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BANKING & FINANCE | RESEARCH ARTICLE

Long-horizon asset and portfolio returns 
revisited: Evidence from US markets
Tri M. Hoang1*

Abstract:  This study revisits the widely used assumptions in long-term asset alloca-
tion: the normal distribution of long-horizon returns and the negligible impacts of 
estimation errors on the expected returns. This study uses the innovative simulation 
method of Fama and French (2018) for horizons of up to 30 years. The data in use are 
the U.S. value-weighted market returns of stocks, Treasury bonds, Treasury bills, com-
modities, and real estate investment trusts (REITs) for the 1970–2018 period. 
Distributions of continuously compounded returns from the 10-year horizon are normal 
across asset classes. Stock return distribution has the slowest rate of convergence to 
normality among groups of assets. Estimation errors of the expected monthly returns 
or annual returns are negligible relative to the standard deviation of the unexpected 
return. As the imprecisions persist over the investment horizons, the estimation errors 
of the monthly return have a strong effect on the variability of long-term asset returns. 
This study has significant implications for academics and investors based on the 
commonly accepted assumptions of long-term asset allocation.

Subjects: Probability Theory & Applications; Statistics for Business, Finance & Economics; 
Investment & Securities; Economics 
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1. Introduction
The long-run investment returns have received much attention from investment professionals 
(Lusinski, 2018; Phillips, 2016) and academic researchers (Ang et al., 2014; Diris et al., 2015). This is 
due to growing demands for retirement planning when governments around the world can no longer 
provide sufficient pensions and are under stress from the aging population. Institutional investors and 
individual investors hence need better strategic asset allocations (SAA) for their retirement planning.

The process can start from a simple rule of thumb such as the four percent rule and progress 
into customized quantitative wealth management based on sophisticated simulation processes. 
The key simulation assumption is the normal distribution of asset return. Because the short- 
horizon distributions of returns are leptokurtic (Fama, 1965a), improving a simulation is to resolve 
the normal convergence of returns and the increases of risk by a factor of the square root of time. 
Fama and French (2018) shed insights into the properties of the long-horizon distribution of asset 
returns. Neuberger et al. (2021) continue Fama and French (2018) to examine two components of 
skewness in the long horizon including the skewness of short-horizon stock returns and the 
leverage effect. Other studies study the structure of stock returns including self-similarity 
(Madan & Schoutens, 2020), the structure of financial returns (Madan & Wang, 2021), and the 
performance of stock returns versus Treasury Bills returns (Bessembinder, 2018). However, after 
doing an extensive search, I find no studies regarding the long-horizon return properties of 
alternative assets. Hence, this research aims to revisit the commonly used assumptions in long- 
term asset allocation with different asset classes: the normal distribution of long-horizon returns 
and the negligible impacts of estimation errors on the expected returns.

The study contributes to the literature by expanding our understanding of long-horizon return 
properties of the stock market returns pioneered in Fama and French (2018) into other key asset 
classes including bonds, bills, commodities, and real estate investment trusts (REITs) for the 02/1970– 
07/2018 period. In other words, this research sheds light on the impact of uncertainty about the 
expected return of long-horizon returns and long-horizon payoffs in other asset classes. Specifically, 
the estimation errors of the expected monthly returns or annual returns are insignificant, compared to 
the standard deviation of the unexpected return. Because the imprecision remains over the invest-
ment horizons, the estimation errors of the monthly return have robust influences on the variabilities 
of the long-horizon asset returns. Empirical results also provide an understanding of the degree to 
which return and payoff distributions of assets converge to normal distributions and lognormal 
distributions. Distributions of continuously compounded returns from a 10-year horizon are normal 
across asset classes. Stock return distribution has the slowest convergence rate to normality. The 
knowledge is also useful for portfolio diversification decisions applied to other asset classes in 
a growing economy. This is because the alternative assets naturally provide a haven against the 
consequences of inflation and offset stock declines over the long term. Researchers find the diversi-
fication benefits of commodity future returns (Gorton & Rouwenhorst, 2006), U.S. Treasury Inflation- 
Protected Securities (TIPS) (Kothari & Shanken, 2004; Roll, 2004), real estate (Chun et al., 2004), real 
estate investment trusts (REITs) (Huang & Zhong, 2011) and alternative asset classes with or without 
short-sale constraints (Sa-Aadu et al., 2010). This means better asset allocation in social funds, which 
in turn contributes to higher subsidies to pension and education systems, among others.

