the results. In Chapter 5.3, only the model
with parameter uncertainty is considered, because the model
accounting additionally for model uncertainty always leads
to an extreme result, where the investor either invests all his
wealth in the world market portfolio, he invests all his wealth
in the risky assets or he doesn’t participate in the stock mar-
ket at all.

5.3. Variation of the input parameters
5.3.1. Sample size

The first input parameter that is varied is the sample size,
which is used to determine the optimal portfolio weights.
GUW use a window length of 120 months. In this Chap-
ter, the window length is varied between 30 months and
120 months. A maximum of 120 months is used, to make
sure that the out-of-sample period remains unchanged. The
case is considered, where there is parameter uncertainty only
and short selling is allowed. Figure 2 presents the resulting
Sharpe ratios (Panel A) and the turnover ratios (Panel B) for
the different values of the window length.

Panel A shows that, for every window length, the Sharpe
ratio of the minimum-variance portfolio is the highest, while
the Sharpe ratio of the mean-variance portfolio is the low-
est. Furthermore, it can be observed, that the ranking of
the portfolio optimization strategies regarding the Sharpe ra-
tio for every window length is the same. Also, there is no
clear trend visible for either strategy as the window length
increases. These results indicate that the original results of
GUW are robust to changes in the sample size.

From Panel B, a clear trend becomes visible that for ev-
ery strategy the portfolio turnover decreases as the window
length increases. However, the effect is greatest for the mean-
variance portfolio. If the sample size is large, many his-
torical observations are used to determine the expected re-
turn and therefore, portfolio weights are less extreme and
the turnover ratio decreases. The minimum-variance port-
folio has the lowest turnover ratio which decreases only to

a small extent as the sample size increases. This is because
the minimum-variance portfolio is independent of expected
returns, but also the variance-co-

variance matrix is more stable if many observations are
taken into account. Consequently, the turnover ratio is not
robust to the choice of the window length as it can be re-
duced if the window length is increased. However, the rank-
ing of the different portfolio optimization strategies regard-
ing the turnover ratio does not change and is consistent with
the original assumption of 120 months.

5.3.2. The degree of risk aversion
The investor’s degree of risk aversion is presented by the

variable γ. While GUW assume that γ is fixed at 1, empirical
evidence has shown that most investors have a degree of risk
aversion between 2 and 4. Therefore, a value of 1 reflects a
low degree of risk aversion. It has been shown that incorpo-
rating ambiguity aversion to the portfolio optimization prob-
lem leads to more conservative portfolios that are less risky
than the mean-variance portfolio. This effect, however, can
also be achieved by increasing the degree of risk aversion.
If γ increases, the investor prefers a portfolio further to the
left on the efficient frontier, closer to the minimum-variance
portfolio. Furthermore, the degree of ambiguity aversion is
correlated with the degree of risk aversion (Uppal and Wang,
2003, Bossaerts et al., 2010). Scherer (2007) even argues,
that it is impossible to distinguish between risk aversion and
ambiguity aversion. GUW fix the degree of ambiguity aver-
sion also at 1, however, they don’t give any guidance on
how the ambiguity parameter ε can be determined. There-
fore, ε depends on the investor’s subjective level of ambiguity
about expected returns. Consequently, the assumption that
investors are strongly uncertain about expected returns (high
values of ε) contradicts their low degree of risk aversion.

Since most investors have a degree of risk aversion be-
tween 2 and 4, the empirical study of GUW is repeated as-
suming that γ = 3. This assumption corresponds to an in-
vestor who has a moderate degree of risk aversion and there-
fore prefers a more conservative portfolio. In this empirical
application, the case with parameter uncertainty only is con-
sidered. Table 4 presents the out-of-sample performance of
the mean-variance strategy, the minimum-variance strategy,
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Panel A: Sharpe ratios

Panel B: Portfolio Turnover

Figure 2: Variation of the window length
This figure presents the Sharpe ratios (Panel A) and the turnover ratios (Panel B) for different portfolio optimization strategies using window lengths between
30 months and 120 months. The portfolio strategies considered are the mean-variance strategy (blue line), the minimum-variance strategy (red line), the
Bayes-Stein strategy (yellow line), the ambiguity-averse approach with ε= 1 (purple line) and the ambiguity-averse approach with ε= 3 (green line).

the Bayes-Stein strategy, the ambiguity-averse approach and
the strategy of naïve diversification. Panel A shows the re-

sults if short selling is allowed, Panel B the results if short
selling is not allowed.
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An increase in γ does not affect the out-of-sample per-
formance of the minimum-variance portfolio and the uni-
formly diversified portfolio, since they are independent of γ.
However, in Panel A, an increase in γ leads to an increased
performance of the mean-variance portfolio, as the mean in-
creases while the standard deviation decreases strongly, lead-
ing to an improved out-of-sample Sharpe ratio. Additionally,
the turnover ratio of the mean-variance portfolio is reduced
sharply, because portfolio weights are less extreme as γ in-
creases. These effects also lead to an increase in Sharpe ratio
and decrease in turnover ratio of the Bayes-Stein portfolio.
As γ gets larger, the effect of increasing the ambiguity param-
eter reduces, since the difference in performance between the
mean-variance port-

folio and the minimum-variance portfolio gets smaller.
As a result, increasing γ, when applying the classical mean-
variance strategy, has a very similar effect to increasing ε
when applying the ambiguity-averse approach. Both adjust-
ments lead to an optimal portfolio which is shifted from the
mean-variance portfolio with γ = 1 towards the minimum-
variance portfolio. If γ approaches infinity, the optimal port-
folio equals the minimum-variance portfolio, as is precisely
the case if ε approaches infinity.

