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��������: This paper revisits the Kareken-Wallace model of exchange rate formation in a

two-country overlapping generations world. Following the seminal paper by Arifovic

(�	
����	��	���������	�	��, 104, 1996, 510 – 541) we investigate a dynamic version of

the model in which agents’ decision rules are updated using genetic algorithms. Our main

interest is in whether the equilibrium dynamics resulting from this learning process helps to

explain the main stylized facts of free-floating exchange rates (unit roots in levels together

with fat tails in returns and volatility clustering). Our time series analysis of simulated data

indicates that for particular parameterizations, the characteristics of the exchange rate

dynamics are, in fact, very similar to those of empirical data. The similarity appears to be

quite insensitive with respect to some of the ingredients of the GA algorithm (i.e. utility-

based versus rank-based or tournament selection, binary or real coding). However,

appearance or not of realistic time series characteristics depends crucially on the mutation

probability (which should be low) and the number of agents (not more than about 1000).

With a larger population, this collective learning dynamics looses its realistic appearance

and instead exhibits regular periodic oscillations of the agents’ choice variables.

Keywords: learning, genetic algorithms, exchange rate dynamics

JEL classification: D 83, D 84, F 31
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Dieses Papier betrachtet das Kareken-Wallace-Modell für die Wechselkursbildung in einer

Welt mit 2 Ländern und sich überlappenden Generationen. In der Nachfolge des

zukunftsweisenden Papiers von Arifovic (1996) untersuchen wir eine dynamische Version

des Modells bei dem die Entscheidungsregeln mithilfe genetischer Algorithmen jeweils

aktualisiert werden. Unser Hauptinteresse geht dahin, herauszufinden, ob die

Gleichgewichtsdynamik, die aus diesem Lernprozess resultiert, dabei helfen kann, die

wichtigsten stilisierten Fakten von flexiblen Wechselkursen zu erklären (Einheitswurzeln

bei den Niveaus mit dicken Enden der Ertragsverteilung und Klumpenbildung bei den

Volatilitäten). Unsere Analyse simulierter Daten weist darauf hin, dass für bestimmte

Parametrisierungen der Charakter der Wechselkursdynamik tatsächlich dem von

empirischen Daten sehr ähnlich ist. Die Ähnlichkeit scheint sehr wenig von speziellen

Eigenschaften des gewählten GA-Algorithmus abzuhängen (z. B. nutzenbasiert versus

rangbasiert, binäre oder reale Kodierung). Dagegen ist die Mutationswahrscheinlichkeit

(die niedrig sein sollte) und die Anzahl der Agenten (die nicht größer als 1000 sein sollte)

wichtig. Mit mehr Teilnehmern verliert die kollektive Lerndynamik ihr realistisches

Aussehen und es kommt zu regelmäßigen periodischen Schwankungen bei den Variablen,

die die Agenten auswählen.
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Foreign exchange markets as well as other financial markets are characterized by a number

of striking ubiquitous time series features. Most prominently, (log) exchange rates seem to

be non-stationary while their first differences are stationary. More precisely, unit-root tests

are typically unable to reject the  null hypothesis of a first-order autoregressive process

with a coefficient equal to unity. This finding squares with the well-known result of Meese

and Rogoff (1983) that random walk forecasts produce a lower mean-squared error in out-

of-sample prediction than reduced-form structural models of macroeconomic

fundamentals. It has been argued that these findings can be explained by ����
������

���������� of foreign exchange markets, which simply means one interprets the foreign

exchange market as an informationally efficient market in the sense of the Efficient Market

Hypothesis.

While from this perspective the unit-root property may not be viewed as a conundrum,

other well-known features have defied straightforward explanations until recently. The

most pervasive ones are the fat-tail property of relative price changes and the clustering of

volatility in these time series. Traces of these features are easily recognizable in all records

of high-frequency data (probably up to weekly frequency) of foreign exchange markets (to

our knowledge, without any known exception). The fat-tail property implies that the

unconditional distribution of daily returns (as well as those of higher and somewhat lower

frequency) has more probability mass in the tails and the center than the standard Normal

distribution. This also means that extreme changes occur more often than would be

expected under the assumption of Normality of relative daily price changes. Volatility

clustering means that periods of quiescence and turbulence tend to cluster together. Hence,

the volatility (conditional variance) of exchange rate changes is not homogeneous over

time, but is itself subject to temporal variation.

Explanations of these stylized facts have been elusive until very recently. Perhaps, the

silence of economic theory on this issue is not too surprising given that the above

                                                

* The authors are grateful for many helpful comments by the participants at the following events: the staff
seminars of the Department of Economics at the Universities of Hannover and Kiel, workshops and
conferences at Trieste (WEHIA ’02), Swiss Exchange Zurich (Workshop on Evolutionary Finance),
Leiden (Workshop on Economic Dynamics), Aix-en-Provence (SCE Annual Conference ’02), and the
Bundesbank Training Centre at Eltville. T.L. also wishes to acknowledge financial support by the
Landeszentralbank Schleswig-Holstein.
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regularities are features of time series as ���	�� and, hence, could only be explained by

dynamic models of the evolution of the trading process in the pertinent market. From the

viewpoint of informational efficiency, the characteristics of returns would, of course, have

to be explained by similar characteristics of the ���� ������� ��	����, but due to the

unobservability of the later, this hypothesis can hardly be subjected to econometric

scrutiny. As an alternative, some authors have recently argued that fat tails and clustered

volatility can be obtained as a result of interactions of heterogeneous economic agents.

Examples of this emergent literature include Lux and Marchesi (1999, 2000), Chen, Lux

and Marchesi (2001), Kirman and Teyssiere (2001), Gaunersdorfer and Hommes (2000),

Chiarella and He (2001), Iori (2002) and Bornholdt (2001). Lux and Marchesi,

Gaunersdorfer and Hommes, and Chiarella and He have models of fundamentalist - chartist

interaction in financial markets which give rise to realistic behavior of the resulting time

series (in terms of the above stylized facts). In Lux and Marchesi and Gaunersdorfer and

Hommes, the authors try to provide some hints of general mechanisms that could generate

these time series properties irrespective of the details of their exemplary models. In the

former case, it is a critical behavior of the dynamics in the vicinity of a continuum of

equilibria with an indeterminate composition of the population in terms of strategies

pursued by individuals. Gaunersdorfer and Hommes get similar dynamics from a model

with co-existing attractors in which noise leads to switches between different states. Still

different mechanisms prevail in Iori (2002) and Bornholdt (2001) who use lattice-based

structures for modeling the interactions among traders. Interestingly, a recent paper by

Arifovic and Gencay (2000) on an artificial currency market with genetic learning of

strategies also suggests emergence of realistic features of the resulting exchange rate

dynamics (cf. Fig. 1).  However, they do not provide a detailed analysis concerning the

above properties. One of the aims of this paper is to fill this gap. In particular, we will try

to quantitatively assess the ������ of fat tailedness and volatility clustering this model

generates. We are also interested in the sensitivity of these quantitative measures with

respect to key parameters of the model. To get an impression of the sensitivity with respect

to parameter variations, we will try to figure out how the time series properties depend on

the genetic algorithm parameter and the number of agents populating the market (as will

probably become clear in the presentation of the model, the values of the few economic

variables of the model are of lesser importance in this respect). We then relate our findings

to those obtained for other models of artificial financial markets and try to provide an

explanation for the crucial importance of the number of individuals for the qualitative

outcome of the model.

Our analysis proceeds in the following steps: sec. 2 will introduce the underlying model of

the foreign exchange market, the well-known Kareken-Wallace two-country overlapping

generations model. Sec. 3 gives details on the genetic algorithms which we apply to model
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the learning of our agents. In sec. 4, we review the statistics used for assessing how

realistic the model’s output is. Sec. 5 presents the results of extensive Monte Carlo work,

and sec. 6 tries to provide an explanation for the surprising behavior we find in the case of

a very large population. Sec. 7 concludes.