2. Literature review

2.1. Theoretical perspective
The Bachelier-Osborne model is gradually contributed by Bachelier (1914) and Osborne (1959). The 
model starts by assuming that the price movements from transactions in the individual asset are 
independent, identically distributed variables. It also implies that transactions are reasonably 
evenly distributed over time and that the distribution of price changes from transactions has 
a finite variance. If the number of transactions of daily, weekly, or monthly horizons is very high, 
the price movements over these periods would be the total of several independent variables. The 
independence of consecutive price fluctuations for an asset may simply reflect a market process 
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that is entirely unrelated to economic and political changes in the real world. As a result, asset 
prices may only be the sum of a few bits of random noise, which, in this case, psychological and 
other factors specific to individual investors decide their betting on various companies (Fama,  
1965b). Real market prices do not need to be aligned with intrinsic values. In the sense of 
uncertainty, the intrinsic values can be interpreted in two ways (Fama, 1965a). In the first place, 
they may only represent the business conventions for determining the worth of investment by 
relating it to various variables that affect the income of the firm. On the other side, in reality, the 
intrinsic values could reflect equilibrium prices in the economist’s view. As a consequence, there 
may always be a difference between individuals, and thus actual prices and intrinsic values can 
differ. Hence, the general description of “noise” on the market will have uncertainty or doubt as to 
the intrinsic values. Relevant to the uncertainty about the underlying prices, Kendall (1948) 
provides an understanding of weekly price movements in British stocks and finds that there are 
many more fluctuations than normal, including many in extreme tails. Fama (1965a) mentions 
other cases to report empirical leptokurtosis.

Fama and French (2018) revisit the time-variation issue of stock return distribution in the long 
run and give rise again to this subject. Higher moments of long-horizon return distribution are 
crucial for asset pricing, but they are difficult to evaluate effectively employing current methodol-
ogies. The commonly found positive skewness in long-run stock returns is the outcome of the 
compounding effect and is retained not only when the short-run distribution of returns is symme-
trical (Arditti & Levy, 1975), but also when the short-run return distributions are negatively skewed 
(Ndiaye, 2019). Besides, Bessembinder (2018) states that the positive skewness in long-term 
returns is due both to the skewness in the short-run distribution of returns and to the assumption 
that the compounding of arbitrary returns causes skewness. The key driving force behind the 
positive skewness of long-term returns is the compounding law of its own. Further, short-term 
asymmetry is just a second-order effect whose consequences on the signal of long-term asym-
metry become ineligible only for negative short-term skewness.

Neuberger et al. (2021) present a concept demonstrating that without making explicit assump-
tions about the data-creation technique, the daily return may represent a credible source of 
reliable estimations of yearly moments. Two authors investigate the short-run skewness and 
kurtosis characteristics of US stock returns, as well as the leverage effect, and discover that 
skew is high and negative when the return grows from monthly to annual timeframes.

Aside from research that investigates the features of long-horizon stock market returns, 
Anarkulova et al. (2022) identify the possibility of keeping equities for extended periods by 
stimulating the long-term stock returns of 39 established markets from 1841 to 2019.

The duration of the research sample alleviates worries about data distortion in previous works in 
the area. Anarkulova et al. (2022) similarly calculate a 12% likelihood that a diversified investor 
with a 30-year investment horizon would lose money compared to inflation. The study’s findings 
challenge popular wisdom that equities are reliable bets over lengthy periods.

In contrast to Treasury Bill payoffs, Bessembinder (2021) employs a simulation developed by 
Fama and French (2018) to quantify the gains or declines in the payoffs of US stock market 
investments beginning in 1926. Money is flowing into a few high-performing enterprises, particu-
larly in technological industries. The findings of the analysis assist investors in making decisions 
about the many diversification options (narrow versus broad) accessible to them.

