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Abstract 
Traditional risk-adjusted performance measures, such as the Sharpe ratio, the Treynor 
index or Jensen’s alpha, based on the mean-variance framework, are widely used to 
rank mutual funds. However, performance measures that consider risk by taking into 
account only losses, such as Value-at-Risk (VaR), would be more appropriate. 
Standard VaR assumes that returns are normally distributed, though they usually 
present skewness and kurtosis. In this paper we compare these different measures of 
risk: traditional ones vs. ones that take into account fat tails and asymmetry, such as 
those based on the Cornish-Fisher expansion and on the extreme value theory. 
Moreover, we construct a performance index similar to the Sharpe ratio using these 
VaR-based risk measures. We then use these measures to compare the rating of a set of 
mutual funds, assessing the different measures’ usefulness under the Basel II risk 
management framework. 
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1 Introduction 

Over the last few years different regulations designed to control the risk of 

managed funds and financial exposures have emerged based on the spirit of the 

so-called Basel I and Basel II accords, aiming to ensure the longevity of markets, 

reduce the probability of runs, and ensure transparency in markets. As a result, the 

Securities and Exchange Commission (SEC) now requires quantitative 

information on market risk (Alexander and Baptista, 2002), while in Europe two 

directives from the Commission — the European Union Savings Directive and the 

Market and Financial Instruments Directive (MiFID) — forces banks to, among 

other things, disclose information on counterparts and increase information on 

other risk issues (Doncel, Reinhart and Sainz, 2007).  

 

In this framework, traditional measures of portfolio risk and performance, like the 

ones developed by Sharpe (1966),  Treynor (1966) or Jensen (1968), may offer a 

superior and natural extension of the use of VaR measures (Alexander and 

Baptista, 2003). Sentana (2003) shows how the use of the latter approach with 

respect to the mean-variance approach, proposed in the three papers cited above, 

implies a cost to the manager that can be traced back to the design by the 

regulator. Nevertheless, as Liang and Park (2007) point out, traditional risk 

measures are not able to capture the exposure of current financial products, but the 

development of new measures is still in its infancy.  

 

In the mean-variance approach, portfolio risk is measured using the standard 

framework described in Markowitz (1952), namely, using variance and covariance 



in the form of sigma or beta. Those measures of risk have been criticized from a 

behavioral point of view, as investors do not dislike variability per se and 

disregard higher moments of the return distribution. They like positive large 

returns or unexpected gains, but they are averse to losses. Thus, a way to avoid 

this objection is to take into account only losses or downside variability. A 

measure that can take into account only losses is Value-at-Risk (VaR), which 

represents a “worst case scenario” measure of risk. Following the definition issued 

in April 1995 by the Basel Committee on Banking Supervision, VaR is defined as 

the maximum loss corresponding to a given probability over a given horizon. This 

measure helps to determine capital adequacy requirements for commercial banks 

and can also be used to set limits on transactions and evaluate risk-adjusted 

investment returns. Because of its simplicity and intuitive appeal, VaR has 

become a standard risk measure. 

 

Traditional VaR calculations assume that returns follow a normal distribution 

(Jorion, 2001), but deviations from the normal distribution are generally accepted, 

and financial return distributions show skewness and kurtosis, which become 

more pronounced with the frequency of the financial data (Cont, 2001). The 

existence of fat tails indicates that extreme outcomes happen more frequently than 

would be expected by the normal distribution. Similarly, if the distribution of 

returns is significantly skewed, returns below the mean are likely to exceed returns 

above the mean. In other words, ignoring higher moments of the distribution implies 

that investors are missing important parts of the risk of the fund. 

 



Favre and Galeano (2002) introduced the modified VaR, which adjusts risk, 

taking into account skewness and kurtosis using the Cornish-Fisher (1937) 

expansion. This adjustment has been proved to be especially relevant in the 

analysis of hedge funds, as shown in Gregoriou and Gueyie (2003), Gregoriou 

(2004) and Kooli et al. (2005). Jaschke (2001) offers details and a thorough 

analysis of the Cornish–Fisher expansion in the VaR framework. 

 

Another approach would be to model only the tail of the distribution, in order to 

precisely predict an extreme loss in the portfolio’s value. Extreme value theory 

(EVT) provides a formal framework to study the tail behavior of the distributions. 