If short sales are not allowed, the out-of-sample perfor-
mance of the mean-variance portfolio increases only slightly
as γ increases. This is because imposing a short sale con-
straint has a strong effect on the performance of the mean-
variance portfolio as discussed in Chapter 2.2 and Chapter
5.2.1. Since the additional constraint leads to better diver-
sified portfolios with less extreme portfolio weights, an in-
crease in γ, which has a similar effect, improves the out-of-
sample performance only little.

Table 5 presents the Jobson-Korkie significance test of
Sharpe ratios, which indicates whether the Sharpe ratios of
the different portfolio optimization strategies change signifi-
cantly if γ is increased from 1 to 3. The table considers only
the case when short selling is allowed, since the Sharpe ratio
reacts only little to an increase in γ, if a short sale constraint
is imposed.

From Table 5 it can be seen that the Sharpe ratio of the
mean-variance portfolio increases significantly on the 1%-
confidence level if γ is increased from 1 to 3, while the Sharpe
ratio of the Bayes-Stein portfolio increases significantly on
the 5%-confidence level. The Sharpe ratios of the ambiguity-
averse portfolios with ε = 1 and ε = 3, however, don’t in-
crease significantly. This result confirms, that increasing γ
has a similar effect on the out-of-sample performance to tak-
ing ambiguity aversion into account, when optimizing port-
folios. The significance test, however, also reveals that the
portfolios considering ambiguity aversion are more robust to
changes in the degree of risk aversion.

Finally, Figure 3 compares the shrinkage factors of the
Bayes-Stein portfolio and the ambiguity-averse portfolios
with ε= 1 and ε= 3 in case short selling is allowed.

If γ increases from 1 to 3, the shrinkage factor of the
Bayes-Stein portfolio and the shrinkage factors of the portfo-
lios incorporating ambiguity aversion are increasingly simi-

lar. This explains why the superiority of the ambiguity-averse
portfolios over the Bayes-Stein portfolio, decreases as γ in-
creases. However, from Figure 3 it can be seen that the
shrinkage factors of the ambiguity-averse portfolios are much
more stable and that the fluctuation of the shrinkage factor
decreases as ε increases. This result is in accordance with the
results presented in Figure 1 for a degree of risk aversion of
1.

If the degree of risk aversion increases, the out-of-sample
performance of the mean-variance strategy and the Bayes-
Stein strategy increases significantly, while the performance
of the ambiguity-averse approach increases only slightly. As
a result, the superiority of the ambiguity-averse approach
decreases as γ increases. On the other hand, it was shown
that the ambiguity-averse approach is much more robust to
changes in the risk aversion parameter.

5.3.3. Time period
GUW use in their empirical study observations from Jan-

uary 1970 to July 2001. In this Chapter, the timespan is ex-
tended to December 2016, while the investment universe and
all other original input parameters remain unchanged. The
extension of the time period indicates whether the ambiguity-
averse approach outperforms other strategies, like the mean-
variance approach and the Bayes-Stein approach, also if a
different, more current time period is considered. As already
argued in Chapter 4.2.2, historical sample paths have spe-
cific characteristics that might put an advantage to a certain
model. If this advantage arises from time-specific character-
istics, varying the time period is an appropriate method to
test the robustness of the results over time. Firstly, a single
extended time period from January 1970 to December 2016
with 564 observations is analyzed and afterwards a rolling
out-of-sample period of 259 observations between January
1970 and December 2016 is considered.

Table 6 presents the out-of-sample performance of the
mean-variance strategy, the minimum-variance strategy, the
Bayes-Stein strategy, the ambiguity-averse approach and the
strategy of naïve diversification for the time period from Jan-
uary 1970 to December 2016 when parameter uncertainty
only is considered. Only the case when short sales are al-
lowed is analyzed, because, analogous to the original time
period, the performance of the different strategies is very sim-
ilar if short sales are prohibited. Table 7 presents the Jobson-
Korkie significance test of Sharpe ratios for the extended time
period.