2.2. Hypothesis development
Investors are primarily concerned with investment payoffs and how the distribution of payoffs 
changes as their horizons expand. Investment payoffs for longer horizons are derived from payoffs 
for shorter durations, and the payoffs may be easily estimated from simple returns. The literature 
demonstrates that higher-order moments of returns influence portfolio selection, such as the 
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investor preference for positive skewness (Dahlquist et al., 2016; Jurczenko et al., 2012; Mitton & 
Vorkink, 2007), but the same effect of long-horizon return properties has not been conclusively 
demonstrated. Recent research, including Pastor and Stambaugh (2012), Avramov et al. (2018), 
and Carvalho et al. (2018), investigates the predictive variance of stock returns and concludes that 
assets might or might not be riskier over significant time horizons.

The bootstrap simulation is required for the analysis of long-horizon returns. The central limit 
theorem states that the effective creation of bootstrapped and continuously compounded cumulative 
returns occurs when the distribution of continuously compounded returns becomes normal as inves-
tors broaden their horizons (Fama & French, 2018). When the continuously compounded returns 
approach normality, the payoff distribution approaches log normality (Anarkulova et al., 2022). As 
a result, the first step in studying the properties of payoff distributions requires the normal conver-
gence of returns. The first hypothesis can be stated as follows: 

Hypothesis 1:   

H0: The long-horizon return, a total of continuous short-horizon returns, does not converge to 
normality.

H1: The long-horizon return, a total of continuous short-horizon returns, converges to normality.

The impact of the uncertainty about the expected returns on the long-horizon payoffs is sub-
stantial and concerns the investor’s decision-making (Pastor & Stambaugh, 2012). The error in 
predicting the expected return for the following month or year is negligible compared to the 
standard deviation of the unexpected return (Anarkulova et al., 2021). However, because the 
error remains throughout the whole holding period, inaccuracy in the estimation of the projected 
monthly return has a greater impact on the potential spread of long-horizon payoffs 
(Bessembinder, 2021). In contrast, the estimated errors of inputs for alternative assets are greater 
than for stocks, bonds, and bills (Platanakis et al., 2018). Based on the simulation results of Kan 
and Zhou (2007) and Neuberger et al. (2021), the extent of these asset weight errors grows with 
the number of alternative assets utilized. Consequently, the uncertainty regarding the evolution of 
projected return has a substantial influence on the portfolio weights (Michaud & Michaud, 2008). 
The formulation of the second hypothesis is as follows: 

Hypothesis 2:   

H0: Estimation errors of monthly returns do not have a strong effect on the variability of long- 
term asset returns and asset payoffs.

H1: Estimation errors of monthly returns have a strong effect on the variability of long-term asset 
returns and asset payoffs.

3. Data and empirical method

3.1. Data
Selected assets for study include stocks, Treasury bonds, Treasury bills, commodities, and real 
estate investment trusts. The data includes stock returns from Kenneth R. French’s data library. 
The Farma/French three factors are rm-rf or market return minus risk-free-rate return, smb or 
small minus big, and hml or high minus low. I obtain the market return by adding the risk-free rate 
back to the first factor (rm-rf) and calculating the change in market returns. The data range for 
stock returns is from July 1926 to May 2018.
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This research uses values from February 1970 to May 2018 for stock returns (henceforth 1970– 
2018) partly because there are many missing values in the real estate investment trusts and 
commodity returns, both of which start after 1970. This is also because Fama and French (2018) 
calculate the autocorrelations of 1926–2016 at 0.2, which has limited influence on longer legs. 
They also show that the autocorrelation of 1963–2016 is relatively zero, so the bootstrap simula-
tions, by using 1970–2018 realized monthly returns, are supposedly more relevant to the expected 
returns. The Farma/French three-factor stock market return is composed of a value-weighted 
portfolio of the NYSE, the Amex index (after 1962), and the Nasdaq (after 1972). The treasury 
bond return is obtained from the 10-year term Government bond index of a global financial 
database (GFD). The data are available from July 1786 to July 2018. The treasury bill return 
index is acquired from the GFD USA total return T-bill index for December 1790 to July 2018. The 
commodity return is acquired from the S&P commodity spot return index, which is available on the 
GFD. The sample period of this database ranges from January 1970 to July 2018. Data on the real 
estate investment trusts’ return is obtained from the Winans U.S. Real estate investment trusts 
index in the GFD for January 1969 to July 2018. The correlation between asset returns is con-
sidered, so the sample period is from February 1970 to May 2018.

