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Integrated Modified OLS Estimation and Fixed-b
Inference for Cointegrating Multivariate

Polynomial Regressions

Timothy J. Vogelsang1 and Martin Wagner2,3,4

1Department of Economics, Michigan State University
2Department of Economics, University of Klagenfurt

3Bank of Slovenia, Ljubljana
4Institute for Advanced Studies, Vienna

Abstract

This paper shows that the integrated modified OLS (IM-OLS) estimator developed for cointe-
grating linear regressions in Vogelsang and Wagner (2014a) can be straightforwardly extended to
cointegrating multivariate polynomial regressions. These are regression models that include as
explanatory variables deterministic variables, integrated processes and products of (non-negative)
integer powers of these variables as regressors. The stationary errors are allowed to be serially
correlated and the regressors are allowed to be endogenous. The IM-OLS estimator is tuning-
parameter free and does not require the estimation of any long-run variances. A scalar long-run
variance, however, has to be estimated and scaled out when using IM-OLS for inference. In this
respect, we consider both standard asymptotic inference as well as fixed-b inference. Fixed-b
inference requires that the regression model is of full design. The results may be particularly
interesting for specification testing of cointegrating relationships, with RESET-type specification
tests following immediately. The simulation section also zooms in on RESET specification testing
and illustrates that the performance of IM-OLS is qualitatively comparable to its performance in
cointegrating linear regressions.

JEL Classification: C12, C13, C32

Keywords: Cointegration, fixed-b asymptotics, IM-OLS, multivariate polynomials, nonlinearity,
RESET
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1 Introduction

The integrated modified OLS (IM-OLS) estimator introduced in Vogelsang and Wagner (2014a) for
cointegrating linear regressions is, algebraically and computationally, the simplest modified least
squares estimator for cointegrating regressions in that, for estimation, no kernel, bandwidth or lead
and lag choices need to be made: One OLS regression is all that is required. When using the
IM-OLS estimator to test hypotheses, however, a scalar (conditional) long-run variance parameter
needs to be estimated and scaled out, thus IM-OLS also involves some user choices on kernel and
bandwidth when used for inference. The simplicity of IM-OLS is driven by the underlying idea of
performing OLS estimation in the partial sum regression augmented by the integrated regressors
rather than in the original cointegrating regression, where OLS would be consistent but result in
a limiting distribution contaminated by so-called second-order bias terms. Partial summation has
several advantages: First, it eliminates an additive bias term present in the limiting distribution of,
e. g., the OLS estimator of the original cointegrating regression. Second, it renders asymptotic theory
almost trivial, since stochastic integrals with respect to Brownian motion – resulting from the cross-
product of the integrated regressors and the errors – are replaced by Riemann integrals of products
of (integrals of) Brownian motions. Third, the inclusion of the integrated regressors suffices to allow
for asymptotic standard inference, as these regressors “soak up” all second-order endogeneity biases.
This stems directly from the fact that in the partial sum regression augmented by the integrated
regressors, both the integrated regressors and the partially summed errors are integrated processes,
see Section 2.2.

This paper demonstrates that the two building blocks of IM-OLS allow to extend the estimator
straightforwardly to, what we call, cointegrating multivariate polynomial regressions (CMPR), see (3)
below for the general formulation. These are regression models that include, potentially, the con-
stant and polynomial time trends (with more general deterministic functions of time possible, see
Remark 1), m integrated – but not cointegrated – processes of order one, as well as products of
(non-negative) integer powers of these variables as regressors. The stationary errors are allowed to
be serially correlated and the regressors are allowed to be endogenous.1 As an illustration, consider
(see Christensen et al., 1971) a two-factor Translog (cost, demand or) production function (ignoring
total factor productivity and deterministic components for brevity):

lnYt = lnKtβ1 + lnLtβ2 + (lnKt)
2β3 + (lnLt)

2β4 + (lnKt lnLt)β5 + ut, (1)

with Yt denoting output, Kt capital and Lt labor. Under the assumption that both lnKt and lnLt
are integrated (but not cointegrated), the above equation (1) is, in the case of stationary errors, an
example of a cointegrating multivariate polynomial regression as considered in this paper.2 For the
example considered, the IM-OLS estimator is defined as the OLS estimator in the following regression
model:

SlnY
t = SlnK

t β1 + SlnLt β2 + S
(lnK)2

t β3 + S
(lnL)2

t β4 + S
(lnK lnL)
t β5 + lnKtγ1 + lnLtγ2 + Sut , (2)

1The term cointegrating multivariate polynomial regressions (CMPRs) is based on the term cointegrating polynomial
regressions (CPRs) coined by Wagner and Hong (2016), who consider a regression in which deterministic regressors,
integrated regressors and their powers, but no cross-products are included. Wagner and Hong (2016, Remark 1)
discuss the potential of generalizing their analysis to the setting considered here and correctly observe that this
will be easier for IM-OLS than for fully modified OLS (FM-OLS), the estimator considered in Wagner and Hong
(2016), originally developed for cointegrating linear regressions in Phillips and Hansen (1990). The present paper is
a substantially extended version of our earlier paper Vogelsang and Wagner (2014b) that only considered IM-OLS
to perform RESET-type specification testing of the null hypothesis of a cointegrating linear relationship.

2Note for completeness that Hansen (1992) contains the necessary functional central limit results to extend the FM-
OLS estimation principle to the two-factor Translog setting, i. e., to polynomials of degree two. To exemplify the
difference between the CMPR and the CPR settings, the results of Wagner and Hong (2016) do not allow the
inclusion of the regressor (lnKt lnLt).
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with SlnY
t :=

∑t
j=1 lnYj and the other partial sum variables defined analogously. To state the obvi-

ous, considering polynomials means that the regression problem is linear in parameters – also after
partial summation, which implies, to continue stating the obvious, that the partial sum regression
problem remains linear in parameters and thus allows for closed-form solutions of least squares es-
timators. We stress this fact because linearity-in-parameters is the key property of the regression
function that interacts conveniently with the IM-OLS partial summation step. In other words, for
cointegrating regression problems that are nonlinear in parameters (and feature additive stationary
errors), partial summation may still be performed, but will result in nonlinear least squares problems
with integrated errors, rather than as in the linear-in-parameters context, where partial summation
plus augmentations leads to ordinary least squares estimation with a limiting distribution that allows
for asymptotic standard inference. The restriction to polynomials in several variables is, of course,
a restriction to a narrow set of functions, however, one that allows to interact different integrated
regressors freely in this function class. A large part of the (nonlinear-in-parameters or nonparametric)
nonlinear cointegration literature considers only one integrated regressor or restricts the integrated
regressors to enter additively separably, for an early contribution see, e. g., Chang et al. (2001).3

One exception to additive separability is, e. g., Dong et al. (2016), who allow for multiple integrated
regressors that, however, enter the regression model in the form of a single index, i. e., as one linear
combination with a parameter vector to be estimated. Gao and Phillips (2013) consider a triangu-
lar systems formulation in a semiparametric framework with, unavoidably, a finely calibrated set of
assumptions on the system.