The use of EVT for risk management has been proposed in McNeil (1998), 

Embrechts (2000) and Gupta and Liang (2005), among others. The main 

advantage of EVT is that it fits extreme quantiles better than conventional 

approaches for heavy tailed data and allows the different treatment of the tails of 

the distribution, which, in turn, allows for asymmetry and separate study of gains 

and losses. 

 

The novelty of this paper lies in the use of the VaR calculation of losses using 

EVT and applying it as a risk measure to construct a performance index similar to 

the Sharpe ratio. To our knowledge, this is the first time these measures have been 

compared, and this also represents the first empirical light to be shed on the 

theoretical advantages of these alternatives, thus paving the way for the use of 

new risk measures by industry practitioners. Using EVT allows for a better 

estimation of the distribution of extremes and, consequently, provides a better 



estimation of the risk associated with a portfolio. We will also compare the rating 

of mutual funds using the different risk-adjusted performance measures. 

 

This paper is organized in five sections. Section 2 reviews the different classical 

performance measures used in the analysis and introduces the modifications to 

obtain more accurate estimations. In section 3 we present the data and the sample 

statistics. Empirical analysis is presented in section 4 as well as differences in 

funds’ ranking. The final section provides a brief summary and some concluding 

remarks. 

 

2 Performance measures 

 

Performance measures are used to compare a fund's performance, providing 

investors with useful information about managers’ ability. All the measures are 

dependent on the definition of risk, and there are different general classes of 

performance measures dependent on the definition of risk used. We divide risk-

adjusted performance measures into two types: traditional performance measures, 

based on the mean-variance approach, and VaR-based measures. 

 

2.1 Traditional mutual fund performance measures 

 

Sharpe ratio: Developed by William Sharpe, its aim is to measure risk-adjusted 

performance of a portfolio. It measures the return earned in excess of the risk-free 

rate on a fund relative to the fund’s total risk measured by the standard deviation 



in its return over the measurement period. It quantifies the reward per unit of total 

risk: 
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where iR  represents the return on a fund, fR  is the risk-free rate and iσ  is the 

standard deviation of the fund. 

 

A high and positive Sharpe ratio shows a firm’s superior risk-adjusted 

performance, while a low and negative ratio is an indication of unfavorable 

performance. 

 

Treynor index: It is similar to the Sharpe ratio, except it uses the beta instead of 

the standard deviation. It measures the return earned in excess of a riskless 

investment per unit of market risk assumed. It quantifies the reward-to-volatility 

ratio: 

 

i

fi
i

RR
T

β
−

= ,      (2) 

 

where iR  represents the return on a fund, fR  is the risk-free rate and iβ  is the 

beta of the fund. 

 

Jensen’s alpha: It measures the performance of a fund compared with the actual 

returns over the period. The surplus between the returns the fund has generated 



and the returns actually expected from the fund given the level of systematic risk 

is the alpha. The required return of a fund at a given level of risk iβ  can be 

calculated as:  

 

( )fmifi RRRR −+= β ,     (3) 

 

where mR  is the average market return during the given period. The alpha can be 

calculated by subtracting the required return from the fund’s actual return. 

 

2.2 Other performance measures 

 

There are other ways to measure risk. One of the most popular is Value-at-Risk 

(VaR). Value-at-Risk, as a measure of financial risk, is becoming more and more 

relevant. Value at Risk is defined as the expected maximum loss over a chosen 

time horizon within a given confidence interval, that is: 

 

( ) α−≤> 1VaRlossP ,                                         (4) 

 

where α  is the confidence level, typically .95 and .99. Formally, Value-at-Risk is 

a quantile of the probability distribution XF , or the x corresponding to a given 

value of ( ) 10 <=< xFXα , which means 

 

( ) ( )xFXVaR 1−=α ,    (5) 

 



where 1−
XF  denotes the inverse function of XF .  

 

The distribution function XF  is the distribution of losses and describes negative 

profit, which means that negative values of X  correspond to profits and positive 

losses. 

 

The use of VaR instead of traditional performance ratios presents several 

advantage. First, VaR is a more intuitive measure of risk because it measures the 

maximum loss at a given confidence interval over a given period of time. Second, 

traditional measures do not distinguish between upside or downside risk, but 

investors are usually interested in possible losses. Finally, several confidence 

levels can be used.  

 

We present four different approaches to VaR: normal VaR, historical VaR, 

modified VaR and extreme value VaR. 