3.2. The rolling data
For the one-month horizon, the data remain unchanged. For one-year horizon returns, going from 
one window to the next window monthly, 12 months of log returns are rolled over and rounded up 
for one rolling return. Other return horizons follow a similar process. For a fair comparison, the 
number of observations of the recently formed rolling datasets is reduced to 221 observations of 
the 30-year rolling datasets.

3.3. The bootstrap simulation
This research employs a modified Fama and French’s (2018) novel simulation approach1, the fixed 
sample (FS), to study the return property of stocks, bonds, bills, commodities, and real estate 
investment trusts (REITs) in long horizons. CT;the continuously compounded return for longer 
horizons, is the total of log monthly returns,Ct:

where rt is the simple return for month t.

The bootstrap simulations create the continuously compounded cumulative returns, by totaling 
continuously compounded monthly returns from the market returns for each asset. For the one- 
month horizon, the data remain unchanged.

The study continues with the generation of bootstrap simulations for asset returns (see Figure 1). 
For a one-year return simulation, the mean and standard deviations of the monthly returns are 
collected. Monthly asset correlations are calculated from the documented asset returns on stock, 
bond, bill products, and real estate investment trusts. A base sample of 221 monthly observations is 
derived from a multivariate normal distribution with the same mean and standard deviation as the 
distribution of actual monthly returns and monthly correlations between asset returns. A virtual 
dataset of 100,000 observations for the monthly horizon is generated from the newly developed 
database.

For a one-year simulation, the mean and standard deviation of the monthly returns are calcu-
lated. The annual asset correlations are formed from the observed returns of stocks, bonds, bills, 
commodities, and real estate investment trusts. Next, 12 monthly random observations are drawn 
with replacement from the base sample in the second step and sum up to 12 monthly random 
observations to acquire one annual simulated return. Drawing and summing up random observa-
tions are repeated until 100,000 annual bootstrapped observations are achieved. Longer horizon 
returns are treated similarly.
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For all horizons, the 100,000 bootstrapped returns are extracted to obtain one mean, one 
standard deviation, one skewness, and one kurtosis, and then calculate correlations between 
assets. The drawing of 100,000 simulated returns 1000 times is repeated to acquire 1000 
means, 1000 standard deviations, 1000 skewness, and 1000 kurtosis. The moments of correlations 
for 1000 correlations between assets are obtained.

4. Empirical findings and discussions

4.1. Normal convergence of asset returns
Table 1 summarises the data on the distribution of realized monthly continuously compounded 
returns and the simulated continuously compounded returns of one replica of the 1,000 simulation 
runs. Each of the 100,000 continuously compounded returns of T horizon (CT) returns is a total of 
T individual draws with the replacement of 221 monthly continuously compounded returns for the 

Figure 1. Bootstrap simulation 
of long-horizon returns.
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period from 1970 to 2018. The central limit theorem implies that the virtual continuously com-
pounded returns achieve normal distributions as the time (T) horizon extends.

In absolute terms, the realized monthly continuously compounded returns for the 1970– 
2018 period are either skewed left (stock and bond) or right (other) and leptokurtic. Skewness 
and kurtosis decay over one year, 10 years, and 30 years across asset classes. Furthermore, when 
drawn from normal multivariate distributions, the returns converge to normal distributions at 
a rate other than 1=

ffiffiffi
T
p

. Specifically, the skewness for the simulated stock returns, commodity 
returns, and real estate investment trusts’ returns converge at a faster pace than the expected 
skewness (Skewness1month=

ffiffiffi
T
p

(Fama & French, 2018)) and increases after 10 years.