Compared to more general nonlinear settings, the CMPR setting is, as discussed, quite restrictive but
easy to deal with in terms of statistical theory. On an imagined tradeoff line between generality of
functional form and simplicity of estimation and inference, the CMPR setting is – in combination with
the IM-OLS estimator – clearly on the simplicity end of the spectrum. Nevertheless, in addition to
estimation and inference in, e. g., Translog-type relationships with an arbitrary number of factors, the
CMPR setting is useful in particular also for developing simple specification tests for cointegrating
relationships. In general, economic theory does not specify the precise form of a potential nonlinear
cointegrating relationship in the case a linear (or CPR or Translog-type) cointegrating relationship is
found to not adequately describe the relationship between the variables. Therefore, we believe that an
omnibus specification test such as the RESET test (see Ramsey, 1969) is a useful and computationally
cheap addition to the cointegration specification testing toolkit.4 This type of test is convenient –
and fits perfectly to the CMPR setting considered in this paper – as it is based on the replacement
of an unknown nonlinear function by a finite sum approximation, in the RESET case a polynomial
approximation. Such approaches have a long tradition in specification tests for stationary time series

3That paper is a generalization of Park and Phillips (2001), who consider nonlinear cointegrating regressions with only
one integrated regressor and derive asymptotic theory for two classes of nonlinear functions, labelled as asymptotically
homogenous (which include polynomials) and integrable, with quite different asymptotic behavior of parameter
estimators in both cases. Since these early contributions, the literature on (effectively often bivariate) nonlinear
cointegration has exploded, with both parametric and nonparametric approaches. See, from an even longer list
(here in alphabetical order), Chan and Wang (2015), Chang and Park (2011), Dong and Linton (2018), Dong et al.
(2022), Karlsen et al. (2007), Linton and Wang (2016), Saikkonen and Choi (2004), Shi and Phillips (2012), Wang
and Phillips (2009, 2016) or Wang and Wang (2013). The listed papers differ inter alia with respect to precise
assumptions, in particular with respect to whether error serial correlation and/or regressor endogeneity are allowed
for. Some papers allow for time trends and some allow to also include stationary regressors, usually considered to
be strictly exogenous. See Tjøstheim (2020) for a recent (partial) survey of this literature.

4In fact, a significant part of the applied nonlinear cointegration literature actually considers nonlinear adjustment
mechanisms towards linear cointegrating relationships, see, e. g., Balke and Fomby (1997), Bec and Rahbek (2004)
or Hansen and Seo (2002). There are also some contributions considering nonlinear cointegrating relationships with
a specific functional form, e. g., Saikkonen and Choi (2004) consider cointegrating smooth transition regressions.
Notwithstanding the fact that nonlinear relationships are usually not fully specified by economic theory, there is
increasing interest in nonlinear cointegrating relationships spurred from different areas of application, ranging from
empirical macroeconomics, e. g., deviations from purchasing power parity (Hong and Phillips, 2010), or linearity of
money demand functions (Lütkepohl et al., 1999; Choi and Saikkonen, 2010) to empirical finance, e. g., currency crises
(Saikkonen and Choi, 2004) to environmental economics, e. g., the environmental Kuznets curve (Wagner, 2015).
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models, see, e. g., Phillips (1983), Lee et al. (1993) or de Benedictis and Giles (1998). Given that we
think that the RESET-type test may be of particular interest to many readers, we discuss RESET
test options based on IM-OLS in detail in Section 2.4.5

As is well known, standard asymptotic theory does not capture the impact of kernel and bandwidth
choices, required in our context for long-run variance estimation, on the sampling distributions of
estimators and test statistics based upon them. Fixed-b asymptotic theory, put forward in the sta-
tionary context by Kiefer and Vogelsang (2005) and in the unit root and cointegration framework by
Vogelsang and Wagner (2013, 2014a), captures the impact of kernel and bandwidth choices on the
sampling distributions of HAC-type test statistics.6 Fixed-b asymptotic theory for testing hypotheses
on the parameters of a CMPR imposes some restrictions on the set of auxiliary regressors, in that a
so-called full design (see the details in Section 2.3) has to be chosen, which essentially means that all
powers and cross-products of powers of the integrated regressors up to the chosen maximum degree
have to be included. Exactly as in the linear cointegration case treated in Vogelsang and Wagner
(2014a), pivotal fixed-b inference (in the full design case) rests upon long-run variance estimation
based on specifically modified residuals since the IM-OLS residuals cannot be used directly.

The theoretical analysis is complemented by a small simulation study to assess the finite sample
performance of the proposed standard and fixed-b tests, where we only discuss the RESET-type spec-
ification test for brevity. The simulations show that the fixed-b limit theory describes the distribution
of the test statistic well. Altogether, the findings of the simulation study are typical for the cointe-
gration and fixed-b literatures. The performance of the tests is deteriorating if regressor endogeneity
and error serial correlation are increasing for a given sample size, with this fact being true for both
classical and to a lesser extent fixed-b testing. Fixed-b tests often – and also in the present situation
– incur smaller size distortions at the expense of only minor losses in (size-adjusted) power than
standard tests. It is worth noting that the RESET-type tests exhibit power also against smoothly
varying logistic alternatives and not only against polynomial alternatives.7

The paper is organized as follows: Section 2 describes the setup and assumptions, IM-OLS estimation,
fixed-b inference and the RESET-type test in its four subsections. Section 3 provides a finite sample
performance analysis of the RESET-type test and Section 4 briefly concludes. All proofs are relegated
to the appendix. Supplementary material available upon request provides fixed-b critical values as
well as code to use IM-OLS for estimation and inference in CMPR settings, including, of course,
material to perform RESET-type specification testing.

We use the following notation: Definitional equality is signified by :=, weak convergence by ⇒,

convergence in distribution by
d→ and convergence in probability by

P→. The integer part of x ∈ R
is given by bxc and a diagonal matrix with entries specified throughout by diag(·). For a matrix
A ∈ Rm×n we denote its Frobenius norm by ‖A‖ :=

√
tr(A′A), where tr(·) denotes the trace. Identity

matrices with dimensions specified are denoted by I. We write N0 to denote the natural numbers
extended by zero, Z for the integers, R for the real numbers and |I| for the number of elements in a
(multi-index) set I. L is the backward-shift operator, i. e., L{xt}t∈Z = {xt−1}t∈Z. Brownian motions,
with covariance matrices specified in the context, are denoted by B(r). Standard Brownian motions
are denoted by W (r).