 

2.2.1 Normal VaR 

 

Traditional calculation of normal VaR assumes that the portfolio’s rate of return is 

normally distributed, which means that the distribution of returns is perfectly 

described by their mean and standard deviation. It uses normal standard deviation 

and looks at the tail of the distribution. In general, if the (negative) return 

distribution of a portfolio R  is ( )2,~ σµΝRF , the value at risk for a confidence 

level α  is  

 



( ) σµ αα qRVaR += ,     (6) 

 

where αq  is the quantile of the standard normal distribution. 

 

2.2.2 Historical VaR 

 

The historical VaR uses historical returns to calculate VaR using order statistics. 

Let )()2()1( TRRR ≥≥≥ L  be the order statistics of the T  returns, where losses 

are positive; then the ( ) ( )α
α

TRRVaR = . 

 

The historical VaR is very easy to implement, makes no assumption about the 

probability distribution of returns, and takes into account fat tails and 

asymmetries. But it has a serious drawback: it is based only on historical data, and 

therefore it assumes that the future will look like the past. 

 

2.2.3 Modified VaR 

 

The normal VaR assumes that returns are normally distributed. If returns are not 

normally distributed, the performance measures can lead to incorrect decision 

rules. The modified VaR takes into account not only first and second moments but 

also third and fourth ones. It uses the Cornish-Fisher (1937) expansion to compute 

Value-at-Risk analytically. Normal VaR is adjusted with the skewness and 

kurtosis of the distribution: 

 



( ) ( ) ( ) 2332 52
36
13

24
11

6
1 SzzKzzSzzz herConrishFis −−−+−+≈ ,   (7) 

 

where z is the normal quantile for the standard normal distribution, S  is the 

skewness and K  the excess of kurtosis. The modified VaR is then: 

 

( ) σµα
herCornishFiszRVaR += ,    (8) 

 

 

The modified VaR allows us to compute Value-at-Risk for distributions with 

asymmetry and fat tails. If the distribution is normal, S  and K  are equal to zero, 

which makes herCornishFisz  equal to z , which is the case with the normal VaR. 

 

The Cornish-Fisher expansion penalizes assets that exhibit negative skewness and 

excess kurtosis by making the estimated quantile more negative. So it increases 

the VaR but rewards assets with positive skewness and little or no kurtosis by 

making the estimated quantile less negative, thereby reducing the VaR. 

 

2.2.4 Extreme value VaR 

 

Extreme value theory (EVT) provides statistical tools for estimating the tails of 

the probability distributions of returns. Modeling extremes can be done in two 

different ways: modeling the maximum of the variables, and modeling the largest 

value over some high threshold. In this paper we will use the second because it 

employs the data more efficiently.  

 



Let ,..., 21 XX  be identically distributed random variables with the unknown 

underlying distribution function ( ) { }xXPXF i ≤= , which has a mean (location 

parameter) µ  and variance (scale parameter) σ . An excess over a threshold u  

occurs when uX t >  for any t  in nt ,...2,1= . The excess over u  is defined by 

uXy −= . Balkema and de Hann (1974) and Picklands (1975) show that for a 

sufficiently high threshold, the distribution function of the excess y  may be 

approximated by the generalized Pareto distribution (GPD) because as the 

threshold gets large, the excess function  
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converges to the GPD generally defined as 
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The parameter ξ  is important, since it is the shape parameter of the distribution or 

the extreme value index and gives an indication of the heaviness of the tail: the 

larger ξ , the heavier the tail.  

 

Having determined a threshold, we can estimate the GPD model using the 

maximum likelihood method. 

 



The upper tail of )(xF  may be estimated by: 
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To obtain the αVaR  we invert (11), which yields 
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where u is the threshold, ξ̂ , µ̂  and σ̂  are the estimated shape, location and scale 

parameters, n  is the total number of observations and uN  the number of 

observations over the threshold. 

 

A modified Sharpe VaR-based performance measure can be defined as the 

reward-to-VaR ratio, similar to the Sharpe and Treynor ratios but with the risk 

measured using the different VaR measures in the denominator, namely: 
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So we can calculate normal VaR, historical VaR, modified VaR and EVT VaR. 

The larger the ratio, the more reliable the fund is. 