However, the figures for bond returns and bill returns consistently approach normality at a faster rate 
than the projected values. In-depth, the simulated (expected) skewness decreases to-0.085 (−0.065) for 
stock returns, −0.029 (−0.030) for bond returns, 0.043 (0.125) for bill returns, 0.059 (0.224) for commodity 
returns and −0.101 (0.337) for one year returns for real estate investment trusts. Skewness for 10-year 
and 30-year horizons is very different across asset classes. Besides, Kurtosis is usually predicted to reach 
its normal value (3,000) quicker than skewness. Kurtosis in horizons varies from the predicted value, 
(Kurtosis1month � 3:0Þ=T, but achieves normality as the horizon extends.

The decay rate of skewness and kurtosis in Table 1 departs from expectations due to sampling errors. 
The cross-iteration standard deviations of skewness and kurtosis in Appendix Table A2 also decline over 
horizons at a near-projected decay rate of skewness and kurtosis. This occurs because the iteration 
skewness in T longer horizons is Skewness1month=

ffiffiffi
T
p

coupled with sampling error, and the kurtosis is 
ðKurtosis1month � 3:0Þ=T coupled with the sampling error. In summary, with longer horizons, the standard 
deviations of skewness and kurtosis from Appendix Table A2 become smaller.

The skewness of one distribution replica (Table 1) is not more than three cross-replication 
standard deviations (Appendix Table A2) from 0.000. The common deviation is between one or 
two standard deviations from 0.000. Kurtosis values (Table 1) suggest that convergence to normal-
ity is not complete for returns on stocks, bonds, and real estate investment trusts because one 
unexpected deviation from 3,000 (more than five standard deviations) occurs in one of those 
assets’ returns within 10 years or longer horizons. In conclusion, skewness and kurtosis imply the 
asset returns revert to normal distributions in a 10-year horizon or longer.

The Jarque-Bera normality test to asset returns at a 1% significance level is applied and finds that 
convergences to normal return distributions occur after a 10-year investment horizon. Investors must be 
cautious of the non-normal distributions which may include fat tails and high peaks during the simulation 
phase. The findings confirm those of previous studies that find a difference in statistical properties 
between stocks, bonds, and bills and alternative classes such as commodities (Gorton & Rouwenhorst,  
2006), real estate (Myer & Webb, 1994), and private equity (Cumming et al., 2013).

4.2. The conclusion for hypothesis 1
Higher moments of returns (Kurtosis and skewness values) and Jarque-Bera test values suggest 
that the convergence to normality for returns happens after 10 years. For investment horizons of 
less than 10 years, the null hypothesis is not rejected. The null hypothesis is denied; however, when 
the investment horizon exceeds 10 years.

4.3. Simulations of asset payoffs
Investors are typically concerned about their payoffs and ignore facts about continuously com-
pounded returns. Table 2 summarises data on realized and virtual continuously compounded 
return distributions from 1970 to 2018. The table shows the mean, standard deviation, skewness, 
and kurtosis of the payoffs for each return horizon. The distribution of realized monthly payoffs is 
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analyzed in the one-month lines. Other rows display the distribution of 100,000 bootstrapped 
payoffs over longer periods.

Empirical findings provide several surprising observations. The payoffs and uncertainty about the 
payoffs grow as the period T becomes longer. The skewness of payoff distributions also rises, from 
0.000 for stocks, 0.004 for bonds, 0.0042 for bills, 0.002 for commodities, and −0.008 for real estate 
investment trusts for monthly payoffs to 5.135 for stocks, 1.819 for bonds, 0.128 for bills, 6.703 for 
commodities, and 30.511 for real estate investment trusts for 30-year payoffs. Despite higher 
estimation errors in payoffs for longer time horizons, the increase in average payoffs and skewness 
combine to pull the distribution to the right as the time horizon (T) increases. Kurtosis is greater 
than 3.0 for most horizons; it is marginally less than three for one-month payoffs and rises for 
longer horizons. Skewness and kurtosis are extreme in the distributions of commodity and real 
estate investment trusts’ payoffs, but near to normality in the distribution of bill payoffs. The 
kurtosis of commodity and real estate investment trusts’ payoff distributions rises at an exponen-
tial rate, growing from 12.58 (commodity) and 60.29 (real estate investment trusts) in 10 years to 
60.29 (commodity) and 2842.46 (real estate investment trusts). In summary, payoff distributions 
in longer time horizons are becoming leptokurtic, but their increasing positive skewness suggests 
that outliers still exist in the right tail.