5In close relation to the fast growing nonlinear cointegration literature referred to in Footnote 3, a number of tests for
the correct specification of (nonlinear) cointegrating relationships has also been developed, see (again in alphabetical
order), e. g., Choi and Saikkonen (2010), Dong and Gao (2018), Hong and Phillips (2010), Kasparis (2008), Wang
and Phillips (2012), Wang and Zhu (2020) or Wang et al. (2018).

6Additional (partial) fixed-b treatments of cointegration models are contained in Bunzel (2006) and Jin et al. (2006).
Hwang and Vogelsang (2022) extend fixed-b theory to regressions with high-frequency data.

7Grabarczyk and Wagner (2024) present a small comparative simulation study of IM-OLS in the context of an analysis
of the environmental Kuznets curve for carbon dioxide emissions using three modified least squares estimators.
The findings are qualitatively very similar to the findings in the cointegrating linear regression case considered in
Vogelsang and Wagner (2014a).
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2 Theory

2.1 Setup and Assumptions

We consider a cointegrating multivariate polynomial regression (CMPR) model including, potentially,
the constant and (polynomial) time trends, m integrated – but not cointegrated – processes of order
one, x1t, . . . , xmt, as well as products of (non-negative) integer powers of these variables as regressors,
and a stationary error term ut. Using multi-index notation, the regression model considered can be
written compactly as:

yt =
∑

i:=(i0,i1,...,im)∈I

ti0xi11t · · ·x
im
mtθi0,i1,...,im + ut (3)

=

|I|∑
i=1

zitθi + ut,= Z ′tθ + ut

xt = xt−1 + vt,

with the second sum considered for i = 1, . . . , |I| by attaching to every multi-index i an integer i, e. g.,
by lexicographic ordering. This defines zit := ti0xi11t · · ·x

im
mt for i corresponding to i = (i0, i1, . . . , im) ∈

Nm+1
0 , Zt := [z1t, . . . , z|I|t]

′, θ := [θ1, . . . , θ|I|]
′ and xt := [x1t, . . . , xmt]

′. To avoid perfect multi-
collinearity of the regressors by construction, we assume that no multi-index i is contained more than
once in I and, for finite sample calculations, that |I| ≤ T . To not overload notational complexity we
abstain from carrying these basic requirements through the paper.

Given that the unit root and cointegration literature offers a variety of primitive assumptions leading
to the required convergence results, we do not posit a set of sufficient assumptions that lead to the
required functional central limit theorems for {ηt}t∈Z := {[ut, v′t]′}t∈Z in the main text:8

T−1/2
brT c∑
t=1

ηt ⇒ B(r) = Ω1/2W (r), 0 ≤ r ≤ 1, (4)

where W (r) is an (m+ 1)-dimensional vector of independent standard Brownian motions and:

Ω =

[
Ωuu Ωuv

Ωvu Ωvv

]
:=

∞∑
j=−∞

E(ηtη
′
t−j), (5)

positive definite, where clearly Ωvu = Ω′uv. In the case Ωuv 6= 0, the regressors are endogenous
and, in addition to regressor endogeneity, the setting also allows for relatively unrestricted forms
of serial correlation of the errors {ηt}t∈Z. These two aspects, in general, necessitate some form of
modified least squares estimation to allow for asymptotic standard inference. Partitioning B(r) =
[Bu(r), Bv(r)

′]′ and W (r) = [wu·v(r),Wv(r)
′]′ we have, using, e. g., the Cholesky decomposition of

Ωvv = Ω
1/2
vv (Ω

1/2
vv )′: [

Bu(r)
Bv(r)

]
=

[
ω
1/2
u·v Ωuv(Ω

−1/2
vv )′

0 Ω
1/2
vv

] [
wu·v(r)
Wv(r)

]
, (6)

with ωu·v := Ωuu − ΩuvΩ
−1
vv Ωvu the (innovation) variance of Bu·v(r) := Bu(r)−Bv(r)′Ω−1vv Ωvu.

8One set of sufficient assumptions for the results in this paper, related to Wagner and Hong (2016, Assumption 1), is
to assume that ηt = C(L)η0t =

∑∞
j=0 Cjη

0
t−j , with

∑∞
j=0 j||Cj || < ∞ and det(C(1)) 6= 0. Here, the process {η0t }t∈Z

is a strictly stationary and ergodic martingale difference sequence with natural filtration Ft = σ({η0s}t−∞), positive
definite covariance matrix Ση0η0 and supt∈Z E[‖η0t ‖r|Ft−1] <∞ a.s. for some r > 4.
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Remark 1. In (3) we allow only for polynomial time trends, i. e., terms corresponding to multi-
indices of the form (i0, 0, . . . , 0) for i0 ≥ 0. However, more general deterministic components can, of
course, be included, e. g., in a regression model of the form:

yt = D′tθD +
∑

i:=(i0,i1,...,im)∈I∗
ti0xi11t · · ·x

im
mtθi0,i1,...,im + ut, (7)

with I∗ denoting a set of multi-indices i with minj=1,...,m ij > 0. In this case it suffices to assume
for Dt ∈ Rp that there exists a sequence of p× p scaling matrices GD and a p-dimensional vector of
functions D(z) such that for 0 ≤ r ≤ 1 it holds that:

lim
T→∞

√
TG−1D DbrT c = D(r) with 0 <

∫ r

0
D(z)D(z)′dz <∞. (8)

It is, of course, also possible to have elements of a more general Dt included in the cross-product
terms, provided asymptotic multi-collinearity is excluded.

To exemplify the setting and the multi-index notation, consider again the two-factor Translog function
considered already in the introduction in (1), i. e.,:

yt = θ0,0,0 + x1tθ0,1,0 + x2tθ0,0,1 + x21tθ0,2,0 + x22tθ0,0,2 + x1tx2tθ0,1,1 + ut, (9)

with corresponding index set I = {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 2, 0), (0, 0, 2), (0, 1, 1)} and |I| = 6.