From Table 6, it can be seen that the minimum-variance
portfolio outperforms all other portfolios regarding mean,
standard deviation and Sharpe ratio also if the time period
is extended to December 2016. However, the superiority
of the minimum-variance portfolio decreases, especially re-
garding the mean. Table 7 shows that the Sharpe ratio
of the minimum-variance portfolio isn’t significantly higher
than the Sharpe ratio of the mean-variance portfolio on the
5%-confidence level. The z-statistic increased from -1.9474
to -1.5978 compared to the original time period, confirm-
ing that the superiority of the minimum-variance portfo-
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Table 4: Variation of the degree of risk aversion

This table reports the out-of-sample mean-to-standard-deviation ratio and turnover ratio for the returns on different portfolio optimization strategies. The
parameter ε presents the ambiguity parameter and varies between 0 and infinity. The values for the means and the standard deviations are expressed as
percentage per month. Turnover is expressed as shift in portfolio weights per month. The degree of risk aversion γ is assumed to be 3.

Variation of the degree of risk aversion

Strategy Mean SD Mean/SD Turnover

Panel A: Short sales allowed

Mean-Variance 0.0094 0.0935 0.1006 0.6913
Minimum-Variance 0.0109 0.0421 0.2589 0.0723
Bayes-Stein 0.0095 0.0558 0.1700 0.3189
Naive Diversification 0.0097 0.0439 0.2214 0.0000
Ambiguity-averse

ε = 0.00 0.0094 0.0935 0.1006 0.6913
ε = 0.25 0.0098 0.0644 0.1516 0.4110
ε = 0.50 0.0100 0.0574 0.1738 0.3333
ε = 0.75 0.0101 0.0537 0.1885 0.2877
ε = 1.00 0.0102 0.0513 0.1990 0.2568
ε = 1.50 0.0103 0.0486 0.2126 0.2173
ε = 2.00 0.0104 0.0472 0.2209 0.1927
ε = 2.50 0.0105 0.0462 0.2265 0.1757
ε = 3.00 0.0105 0.0456 0.2305 0.1633
ε→∞ 0.0109 0.0421 0.2589 0.0723

Panel B: Short sales not allowed

Mean-Variance 0.0103 0.0510 0.2014 0.1668
Minimum-Variance 0.0107 0.0415 0.2568 0.0481
Bayes-Stein 0.0103 0.0425 0.2427 0.0860
Naive Diversification 0.0097 0.0439 0.2214 0.0000
Ambiguity-averse

ε = 0.00 0.0103 0.0510 0.2014 0.1668
ε = 0.25 0.0103 0.0444 0.2326 0.1074
ε = 0.50 0.0104 0.0433 0.2394 0.0923
ε = 0.75 0.0104 0.0428 0.2430 0.0838
ε = 1.00 0.0104 0.0426 0.2452 0.0783
ε = 1.50 0.0105 0.0422 0.2478 0.0715
ε = 2.00 0.0105 0.0421 0.2493 0.0674
ε = 2.50 0.0105 0.0420 0.2504 0.0646
ε = 3.00 0.0105 0.0419 0.2511 0.0625
ε→∞ 0.0107 0.0415 0.2568 0.0481

lio decreased. The ranking of the portfolio optimization
strategies regarding their out-of-sample Sharpe ratio doesn’t
change if the extended time period is considered and, there-
fore, the ambiguity-averse portfolios still outperform the
mean-variance portfolio and also the Bayes-Stein portfolio
for a sufficient high degree of ambiguity (ε > 0.25). How-
ever, compared to the original time period, for which the
ambiguity-averse portfolios showed a significantly higher
Sharpe ratio than the mean-variance portfolio on the 5%-
confidence level, this isn’t true anymore for the extended
time period. In general, the results from Chapter 5.2.1 can
be confirmed if the time period is extended, however, the
effect of accounting for ambiguity aversion is stronger for

the original time period.
Additionally, to extending the time period, a rolling out-

of-sample period of 259 observations is considered. Begin-
ning with the original starting date in January 1970, the start-
ing date is shifted by one month until the end of the time
period in December 2016 is reached. This approach results
in 186 different out-of-sample periods with 259 observations
each. The Sharpe ratios of the different portfolio optimiza-
tion strategies for the rolling out-of-sample periods are pre-
sented in Figure 4.

Figure 4 shows, that the Sharpe ratio of the minimum-
variance portfolio exceeds the Sharpe ratio of the mean-
variance portfolio for every out-of-sample period considered.
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Table 5: Jobson-Korkie significance test for different degrees of risk aversion

This table reports the values of the z-statistics according to the significance test of Sharpe ratios suggested by Jobson and Korkie (1981) and corrected by
Memmel (2003). The significance of Sharpe ratios for the returns on different portfolio optimization strategies for different degrees of risk aversion (γ =
1 and γ = 3) is measured. The Sharpe ratios of the mean-variance strategy (MV), the Bayes-Stein strategy (BS), the ambiguity-averse approach with ε =
1 (ε = 1.00) and the ambiguity-averse approach with ε = 3 (ε = 3.00) are tested. One star * means that the p-value indicates that the Sharpe ratios are
significantly different on the 5%-confidence level, while two stars ** indicate that the Sharpe ratios are significantly different on the 1%-confidence level.