���$�"$: A typical ‘realistic’ series of returns from a simulated economy with a binary-coded
GA population of 100 agents. For economic parameters, see main text. GA parameters are:
pmut = 0.01 and pcross = 0.6.
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As a version of the Kareken and Wallace (1981) two country model, the underlying

economic structure is extremely simple: at each date t, one-half of the entire population is

replaced by a new generation (the young), while the remaining members are in the second

and final period of their lives (the old) and will be replaced in the next period by another

young generation. Each agent is endowed with w1 units of a homogeneous good in its first

period and with w2 units in the second period of its live. There is neither production nor

inheritance of goods. Intertemporal consumption smoothing can be achieved via money

holdings of currency of the home and foreign country.

With identical preferences of all agents, U(ci(t), ci(t+1)), their consumption plans and

money demand are derived from

(1) max   U(ci(t), ci(t+1))

�	�)������*�
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With ci(t), mi,1(t) and mi,2(t): consumption and money holdings of agent i (i=1,..., N) at time

t, w1 and w2 the homogeneous endowment levels, and p1(t) and p2(t) the price levels in

both countries at time t. Note that with this setup, it even does not matter, how many of the

agents are citizens of countries 1 or 2 as their economic decisions are not affected by their

geographic location.

Assuming that nominal money supply H1 and H2, is constant, and denoting by si(t) overall

‘savings’ of individual i, the price levels at time t are determined by:

(2)
)t(s)t(f

H
)t(p

ii
i

1
1 ⋅

=
∑

,  
)t(s))t(f1(

H
)t(p

ii
i

2
2 ⋅−

=
∑

   with

)t(s

)t(p/)t(m
)t(f

i

11,i
i = : the fraction of currency 1 in agent i’ s portfolio at time t.

The exchange rate, e(t), between both countries is, then, obtained as e(t) = .
)t(p

)t(p

2

1



– 5 –

It is straightforward to spell out some results on possible equilibria (steady states) of this

model. Using ci(t) and fi(t) as choice variables of our agents, it is immediately obvious that

a stationary solution requires the rates of returns on both currencies to be equal, i.e.

.
)1t(p

)t(p

)1t(p

)t(p

2

2

1

1

+
=

+

Simple inspection shows that such a steady state has the following properties:

(1) the exchange rate is constant over time: e(t+1) = e(t) = e*. However, the ����� of the

exchange rate in equilibrium, e*, is indeterminate and may be any value in the half-line, e*

∈  (0,∞).

(2) Given the equality of returns form both currencies, the equilibrium composition of each

agent’s portfolio is indeterminate as well and fi*, therefore, might assume any admissible

value fi* ∈  [0,1]. Note that we do not have to assume identical portfolio choices of the

agents in equilibrium. Any constant distribution of the fi*’s over generations would be

consistent with constant rates of returns and a constant exchange rate. We could even allow

for certain changes of the distribution of the fi*s: equilibrium would still prevail as long as

the mean value of their distributions remains the same over time.

(3) Since the rates of returns from both assets are identical in equilibrium, optimal

consumption plans are independent from the portfolio composition. With a well-behaved

utility function, utility maximizing choice ci* will typically be unique and identical for all

individuals with the same utility function and endowment structure. For example, with

utility functions Ui = ci(t) ci(t+1) and constant money supply in both countries, rates of

return would be equal to one and ci* would be 0.5(w1 + w2) for all individuals.

The non-uniqueness of the equilibrium exchange rate in this type of model derives from the

absence of typical macroeconomic fundamentals of monetary models. In view of the

evidence on unit-roots in empirical data, this feature has been emphasized as an advantage

of their model by Kareken and Wallace One could indeed imagine that added random

fluctuations could easily produce a unit-root dynamics, since random disturbances could

lead to a random motion of the exchange rate along the continuum of possible equilibria

(every time, the equilibrium is distorted by random shocks, the exchange rate would settle

at a new equilibrium). However, non-uniqueness of equilibria also raises the questions of

selection of equilibria and coordination of agents. These questions have been taken up first

by Sargent (1993) who modeled learning via stochastic approximation algorithms. Later on

Arifovic (1996) considered GA learning in the Kareken–Wallace framework. Looking at

the evolution of returns instead of the level of the exchange rate Arifovic and Gencay

(2000)  recovered realistic features in the continuing fluctuations of the resulting dynamics.
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Genetic algorithms have been introduced by Holland (1975) as a stochastic search

algorithm for numerical optimization. This approach uses operations similar to genetic

processes of biological organisms to develop better solutions of an optimization problem

from an existing ‘population’ of randomly initiated candidate solutions. Typically, the

proposed solutions have been encoded in strings (chromosomes) using a binary alphabet

(see Dawid, 1999 for a general introduction). This is also the structure of the GAs applied

in Arifovic and Gencay (2000). Each individual’s decisions are encoded in a binary string

of length l=30, whose first twenty elements encode first-period consumption and whose

remaining ten entries encode the fraction of currency one in his portfolio.1 With ai,t
k

denoting the value at the k-th position of the string (0 or 1), the binary string is translated

into a real-valued number in the following way:

(3)
1
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where K1 and K2 are normalizing constants to restrict the possible real values to a

predetermined admissible interval.

In order to have fi(t) ∈  [0,1], K2 is set equal to K2 = 210 – 1, while ci(t) should be within the

interval [0,w1] to guarantee viable consumption plans. With w1 = 10 in Arifovic and

Gencay’s simulations, this amounts to K1 = 
10

1220 −
.

The overlapping generations structure of the model implies an overlapping genetic

algorithms structure of the evolutionary process. After each period, half of the population

members have completed their life cycle. With the resulting consumption in their old age

their achieved fitness (utility) can be determined and used for the genetic creation of a new

pool of agents entering the economy as the young generation of the following period.

The genetic operations applied in this step are the following:

                                                

1 Choosing l = 30 with substrings of twenty and ten bits, respectively, we closely  followed Arifovic (1996)
and Arifovic and Gencay (2000). However, like with most other details of the genetic algorithm
implementation, variation of these numbers did not change the qualitative characteristics of the dynamics.
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(1) ��������	
��: from the pool of old individuals, copies are selected (with replacement)

with probabilities depending on their relative fitness, i.e. on 
∑
i

i

i

U

U
.

Other algorithms for reproduction could be chosen as well: proposals in the GA literature

include rank-based reproduction in which only the rank (not the absolute fitness)

determines the probability of reproduction, and tournament selection, in which one

repeatedly draws n1 (say 5) individuals from the pool and accepts the n2 < n1 (say 2) with

highest utility among them for the new generation. Below we report only results for fitness-

based reproduction. Experiments with rank-based and tournament selection have also been

carried out yielding almost identical results.

(2)� ��������: when the pool of potential new members of a generation is complete,

genetic material is exchanged between them. The simplest way is randomly selecting a pair

of parent strings and swapping genetic material (bits) between both chromosomes. Here,

we again follow the algorithm used by Arifivic and Gencay in selecting randomly an

integer in the range of [1,29] and constructing offspring by combining the genetic material

from the left of this position from parent one with that from the right-hand part of parent

two and ���� �����. Note that the cross-over operation is carried out with a certain

probability pcross only, while with probability 1-pcross the offspring are unchanged copies of

their parents. Alternative implementations of the crossover operator include two-point

crossover (exchange of material in an interval between two randomly chosen bits) and

uniform cross-over (the two offsprings are random recombinations of their parents’ bits).

Again, the whole chain of our findings reported below seems to be robust with respect to

the choice of the particular cross-over operator.

(3) ��	�	
�� simply means that each position within a string is altered with a certain

probability pmut to the other value of the binary alphabet.