2.2 IM-OLS Estimation

Parameter estimation is based on a (straightforward) extension of the integrated modified OLS (IM-
OLS) estimator introduced in Vogelsang and Wagner (2014a) from cointegrating linear regressions to
the cointegrating multivariate polynomial regression setting considered. IM-OLS corresponds to OLS
estimation in the partial sum version of (3) augmented by the integrated regressors xt:

Syt = SZ′t θ + x′tγ + Sut (10)

= S̃Z′t ϑ+ Sut ,

with Syt :=
∑t

j=1 yj and SZt and Sut defined analogously, S̃Zt := [SZ′t , x
′
t]
′ and ϑ := [θ′, γ′]′. As

mentioned in the introduction, the inclusion of the original integrated regressors xt corrects for endo-
geneity and thus allows for a zero-mean Gaussian mixture limiting distribution, see also the discussion
below Proposition 1. The above equation (10) can be written, as usual, in matrix form by combining
all observations t = 1, . . . , T , i. e.,:

Sy = SZθ +Xγ + Su (11)

= S̃Zϑ+ Su,

with Sy := [Sy1 , . . . , S
y
T ]′, SZ := [SZ1 , . . . , S

Z
T ]′, X := [x1, . . . , xT ]′, Su := [Su1 , . . . , S

u
T ]′ and S̃Z :=

[S̃Z1 , . . . , S̃
Z
T ]′ = [SZ , X]. The IM-OLS estimator of ϑ is now defined as the OLS estimator of ϑ

in (11), i. e.,:

ϑ̂ :=
(
S̃Z′S̃Z

)−1
S̃Z′Su. (12)

For a discussion of the asymptotic properties of the IM-OLS estimator, it remains to define two
quantities: First, the scaling matrix AIM := diag(AIM,θ, Im), with AIM,θ ∈ R|I|×|I| a diagonal matrix

6



with the entry corresponding to regressor ti0xi11t · · ·x
im
mt given by T

−
(
i0+

∑m
j=1 ij

2
+ 1

2

)
. Second, the

limiting process corresponding to the properly scaled regressors, i. e., Z(r) := limT→∞ T
1/2AIM,θZbrT c

for 0 ≤ r ≤ 1, with Z(r) := [z1(r), . . . , z|I|(r)]
′, zi(r) := rioBv1(r)i1 · · ·Bvm(r)im for i = 1, . . . , |I| and

Bvj (r) denoting the j-th component of Bv(r).

Proposition 1. Let the data be generated by (3) with the assumptions discussed in the previous
subsection in place. Define ϑ∗ := [θ′, (Ω−1vv Ωvu)′]′, then as T →∞ it holds that:

A−1IM

(
ϑ̂− ϑ∗

)
⇒ ω

1/2
u·v

(∫ 1

0
f(s)f(s)′ds

)−1 ∫ 1

0
f(s)wu·v(s)ds (13)

= ω
1/2
u·v

(∫ 1

0
f(s)f(s)′ds

)−1 ∫ 1

0
[F (1)− F (s)]dwu·v(s),

where:

f(r) :=

[ ∫ r
0 Z(s)ds
Bv(r)

]
, F (r) :=

∫ r

0
f(s)ds. (14)

Note that the parameter sub-vector γ is not centered at zero, but at Ω−1vv Ωvu, reflecting that the
inclusion of xt in the partial sum regression “soaks” up all (long-run) correlation between {ut}t∈Z
and {vt}t∈Z. This is immediately seen from Syt = SZt θ + Sut = SZt γ + x′tΩ

−1
vv Ωvu + (Sut − x′tΩ−1vv Ωvu),

with T−1/2(SubrT c − x
′
brT cΩ

−1
vv Ωvu) ⇒ Bu·v(r), which is independent of Bv(r) by construction. Thus,

the limiting process corresponding to the errors in the augmented partial sum regression (11) is
asymptotically independent of the (limiting process corresponding to the stochastic) regressors, which
is the key requirement for asymptotic standard inference. Also, note that the coefficient estimator γ̂
is not consistent.

Conditional upon Wv(r), the limiting distribution given in (13) is normal with zero mean and the
following conditional covariance matrix:

VIM = ωu·v

(∫ 1

0
f(s)f(s)′ds

)−1(∫ 1

0
[F (1)− F (s)][F (1)− F (s)]′ds

)(∫ 1

0
f(s)f(s)′ds

)−1
. (15)

In conjunction with consistent estimation of ωu·v, the limiting distribution given in (13) allows for
asymptotic standard normal or chi-squared inference on θ, using, e. g., Wald-type tests. In this respect,
three comments are in order: First, for the same reason as discussed in detail in Vogelsang and Wagner
(2014a, Section 5), the (first) differences of the IM-OLS residuals, ∆Ŝut say, with Ŝut := Syt − S̃Z′t ϑ̂,
cannot be used to consistently estimate ωu·v by standard long-run variance estimation procedures. It
can be shown that their usage is bound to result in conservative test statistics even asymptotically.
A consistent estimator of ωu·v is most easily obtained using the OLS residuals of (3), ût say, and by
using η̂t := [ût, v

′
t]
′ to estimate Ω and thereby ωu·v. Given a consistent estimator, ω̂u·v say, of ωu·v,

an – up to scaling – estimator of VIM immediately follows by simply using the sample counterparts of
the expressions appearing in the limiting (conditional) covariance matrix, i. e.,:

V̂IM := ω̂u·v

(
S̃Z′S̃Z

)−1
C ′C

(
S̃Z′S̃Z

)−1
, (16)

with C := [c1, . . . , cT ]′, ct := SS̃
Z

T − SS̃
Z

t−1, S
S̃Z
t :=

∑t
j=1 S̃

Z
j for t = 1, . . . , T and SS̃

Z

0 = 0. By

construction, A−1IM V̂IMA
−1
IM ⇒ VIM.

Second, since θ̂ (and thus ϑ̂) in general contains elements converging at different rates, obtaining a
formal (standard) result for Wald-type tests requires a condition on the restriction matrix R (in case
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of linear hypotheses) that is unnecessary when all estimated coefficients converge at the same rate
(see, e. g., Park and Phillips, 1988, 1989, Sims et al. 1990, Vogelsang and Wagner, 2014a or Wagner
and Hong, 2016). As described in Vogelsang and Wagner (2014a): “For a given constraint (a row of
the restrictions matrix R) the coefficient estimator with the slowest convergence rate dominates the
asymptotic distribution of the linear combination implied by this constraint. When there are several
restrictions being tested, it is not necessarily the case that the slowest converging coefficient estima-
tor dominates a given restriction. Should another restriction also involve that slowest converging
coefficient estimator, it is possible that the restrictions can be rotated so that (i) the slowest rate es-
timator only appears in one restriction and (ii) the Wald-type statistics have asymptotic chi-squared
null distributions. If none of the null hypotheses mixes coefficients with different convergence rates
no additional complications arise compared to a standard situation with all estimated coefficients con-
verging at the same rate.” Third, one can only test restrictions involving elements of θ and not of
γ, which is, as mentioned, not consistently estimated. This means that the last m columns of the
restrictions matrix R have to be equal to zero, i. e., R = [Rθ, 0s×m].