Jobson-Korkie significance test

γ = 3
Strategy MV BS ε = 1.00 ε = 3.00
Mean-Variance -2.7077**

γ = 1 Bayes-Stein -2.5082*
ε = 1.00 -1.8255
ε = 3.00 -1.3722

Figure 3: Comparison of the shrinkage factors with γ= 3
This figure compares the shrinkage factors of the Bayes-Stein portfolio and two portfolios incorporating ambiguity aversion. The blue line shows the shrinkage
factor of the Bayes-Stein approach, the red line shows the shrinkage factor if the ambiguity parameter ε is set to 1 and the yellow line shows the shrinkage
factor if the ambiguity parameter ε is set to 3. The degree of risk aversion γ is assumed to be 3.

This confirms the result, that estimation errors regarding
expected returns are so high, that the performance can be
improved by ignoring them. In general, the results from
Figure 4 are in line with the results from the previous Chap-
ters. It is, however, important to notice that although the
minimum-variance portfolio shows the highest Sharpe ratio
in most cases, this is not true for every out-of-sample period.
The minimum-variance approach is not able to consistently
outperform the 1/N rule, while the ambiguity-averse port-
folio only shows a higher Sharpe ratio than the minimum-
variance portfolio for very high values of ε and only for few
out-of-sample periods. From Figure 4 it can also be observed
that the Sharpe ratios of the minimum-variance portfolio,
the uniformly diversified portfolio and the ambiguity-averse

portfolio with ε = 3 for most out-of-sample periods are very
similar. It is intuitive that the Sharpe ratios of the minimum-
variance portfolio and the ambiguity-averse portfolio with
ε = 3 are similar, since the ambiguity-averse portfolio is
strongly shrunk towards the minimum-variance portfolio if ε
is large. The strong performance of the uniformly diversified
portfolio, however, indicates that estimation errors regarding
expected asset moments are so large, that an approach that
completely ignores the historical sample can’t be consistently
outperformed by more sophisticated models.

In Chapter 5.3, different input parameters were varied to
test the robustness of the original results presented by GUW.
It was shown that the ambiguity-averse approach outper-
forms the mean-variance strategy and the Bayes-Stein strat-
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Table 6: Variation of the time period

This table reports the out-of-sample mean-to-standard-deviation ratio and turnover ratio for the returns on different portfolio optimization strategies. The
parameter ε presents the ambiguity parameter and varies between 0 and infinity. The values for the means and the standard deviations are expressed as
percentage per month. Turnover is expressed as shift in portfolio weights per month. The degree of risk aversion γ is assumed to be 1. The timespan
considered extends from January 1970 to December 2016.

Variation of the time period

Strategy Mean SD Mean/SD Turnover

Mean-Variance 0.0074 0.2729 0.0272 2.6701
Minimum-Variance 0.0086 0.0401 0.2150 0.0878
Bayes-Stein 0.0060 0.1353 0.0444 1.3517
Naive Diversification 0.0074 0.0468 0.1589 0.0000
Ambiguity-averse

ε = 0.00 0.0074 0.2729 0.0272 2.6701
ε = 0.25 0.0063 0.1477 0.0426 1.4684
ε = 0.50 0.0067 0.1079 0.0621 1.0450
ε = 0.75 0.0072 0.0849 0.0850 0.7798
ε = 1.00 0.0076 0.0709 0.1073 0.6052
ε = 1.50 0.0080 0.0570 0.1407 0.4145
ε = 2.00 0.0082 0.0512 0.1602 0.3245
ε = 2.50 0.0083 0.0484 0.1716 0.2748
ε = 3.00 0.0084 0.0468 0.1790 0.2433
ε→∞ 0.0086 0.0401 0.2150 0.0878

Table 7: Jobson-Korkie significance test - extended time period

This table reports the values of the z-statistics according to the significance test of Sharpe ratios suggested by Jobson and Korkie (1981) and corrected by
Memmel (2003). The Sharpe ratios of the mean-variance strategy (MV), the minimum-variance strategy (MIN), the Bayes-Stein strategy (BS), the 1/N rule
(ND), the ambiguity-averse approach with ε = 1 (ε = 1.00) and the ambiguity-averse approach with ε = 3 (ε = 3.00) are tested. One star * means that
the p-value indicates that the Sharpe ratios are significantly different on the 5%-confidence level, while two stars ** indicate that the Sharpe ratios are
significantly different on the 1%-confidence level. The timespan considered extends from January 1970 to December 2016.