There have been concerns over whether the distribution of payoffs approaches lognormal as 
investment horizons expand. Since the relation between continuously compounded returns and 
payoffs is clear, as CT converges to normality as the time horizon (T) increases, payoffs approx-
imate lognormal. The payoff is calculated as the exponential of 1 + RT. As a result, the normality 
convergence rate of returns is the same as the lognormality convergence rate of payoffs. Since the 
normal convergence of continuously compounded returns is not complete after 10 years, the 
normal convergence of payoffs is not final.

4.4. Uncertainty about the expected asset returns
Table 3 summarises statistics on asset payoffs that include uncertainty about the expected return. 
Uncertainty over asset returns has a minor impact on payoff distributions over the short term. The 
random error increases the standard deviations of simulated three-year returns for the 1970– 
2018 period from one percent to three percent for the all-assets portfolio.

However, uncertainty regarding average projected returns raises the standard deviations of stock 
and real estate investment trusts’ payoffs by 12 percent and 13 percent, respectively, over 30-year 
horizons. The shift in standard deviations of bond, bill, and product returns is negligible. Longer time 
horizons cause asset payoffs to become right-skewed and kurtoleptic. For example, if the calculation 
errors of the anticipated return are ignored, the kurtosis of stock payoff distributions at 30-year 
horizons is 66.64 and 77.74 when random errors are included. Incorporating random errors reduces 
the kurtosis of commodities and real estate investment trusts by 14 percent and 17 percent, 
respectively. Uncertainty, on the other hand, has a little major impact on bill and bond payoff 
distributions. In general, measurement errors of the expected return are an irrelevant source of 
uncertainty for short-horizon payoffs, but they become important in long-horizon payoffs of stocks, 
commodities, and real estate investment trusts, but the gap between payoffs with and without 
errors is negligible for bills and bonds. Our results affirm the findings of Pastor and Stambaugh (2012) 
and Fama and French (2018) based on their theoretical and methodological approaches.

4.4.1. The conclusion for hypothesis 2 
In summary, estimation errors are not pertinent to any causes of short-term investment payoff 
uncertainty, but they are substantial for long-term asset payoff uncertainty. The minimal effects of 
estimation errors on the payoff distributions of bonds and bills are an exception to these findings. 
With the notable exception of bonds and bills, the conclusion of hypothesis 2 is that estimation 
errors of monthly returns have a substantial impact on the variability of long-horizon asset returns 
and payoffs.
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5. Conclusions
This study employs Fama and French’s (2018) simulation to investigate the stylized facts of long-horizon 
market returns and portfolio returns. The central limit theorem proposes that the distributions of 
continuously compounded returns converge to normality as the investment horizon expands. On 
a purely random basis, the realized monthly continuously compounded returns used as the base for 
the bootstrap simulations are independent and identically distributed, so they converge toward normal 
distributions. Variations from normal distributions are large in the short run, but they diminish as the 
investment horizon increases. For 10 years or longer, kurtosis is indifferent to the value of normality, 3.0. 
The left-skewed returns (stock returns and bond returns) or the right-skewed returns (bill returns, 
commodity returns, and real estate investment trusts’ returns) eventually revert to normal (0.0) in longer 
horizons. Estimations of parameters of continuously compounded returns become more precise in longer 
investment horizons, and the remaining negative or positive skewness is no more than three standard 
deviations from zero. The Jarque-Bera normality test at a 1% significance level is applied to asset returns 
and finds those return distributions converge to normality from the 10-year investment period. Also, the 
stock return distribution converges at the slowest rate to normality.

Investment payoffs (1+RT) are a direct conversion of continuously compounded returns (RT) as they are 
exponential of continuously compounded returns. However, while the continuously compounded returns 
eventually approach normality, the payoffs fail to achieve log normality. The study findings strengthen 
the results of Pastor and Stambaugh (2012), Fama and French (2018), and Madan and Wang (2021). More 
importantly, the skewness and kurtosis of asset classes provide evidence for the benefits of diversification 
as the inclusion of different asset classes helps the return distribution converge faster towards normal 
distributions. Higher stock concentration increases the normal convergence of payoffs, however, at 
a marginal pace to the normal convergence of the same asset allocations in longer horizons. In addition, 
including more assets provides higher diversification as it speeds up the normal convergence of payoffs 
towards lognormal distributions.