Proposition 2. Let the data be generated by (3) with the assumptions discussed in the previous sub-
section in place and assume that long-run covariance estimation is performed consistently.9 Consider
s linearly independent restrictions on θ collected in H0 : Rϑ = Rθθ = r, with R ∈ Rs×(|I|+m) of full
row rank s, r ∈ Rs and suppose that there exists a (matrix) sequence AR = AR(T ) ∈ Rs×s such that
limT→∞ARRAIM = R∗ ∈ Rs×(|I|+m) has full row rank s. Then, it holds under the null hypothesis for
T →∞ that the Wald-type statistic:

TW := (Rϑ̂− r)′
[
RV̂IMR

′
]−1

(Rϑ̂− r) d→ Os, (17)

with V̂IM as defined in (16) and Os denoting a chi-squared distributed random variable with s degrees
of freedom.

In the special case s = 1, it holds under the null hypothesis for T →∞ that the t-type test statistic:

Tt :=
Rϑ̂− r√
RV̂IMR′

d→ Z, (18)

with Z denoting a standard normally distributed random variable.

2.3 Fixed-b Inference

An advantage of the IM-OLS estimator compared to, e. g., the FM-OLS estimator of Phillips and
Hansen (1990) or the D-OLS estimator of Saikkonen (1991), is the possibility to perform asymptot-
ically pivotal fixed-b inference.10 One key necessary ingredient for fixed-b test statistics is that the
limiting distribution of the Wald-type statistic can be written as a functional of standard Brownian
motions, i. e., of Wv(r) and wu·v(r). Whilst such a bijection between a functional of B(r) and a func-
tional of W (r) exists by construction in cointegrating linear regressions, this is not necessarily so for
cointegrating (multivariate) polynomial regressions. To illustrate the matter, consider the stochas-
tic regressors, or their limiting processes, for the example of the two-factor Translog function given

9Long-run covariance estimation based on the OLS residuals – based on consistency of the OLS estimator of θ in (3)
– can be shown to be consistent under the usual assumptions on kernel and bandwidth, e. g., those given in Jansson
(2002), and, e. g., {ηt}t∈Z fulfilling the exemplary assumptions given in Footnote 8.

10The dynamic least squares estimation principle, developed for cointegrating linear regressions in Phillips and Loretan
(1991), Saikkonen (1991) and Stock and Watson (1993), has been extended to even more general settings than
polynomial functions in, e. g., Saikkonen and Choi (2004).
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in (9), ignoring, as in (1), the deterministic regressors for brevity since they are irrelevant for the
argument: 

Bv1(r)
Bv2(r)

Bv1(r)2

Bv2(r)2

Bv1(r)Bv2(r)

 =


τ11 τ12 0 0 0
0 τ22 0 0 0

0 0 τ211 τ212 2τ11τ12
0 0 0 τ222 0
0 0 0 τ12τ22 τ11τ22




Wv1(r)
Wv2(r)

Wv1(r)2

Wv2(r)2

Wv1(r)Wv2(r)

 , (19)

with:

Ω1/2
vv =

[
τ11 τ12
0 τ22

]
.

In this case, a bijection between a vector involving powers of Bvj (r), i. e., Z(r), and powers of Wvj (r)
prevails, because – and this is an obviously necessary condition – the corresponding vectors are of the
same dimension and because of the assumption that Ω is positive definite which implies that the lower
right 3-by-3 block of the matrix after the equality sign in (19) has full rank. In the case x1tx2t were not
included as a regressor, the vector Z(r) would consist of only four elements, but – unless Bv1(r) and
Bv2(r) were independent, and hence τ12 = 0, this four-dimensional vector would be a transformation
of the same five-dimensional vector as the rightmost term in (19). In this case, obviously, a bijection
would not prevail. Situations in which a bijection between Z(r) and a vector involving only functions
of standard Brownian motions prevails are henceforth referred to as full design.11 In the case of full
design, the limiting distribution of the IM-OLS estimator can, therefore, be rewritten as a functional
of Wv(r) and wu·v(r):

Corollary 1. Suppose that the setting of Proposition 1 and full design prevail. Then the limiting
distribution for T →∞ of the OLS estimator ϑ̂ is given by:

A−1IM

(
ϑ̂− ϑ∗

)
⇒ ω

1/2
u·v (Π′)−1

(∫ 1

0
g(s)g(s)′ds

)−1 ∫ 1

0
g(s)wu·v(s)ds (20)

= ω
1/2
u·v (Π′)−1

(∫ 1

0
g(s)g(s)′ds

)−1 ∫ 1

0
[G(1)−G(s)]dwu·v(s),

where ZW (r) := Π−1Z Z(r), with Π := diag(ΠZ ,Ω
1/2
vv ), and:

g(r) :=

[ ∫ r
0 ZW (s)ds
Wv(r)

]
, G(r) :=

∫ r

0
g(s)ds, (21)

with ZW (r) containing powers of products of r and (the components of) Wv(r).

Remark 2. Clearly, any CMPR relationship can be extended to full design by including the regressors
missing for full design, e. g., in the two-variable example given above, the mixed regressor x1tx2t is
the key regressor for full design. When the true CMPR relationship does not have full design, the
possibility to perform fixed-b inference, therefore, comes at the cost of including superfluous regressors,

11Another example of full design, in addition to Translog-type functions with an arbitrary number of variables and
not just two as in the example, are cointegrating polynomial regressions, without cross-product terms, where only
one of the integrated regressors appears with powers larger than one, compare, e. g., Wagner and Hong (2016,
Proposition 5).
The prevalence of full design in cointegrating polynomial regressions is a necessary condition also for FM-OLS-based
(non-)cointegration tests with limiting distributions that allow for critical values to be tabulated, see Wagner (2023),
and for IM-OLS-based cointegration testing see Grabarczyk and Wagner (2024) and the discussion in Section 2.4
below.
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i. e., at the cost of estimating a too big regression model. Whilst this is, of course, asymptotically
innocuous, it may impact finite sample performance.