(4) Finally, the ����	
�� operator tests newly generated offspring before letting them enter

the population. In order to avoid a decrease of the fitness of the overall population due to

the genetic alteration of strategies, only those among the offspring are accepted which are

at least as fit as one of their parents. If after crossover and mutation offspring have lower

fitness, exact copies of their parents are placed into the new generation.

Beside these traditional binary coded GAs, we also experimented with �����	��� GAs in

the present framework. A real coded GA simply uses a real representation of the choice

variables. In our case, a real-coded chromosome would, therefore, consist of a pair {ci(t),

fi(t)}.

�
������
������, similar genetic operations can be defined for this variant (cf. Herrera ��

��., 1998, for an overview on real-coded GAs). First, reproduction occurs in the same way
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as with binary GAs. As for cross-over, a number of alternative mechanisms have been

proposed in the literature. Here, we follow Eshelman and Shaffer (1993) in picking new

choice variables which are uniformly and independently drawn from an interval covering

the pertinent values of the parents’ chromosome. To illustrate let )}t(c),t(cmax{c BA= ,

)}t(c),t(cmin{c BA= , and ccdc −=  with cA(t) and cB(t) consumption choices of parents

i = A, B. Then, the first-period consumption of offsprings is determined by uniform

random draws from [c - γ dc, c  + γdc] . A similar operation yields the new portfolio

fractions of the offsprings. Note that γ is a predetermined value that allows for some

‘experimentation’ within regions not covered by the genetic material of the parents. Its role

is also to compensate for the drift towards the mean of the admissible strategy space from a

crossover operator with γ = 0. Herrera �� ��. (1998) show that this algorithm has better

performance on some test problems than many alternatives. Mutation with real variables is

done by using Normal random variables with mean zero and small variance to slightly

change the prevailing choice variables. Election, finally, occurs in the same way as with

binary coding.2

,$��
��������-����
��!�

To see whether our foreign exchange market populated by genetically learning overlapping

generations has realistic time series properties we use a battery of statistical tests.

(i) ��
	����	�	��	�: a realistic market should yield a exchange rate dynamics which appears

to be close to a random walk. We, therefore, perform typical tests for the presence of a unit

root in our synthetic time series using the standard Dickey Fuller (DF) and Augmented

Dickey Fuller (ADF) tests. The underlying data are logs of the exchange rate since from the

symmetric construction of the Kareken-Wallace model we would also expect symmetry of

relative changes. For the ADF test, we also included the first three differences as

independent variables.

                                                

2 On a first view, the real coded GAs seem to be a much more natural way to deal with any real-valued
problem than binary GAs. However, good reasons are given in the literature to actually prefer binary
coding in many applications. In particular, although at first view GAs seem to process only the particular
chromosomes within the population, they actually allow for a parallel processing of many different parts
of alternative solutions. This might be sensed by considering the following example: the binary coded
values for 0 and 4, i.e. 000 and 100, have two – thirds of their genetic material in common, so that it is
‘easy’ for the genetic operations to switch from one to the other. With real-coded GAs, 0 and 4 have
nothing in common and a large succession of crossovers and mutations is needed to move from one to the
other.
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(ii) ��	�	�
�� ������	�: the recent econometric literature has provided a very sharp

characterization of this feature. In particular, it could be shown that the decline of the

probability mass in the tails follows a power-law with a coefficient that is astonishingly

uniform across markets. This amounts to large returns (rt) following a relationship:
α−> x~)xr.(obPr t  with the so-called ‘tail index’ α hovering within the interval between

2 and 5. Estimation of α using conditional maximum likelihood is straightforward, and a

wealth of supporting evidence can be found in De Vries (1994) and Dacorogna �� ��.

(2001). As a typical example, estimation of the tail index for the DM/U.S.$ exchange rate

with daily data ranging from 1974 to 1998 yields an estimate α = 3.69 (95% confidence

interval: 3.38 to 4.10) when using the five percent largest absolute returns. The review by

De Vries and the monograph by Dacorogna ����. give similar statistics for other currencies.

(iii) ����	
�
	������	��
��: this feature can be characterized by autoregressive dependence in

various measures of volatility. Here we also have a very precise and uniform picture from

almost all available data sets. In particular, it has been found that the dependence in

volatility measures like squared or absolute returns extends over very long time horizons

and exhibits a hyperbolic decay of the autocovariance function: κ−
∆− ∆t~]xx[E ttt  with

xt: squared or absolute returns. This slow decay is in contrast to fast (exponential) decline

and is also denoted as long-term dependence. Like with the fat-tail property, quantitative

measurements of the decay parameter κ give very uniform results across markets. As a

benchmark for our later analysis of simulated data, we give estimates from the frequently

used periodogram regression technique due to Geweke and Porter-Hudak (1983). These

authors device a method for estimation the ���������	�������	����������������	�, denoted

� in the following, which is related to κ by: κ = 1 - 2�. An estimate of � significantly larger

than 0 would show evidence for the long-memory property. Inability of rejection of � = 0

would indicate absence of long-term dependence. For the sake of illustration, daily DM/$

data yield (95% confidence intervals in brackets): raw returns: � = 0.07 (-0.09, 0.23);

squared returns: � = 0.24 (0.08, 0.40), absolute returns: 0.29 (0.13, 0.45). Again, a glance

at, for example, Dacorogna �� ��. shows that these figures are quite representative for

foreign exchange data (as well as for financial data in general). The inability of rejection of

� = 0 for raw returns, of course, squares well with the unit-root property of log exchange

rates. The finding of a higher level of persistence in absolute returns rather than squared

returns is also quite universal and has by itself motivated a large body of recent

econometric literature.



– 10 –

.$�/��	��0�
��������1��	���

Tables 1 to 6 present the results of a large number of experiments with various versions of

our artificial economy. Tables 1 to 3 show results for binary coded GAs, while tables 4 to 6

are concerned with simulations using real coded GAs.

Our starting point was the scenario underlying the simulations by Arifovic and Gencay

(2000). The particular Kareken-Wallace economy in this paper had the following

properties: all individuals share a common utility function Ui = ci(t) ci(t+1), endowments

are w1 = 10, w2 = 4, and nominal money supplies are H1 = 3000, H2 = 3600. It can

immediately be seen that this leads to a steady state consumption level of c* = c(t) = c(t+1)

= 7 and steady-state savings s* = s(t) = s(t+1) = 3. ����� �����, it appears unlikely that

changes in these economic variables should yield greatly different results (as long as

endowments would lead to positive savings). Experimentation with different parameters

and alternative utility functions (e.g., logarithmic utility) confirmed this conjecture.

In fact, our interest here is more (i) in the sensitivity with respect to the details of the

learning dynamics, and (ii) the influence of the number of agents. Our interest in the effects

of the size of the market derives from some puzzling earlier findings. Namely, a number of

studies have revealed that existing multi-agent models of financial markets loose their

realistic time series properties when increasing the number of agents (Egenter ����., 1999;

Yeh, 2001, Challet and Marsili, 2002). Since published work on artificial markets with GA

learning has used only a very limited number of agents, typically below 100, it seems

worthwhile to explore the behavior of larger economies.