Jobson-Korkie significance test

Strategy MV MIN BS ND ε = 1.00 ε = 3.00

Mean-Variance 1.0000 -1.5978 -0.6807 -1.0927 -1.7562 -1.9342
Minimum-Variance 1.0000 1.5949 -1.0656 1.2720 0.7659
Bayes-Stein 1.0000 1.0185 -2.2208* -2.0054*
Naive Diversification 1.0000 0.5471 -0.2936
ε = 1.00 1.0000 -1.7001
ε = 3.00 1.0000

egy (for ε > 0.5) regarding all settings. The superiority of
the ambiguity-averse approach, however, decreases as the
degree of risk aversion increases and if the time period is ex-
tended to December 2016. The ambiguity-averse approach
was only able to outperform the minimum-variance approach
for very few settings, when a different out-of-sample period
was considered. Moreover, the ambiguity-averse portfolio
only showed a higher Sharpe ratio than the uniformly diversi-
fied portfolio for very high values of ε. In accordance with the
original results, the minimum-variance portfolio showed the
highest mean, lowest standard deviation and consequently
also the highest Sharpe ratio for almost all settings. Since
the portfolios, incorporating a sufficient high degree of am-
biguity aversion, are strongly shrunk towards the minimum-

variance portfolio, this explains their good performance in
all settings. Furthermore, it was shown that the performance
of the ambiguity-averse approach is more robust to changes
in the empirical design than the mean-variance approach and
the Bayes-Stein approach. The performance of the minimum-
variance strategy and the 1/N rule, however, is even more
robust to changes in input parameters, especially because
they’re both independent of the degree of risk aversion. The
1/N rule is additionally independent of the sample size.

While in this Chapter several input parameters were var-
ied, the investment universe remained unchanged. The fol-
lowing Chapter deals with a portfolio optimization problem,
in which the investor has the possibility to invest in the Ger-
man DAX30 stocks. By changing the investment universe,
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Figure 4: Variation of the out-of-sample period
This figure presents the Sharpe ratios for the returns on different portfolio optimization strategies for 186 different out-of-sample periods. The starting date
varies between January 1970 and July 1985. The x-axis shows how many months the starting date differs from the original starting date in January 1970.
The sample size to determine the portfolio weights is assumed to be 120 months. The portfolio strategies considered are the mean-variance strategy (dark
blue line), the minimum-variance strategy (red line), the Bayes-Stein strategy (yellow line), the ambiguity-averse approach with ε = 1 (purple line), the
ambiguity-averse approach with ε= 3 (green line) and the 1/N rule (light blue line

the robustness of the different portfolio optimization strate-
gies is tested when the special characteristics of the original
investment universe don’t apply.

5.4. Application to the DAX30 stocks
5.4.1. Empirical setting

In this part of the empirical analysis, the investment uni-
verse is changed and the investor builds his portfolio from
the German DAX30 stocks. The returns for the time pe-
riod January 1973 to December 2016 are considered. From
the 30 DAX30 companies, only 16 companies were a con-
stituent of the DAX30 over the whole time period. Conse-
quently, the investment universe consists of these 16 Ger-
man stocks (Allianz, BASF, BMW, Bayer, Beiersdorf, Com-
merzbank, Continental, Deutsche Bank, E-ON, Heidelberg
Cement, Linde, Deutsche Lufthansa, Münchener Rück, RWE,
Siemens, ThyssenKrupp). All other assumptions are taken
from GUW. Portfolio weights are determined using a rolling
window of 120 months and the degree of risk aversion is
set to 1. Using the original assumptions of GUW, a compar-
ison between the original results for an investment universe
of eight international equity indices and the new investment
universe of 16 DAX30 stocks is straightforward.

If the investment universe is shifted from eight interna-
tional equity indices to the German DAX30 stocks, two main
characteristics of the portfolio optimization problem change.
Firstly, instead of equity indices, now single stocks are con-
sidered. The returns of single stocks fluctuate much stronger

compared to the returns of equity indices, because single
stocks have a higher idiosyncratic risk in addition to the sys-
tematic market risk. As a result, diversification has a stronger
effect if single stocks are considered. The second main dif-
ference is the focus on a single country. This focus leads to
country-specific risks that can’t be diversified away. Conse-
quently, the standard deviation of a portfolio consisting only
of stocks from one country is higher compared to an interna-
tionally diversified portfolio. On the other hand, the focus on
a single country might reduce ambiguity, as argued in Chap-
ter 3.5.1. If German investors are considered, they might be
more certain about expected returns of German companies
compared to international companies. Therefore, if investors
are sufficiently ambiguity averse, they prefer to invest in the
German market only. As a result, the focus of the investor on
his home country is in line with the ambiguity aversion liter-
ature (Epstein and Miao, 2003). Koziol et al. (2011) show in
their empirical study, that ambiguity aversion plays an even
more important role for German investors compared to inter-
national investors. All these effects are important to be con-
sidered when the portfolio optimization problem is applied
to the German market.

5.4.2. Empirical results
This part presents the empirical results regarding the

portfolio optimization problem in which the investor has the
possibility to invest in 16 DAX30 stocks. Table 8 reports the
out-of-sample performance of the mean-variance strategy,
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the minimum-variance strategy, the Bayes-Stein strategy, the
strategy introduced by GUW taking ambiguity aversion into
account and the strategy of naïve diversification. The focus
of the analysis lies on the model with parameter uncertainty
only and again only the case when short selling is allowed is
considered, because differences in performance are small if
short selling is prohibited.

Table 8 shows that the standard deviation of each strategy
is higher compared to the original dataset. This result is in
accordance with the theoretical intuition that portfolios that
contain stocks from only one country are riskier compared
to an internationally diversified portfolio and that portfolios
put together from single stocks are riskier than portfolios of
equity indices. It can also be observed that the portfolio
turnover of all strategies is higher compared to the original
dataset. This is because the returns fluctuate more heavily
if single stocks are considered and therefore, the portfolio
needs to be reallocated more often.