For exactly the same reason as discussed in Vogelsang and Wagner (2014a, Lemma 2) for cointegrating
linear regressions, it can be shown that it is not possible to perform asymptotically pivotal fixed-b
inference using the IM-OLS residuals Ŝut . This is due to non-vanishing and nuisance parameter-
dependent correlation between the limiting distribution of A−1IM (ϑ̂ − ϑ∗) and the limit process of

T−1/2
∑brT c

t=2 ∆Ŝut . Also exactly as in Vogelsang and Wagner (2014a), valid fixed-b inference can
be based upon estimating ωu·v using a modification of the IM-OLS residuals, Ŝut,M say, that are
constructed as described next. First, define:

Mt := t
t∑

j=1

S̃Zj −
t−1∑
j=1

j∑
s=1

S̃Zs , (22)

stacked into the matrix M := [M1, . . . ,MT ]′. In the second step, the matrix M is orthogonalized

to S̃Z , which yields M⊥ :=
(
IT − S̃Z(S̃Z′S̃z)−1S̃Z′

)
M . The modified residuals are finally given by

orthogonalizing the IM-OLS residuals Ŝu to M⊥, i. e.,:

ŜuM :=
(
IT −M⊥(M⊥′M⊥)−1M⊥′

)
Ŝu, (23)

with ŜuM = [Ŝu1,M, . . . , Ŝ
u
T,M]′. Exactly as in Vogelsang and Wagner (2014a, Lemma 2) it can be

shown that T−1/2
∑brT c

t=2 ∆Sut,M is, conditional upon Wv(r), asymptotically independent of the limiting

distribution of A−1IM

(
ϑ̂− ϑ∗

)
. Consequently, using a long-run variance estimator:

ω̂u·v,M := T−1
T∑
i=2

T∑
j=2

k

(
|i− j|
B

)
∆Ŝui,M∆Ŝuj,M, (24)

with kernel function k(·) and bandwidth B, with B = bT and 0 < b ≤ 1, allows for asymptotically pi-
votal fixed-b inference for Wald-type hypothesis testing as discussed for standard asymptotic inference
in Proposition 2, but with ω̂u·v,M in place of (a consistent long-run variance estimator) ω̂u·v.

In order to efficiently describe the fixed-b limiting distributions of the Wald-type test statistic define
for a stochastic process P (r) the random variable Q(P ) as follows:12 In the case k(·) is such that
k(0) = 1 and k(·) is twice continuously differentiable with first and second derivatives given by k′(·)
and k′′(·) define:

Q(P ) := − 1

b2

∫ 1

0

∫ 1

0
k′′
(
|r − s|
b

)
P (s)P (r)′dsdr +

1

b

∫ 1

0
k′
(
|1− s|
b

)
(P (1)P (s)′ + P (s)P (1)′)ds

+P (1)P (1)′. (25)

The above case covers, e. g., the Quadratic Spectral (QS) kernel. The second case considered covers
the Bartlett kernel (with k(x) = 1− |x| for |x| ≤ 1 and 0 otherwise), where we define Q(P ) as:

Q(P ) :=
2

b

∫ 1

0
P (s)P (s)′ds− 1

b

∫ 1−b

0
(P (s)P (s+ b)′ + P (s+ b)P (s)′)ds

−1

b

∫ 1

1−b
(P (1)P (s)′ + P (s)P (1)′)ds+ P (1)P (1)′. (26)

12In our case, with yt and ut univariate, also the process P (r), see (28) below, is univariate. We nevertheless use the
general formulation here, since the result extends analogously to situations where long-run covariance matrices are
considered and P (r) is indeed a vector.
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Proposition 3. Let the data be generated by (3) with the assumptions discussed in Subsection 2.1
in place. Assume that the augmented regression (10) has full design. Consider s linearly independent
linear restrictions on θ collected in H0 : Rϑ = Rθθ = r, with R ∈ Rs×(|I|+m) of full row rank s,
r ∈ Rs and suppose that there exists a (matrix) sequence AR ∈ Rs×s such that limT→∞ARRAIM =
R∗ ∈ Rs×(|I|+m) has full row rank s. Furthermore, ω̂u·v,M is as given in (24) with B = bT and
0 < b ≤ 1 held fixed. Then, it holds under the null hypothesis for T → ∞ that the fixed-b Wald-type
test statistic:

TW,b := (Rϑ̂− r)′
[
RV̂IM,MR

′
]−1

(Rϑ̂− r)⇒ Os
Q(P )

, (27)

with V̂IM,M defined similarly as V̂IM in (16), but with ω̂u·v replaced by ω̂u·v,M and:

P (r) :=

∫ r

0
dwu·v(s)− h(r)′

(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
[H(1)−H(s)]dwu·v(s), (28)

where:

h(r) :=

[
g(r)∫ 1

0 [G(1)−G(s)]ds

]
, H(r) :=

∫ r

0
h(s)ds, (29)

with Os denoting a chi-squared distributed random variable with s degrees of freedom that is indepen-
dent of Q(P ).

In the special case s = 1, it holds under the null hypothesis for T →∞ that the t-type test statistic:

Tt,b :=
Rϑ̂− r√
RV̂IM,MR′

⇒ Z√
Q(P )

, (30)

with Z denoting a standard normally distributed random variable that is independent of Q(P ).

The precise form of Q(P ) depends upon the kernel and bandwidth chosen and is given by (25) or (26)
if the kernel satisfies the respective assumptions.

Remark 3. As an immediate consequence of the Frisch-Waugh theorem or partitioned regression,
it is possible to combine IM-OLS parameter estimation and the calculation of the modified residuals
Ŝut,M into one regression by performing OLS estimation of the following regression:

Syt = S̃Z′t ϑ+M⊥′t κ+ Sut , (31)

with M⊥′ the t-th row of the matrix M⊥ as defined above (23). This leads on the one hand to an
identical estimator of ϑ̂ as defined in (12) and to residuals identical to Ŝut,M as defined in (23) on the
other hand.

2.4 Specification and Cointegration Testing

As already mentioned in the introduction, one important application of the results in this paper
is – in addition to their allowing one to estimate, e. g., Translog-type cointegrating relationships
as a special case of the CMPR model – that they allow one to perform RESET-type specification
tests (see Ramsey, 1969) in the variant of Thursby and Schmidt (1977), i. e., by performing RESET-
type specification testing based on including powers and, in general, cross-products of powers of the
regressors of the original regression in an augmented test regression.
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For the CMPR setting considered, in fact for any cointegrating regression setting (considered in ori-
ginal and not in partial sum format), the augmented regression version of RESET is more convenient
to deal with than the original formulation of Ramsey (1969), see also Keenan (1985) or Tsay (1986),
where the residuals of the original model are regressed on the above-mentioned additional, auxiliary
regressors in an auxiliary regression. This stems from the fact that – in cointegrating regression
settings in general – the OLS residuals (more importantly, the corresponding partial sum limit pro-
cess) feature nuisance parameter dependencies emanating from error serial correlation and regressor
endogeneity; the very reasons for the development of modified least squares estimators that allow for
asymptotic standard inference in cointegrating regressions.