Let us start with the effects of varying the GA’s parameter settings. From the two

parameters of the binary genetic operations, pmut and pcross, we found the first to be the

more interesting one in that variation of pcross only led to slight variations of the statistical

properties. In a first set of experiments we, therefore, fixed pcross at 0.6 and also fixed the

population size at the level used in Arifovic and Gencay, N = 60 (i.e., 30 individuals in

each generation). In order to see the effects of variation of pmut, we varied this parameter

from 0.005 to 0.05 (with increments of 0.005) and applied the statistical analyses outlined

above to 100 samples each containing 2,000 data points (a length of the data series

comparable to many empirical records). The 100 samples are taken as non-overlapping

windows from a simulation continuing over 205,000 periods where the first 5,000 data

points have been discarded to account for transient behavior. Minimum, median and

maximum of the tail index estimates (for tail sizes of 2,5%, 5% and 10% of the data) are

shown in Table 1, while the minimum, median and maximum of the estimates of � are

given in the Table 2. Table 3, finally gives the median and range of estimates of the
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autoregressive parameter from the Dickey-Fuller and Augmented Dickey-Fuller test

together with the frequencies of one-sided (in brackets: two-sided) rejection of the unit-root

null under a 95% confidence level. Results are quite homogeneous with respect to our three

stylized facts in so far as the behavior is most realistic for small values of pmut around 0.05

to 0.01. In this region we have a high percentage of non-rejection of a unit root in log

exchange rates (at least for the ADF test which corrects for short-run dynamics) together

with median values of � close to their empirical counterparts. The median tail index

estimates might appear somewhat too small, but are still within the range observed with

empirical data. Fig. 1 illustrates that returns obtained with this setting of the GA parameters

indeed do look very realistic and may be hard to distinguish from real-life records with the

naked eye (at least, after, proper adjustment of the scale of the fluctuations). However,

when increasing pmut beyond 0.02, rejection of a unit root in favour of a root smaller than

unity occurs in all cases, the fractional differencing parameter for raw returns becomes

negative (which is also a signature of mean reversion), and the temporal dependence in

squared and absolute returns declines. Finally, the tail index becomes somewhat too high.

In our second set of experiments, we then varied N keeping the mutation probability at the

value 0.01. Since the simulations become more time-consuming with increasing N, we

restricted our investigation to 25 samples (i.e. a time series of overall length of 55,000 time

steps for each parameter set). Here the changes are even more dramatic. When moving

from small (N = 20) to very large markets (N = 10,000), we get an even larger drop of the

autoregressive coefficient in the unit-root tests, highly negative �’s for raw returns and a

total fading out of volatility clustering (the �’s of squared and absolute returns approaching

zero). The tail index decreases and has median values below 2 for the maximum size of the

market (N = 10,000).

Before turning to explanations, let us look at the pertinent results for real-coded GA’s for

which we also varied both the set-up of the mutation operator and the number of agents

(Tables 4 to 6). Again, the parameters of the crossover operator are kept constant (uniform

crossover as described in s. 3 with a parameter γ = 0.2 was used). The mutation operator

now has two parameters, the probability of its activation pmut and the variance of the

Normal mutations, σmut.

The upper and middle part of Tables 4 to 6 exhibit the effects of systematic variation of

pmut and σmut. Again, 100 samples of 2,000 data points each have been used. Since markets

with real-coded GA’s need less computation time, we were able to use 100 subsamples

when assessing the effects of market size and could also use a somewhat larger maximum

size of N = 20,000.
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Varying mutation probability, constant population size N= 60
tail size 2.5 % tail size 5% tail size 10%

Pmut min median Max min median max Min median max
0.005 1.37 2.82 5.07 1.20 2.16 4.81 1.15 1.92 5.37

0.010 1.93 3.36 5.06 1.35 2.81 3.81 1.34 2.21 3.06
0.015 2.16 3.90 5.87 1.76 3.25 4.38 1.60 2.55 3.36
0.020 1.88 4.14 6.30 2.15 3.51 4.80 2.13 2.83 3.75
0.025 2.60 4.45 6.87 2.60 3.81 5.47 2.31 3.04 3.72
0.030 3.25 4.75 7.00 3.24 4.11 5.27 2.79 3.34 3.90
0.035 2.30 5.15 7.64 2.52 4.25 5.34 2.80 3.46 4.01
0.040 3.50 5.13 8.38 3.23 4.42 6.64 2.85 3.61 4.40
0.045 3.50 5.09 7.37 3.48 4.46 6.36 3.04 3.71 4.52
0.050 3.88 5.20 7.62 3.56 4.53 5.70 3.10 3.76 5.01

Constant mutation probability pmut = 0.01, varying population size
tail size 2.5 % tail size 5% tail size 10%

N min median max min median max min median max
20 1.73 3.29 5.43 1.38 2.64 4.67 1.30 2.26 9.17

100 2.76 3.77 4.56 2.12 3.17 3.85 2.02 2.49 2.79
200 2.29 4.19 5.67 2.26 3.54 4.64 2.16 2.68 3.16

1000 1.87 3.22 5.54 1.86 3.15 4.58 1.85 2.80 3.81
2000 1.46 2.64 4.70 1.60 2.74 4.17 1.78 2.67 3.74
4000 1.19 1.94 3.78 1.52 1.92 3.53 1.56 2.20 3.21

10000 1.44 1.92 3.27 1.28 1.82 3.22 1.35 1.93 2.84

��������	
����������������������������������� ��������������������������
���	������

of large returns: α−> x~)xr.(obPr t . We follow the literature in applying a conditional

maximum likelihood estimator with a prespecified size of the tail region. To explore the
sensitivity of the tail index estimates with respect to the choice of the cut-off, we tried tail
regions of 2.5%, 5% and 10%. Empirical estimates usually show a certain tendency of
increasing tail indices when the tail size is reduced. For variation of the mutation
probability, the minimum, median and maximum over 100 samples with 2,000 data points
each are shown. For variation of the number of agents, only 25 samples were used due to
the increase in computation time with increasing number of GA chromosomes.
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Varying mutation probability, constant population size N= 60
raw squared absolute returns

Pmut min median max min median max min median max
0.005 -1.05 -0.03 0.21 -0.23 0.25 0.76 -0.09 0.36 0.81
0.010 -0.95 -0.05 0.24 -0.04 0.31 0.77 0.15 0.42 0.78
0.015 -0.61 -0.12 0.29 0.02 0.34 0.81 0.11 0.43 0.88
0.020 -0.46 -0.17 0.07 -0.11 0.30 0.72 0.04 0.38 0.76
0.025 -0.57 -0.25 0.03 -0.08 0.25 0.82 -0.09 0.35 0.73
0.030 -0.58 -0.30 0.07 -0.11 0.23 0.51 -0.07 0.29 0.60
0.035 -0.66 -0.37 -0.07 -0.10 0.22 0.50 -0.09 0.28 0.47
0.040 -0.73 -0.43 -0.15 -0.06 0.19 0.44 -0.13 0.22 0.48
0.045 -0.76 -0.46 -0.14 -0.12 0.19 0.49 -0.07 0.22 0.50
0.050 -0.84 -0.51 -0.18 -0.13 0.15 0.47 -0.10 0.18 0.52

Constant mutation probability pmut = 0.01, varying population size
raw squared absolute returns

N min median max min median max min median max
20 -0.95 -0.02 0.32 -0.01 0.21 0.80 0.04 0.33 0.90

100 -0.31 -0.06 0.27 -0.03 0.30 0.79 0.10 0.40 0.73
200 -0.51 -0.18 0.04 0.09 0.30 0.79 0.20 0.35 0.66

1000 -0.76 -0.56 -0.32 -0.12 0.13 0.34 0.01 0.16 0.34
2000 -0.92 -0.61 -0.11 -0.15 0.05 0.27 -0.06 0.07 0.27
4000 -0.98 -0.48 -0.20 -0.24 0.04 0.33 -0.20 0.07 0.36

10000 -0.85 -0.40 -0.11 -0.23 0.01 0.13 -0.12 0.04 0.22

Note: Table 2 shows estimates of the parameter � from the hyperbolic decay of auto-covariances

for variables with long-term dependence: 1d2
ttt t~]xx[E −

∆− ∆ . We estimate � via the log

periodogram regression technique proposed by Geweke and Porter-Hudak (1983). The underlying
data are the same as in Table 1. For variation of the mutation probability, the minimum, median
and maximum over 100 samples with 2,000 data points each are shown. For variation of the
number of agents, only 25 samples were used due to the increase in computation time with
increasing number of GA chromosomes.
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Varying mutation probability, constant population size N= 60, 100 runs
DF test Rejections ADF test Rejections

Pmut min median max min median max
0.005 0.15 0.97 1.00 89 (85) 0.30 0.99 1.00 54 (47)
0.010 0.47 0.97 1.00 97 (95) 0.51 0.98 1.03 64 (59)
0.015 0.23 0.96 0.98 100 (100) 0.55 0.97 0.99 95 (91)
0.020 0.11 0.95 0.98 100 (100) 0.42 0.96 0.99 99 (99)
0.025 0.61 0.93 0.97 100 (100) 0.79 0.95 0.98 100 (100)
0.030 0.68 0.92 0.96 100 (100) 0.70 0.94 0.98 100 (100)
0.035 0.20 0.91 0.96 100 (100) 0.44 0.93 0.96 100 (100)
0.040 0.49 0.91 0.95 100 (100) 0.64 0.93 0.96 100 (100)
0.045 0.27 0.90 0.95 100 (100) 0.37 0.92 0.95 100 (100)
0.050 0.15 0.90 0.97 100 (100) 0.33 0.91 1.01 99 (100)

Constant mutation probability, pmut = 0.01, varying population size, 25 runs
DF test Rej. ADF test Rej.