 

3 Data  

 

European mutual funds have largely been neglected in risk and performance 

studies. The lack of reliable data, the data’s fragmentation and the size of the 

market make it difficult to conduct studies (Otten and Bams, 2002). The only 

market that presents characteristics that may be similar to those of the US is the 

United Kingdom.  For this reason in our study we use a sample of British equity 

mutual funds investing exclusively in the UK and onshore actively managed 

funds. By doing this we ensure the homogeneity in the country’s risk exposure, 

reducing the unexpected variability. 

 

Our data set comprises monthly returns on 239 UK mutual funds over 11 years, 

from January 1995 to December 2005. The data were provided by Morningstar. 

Morningstar mutual funds data have been widely use by researchers in the US, 

and since its merger with Standard & Poor’s in Europe, Morningstar arguably 

represents the most comprehensive reference for analysis. Owing to the 

construction of the data set, we use only the data for funds that are active for the 

entire period, which, as pointed out by Carhart et al. (2002), may render an 

upward bias on persistence. Nevertheless, as Morningstar reports only funds that 

are active at the end of the period and the aim of this paper is to make 

comparisons among them, we don’t find this issue to be especially relevant for our 

study. All mutual funds are measured gross of taxes, with dividends and capital 

gains, but net of fees. To calculate the excess return, we use the one-month 



government interest rate (T-bill equivalent), and for the market return, we use the 

FTSE 100 Index of the London Stock Market.  

 

To illustrate the different methodologies and for the shake of simplicity, we have 

chosen the highest ten and lowest ten monthly averages return for the whole 

period. Table 1 summarizes detailed statistics of those funds. 

 

INSERT TABLE 1 

 

An examination of Table 1 shows that several funds have an asymmetric 

distribution. Upper fund returns have mostly negative skewness, indicating that 

the asymmetric tail extends toward negative values more than toward positive 

ones; however bottom fund returns show more negative skewness. According to 

the sample kurtosis estimates, the top ten fund returns show a higher level of 

kurtosis than the bottom ones. Table 1 also shows the highest and lowest month 

return for each fund: the highest one-month return is 60.5%, while the highest loss 

corresponds to the same fund (79.5%). 

 

These results indicate that some funds do not follow a normal distribution. The 

results of three different normality tests and their p-values are in Table 2. The 

three tests used are: i) the Jarque-Bera, which is a goodness-of-fit measure of 

departure from normality, based on the sample kurtosis and skewness; ii) the 

Shapiro-Wilk, which tests the null hypothesis that the sample data come from a 

normally distributed population and iii) the Anderson-Darling test, which is used 

to test if a sample comes from a specific distribution. We can observe that the top 



ten show more departures from normality, while in the bottom ten, normality is 

clearly rejected only in one case. We also studied a qq-plot of returns against the 

normal distribution. In Figure 1 we can see that the departure from normality is 

small, but in some cases, we can see that there are extreme values, either on the 

right-hand side, on the left hand side, or both. In Figure 2, which shows a qq-plot 

of the top ten, relevant deviations from normality can be observed in the extremes, 

which means that the distributions are fat-tailed and have extreme values. 

 

INSERT TABLE 2 

 

4 Empirical results 

 

In this section we report and discuss results of the different performance 

measures.  Table 3 shows the results of the classical performance measures: 

Sharpe, Jensen and Treynor, as well as the ranking of the fund that would result 

from those indexes. As expected, the bottom ten has a smaller index than the top 

ten. Moreover, for the bottom ten we have negative Sharpe and Treynor indexes 

and Jensen’s alpha, meaning that those funds are not able to beat the market. 

 

INSERT TABLE 3 

 

The other performance indexes are based on VaR. We have estimated VaR0.05 and 

VaR0.01 using the four different approaches discussed in section 2. To offer EVT 

VaR results we proceed with the generalized Pareto distribution (GPD) 

estimation. A crucial step in estimating the parameters of the distribution is the 



determination of the threshold value. We have selected the proper threshold, 

fitting the GPD over a range of thresholds looking at what level ξ̂  and σ̂  remain 

constant. Because of space constraints and for the ease of exposition, we do not 

present a detailed parameter estimation. Instead the model fit can be checked in 

Figures 4 and 5, with the fitted GPD distribution and the qq-plot of sample 

quantiles versus the quantiles of the fitted distribution. 