Like Pastor and Stambaugh (2012), Fama and French (2018), and Bessembinder (2021), this research 
finds that uncertainty about the expected returns has a great impact, on the long-horizon payoffs; 
however, the degree of impact is smaller across higher stock allocation than longer horizons. The 
estimation errors of monthly expected returns are hindered by the dispersions caused by the unex-
pected return. The errors, nonetheless, impact the variations of possible payoffs in 10-year (or more) 
investment periods.

This study offers some important implications for research scholars and practitioners. There 
are two implications for the academic researcher. First, introducing more assets to the portfolio 
offers diversification benefits in the long run. Second, this study ameliorates the easy data bias 
and provides a more accurate description of tail outcomes that are of concern to academic 
researchers in optimal portfolio selection and asset management, optimized consumption and 
savings behavioral patterns in life-cycle models, and the evaluation of macroeconomic analysis 
of asset values. There are two implications for investors. First, investors should evaluate higher 
moments and the probability and size of severe tail events due to the single-draw nature of 
long-term returns for pension savers. Second, investors can improve their simulations to examine 
the distributions of long-horizon payoffs by including the uncertainty about the expected returns 
in the simulation run.
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Appendix

Table A1. Averages of 1000 replications using actual and bootstrapped return using the 
industry-calculated mean and standard deviations

Table A2. Standard deviations of asset return moments

1 month 1 year 3 years 5 years 10 years 20 years 30 years

Stock returns Mean 0.009 0.106 0.317 0.528 1.056 2.112 3.168

SD 0.050 0.173 0.299 0.386 0.546 0.772 0.945

Bond returns Mean 0.007 0.085 0.256 0.426 0.852 1.704 2.556

SD 0.027 0.095 0.164 0.212 0.299 0.423 0.518

Bill returns Mean 0.006 0.074 0.223 0.372 0.744 1.488 2.232

SD 0.002 0.008 0.014 0.018 0.025 0.036 0.044

Commodity 
returns

Mean 0.003 0.032 0.097 0.162 0.324 0.648 0.972

SD 0.055 0.189 0.327 0.422 0.597 0.844 1.034

REITs’ returns Mean −0.005 −0.060 −0.180 −0.300 −0.600 −1.200 −1.800

SD 0.084 0.290 0.502 0.648 0.916 1.295 1.586

This table summarizes the total of 1000 simulation replications. Using the industry’s standard rule of thumb, the 
averages and standard deviations are summarized for all return horizons. The industry-standard approach for 
calculating standard deviations from monthly returns for longer time horizons is to multiply the monthly standard 
deviations by the square root of the time horizon. To determine the mean returns from monthly returns for longer 
time horizons, the monthly returns are multiplied by the time horizon. REITs stand for real estate investment trusts. 

1 month 1 year 3 years 5 years 10 years 20 years 30 years

Stocks Mean 0.003 0.037 0.113 0.203 0.390 0.778 1.199

SD 0.002 0.008 0.014 0.018 0.027 0.036 0.045

Skew 0.165 0.048 0.029 0.022 0.018 0.013 0.012

Kurt 0.313 0.033 0.019 0.017 0.016 0.016 0.016

Bonds Mean 0.002 0.020 0.063 0.109 0.222 0.433 0.655

SD 0.001 0.004 0.008 0.010 0.014 0.021 0.024

Skew 0.165 0.051 0.029 0.022 0.018 0.013 0.012

Kurt 0.299 0.034 0.017 0.016 0.016 0.015 0.015

Bills Mean 0.000 0.002 0.005 0.009 0.018 0.036 0.056

SD 0.000 0.000 0.001 0.001 0.001 0.002 0.002

Skew 0.165 0.049 0.029 0.022 0.016 0.013 0.012

Kurt 0.321 0.032 0.018 0.017 0.016 0.015 0.015

Commodities Mean 0.004 0.041 0.127 0.213 0.444 0.840 1.325

SD 0.003 0.009 0.015 0.020 0.027 0.042 0.048

Skew 0.163 0.049 0.029 0.022 0.017 0.013 0.011

Kurt 0.326 0.032 0.019 0.017 0.015 0.016 0.016

(Continued)
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Table A3. Averages of 1000 replications using actual and bootstrapped asset returns