From Table 8 it can be seen that, for this dataset, the
mean-variance portfolio shows the highest mean, while the
minimum-variance portfolio shows the lowest standard de-
viation. In contrast to the original dataset, for which the
minimum-variance portfolio had the highest mean, the in-
vestor now can gain higher returns by taking additional risk.
This is exactly the relationship Markowitz depicted with the
efficient frontier. However, to gain higher returns, the in-
vestor needs to bear a much higher risk compared to the
minimum-variance portfolio and as a result, the Sharpe ra-
tio of the minimum-variance portfolio is higher than the
Sharpe ratio of the mean-variance portfolio. The differ-
ence in Sharpe ratios, however, is not significant on the
5%-confidence level as can be seen from the Jobson-Korkie
significance test presented in Table 9. The Bayes-Stein port-
folio has a mean which is almost as high as the one of the
mean-variance portfolio, but the standard deviation is lower,
leading to a higher out-of-sample Sharpe ratio. The Bayes-
Stein portfolio is equivalent to a portfolio incorporating am-
biguity aversion with an ambiguity parameter of about 0.25.
As a result, taking high values of ambiguity into account
(ε > 0.25) improves the out-of-sample performance due
to the strong shift towards the minimum-variance portfo-
lio, which shows the highest Sharpe ratio. As in the origi-
nal dataset proposed by GUW, the portfolio turnover of the
minimum-variance portfolio is much lower compared to the
mean-variance portfolio, because the mean-variance portfo-
lio exhibits extreme portfolio weights and requires massive
reallocations.

In comparison to the original dataset, it can be seen from
Table 8 that the performance of the 1/N rule compared to the
ambiguity-averse approach decreased. While for the origi-
nal dataset an ambiguity parameter larger than 3 was neces-
sary to outperform the 1/N rule regarding the Sharpe ratio,
the ambiguity parameter must only equal 1 in this example.
This is intuitive because portfolios of individual stocks have a
higher idiosyncratic volatility than portfolios of equity indices
and therefore the performance of the 1/N rule decreases.

Table 9 shows that, according to the Jobson-Korkie sig-

nificance test, the out-of-sample Sharpe ratio of no strategy
is significantly higher on the 5%-confidence level than the
Sharpe ratio of any other strategy. Although the statistical
power of the Jobson-Korkie significance test is low, it be-
comes clear that the superiority of the minimum-variance
strategy and the ambiguity-averse approach, decreased, com-
pared to the original dataset.

The empirical application to the German DAX30 stocks
was also implemented for GUW’s model incorporating both,
parameter and model uncertainty. In this implementation, it
is assumed that assets follow a factor structure and the in-
vestor is uncertain about the return-generating model to be
the true model. The return-generating model is assumed to
be the CAPM and therefore the factor portfolio is the market
portfolio. With regard to this portfolio optimization problem,
the investor has the possibility to invest in the market port-
folio in addition to the 16 DAX30 stocks. However, similar to
the original dataset presented in Chapter 5.2.2, the investor
prefers not to participate in the stock market at all if he is
uncertain about the stock returns (εa > 0) and also uncer-
tain about the returns of the market portfolio (εb > 0). If he
is only uncertain about the stock returns, he invests all his
wealth in the market portfolio (for εa > 0.25 in case ω = 0
and for εa ≥ 0 in case ω = 1) and if he is only uncertain
about the returns of the market portfolio, he invests in a port-
folio consisting of only DAX30 stocks (for εb > 0). Only if
εa ≤ 0.25, εb = 0 and ω = 0, the investor prefers a mixed
portfolio of DAX30 stocks and the market portfolio. Conse-
quently, allowing for ambiguity about the stock returns and
the returns of the market portfolio, leads to limited market
participation. Since it is not allowed to invest in the risk-free
asset, the Sharpe ratio in case εa > 0 and εb > 0 is set to
0 and the ambiguity-averse approach is outperformed by all
other portfolio optimization strategies, which show a positive
Sharpe ratio. The detailed results are presented in Appendix
C.

The empirical application of the portfolio optimization
problem to the DAX30 stocks revealed that, in general, the
original results of GUW can be confirmed. Allowing for ambi-
guity leads to a higher out-of-sample Sharpe ratio compared
to the mean-variance strategy and the Bayes-Stein strat-
egy (for ε > 0.25). This is, because the ambiguity-averse
approach shrinks the mean-variance portfolio stronger to-
wards the minimum-variance portfolio than the Bayes-Stein
approach and the minimum-variance portfolio showed the
highest Sharpe ratio. Also with regard to the DAX30 stocks,
the ambiguity-averse approach wasn’t able to outperform the
minimum-variance portfolio, while the performance of the
ambiguity-averse approach increased compared to the 1/N
rule. Moreover, when looking at the model incorporating
both, parameter and model uncertainty, ambiguity aversion
has such a strong effect that the investor prefers not to par-
ticipate in the stock market at all. To sum up, the results
of the application to the DAX30 stocks are in line with the
results of the original dataset, but the strong performance of
the minimum-variance approach and the ambiguity-averse
approach is weakened.
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Table 8: Application to the DAX30 stocks

This table reports the out-of-sample mean-to-standard-deviation ratio and turnover ratio for the returns on different portfolio optimization strategies. The
parameter ε presents the ambiguity parameter and varies between 0 and infinity. The values for the means and the standard deviations are expressed as
percentage per month. Turnover is expressed as shift in portfolio weights per month. The degree of risk aversion γ is assumed to be 1. The timespan
considered extends from January 1973 to December 2016.