 

VaR0.05 and VaR0.01 estimates are shown in Table 4. As expected, results for 

normal VaR and Cornish-Fisher VaR are similar for funds with little asymmetry 

and kurtosis. EVT VaR tends to be higher than the other VaR thresholds when the 

return distribution is not normal and presents asymmetries and kurtosis, which is 

more frequent in the top group. Additionally, the bottom 10 funds have, in 

general, higher VaR values than the top ones, which means they are more 

susceptible to extreme events. 

 

At this stage, it is important to point out that normal VaR does not allow for 

asymmetries in calculating VaR, unlike the Cornish-Fisher expansion, which take 

into account asymmetries and fat tails. However, the extreme value approach is 

able to define the limiting behavior of the empirical losses and therefore allows us 

to study the upper tail separately. 

 

INSERT TABLE 4 

 

Since we use different performance measures, it is important to verify if the 

alternative approaches provide the same evaluation of funds. Since diverse ratios 



have special statistical properties and behaviors, it is interesting to see if they 

produce analogous fund rankings in our sample. 

 

With regard to performance measures and rankings, Table 5 shows the results of 

the modified Sharpe ratio using the VaR0.05 in Table 4. The rank from each ratio is 

also in the table. The bottom group exhibits a very small ratio, and they show 

similar ranking regardless of the method used for calculation. However, the 

results of the top group show more differences. To find out if they really produce 

similar results, we compared the rank order correlations of the top ten funds. 

Table 6 shows the Spearman and Kendall rank correlation.  

 

INSERT TABLE 5 

 

Not surprisingly, the Sharpe and the various VaR ratios exhibit higher correlations 

than do the Jensen and Treynor ratios. This is not unexpected, since Jensen and 

Treynor calculations include only the systematic component of risk, while the 

other measures also include residual risk. The normal VaR measure and the 

Sharpe ratio rate the ten top funds in the same order.2 

 

INSERT TABLE 6 

 

The modified VaR and EVT VaR also show a high correlation. With respect to 

the Kendall correlation, which is easier to interpret, the value of 0.867 indicates 

that there is an 87.6 percent greater chance that any pair will be ranked similarly 

                                                 
2 If we take the whole sample of UK funds, the normal VaR and Sharpe ratios also show the 
highest correlation. 



than differently. Consequently, the chance of disagreement in the ranking between 

modified VaR and EVT VaR is 6.6%; however, the chance between the Sharpe 

ratio and EVT VaR is 20%.  

 

Taking into account that only modified VaR and EVT VaR ratios allow 

asymmetry and kurtosis, the results of those measures would be more accurate in 

the calculation of performance measures for funds with non-normal returns. As a 

preliminary conclusion, these findings indicate that the comparison between 

Gaussian funds and non-normal ones is better done using those measures, since 

they are better able to capture the risk behavior among them. 

 

Our sample data do not show a high degree of asymmetry, and so the Sharpe and 

normal VaR ratios are highly correlated. In other words,  risk measured through 

variance and the 0.95 quantile loss leads to the same ranking of performance 

measures.3 

 

Only modified VaR and EVT VaR ratios would provide an intuitive measure of 

downside risk and offer reliable results if we explicitly account for skewness and 

excess kurtosis in the returns. Even though both measures take into account 

extreme events, only EVT VaR provides a full characterization of these extreme 

events defined by the quantile of the distribution. But the principal drawback of 

the EVT VaR approach is that it requires a data set with enough data because only 

data above a certain threshold are used for estimation. The calculation is not an 

                                                 
3 The results of the Jensen and Treynor correlation using only ten funds are misleading because the 
sample is very small and negative; however, if we take the whole sample, the Spearman 
correlation is 0.74, and the Kendall is 0.67. Also, the rank correlation between the other indexes 
and Jensen’s alpha is higher when considering the whole sample.  



easy task, since it requires a careful threshold selection and the likelihood 

estimation of the generalized Pareto distribution, whereas the mean, standard 

deviation, skewness, and kurtosis of the return distribution used for the VaR 

measures of the Cornish-Fisher expansion can be easily obtained. 

 

5 Conclusions 

 

Evaluation of mutual fund performance is a key issue in an industry that has been 

rapidly evolving over the last few years; however, there is no general agreement 

about which measure is best for comparing funds’ performance. In this paper we 

evaluate traditional risk-adjusted measures that are based on the mean-variance 

approach with others that use VaR to quantify risk exposure, empirically testing 

the appropriateness of each within a sample of UK mutual funds. 