(Continued) 

1 month 1 year 3 years 5 years 10 years 20 years 30 years

REITs Mean 0.006 0.064 0.186 0.339 0.658 1.355 2.144

SD 0.004 0.013 0.023 0.031 0.043 0.058 0.076

Skew 0.162 0.049 0.029 0.021 0.017 0.013 0.011

Kurt 0.304 0.031 0.018 0.017 0.015 0.015 0.016

This table summarizes the standard deviations of 1000 replications of simulations. Following Fama and French’s 
(2018) fixed sample simulation method, each replication of simulations constructs 100,000 continuously com-
pounded returns for every horizon by drawing monthly returns from multivariate normal distributions. The 
distribution inputs are the mean and standard deviation of the realized monthly returns and the correlations 
between rolling asset returns across investment horizons. This table provides standard deviations of parameters 
for different assets, including stocks, bonds, bills, commodities, and real estate investment trusts (REITs). The 
parameters are mean, standard deviations (SD), skewness (Skew), and kurtosis (Kurt) of the 100,000 simulated 
continuously compounded returns for each horizon. Skew is the third moment about the mean divided by SD

3. 
Kurt is the fourth moment about the mean divided by SD

4. 

1 month 1 year 3 years 5 years 10 years 20 years 30 years

Stocks Mean 0.009 0.097 0.312 0.521 1.047 2.111 3.114

SD 0.050 0.165 0.294 0.383 0.544 0.768 0.945

Skew 0.002 −0.001 0.001 0.001 0.000 0.000 0.000

Kurt 2.984 2.996 3.000 3.000 3.000 3.000 3.000

Bonds Mean 0.007 0.079 0.256 0.429 0.859 1.726 2.550

SD 0.027 0.091 0.162 0.210 0.298 0.424 0.519

Skew 0.004 0.000 0.002 0.000 0.000 0.000 0.001

Kurt 2.959 2.999 2.998 2.999 3.001 3.000 3.001

Bills Mean 0.006 0.068 0.218 0.367 0.742 1.490 2.235

SD 0.002 0.008 0.014 0.018 0.025 0.035 0.043

Skew 0.004 0.001 0.001 −0.001 0.001 0.000 0.000

Kurt 2.973 2.997 3.000 2.999 3.000 3.001 3.000

Commodities Mean 0.003 0.028 0.085 0.150 0.302 0.610 0.951

SD 0.055 0.181 0.322 0.418 0.595 0.843 1.036

Skew 0.002 0.001 0.001 −0.001 −0.001 0.000 0.000

Kurt 2.984 2.997 2.999 2.999 3.000 3.000 3.001

REITs Mean −0.005 −0.059 −0.170 −0.308 −0.593 −1.258 −1.873

SD 0.084 0.277 0.494 0.642 0.913 1.288 1.586

Skew −0.009 0.001 0.001 0.000 0.000 0.000 −0.001

Kurt 2.970 2.997 3.000 2.999 3.000 3.000 3.000

This table summarises the averages of 1000 replications of simulations. Following Fama and French’s (2018) 
simulation method, each replication of simulations constructs 100,000 continuously compounded returns for every 
horizon by drawing monthly returns from multivariate normal distributions. The distribution inputs are the mean and 
standard deviation of the realized monthly returns and the correlations between rolling asset returns across invest-
ment horizons. This table provides averages of parameters for different assets, including stocks, bonds, bills, 
commodities, and real estate investment trusts (REITs). The parameters are mean, standard deviations (SD), skew-
ness (Skew), and kurtosis (Kurt) of the 100,000 simulated continuously compounded returns for each horizon. Skew is 
the third moment about the mean divided by SD

3
. Kurt is the fourth moment about the mean divided by SD

4. 
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