These complications are clearly seen in, e. g., Hong and Phillips (2010), who develop a modified RE-
SET test for the null hypothesis of a cointegrating linear regression with only one integrated regressor
based on an auxiliary regression of the OLS residuals on powers of the integrated regressor. To
achieve asymptotic chi-squared inference, the corresponding test statistic has to be adjusted to re-
move the nuisance parameter dependencies introduced by serial correlation and endogeneity. Wagner
and Hong (2016, Section 2.3, Proposition 4) also consider a RESET-type specification test based on
an auxiliary regression of the FM-OLS residuals of a cointegrating polynomial regression (without
cross-products of integrated regressors) on additional deterministic regressors, higher-order powers
of the included integrated regressors as well as additional (non-cointegrated) integrated regressors
and their powers.13 Using FM-OLS residuals rather than OLS residuals, however, only changes the
precise form of the adjustments necessary to achieve asymptotic chi-squared inference and does not
directly lead to a nuisance parameter-free test statistic. Similar in spirit, Wagner and Hong (2016,
Section 2.3, Proposition 3) consider a Wald-type specification test based on an augmented regression,
i. e., by extending the original model with the just mentioned auxiliary regressors. This latter test
can almost be seen as an extension of the Thursby and Schmidt (1977) version of a RESET test to
the CPR setting – almost because cross-products of the original regressors cannot be handled in the
augmented regression.

The IM-OLS estimator, as discussed in this paper, allows one to most straightforwardly include also
cross-products in augmented regressions in the CMPR setting. This, if nothing else, means that the
resultant test options capture the original RESET spirit. To fix notation consider:

yt =

|I|∑
i=1

zitθi +

|J |∑
j=1

zjtθj + ut (32)

= Z ′tθ + Z∗′t θ
∗ = ZA′

t θ
A + ut,

with zit, θi and I as in (3) and auxiliary regressors zjt = tj0xj11t · · ·x
jm
mtx

jm+1

m+1,t · · ·x
jm+m∗
m+m∗,t a vector of

products of powers of t, the original integrated regressors x1t, . . . , xmt and m∗ additional integrated
regressors xm+1,t, . . . , xm+m∗,t, with jr ∈ N0 for r = 0, . . . ,m+m∗, ordered again, e. g., lexicographi-
cally over the multi-index set J . This defines ZA

t := [Z ′t, Z
∗′
t ]′, with Zt as before, Z∗t := [z∗1t, . . . , z|J |t]

′

and θA := [θ′, θ∗′]′. The joint vector of integrated regressors xA
t := [x′t, x

∗′
t ]′ is assumed to be non-

cointegrated. In brief, the same set of assumptions assumed to hold for (3) have to hold for the
augmented CMPR model (32). It is, e. g., obviously necessary to ensure that no element in Z∗t is al-

13The idea of including superfluous higher-order deterministic trends in unit root or cointegration tests has been explored
originally in Park (1990) and Park and Choi (1988). It is, of course, based on the fact that in the case of alternatives
that involve some elements of nonstationary errors in a “spurious” regression model, the deterministic trends will pick
up some of the asymptotic dependence between deterministic trends and functions (e. g., polynomials) of Brownian
motions. A similar argument, directly in the heart of spurious regression arguments, holds for the inclusion of
additional integrated regressors and their powers in augmented regressions. Note that it is an option to consider
simulated integrated variables as additional integrated (test) regressors. Simulated regressors are very convenient as
they do, by construction, not add any problems with respect to cointegration amongst the integrated regressors.
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ready an element in Zt. The corresponding augmented partial sum regression is, entirely analogously
to (11), given by:

Syt = SZ
A′

t θA + xA′
t γ

A + Sut (33)

= S̃Z
A′

t ϑA + Sut .

The RESET test now corresponds to the block-zero restriction θ∗ = 0, i. e., RϑA = 0, with R =
[0, I|J |, 0] and r = 0, tested based on OLS estimation of (33). It can be seen immediately that this
matrix satisfies the constraints on restriction matrices discussed above Proposition 2 without further
ado, as each of the |J | restrictions involves only a single coefficient. Also, of course, given the simple
block-zero nature of the restrictions, the Wald-type RESET test statistic is of the simple form:

TW,RESET := θ̂∗′V̂IM(θ̂∗)−1θ̂∗, (34)

with V̂IM(θ̂∗) = RV̂IM(θ̂∗)R′, the block of V̂IM corresponding to θ̂∗.

It is also straightforwardly possible to consider an LM-type auxiliary regression version of the RESET
test, which differs from the Wald-type version only in terms of the used (conditional long-run) variance
estimator. This stems from the fact that IM-OLS estimation is, as mentioned several times, an OLS
regression (see, e. g., Engle, 1984), i. e., it follows immediately from the Frisch-Waugh theorem or
partitioned regression. More precisely, an LM-type, i. e., residual-based, version of the RESET test
can be based on the coefficient estimator of regressing the residuals of (11), Ŝut,(11) say, on the auxiliary

regressors, i. e., on the partial sum version of the additional regressors zjt, j = 1, . . . , |J |, SZ∗t say,
and on x∗t := [xm+1,t, . . . , xm+m∗,t]

′:

Ŝut,(11) = S⊥,Z
∗′

t θ∗ + x⊥,∗′t γ∗ + Sut , (35)

and testing the null hypothesis H0 : θ∗ = 0 based on OLS estimation of (35). Note that (35) does
not contain SZ

∗
t and x∗t as regressors, but the orthogonalized, with respect to the regressors in (11),

versions of these regressors, constructed exactly as M⊥t above. This orthogonalization step is common
in LM-type specification testing in cointegrating regressions (see, e. g., Propositions 3 and 4 in Wagner
and Hong, 2016) and this orthogonalization implies that the IM-OLS estimator of θ∗ in (35) is identical
to the IM-OLS estimator of θ∗ from the augmented regression (32). If one were to use SZ

∗
t and x∗t

in (35), the resultant estimator of θ∗ would, in general, not be identical. Furthermore, equivalence
also holds true – up to the scalar long-run variance ωu·v – for the corresponding covariance matrix
estimators V̂IM(θ̂∗). Here, the only difference is the estimator ω̂u·v used: For the Wald-type RESET
test the estimator is based on the OLS residuals of (32), whereas for the LM-type RESET test the
estimator is based on the OLS residuals of (3).

The fact that we have established that the only difference between Wald- and LM-type RESET test
statistics is the estimator of the scalar conditional long-run variance ωu·v implies that for fixed-b
inference there are no differences between these two variants, i. e., there is only one fixed-b statistic:
First, it is an immediate consequence of the above-discussed equivalence of the parameter estimators
that the residuals also coincide exactly, i. e., both regressions, the augmented regression (33) and the
auxiliary regression (35), lead to exactly the same OLS residuals Ŝut . Second, to achieve asymptotic
independence of numerator and denominator of the fixed-b test statistic, the construction of the
regressors Mt, compare (22), has to be based on the full set of all regressors, i. e., it has to include
SZ
∗

t and x∗t . Therefore, there is only one set of modified residuals Ŝut,M and consequently only one
estimator ω̂u·v,M and only one fixed-b RESET test statistics.