 

Using the variance as a measure of risk implies that investors are equally as averse 

to deviations above the mean as they are to deviations below the mean, though the 

real risk comes from losses. VaR is a measure of the maximum expected loss on a 

portfolio of assets over a certain holding period at a given confidence level, so it 

can be considered a more accurate measure of risk. 

 

Different approaches have been proposed to estimate VaR. The historical VaR 

uses the empirical distribution of returns. It does not make any assumption about 

data distribution and takes into account stylized facts such as correlation 

asymmetries; however, it supposes that future VaR estimates would behave like 

past VaR estimates. Also, an accurate estimation requires that the number of data 



in the data set be large enough. The other VaR methods make assumptions about 

the distribution of returns. Traditional VaR is obtained from the normal 

distribution, but there is much evidence that financial returns depart from 

normality due to asymmetry and fat tails; consequently, normal-VaR results are 

usually underestimated. 

 

Modified VaR using the Cornish-Fischer correction and VaR measures based on 

extreme value theory take into account this fact. The Cornish-Fisher expansion 

allows investors to treat losses and gains asymmetrically; consequently, in the 

presence of skewness and kurtosis, the VaR estimation would be more accurate 

than ones calculated with the normal VaR. The approach based on EVT estimates 

an extreme distribution, usually the generalized Pareto distribution, using only 

extreme values rather than the whole data set and offers a parametric estimate of 

tail distribution.  

 

Taking into account VaR-based risk measures that emphasize losses instead of 

losses and gains as the variance, it seems reasonable to use VaR as a risk measure. 

So the Sharpe ratio can be modified using this risk measure. We have compared 

these modified Sharpe ratios with the original one and with the two other well-

known traditional performance measures: the Treynor ratio and Jensen’s alpha. 

The rankings generated from each measure have been also compared. 

 

We studied monthly returns of UK mutual funds, and we selected for the study the 

ten funds with the lowest and highest monthly average returns. For the 

distribution of the bottom ten, we reject that they follow normal distribution in all 



but one case. On the other hand, the upper ten show a higher degree of asymmetry 

and kurtosis, and we can reject normality in half of the cases. Also, we have 

calculated VaR using four different approaches, and EVT VaR is the one that 

gives higher results for probabilities of 0.05 and 0.01. 

 

Regarding the ranking of performance measures, from the bottom sample we 

obtained the same ranking regardless of the measure used, except for the Jensen 

and Treynor measures, which also show a high rank correlation. However, for the 

top data set, the ranking is not the same. If we consider rankings from the 

modified Sharpe index calculated with the Cornish-Fisher VaR and EVT-VaR, 

more accurate measures in the presence of non-normal distribution, both are 

highly correlated and present a lower correlation with the other measures. So we 

recommend employing when trying to rank the performance of different funds, 

especially in the presence of non-normal data, such as returns from hedge funds or 

more frequently sampled returns. 
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Figure 1: q-q plots against the normal distribution for the bottom ten funds. 
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Figure 2: q-q plots against the normal distribution for the top ten funds. 
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Figure 3: (Left) Fitted GPD distribution (dots) and empirical one (solid one) and (right) q-q plots 
of sample quantiles versus the quantiles of the fitted distribution for the bottom ten funds. 
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Figure 4: (Left) Fitted GPD distribution (dots) and empirical one (solid one) and (right) q-q plots 
of sample quantiles versus the quantiles of the fitted distribution for the top ten funds. 
 



Table 1: Descriptive statistics of the top ten and bottom ten average return funds. 
 

Panel A: Bottom 10 funds 
Mean Std. Max. Min. Sk. Ku. 
-0.002 6.672 14.934 -21.498 -0.236 -0.136 
0.050 6.632 17.934 -18.002 0.032 0.103 
0.080 5.636 13.712 -11.713 -0.019 -0.567 
0.127 5.633 13.778 -11.638 0.002 -0.548 
0.146 6.651 19.202 -15.840 0.297 -0.198 
0.147 6.378 18.895 -20.506 -0.132 0.335 
0.171 7.713 26.480 -21.025 0.143 0.531 
0.212 6.234 26.352 -20.446 0.579 4.066 
0.216 6.754 16.394 -13.878 0.244 -0.498 
0.244 6.931 19.498 -15.877 0.345 -0.244 