Application to the DAX30 stocks

Strategy Mean SD Mean/SD Turnover

Mean-Variance 0.0128 0.4538 0.0282 3.9405
Minimum-Variance 0.0087 0.0550 0.1590 0.1693
Bayes-Stein 0.0127 0.2058 0.0616 1.6240
Naive Diversification 0.0073 0.0635 0.1147 0.0000
Ambiguity-averse

ε = 0.00 0.0128 0.4538 0.0282 3.9405
ε = 0.25 0.0126 0.2098 0.0603 1.6670
ε = 0.50 0.0117 0.1388 0.0842 1.0253
ε = 0.75 0.0107 0.1047 0.1025 0.7201
ε = 1.00 0.0101 0.0880 0.1152 0.5664
ε = 1.50 0.0096 0.0740 0.1296 0.4258
ε = 2.00 0.0094 0.0684 0.1370 0.3617
ε = 2.50 0.0093 0.0654 0.1415 0.3245
ε = 3.00 0.0092 0.0635 0.1445 0.2999
ε→∞ 0.0087 0.0550 0.1590 0.1693

Table 9: Jobson-Korkie significance test – DAX30

This table reports the values of the z-statistics according to the significance test of Sharpe ratios suggested by Jobson and Korkie (1981) and corrected by
Memmel (2003). The Sharpe ratios of the mean-variance strategy (MV), the minimum-variance strategy (MIN), the Bayes-Stein strategy (BS), the 1/N rule
(ND), the ambiguity-averse approach with ε = 1 (ε = 1.00) and the ambiguity-averse approach with ε = 3 (ε = 3.00) are tested. One star * means that
the p-value indicates that the Sharpe ratios are significantly different on the 5%-confidence level, while two stars ** indicate that the Sharpe ratios are
significantly different on the 1%-confidence level. The timespan considered extends from January 1973 to December 2016.

Jobson-Korkie significance test

Strategy MV MIN BS ND ε = 1.00 ε = 3.00

Mean-Variance 1.0000 -1.0932 -1.4745 -0.6345 -1.6477 -1.4114
Minimum-Variance 1.0000 0.8882 -0.6553 0.5636 0.3180
Bayes-Stein 1.0000 0.4068 -1.3921 -1.1660
Naive Diversification 1.0000 -0.0044 -0.3330
ε = 1.00 1.0000 -0.8398
ε = 3.00 1.0000

6. Conclusion

The classical mean-variance portfolio optimization model,
introduced by Harry Markowitz in 1952, assumes that ex-
pected asset moments are given and estimation errors are
ignored. Since expected returns are unknown, they are
inevitably estimated with error, leading to a bad out-of-
sample performance of optimized portfolios. To overcome
this weakness, Bayesian approaches were introduced, that
are explicitly designed to reduce estimation errors. Bayesian
approaches, however, assume that the investor has a unique
prior about the asset moments. In this way, it is implicitly
assumed that the investor is ambiguity neutral. Empirical
studies (e.g. Ellsberg (1961)), however, have shown that

investors are averse to ambiguity. As a consequence, new
models were developed allowing for multiple priors about
expected returns and thereby accounting for ambiguity aver-
sion. This thesis is focusing on the multi-prior approach
introduced by Garlappi et al. (2007) which accounts for
ambiguity regarding both, expected returns (parameter un-
certainty) and the return-generating model (model uncer-
tainty). The authors show that, using their ambiguity-averse
approach, the out-of-sample performance can be improved
compared to the mean-variance approach and the Bayes-
Stein approach.

In Chapter 5, an empirical study was performed to test
whether incorporating ambiguity aversion to portfolio opti-
mization increases the out-of-sample performance regarding
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the Sharpe ratio and turnover ratio for two different datasets.
Since the performance measures don’t account for ambiguity,
it can only be tested, whether even an investor with mean-
variance preferences can benefit from taking ambiguity into
account. To measure the utility of the different portfolio opti-
mization strategies for an investor who is ambiguity averse, it
is necessary to measure ambiguity objectively. Furthermore,
the performance of the ambiguity-averse approach depends
strongly on the ambiguity parameter ε, while Garlappi, Uppal
and Wang don’t give any guidance on how the ambiguity pa-
rameter can be determined. Therefore, a general statement
about the performance of the ambiguity-averse approach can
only be given if ambiguity is measured objectively and if it is
incorporated in the performance measure.