Pmut min median max min median max
20 0.14 0.95 0.99 25 (25) 0.21 0.98 1.00 14 (12)

100 0.91 0.98 0.99 21 (21) 0.94 0.99 1.00 18 (18)
200 0.86 0.98 0.99 25 (24) 0.88 0.98 0.99 24 (23)

1000 0.32 0.92 0.98 25 (25) 0.41 0.91 0.97 25 (25)
2000 0.16 0.78 0.98 25 (25) 0.17 0.86 0.97 25 (25)
4000 0.13 0.77 0.96 25 (25) 0.15 0.81 0.97 25 (25)

10000 0.21 0.63 0.91 25 (25) 0.26 0.56 0.93 25 (25)

Note: Table 3 shows estimates of the parameter  from a regression of the log exchange
rate on its lagged value. The columns labeled ‘rejection’ give the number of cases  in which
we can reject the unit root null hypothesis = 1 from the one-sided (two-sided) DF and
ADF tests. Again, the underlying data are the ones already analysed in Tables 1 and 2.
Hence, for variation of the mutation probability, the minimum, median and maximum over
100 samples with 2,000 data points each are shown. For variation of the number of agents,
only 25 samples were used due to the increase in computation time with increasing number
of GA chromosomes.
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In broad harmony with the binary-coded case, realistic properties are obtained with small

mutation probability and small variance of mutation. Nevertheless, certain differences are

observed between the binary and real-coded cases: in particular, the DF and ADF tests are

still unable to reject the unit root hypothesis in the majority of cases even with a relatively

large mutation rate and a large number of traders. On the other hand, mean reverting

tendencies are clearly observable in the estimates of the fractional differencing parameter

for raw returns in these cases. It might be that the evolution of the system is simply very

slow so that in many periods the slight variations in the exchange rate go through as a unit

root process. In contrast to the binary case, in the real-coded one the two-sided test often

yields more rejections than the one-sided test. The additional right-hand rejections may be

related to the sudden bursts of activity visible in the upper part of Fig. 3. Overall, the much

higher rate of rejection of the unit root hypothesis in the binary case might be due to the

higher degree of stochasticity inherited from thirty instances of mutation (for every bit)

instead of two instances only in the real-coded case. Some reflection, in fact, reveals that

the values of the mutation probabilities can not be directly compared between the binary

coded and real coded GAs. For example, a pmut = 0.033 (per bit) for binary coded GAs

implies that with chromosomes of thirty bits, almost every individual will undergo some

mutation of its genetic material. This amounts to a much higher mutation rate ������ ���

�	�
����	� with pmut = 0.01 in the binary case than with 0.05 for real coded bits. Except for

non-rejection of the unit root hypothesis,  the pattern of results is, in fact, almost the same

as with binary GAs when increasing N. looking at the resulting time series, we find in both

the real-coded and binary coded case a tendency towards persistent and very regular cycles

when increasing the number of agents (cf. Figs. 3 and 4).
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Varying mutation probability pmut����������������������������� mut = 0.1 and  population size N = 100
Tail size 2.5 % Tail size 5% Tail size 10 %

Pmut Min median max min median max min median max
0.01 1.33 2.53 4.75 1.46 2.51 3.85 1.49 2.26 2.94
0.02 1.75 2.57 3.93 1.62 2.33 3.47 1.54 2.08 3.18
0.03 0.81 3.01 6.89 0.85 2.57 3.33 0.67 2.24 2.70
0.04 0.70 2.94 4.70 0.74 2.45 3.62 0.89 2.08 3.07
0.05 0.96 3.23 5.02 0.73 2.68 3.62 0.85 2.33 3.09
0.06 0.85 2.33 3.09 0.80 2.67 4.24 1.00 2.22 3.44
0.07 0.91 2.98 5.98 1.11 2.60 4.60 0.71 2.24 3.29
0.08 1.03 2.93 6.18 1.04 2.62 4.65 0.86 2.14 3.51
0.09 0.99 2.72 6.44 1.03 2.35 4.63 0.93 2.02 3.67
0.10 1.07 2.47 6.08 0.95 2.13 3.99 0.97 1.84 3.60

Constant mutation probability pmut =0.05, constant population size N = 100, varying mutation variance
Tail size 2.5 % Tail size 5% Tail size 10 %

mut Min median max min median max min median max
0.025 1.40 3.61 5.52 1.04 3.12 4.07 1.04 2.60 3.10
0.050 1.37 3.46 5.56 0.92 3.00 4.32 0.77 2.54 3.38
0.075 0.67 3.37 6.34 0.65 2.95 3.97 0.59 2.47 3.32
0.100 0.78 3.28 5.03 0.79 2.77 4.08 1.00 2.27 3.07
0.125 0.67 3.05 4.67 0.74 2.61 3.81 0.75 2.25 3.08
0.150 0.70 2.91 5.15 0.89 2.57 4.41 0.71 2.14 2.99
0.175 0.90 2.86 5.27 0.95 2.53 3.96 0.95 2.12 3.08
0.200 0.95 2.85 4.78 0.95 2.40 3.88 0.97 1.98 3.04

Constant mutation probability pmut�������������������� mut = 0.025, varying population size
Hill 2.5 % Hill 5 % Hill 10 %

N Min median max min median max min median max
20 1.32 3.29 7.57 0.61 2.75 5.22 0.51 2.30 3.49

100 1.46 3.85 6.08 1.49 3.16 4.22 1.41 2.68 3.23
200 1.35 4.23 5.73 1.06 3.50 4.43 0.93 2.85 3.85

1000 0.77 4.22 8.13 0.71 3.40 6.11 0.74 3.00 4.43
2000 0.85 2.65 8.16 0.68 2.39 5.97 0.62 2.08 4.52
4000 0.70 1.56 10.04 0.66 1.37 7.20 0.59 1.18 5.06

10000 0.62 1.44 8.82 0.55 1.13 6.34 0.61 0.96 5.09
20000 0.52 1.49 7.99 0.62 1.14 7.24 0.58 0.86 5.04

��������	
�� �������������������������������� �������������
�������!"���#�
�$�����%�&��
1 to 3,  we always give the minimum, median and maximum over 100 replications with
2,000 data points each even in the case of varying number of agents (real GAs are less
demanding in terms of computation time than binary ones).
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Varying mutation probability pmut����������������������������� mut = 0.1 and  population size N = 100
raw squared absolute returns