Panel B: Top 10 funds 
Mean Std. Max. Min. Sk. Ku. 
1.319 5.058 12.182 -14.900 -0.390 0.231 
1.331 6.670 29.765 -21.934 -0.049 3.103 
1.414 4.959 15.328 -14.597 -0.252 0.500 
1.470 4.671 13.823 -10.472 -0.170 0.285 
1.526 5.033 15.327 -13.883 -0.231 0.270 
1.605 4.611 10.282 -16.008 -0.966 1.623 
1.632 4.898 16.023 -17.239 -0.570 1.922 
1.697 8.399 24.776 -18.913 0.282 0.740 
1.771 6.453 27.880 -12.853 0.665 1.454 
3.499 17.921 60.549 -70.528 -0.130 1.929 

Mean=sample mean; Std. = Standard deviation; Max.=maximum observed monthly return; Min.= minimum observed 
monthly return; Sk.= Skewness; Ku. = Kurtosis 



 
Table 2: Descriptive statistics of the top ten and bottom ten average return funds. 
 

Panel A: Bottom 10 funds 
J-B p-value S-W p-value A-D p-value 

1.297 0.523 0.991 0.565 0.304 0.567 
0.148 0.929 0.992 0.671 0.311 0.550 
1.554 0.460 0.990 0.453 0.273 0.663 
1.435 0.488 0.990 0.479 0.251 0.735 
2.115 0.347 0.988 0.293 0.459 0.259 
1.210 0.546 0.993 0.804 0.271 0.670 
2.342 0.310 0.992 0.702 0.230 0.804 

103.401 0.000 0.921 0.000 2.559 0.000 
2.501 0.286 0.987 0.240 0.368 0.425 
2.909 0.234 0.984 0.137 0.587 0.124 

Panel B: Top 10 funds 
J-B p-value S-W p-value A-D p-value 

3.852 0.146 0.986 0.207 0.284 0.625 
56.245 0.000 0.944 0.000 1.803 0.000 
3.114 0.211 0.991 0.544 0.423 0.315 
1.272 0.529 0.986 0.202 0.649 0.088 
1.768 0.413 0.993 0.771 0.309 0.554 

36.774 0.000 0.948 0.000 1.408 0.001 
29.238 0.000 0.962 0.001 1.352 0.002 
5.287 0.071 0.974 0.012 0.982 0.013 

22.687 0.000 0.972 0.008 0.714 0.061 
22.483 0.000 0.976 0.018 0.628 0.100 

J-B: Jarque-Bera test; S-W: Shapiro-Wilk test; A-D: Anderson-Darling test 
 
 
 
 
 
 
Table 3: Classical mutual fund performance measures 
 

Panel A: Bottom 10 funds Panel B: Top 10 funds 
Sharpe Rank Jensen Rank Treynor Rank Sharpe Rank Jensen Rank Treynor Rank 
-0.025 10 -0.372 10 -0.234 10 0.228 7 1.014 9 2.346 7 
-0.017 9 -0.311 9 -0.169 9 0.175 10 0.959 10 1.602 10 
-0.015 8 -0.075 3 2.371 1 0.252 5 1.119 8 2.724 2 
-0.007 7 0.008 1 0.237 2 0.279 3 1.165 7 2.656 3 
-0.003 6 -0.166 6 -0.039 8 0.270 4 1.229 6 2.944 1 
-0.003 5 -0.221 8 -0.027 7 0.312 1 1.278 4 2.530 4 
0.001 4 -0.191 7 0.007 6 0.299 2 1.298 3 2.475 5 
0.007 3 -0.078 4 0.105 4 0.182 9 1.267 5 1.648 9 
0.008 2 -0.091 5 0.101 5 0.249 6 1.414 2 2.386 6 
0.011 1 -0.075 2 0.145 3 0.186 8 2.910 1 2.236 8 

 



Table 4: VaR results of the different approaches 
 

Panel A: Bottom 10 funds 
VaR0.05 VaR0.01 

Norm-VaR Hist-VaR Mod-VaR EVT-VaR. Norm-VaR Hist-VaR Mod-VaR EVT-VaR 
10.977 10.289 11.449 13.697 15.524 15.259 16.608 18.641 
10.858 11.237 10.784 13.193 15.378 14.085 15.384 16.626 
9.190 9.531 9.286 10.481 13.031 11.412 12.365 11.572 
9.138 9.442 9.197 10.295 12.977 11.317 12.246 11.542 