The empirical applications have shown that the original
results of Garlappi, Uppal and Wang could approximately be
replicated if the model with parameter uncertainty only is
considered. For the model taking both, parameter and model
uncertainty, into account, however, the results differ, since, in
contrast to the original results, even a small degree of ambi-
guity about the risky assets and the factor portfolio makes
the investor prefer not to participate in the stock market at
all. Limited market participation in case that investors are
ambiguity averse is intuitive and was observed by various au-
thors in the literature. But since the empirical setting of Gar-
lappi, Uppal and Wang doesn’t allow the investor to invest
in the risk-free asset, a conceptual contradiction arises. Con-
sequently, the focus of the empirical study lies on the model
incorporating parameter uncertainty only.

The variation of the input parameters revealed that the
results of the ambiguity-averse approach, especially for high
values of ε, are fairly robust. If the degree of risk aver-
sion increases, the results of the ambiguity-averse approach
are comparatively stable, but the superiority over the mean-
variance approach and the Bayes-Stein approach decreases.
This is because increasing the degree of risk aversion has a
similar effect to increasing the ambiguity parameter. At the
same time, it is difficult to differentiate both concepts, since
they are correlated with each other. Changing the time pe-
riod and the investment universe revealed that the results
presented by Garlappi, Uppal and Wang are robust to time-
specific and asset-specific characteristics. However, the su-
periority of the ambiguity-averse approach decreased in both
cases.

Despite the results that show that the ambiguity-averse
approach outperforms the mean-variance approach and the
Bayes-Stein approach for a sufficient high level of ε, it is
important to notice that the performance of the ambiguity-
averse approach depends strongly on the performance of
the minimum-variance approach. Garlappi, Uppal and
Wang have shown that the ambiguity-averse portfolios are
a weighted average of the mean-variance portfolio and the
minimum-variance portfolio. Therefore, the approach is ob-
servationally equivalent to the Bayes-Stein approach. But
since the shrinkage factor of the ambiguity-averse approach
for most values of ε is higher, the portfolios are shrunk
stronger towards the minimum-variance portfolio. Conse-

quently, above-mentioned results are achieved due to the
superiority of the minimum-variance approach regarding
both datasets. It is also important to consider that the 1/N
rule was outperformed by the ambiguity-averse approach for
high values of ε only. At the same time, the turnover ratio
of the uniformly diversified portfolio was always the lowest,
since the portfolio must only be adjusted to price changes in
the stocks and not to fluctuations in the portfolio weights.

From these results, the question arises whether simple
strategies like the minimum-variance strategy or the strategy
of naïve diversification should be preferred to more complex
approaches, like the ambiguity-averse approach. For almost
all the empirical applications, the minimum-variance portfo-
lio showed the highest out-of-sample Sharpe ratio and the
lowest standard deviation, while the turnover ratio was low.
The strategy of naïve diversification outperformed the mean-
variance strategy in all applications and the Bayes-Stein strat-
egy in all applications, allowing for short selling, regard-
ing the Sharpe ratio. Furthermore, the uniformly diversified
portfolio always showed the lowest turnover ratio. DeMiguel
et al. (2009) compare 14 portfolio optimization models, in-
cluding the classical mean-variance model, the minimum-
variance model, the Bayes-Stein model, the ambiguity-averse
approach introduced by Garlappi, Uppal and Wang, and the
1/N rule and find that no model is consistently better than
the 1/N rule regarding Sharpe ratio and portfolio turnover.
They show that the 1/N rule can only be consistently outper-
formed if the sample size is very large or if the number of
assets is small. These assumptions, however, contradict real-
life investment situations. The performance of the 1/N rule is
particularly strong, if portfolios of stocks (e.g. equity indices)
are considered, as done by DeMiguel, Garlappi and Wang. It
was shown in Chapter 5.4.2, that the 1/N rule, however, also
performs well if individual stocks are considered.

The good performance of the minimum-variance strategy
and the strategy of naïve diversification indicates that esti-
mation errors regarding expected returns are so large, that
the benefits from optimal asset allocation are overshadowed
(DeMiguel et al., 2009). Regarding the ambiguity-averse ap-
proach introduced by Garlappi, Uppal and Wang, the results
imply that the role of ambiguity aversion in portfolio opti-
mization is rather small compared to the importance of esti-
mation errors. The minimum-variance strategy and the 1/N
rule are both independent of expected returns and therefore
also of estimation errors regarding them. This makes both
strategies easy to implement and explains their good out-of-
sample performance. The 1/N rule is even completely inde-
pendent of realized returns, especially also of the variance-
covariance matrix, and is therefore the least complex model
to implement. Since realized returns are a very poor mea-
sure of future returns, the focus in future research should
lie on the improvement of the estimation of asset moments
(DeMiguel et al., 2009; Elton, 1999). Consequently, the de-
velopment of new measures for expected returns seems to be
more promising than the development of complex portfolio
optimization rules that are based on realized returns.
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