Pmut min median max min median max min median max
0.01 -1.06 -0.39 0.24 -0.28 0.09 0.41 -0.22 0.17 0.52
0.02 -0.79 -0.05 0.25 -0.16 0.14 0.43 -0.22 0.24 0.55
0.03 -0.44 -0.04 0.32 -0.14 0.13 0.90 -0.08 0.22 1.11
0.04 -0.52 -0.06 0.22 -0.08 0.28 1.04 -0.10 0.40 1.07
0.05 -0.44 -0.03 0.25 -0.11 0.25 1.17 -0.01 0.35 1.16
0.06 -0.48 -0.08 0.29 -0.02 0.28 1.09 -0.03 0.40 1.23
0.07 -0.52 -0.08 0.21 -0.11 0.30 0.87 -0.06 0.47 1.03
0.08 -0.43 -0.07 0.22 -0.03 0.34 0.93 -0.04 0.48 0.99
0.09 -0.52 -0.11 0.26 -0.01 0.34 0.89 -0.05 0.50 1.32
0.10 -0.48 -0.13 0.17 0.05 0.35 1.00 0.06 0.53 0.92

Constant mutation probability pmut =0.05, constant population size N = 100, varying mutation variance
raw squared absolute returns

mut min median max min median max min median max
0.025 -0.30 -0.01 0.34 -0.22 0.16 0.98 -0.10 0.24 0.98
0.050 -0.48 -0.07 0.21 -0.40 0.19 1.03 -0.06 0.26 1.01
0.075 -0.52 -0.04 0.30 -0.03 0.22 0.90 -0.04 0.29 1.14
0.100 -0.39 -0.05 0.27 -0.09 0.30 1.14 -0.07 0.45 1.08
0.125 -0.56 -0.06 0.31 -0.08 0.31 0.94 -0.18 0.46 1.03
0.150 -0.42 -0.06 0.17 -0.10 0.31 1.05 0.01 0.43 1.10
0.175 -0.50 -0.07 0.25 0.02 0.34 1.13 -0.06 0.49 1.07
0.200 -0.46 -0.09 0.19 -0.21 0.35 1.00 -0.02 0.50 1.00

Constant mutation probability pmut�������������������� mut = 0.025, varying population size
raw Squared absolute returns

N min median max min median max min median max
20 -0.48 -0.02 0.46 -0.10 0.21 0.74 -0.07 0.29 0.89

100 -0.37 0.00 0.21 -0.16 0.13 0.65 -0.16 0.20 0.71
200 -0.60 0.01 0.30 -0.16 0.12 0.73 -0.18 0.15 0.81

1000 -0.76 -0.02 0.40 -0.27 0.13 0.71 -0.26 0.22 1.05
2000 -0.66 0.03 0.39 -0.31 0.11 0.85 -0.33 0.28 1.02
4000 -0.79 -0.15 0.39 -0.31 0.10 0.39 -0.34 0.29 0.98

10000 -0.72 -0.28 0.45 -0.30 0.13 0.86 -0.28 0.37 0.96
20000 -0.75 -0.36 0.47 -0.13 0.10 0.86 -0.03 0.34 1.19

Note: Table 5 shows estimates of the parameter � , now for real-coded GAs. The data are
the same as in Table 4.
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Varying mutation probability pmut����������������������������� mut = 0.1
and  population size N = 100, 100 runs

DF test Rej ADF test Rej
Pmut Min median max min median max

0.001 0.29 0.90 1.00 74 (70) 0.42 0.94 1.00 59 (61)
0.002 0.83 0.99 1.00 54 (49) 0.87 0.99 1.00 54 (49)
0.003 -0.00 0.99 1.00 50 (47) 0.01 0.99 1.00 35 (34)
0.004 -0.00 0.99 1.00 49 (42) 0.06 0.99 1.00 34 (30)
0.005 0.01 0.99 1.01 46 (45) 0.26 0.99 1.00 39 (37)
0.006 -0.00 0.99 1.00 55 (45) -0.00 0.99 1.00 40 (34)
0.007 0.00 0.99 1.00 56 (47) 0.00 0.99 1.01 40 (36)
0.008 0.00 0.99 1.00 58 (51) 0.01 0.99 1.00 46 (40)
0.009 -0.00 0.99 1.00 53 (48) -0.00 0.99 1.00 48 (41)
0.10 -0.00 0.98 1.01 68 (66) -0.00 0.98 1.01 68 (63)

Constant mutation probability pmut =0.05, constant population size N = 100,
varying mutation variance, 100 runs

DF test Rej. ADF test Rej.

mut Min median max min median max
0.025 -0.00 1.00 1.00 36 (30) -0.00 1.00 1.00 25 (24)
0.050 0.03 0.99 1.00 43 (32) 0.19 1.00 1.00 26 (21)
0.075 0.01 0.99 1.00 51 (40) 0.01 0.99 1.00 34 (33)
0.100 -0.00 0.99 1.00 69 (60) 0.31 0.99 1.00 54 (48)
0.125 -0.00 0.99 1.00 68 (65) -0.00 0.99 1.03 55 (53)
0.150 -0.00 0.99 1.00 64 (58) -0.00 0.99 1.00 46 (39)
0.175 -0.00 0.99 1.00 76 (66) 0.12 0.99 1.10 50 (48)
0.200 -0.00 0.98 1.00 72 (69) 0.02 0.99 7.71 60 (57)

Constant mutation probability pmut�������������������� mut = 0.025,
varying population size, 100 runs

DF test Rej. ADF test Rej.
N Min median max min median max
20 0.77 0.98 1.00 85 (79) 0.88 0.99 1.00 21 (17)

100 -0.00 1.00 1.00 29 (24) 0.00 1.00 1.00 19 (15)
200 0.99 1.00 1.00 2 (4) 0.99 1.00 1.00 4 (4)

1000 -0.00 1.00 1.76 30 (38) -0.00 1.00 24.74 31 (33)
2000 -0.00 1.00 1.66 24 (33) -0.00 1.00 6.11 27 (29)
4000 -0.00 1.00 1.06 37 (50) -0.00 1.00 1.02 35 (43)

10000 0.01 1.00 1.52 45 (63) 0.01 1.00 12.52 44 (52)
20000 0.12 1.00 1.03 43 (54) 0.12 1.00 1.01 42 (49)

Note: Table 6 shows results from unit-root tests, now for real-coded GAs. The underlying
data are the same as in Tables 4 and 5.
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Besides this similarity in the results from both GA variants (and a number of alternative

implementations of various operators) our experiments also show that we do not need all of

the typical elements of the GA to arrive at these results. Essentially, the structure of the

artificial economy remains unchanged if we dispense with both the selection and crossover

operators. Mutation and election alone are capable of producing these patterns, but they are

also crucial for their emergence (although selection and crossover tend to speed up

convergence to regular oscillations).

5$�#����������������1��	���

What is the reason for this fading out of realistic time series properties with increasing

mutation probability and increasing number of agents? It is probably not too difficult to

answer the first part of the question: A high mutation probability introduces a certain

tendency of mean-revision of the choice parameters which is reflected in similar mean

reversion of the exchange rate. For the sake of illustration, imagine a model with a

mutation probability equal to 1 in the case of binary coded GAs (corresponding to a pmut =

1 together with a high variance of mutation in the real coded case). This would lead to a

stationary random distribution of agent’s strategies. All deviations from the average would

be corrected by the new random choice of the population in the next period and, hence, one

gets a tendency of return to the mean values of the distribution of ci(t) and fi(t). Since these

choice variables determine prices and the exchange rate, mean-reversion would also carry

over to these variables as well. The higher the mutation rate, the higher the influence of this

tendency. Higher pmut, therefore, leads to less persistence in exchange rates so that the

exchange rate dynamics becomes stationary and unit roots can be rejected. This suspected

change in the appearance of the time series is already well recognizable when comparing

binary coded GAs with pmut = 0.01 and 0.05, respectively (cf. Fig. 2). While the former

series (or parts of it) might be accepted as a random walk by the DF and ADF tests, the

second surely will not. As a conclusion, we infer from these considerations that random

experimentation with strategies has to be limited in order to get realistic appearance of the

time series.
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���$�%$: Log exchange rates from simulated economies with pmut = 0.01 (upper panel) and
pmut = 0.05 (lower panel). The population consists of 100 binary-coded GAs in both cases.
Although not fully realistic, for parts of the upper time series the DF and ADF tests are
unable to reject the unit root null. The simulation in the lower panel has more easily
recognizable mean-reverting features.
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As to the number of agents, a glance at the time series resulting with different sizes of the

market reveals some perplexing patterns (Figs. 3 and 4). What looks extremely

unsystematic with a small market (N = 200), becomes much more regular when the market

becomes lager and eventually evolves into an almost perfectly regular oscillatory motion of

some ‘macroscopic’ variables (in particular, the exchange rate and the average fraction of

domestic currency in the portfolio).3 On a close inspection, the short spikes in the exchange

rate fluctuations in Fig. 3 are very similar to one half-cycle in Fig. 4. Such a regular pattern

is puzzling at first view as it is the result of the evolving decisions of a very large ensemble

of autonomous artificial agents. Keeping in mind that the quantity displayed in the middle

part of Figs. 3 and 4 is a �	�
����	�������� what these oscillations show is a systematic

shift of the whole distribution of this variable within an heterogeneous ensemble of agents.