10.794 9.956 10.270 12.231 15.326 11.796 13.787 14.650 
10.344 9.967 10.542 12.896 14.690 14.894 15.849 17.793 
12.516 11.522 12.122 14.638 17.772 19.225 17.976 20.182 
10.043 10.870 8.544 12.685 14.292 13.872 18.350 19.652 
10.893 10.107 10.501 11.636 15.496 13.081 13.650 13.437 
11.158 10.321 10.527 12.599 15.881 11.837 14.037 14.932 

Panel B: Top 10 funds 
VaR0.05 VaR0.01 

Norm-VaR Hist-VaR Mod-VaR EVT-VaR Norm-VaR Hist-VaR Mod-VaR EVT-VaR 
7.001 7.098 7.552 9.846 10.448 12.814 12.460 15.452 
9.641 9.927 9.315 14.439 14.186 17.759 19.269 21.918 
6.743 7.242 7.054 10.248 10.123 10.121 11.740 13.567 
6.213 7.252 6.415 9.228 9.397 9.862 10.344 10.320 
6.753 7.192 7.061 10.283 10.183 10.121 11.458 13.031 
5.979 6.669 7.175 10.774 9.121 13.062 15.765 22.774 
6.425 5.800 7.058 11.375 9.763 12.029 14.613 21.464 

12.118 13.104 11.332 15.303 17.842 17.991 17.804 21.459 
8.844 8.103 7.489 10.002 13.242 11.567 13.354 12.715 

25.978 22.294 25.948 34.442 38.191 36.590 48.099 53.696 
Norm-VaR: normal-VaR; Hist-VaR: Historical-VaR; Mod-VaR: modified VaR using Cornish-Fisher expansion; 
EVT-VaR: extreme-value-VaR calculated form the GPD estimation. 



 
Table 5: VaR-based performance measures 
 

Panel A: Bottom 10 funds 
Norm-VaR Rank Hist-VaR Rank Mod-VaR Rank EVT-VaR Rank 

-0.015 10 -0.016 10 -0.015 10 -0.012 10 
-0.011 9 -0.010 9 -0.011 9 -0.009 9 
-0.009 8 -0.009 8 -0.009 8 -0.008 8 
-0.004 7 -0.004 7 -0.004 7 -0.004 7 
-0.002 6 -0.002 6 -0.002 6 -0.002 6 
-0.002 5 -0.002 5 -0.002 5 -0.001 5 
0.000 4 0.000 4 0.000 4 0.000 4 
0.005 3 0.004 3 0.005 2 0.004 3 
0.005 2 0.005 2 0.005 3 0.004 2 
0.007 1 0.008 1 0.007 1 0.006 1 

Panel B: Top 10 funds 
Norm-VaR Rank Hist-VaR Rank Mod-VaR Rank EVT-VaR Rank 

0.165 7 0.163 7 0.153 7 0.117 7 
0.121 10 0.117 9 0.125 10 0.081 10 
0.185 5 0.172 6 0.177 6 0.122 6 
0.210 3 0.180 5 0.203 3 0.141 2 
0.201 4 0.189 4 0.193 5 0.132 4 
0.241 1 0.216 2 0.201 4 0.134 3 
0.228 2 0.253 1 0.208 2 0.129 5 
0.126 9 0.117 10 0.135 8 0.100 8 
0.181 6 0.198 3 0.214 1 0.160 1 
0.128 8 0.150 8 0.128 9 0.097 9 

 
 
 
 
 
 
 
Table 6: Spearman and Kendall correlation of the performance measures for the top 10 funds 
 

 Sharpe Jensen Treynor Norm-VaR Hist-VaR Mod-VaR EVT-VaR 
Sharpe 1 0.248 0.782 1.000 0.891 0.770 0.745 
Jensen 0.2 1 -0.006 0.248 0.394 0.394 0.297 
Treynor 0.644 -0.067 1 0.782 0.636 0.588 0.673 

Norm-VaR 1.000 0.200 0.644 1 0.891 0.770 0.745 
Hist-VaR 0.733 0.378 0.467 0.733 1 0.879 0.782 
Mod-VaR 0.644 0.378 0.378 0.644 0.733 1 0.927 
EVT-VaR 0.600 0.244 0.511 0.600 0.600 0.867 1 

Statistics in the top half of the matrix represent Spearman rank correlation coefficients; numbers in the lowest half 
correspond to Kendall values 
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