To our knowledge nothing of a similar type of self-organizing patterns is known in multi-

agent systems with GA learning in economics or other fields. A certain clue to the

underlying mechanisms can be obtained through analysis of what happens in the case of a

large economy (i.e., with the number of agents going to infinity). Noting that GAs are an

adaptive adjustment scheme that drives the actual average behavior of the population

towards the momentary optimum of the choice variables, the large economy case might be

described via the resulting deterministic mean value dynamics of the choice variables.

Unfortunately, the present dynamics is too complicated to derive explicit dynamics laws

for the large economy limit.4 However, some heuristic considerations will reveal most of

the important elements of our dynamics.

                                                

3 We have chosen a higher mutation probability compared to our benchmark case in Fig. 4 since it both
leads to a decrease of the amplitude of the oscillations and provides faster convergence to almost perfectly
regular patterns. However, the trend to  emerging regular oscillations is also clearly visible in other
simulations with either real-coded or binary GAs.

4 Available analytical approaches to genetic algorithm dynamics consider simpler examples and are not
applicable to the present model (e.g., Prügel-Benett, 1994, or Srinivar and Patnaik, 1996).
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���$�+$: Log exchange rate (top), average portfolio fraction of home currency (middle), and
average first-period consumption (bottom) for a real-coded GA population of 200 agents.
For economic parameters, see main text. GA parameters are: pmut = 0.05, σmut = 0.025 and
γ = 0.2. The dynamics seems to be characterized by unsystematic changes of the portfolio
composition which lead to exchange rate fluctuations, but leave average consumption
choices almost unaffected.
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As an adaptive adjustment scheme, the genetic algorithm has at its intrinsic benchmark

those values ci*(t) and fi*(t) which would have been optimal choices for the population at

time t which inherits its genetic material to the generation born at time t+2.

It is easy to see that for our utility function Ui = ci(t) ci(t+1) optimal behavior of individual

i at time t would have been:
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Via prices at period t+1, the optimal behavior of generation t also depends on the decisions

of the next generation. The election operator, in fact, guarantees that the resulting new

individuals accepted after selection, crossover and mutation are at least as good as their

parents. For the portfolio component, this clearly implies )]t(f),t(f[)2t(f *
iii ∈+  while

consumption might also overshoot its target, ci*(t) as long as the resulting new parameter

set provides at least the utility level enjoyed by the parent individuals. Since in any out-of-

equilibrium situation, the goal value for the fraction of domestic assets will be the same, 0

or 1, for all members of the population, in the large economy limit, the motion of the mean

value )t(f  will follow a deterministic path towards these values as long as the pay-off

differential from holding domestic or foreign currency does not change.
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���$�,$: Log exchange rate (top), average portfolio fraction of home currency (middle), and
average first-period consumption (bottom) for a real-coded GA population of 20,000
agents. For economic parameters, see main text. GA parameters are: pmut = 0.3, σmut =
0.025 and γ = 0.2. The middle and bottom panels show both the mean (solid lines) and
standard deviations (broken lines) of the distribution of the choice variables within the
population. In order to lodge the mean and standard deviation in the bottom panel, we have
subtracted the steady state value c* = 7, reduced the standard deviation of ci(t) by one-half
and magnified the standard deviation of fi(t) by a factor 10. The higher pmut compared to
Fig. 3 mainly serves to decrease the amplitude of the cycle and enhance convergence to
regular cycles,
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To see the source of the regular fluctuations, consider a stationary situation with

homogenous choice variables ci(t) = ci(t-1) = c* and fi(t) = fi(t-1) = f0, where f0 might be

any admissible value between 0 and 1. Arifovic (1996) has already emphasized that any

such equilibrium of this GA economy is ��	�
��	����
������� since any local disturbance

(mutation) will be magnified by the ensuing adjustments of the remaining members of the

population. For the sake of the argument, assume that only one individual undergoes a

mutation when the generation t+1 emerges from the genetic operations on generation t-1.

Assume furthermore that this mutation amounts to an increase of the fraction of domestic

money in the portfolio of this agent, while its consumption remains unchanged at the initial

equilibrium level. Since this new strategy will have the same utility as its parents (because

returns from holding either currency are initially identical), the election operator will allow

this offspring to replace one of its parents. However, the presence of this mutant suffices to

change the structure of returns for agents of generation t: instead of equal returns, they

experience a higher pay-off from holding domestic money:

(5)
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Although the differential might be very small, it suffices to make f* = 1 the dominant

strategy. Hence, the ����	� change from generation t-1 to generation t+1 induces a

���������� shift into the same direction when generation t inherits its genetic material to

generation t+2. Does it also lead to changes in the consumption behavior of generation

t+2? Changes in the momentary optimal consumption level occur if the denominator in eq.

(4.a) deviates from one. With consumption still equal to its steady state level at generations

t and t+1, this denominator  amounts to 
)t(f1

)1t(f1
))t(f1(

)t(f

)1t(f
)t(f ii −

+−−++
. Given our

assumption, )t(f)1t(f >+ , it is easy to see that the denominator is > (<) 1 for individuals

with fi(t) > (<) )t(f . It would, therefore, be optimal for the former to reduce first-period

consumption, while the later would find it advantageous to increase it. However, since we
have also assumed that all individuals share the same choice variable fi(t) = f0 = )t(f  at

time t, the former consumption level c* would still be optimal for all generation t members

as long as their portfolio choice remains unaffected by the genetic operations, so that

isolated changes of ci(t) would not survive the election operator test. Note that these

considerations apply only in the case of isolated genetic changes of either fi(t) or ci(t).

Often both variables will be affected by the genetic processes. To see more generally, what

kind of arbitrary combined genetic changes would survive in our scenario, we can take

stock of the traditional concept of indifference curves. Accepting only offspring who are at

least as fit as their parents, the election operator only allows those to enter the population
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whose choice variables positions them on the same indifference curve like their parents or

a higher indifference curve. Consider the utility obtained by parent individual i:

(6) ))t())t(cw(w()t(c)t(U i1,i121,ii ρ⋅−+⋅= , with )t(R))t(f1()t(R)t(f)t( 2i1ii ⋅−+⋅=ρ .

The slope of an indifference curve is given by:
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For R1(t) > R2(t) this gives:
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This yields the parabolic shape of the indifference curves exhibited in Fig. 5. In the case of

R1(t) < R2(t), the inequalities in eq. (8) are reversed and the indifference curve parabolas

have the opposite orientation. In the present case, R1(t) > R2(t), it can be inferred from eq.

(7), that higher utility can only be achieved if a higher fraction of domestic assets is chosen.

If, however, this necessary condition for an improvement is met, a certain range of higher

or lower consumption levels would be accepted by the election operator. As can be seen
from Fig. 5, in the above situation in which )1t(f +  slightly exceeds )t(f , the spectrum of

utility improving changes is slightly asymmetric with respect to consumption. Assuming

that all initial consumption levels are close to c*, the pay-offs can be reduced to:

)t(f1

)1t(f1
)t(R,

)t(f

)1t(f
)t(R 21 −

+−=+= . According to the arguments given above, individuals

with a below (above) average fraction of domestic money would, then,
have )ww(5.0*c)())t(f(*c 21i +=<> . The expected direction of combined changes of ci

and fi would, therefore, depend on the individual’s position within the distribution of the

fi’s. For roughly half of the population on average somewhat higher consumption levels

would pass the election operator, while for the other half of its members, the genetic

operations would slightly favor a reduction in consumption. With a symmetric distribution

of the fi’s, the expected macroscopic effect of induced changes of ci would be close to zero.

With an asymmetric distribution, skewness would somewhat favor one or the other

direction of changes, but since this is a third-order effect, one might expect it to be

negligible. This conjecture is supported by our simulations which show no clear trend in

the development of ci(t) over time. What can be observed, however, is that an increase of

the number of agents leads to a reduction of the size of fluctuations of ci(t), cf. Figs. 3 and

4.
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With only small and rather unsystematic changes of ci(t), the systematic changes of the

portfolio composition will dominate the dynamics. The attraction towards the extreme

solutions will, then, be self-reinforcing leading to an ever increasing fraction of domestic

assets in the upward part of the cycle. Since every new round of genetic breeding of a new

cohort starts at a higher average level of fi compared to the previous period, the

deterministic limit of the stochastic dynamics will also lead to a higher new average value

two periods later compared to the period before. In the infinite population limit, this trend

will continue until the entire population will have converged to fi(t) = 1. Although in this

situation, all inherent tendencies of genetic changes come to a halt, the first mutation of an

individual leading to an fi < 1 will destabilize this stationary state again and generate a

systematic downward trend which over time leads to a convergence of the whole

population to fi(t) = 0. Here again, any mutation will exert a destabilizing tendency

commencing the upward part of the cycle… and so on ���������
�. Note that this endlessly

repeating cycle should also somehow exist as a tendency in the finite population case (since

what we observe in the large population case should correspond to the pure mean value

dynamics). Of course, the cyclical development shown in Fig. 4 would not be consistent

with a unit root in log exchange rates (it 
� a clearly mean reverting process) and volatility

clustering. In an sense, with a large population, the inherent randomness of the artificial

economy gets lost and the measurable macroeconomic observables (pi(t), e(t)) become

deterministic quantities.

However, at least for very small populations, this inherent structure of the combined

genetic and economic process seems to be entirely concealed by the random elements in

the genetic processes on the level of the individual. In fact, the systematic tendencies

worked out above will be subject to more random distortions with a small population size.

An upward or downward tendency will be inverted as soon as the portfolio fraction of a

new generation is not higher (lower) than that of the preceding one. It is the more likely

that this random event happens the smaller the size of the population is. The apparently

realistic time series characteristics result from situations where this happens with a very

high probability within a few time steps. This explains why these more irregular dynamics

with recurrent bursts of activity are only observed within a certain range of small numbers

of agents.

We end our attempts at providing intuitive explanations of the evolutionary dynamics of

our model with some remarks on the dynamics of second moments. As can be seen from

Fig. 4, even the standard deviations of our choice variables exhibit predictable systematic

patterns over the cycle. In particular, both the standard deviation of first-period

consumption and  the standard deviation of the fraction of domestic assets increase when

one of the corner equilibria becomes unstable, remains relatively high during most of the
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motion to the opposite end of the parameter space and converges to zero when this new

stationary solution is eventually approached. Note that this also implies that despite the

near constancy of the mean value of ci(t), the dynamics is often characterized by a

relatively wide range of individual choices. What happens is that after destabilization of an

equilibrium, a broad range of choices of ci(t) and fi(t) gives higher utility (as can be inferred

from the indifference curves in Fig. 5). Hence, many different types of mutations will be

allowed to enter the population. The distribution of the choice variables spreads out and in

the following, the whole population moves like a swarm from the left-hand side of the

space of choice variables to its upper right-hand end (cf. Fig. 6). When the portfolio

choices converge to a homogeneous situation fi(t) =1 again, higher indifference curves can

only be reached with consumption levels close to the steady state level c*. This leads to a

decrease of the bandwidth of first-period consumption levels in the population. Eventually,

the variability with respect to both choice variables shrinks to zero. Once all individuals are

close to the utility-maximizing steady state levels (fi(t) = 1, ci(t) = c*), a small destabilizing

mutation will lead to a sudden spread of the distribution of strategies and will set into

motion a left-ward dynamics of the whole swarm of individuals.
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���$�.$* Indifference curves. The underlying utility function is U = c (t) c(t+1), endowments
are w1 = 10, w2 = 4. For this illustration it has been assumed that all agents have chosen
their first-period consumption level equal to its steady state value, c* = 7 and that the
fraction of domestic money in the portfolios of generations t and t+1 has mean values

)1t(f +  = 0.55 and )t(f  = 0.5.
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���$�5$: A snapshot of the evolution of the population corresponding to one upward half-
cycle in Fig. 4. The graph shows on its left-most part the distribution of choice parameters
within a generation shortly after the lower turning point (triangles). The pluses and
diamonds show the distribution of choice parameters within the same dynasty after 40 and
80 periods, respectively.
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Elaborating on the GA version of the Kareken-Wallace model introduced by Arifovic

(1996) and Arifovic/Gencay (2000), we have analyzed both the potential and the

limitations for this type of artificial open economy to generate realistic time series

properties. As it turns out, the model can generate time series which very closely mimic the

statistical characteristics of empirical data. The mechanism responsible for the emergence

of these interesting dynamics seems to be similar to the one analyzed within a different

context by Lux and Marchesi (1999): the model has a continuum of equilibria with an

indeterminate distribution of strategies among agents (as has been argued above, any

distribution of the fi would be admissible in equilibrium). With the stochasticity of the

genetic process, there will always be distortions preventing the system from settling at any

particular equilibrium. Because of the evolutionary instability of any distribution of

strategies these random distortions will evoke self-amplifying tendencies which produce

large price changes (fat tails) and volatility clustering. However, we also find that a small

probability of mutation and a small number of agents are needed to get this realistic output

for the exchange rate. With a large population, the destabilizing tendencies are so strong

that the crucial choice variable, fi, bounces back and forth between the corners of the

admissible parameter space.  This applies to both binary and real coded GAs. While the

requirement of small mutation rates might be considered to be plausible and not too

restrictive, having to restrict the population size to numbers below, say, N = 1000 is much

more cumbersome. Real markets (in particular, the world-wide market for foreign

exchange), surely have more participants so that N < 1000 seems an unrealistic

requirement. However, this disappointing finding is shared by other multi-agent models

(cf. Egenter ����., 1999, Yeh, 2001, Challet and Marsili, 2002). Essentially, with high N, a

law of large numbers becomes effective even in models with a large number of available

strategies and the randomness from the interaction between the microscopic choice of

strategies vanishes. While in certain models, prices converge to fundamental values in the

large economy limit (Egenter ����., 1999), the absence of fundamentals in the Kareken-

Wallace model appears to be responsible for the oscillations between extreme choices.

How could one overcome these uncomfortable findings and save the ‘nice’ results obtained

with smaller populations? One possibility would be to allow for more coherence among

individuals via social sharing of information. Allowing for groups of agents to form, we

would get a smaller ��������� number of agents. As an alternative, endogenous development

of wealth could lead to some agents exerting more influence on the market outcome than

others (of course, this feature would be particularly difficult to incorporate into the present

simple model). This would presumable also change the outcome in a way that differs from

the atomistic case analyzed above. Exploring these avenues is left for future research.
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