Note that one can use, as a side-product, the construction of the set of augmented regressors Z∗t
to ensure full design of the augmented regression model to allow for fixed-b inference. The fixed-b
critical values depend upon the specification of both the null model and the augmented regression, in
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addition to the kernel and the bandwidth sample size ratio b. Code and critical values for a variety of
specifications are available as supplementary material. Of course, the code also provides an immediate
starting point to adapt to any CMPR model not covered by the available critical values a researcher
faces, given that full design prevails.

Remark 4. In the spirit of Remark 1 it may be convenient to “organize” the RESET test with a focus
on the null hypothesis being a cointegrating linear regression, leading to the auxiliary regression model
being, similar in spirit to (7), (re-)ordered with the deterministic regressors Dt and the integrated
regressors xt singled out:

yt = D′tθD + x′tθx +
∑
j∈J ∗

zjtθj + ut. (36)

Of course, this is just a re-ordering of the above equation (32) for a specific – but likely very important
– null hypothesis of a cointegrating linear relationship between yt and xt. The finite sample perfor-
mance analysis considered in the following Section 3 also considers cointegrating linear regressions
under the null hypothesis, see (38) below. Tailor-made code corresponding to the null hypothe-
sis of cointegrating linear regression is available as supplementary material, for both standard and
fixed-b inference. In particular, we provide tables (and code) for cointegrating linear regressions
with up to four integrated regressors, no deterministic components, intercept or intercept and linear
trend, for the quadratic (q = 2) and cubic (q = 3) specification of the augmented regression for
five kernels (Bartlett, Bohman, Daniell, Parzen and Quadratic Spectral) for the grid of 50 values of
b ∈ {0.02, 0.04, . . . , 0.98, 1}.

With respect to cointegration testing, let us only briefly mention that Grabarczyk and Wagner (2024,
Proposition 3) present the extension of a Shin (1994)-type cointegration test to the CMPR setting
considered here. The test statistic is closely related to the extension of Shin (1994) considered
in Wagner and Hong (2016, Propositions 5 and 6) to CPR models without cross-products. The
main conceptual difference between the two variants of the test is that Wagner and Hong (2016)
consider FM-OLS estimation and, therefore, construct their test using the FM-OLS residuals. The
test statistic based on the IM-OLS estimator has to be based – because of partial summation – on
the first differences of the IM-OLS residuals and is consequently defined as:

CTIM :=
1

T 2ω̂u·v

T∑
t=2

(
t∑
i=2

∆Ŝui

)2

. (37)

When using a consistent estimator ω̂u·v of ωu·v, the CTIM test statistic converges under the null
hypothesis in the case of full design towards a limiting distribution that can be tabulated, with
the critical values depending upon the specification of the CMPR model. Grabarczyk and Wagner
(2024) provide critical values for the CTIM statistic for specifications relevant for the EKC literature,
a small simulation study, as well as code to use the CTIM test (or to generate critical values for other
full-design specifications a researcher might be interested in).14

14Grabarczyk and Wagner (2024) also provide critical values for fixed-b hypothesis tests for the same set of specifications.
Furthermore, Veldhuis and Wagner (2024) consider a fixed-b version of the CTIM statistic, defined similarly as CTIM

above, but with ω̂u·v,M in place of a consistent estimator ω̂u·v. This test extends the fixed-b Kwiatkowski et al.
(1992)-type test of Amsler et al. (2009) from a stationarity test to a cointegration test for the CMPR setting also
considered here.
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3 RESET: Finite Sample Performance

To keep the paper short, we consider in the simulation section only the performance of the RESET
specification test. Grabarczyk and Wagner (2024, Section 3) present a simulation study that com-
pares IM-OLS with both, fully modified OLS (FM-OLS) and dynamic OLS (D-OLS) for a (simple)
quadratic cointegrating polynomial regression model, which is the workhorse model in the environ-
mental Kuznets curve (EKC) literature (see, e. g., Wagner, 2015). Whilst their simulation study does
not cover the width of the possible CMPR specifications that can be handled with IM-OLS, it suf-
fices to give an impression of the relative performance of the three estimators and tests based upon
them in a setting for which all three estimators have been developed. The findings are qualitatively
very similar to the finite sample performance findings reported in Vogelsang and Wagner (2014a) for
cointegrating linear regressions.

To assess the performance of the RESET test we consider a data generating process (DGP) corre-
sponding to (the most widely-used setting in the cointegration literature of) a cointegrating linear
regression under the null hypothesis:

yt = c+ β1x1t + β2x2t + ut, (38)

xit = xi,t−1 + vit, xi0 = 0, i = 1, 2,

where:

ut = ρ1ut−1 + εt + ρ2(e1t + e2t), u0 = 0, (39)

vit = eit + 0.5ei,t−1, i = 1, 2,

with εt, e1t and e2t are iid standard normal random variables independent of each other. The param-
eter values chosen are c = 3, β1 = β2 = 1, where we note that the values of these parameters have no
effect on the results because the IM-OLS estimator and a fortiori the RESET test are exactly invari-
ant to the values of c, β1 and β2. The values for ρ1 and ρ2 are chosen from the set {0, 0.3, 0.6, 0.8}.
Parameter ρ1 controls serial correlation in the regression error process {ut}t∈Z, whereas parameter
ρ2 controls whether the regressors are endogenous or not. The kernels chosen for long-run covariance
estimation are the Bartlett and the Quadratic Spectral (QS) kernels and the results are reported for
bandwidths using the grid B = bT with b ∈ {0.02, 0.04, ..., 0.98, 1.0} or for data-dependent band-
widths chosen according to Andrews (1991), labelled AND, and Newey and West (1994), labelled
NW in the tables. We report a selection of representative results for sample sizes T = 100, 200, 500.
The number of replications is 10,000 in all cases and all tests are carried out at the 5% nominal
significance level.

For the discussion of the simulation results we label TW as IM(O) and TW,b as IM(fb). We implement
the IM(O) and IM(fb) RESET tests via estimation of the quadratic and cubic specifications given
by the regression models (which are partially summed and augmented by the original x1t and x2t for
IM-OLS estimation):

yt = c+ x1tβ1 + x2tβ2 + x21tθ0,2,0 + x22tθ0,0,2 + x1tx2tθ0,1,1 + ut (q = 2), (40)

yt = c+ x1tβ1 + x2tβ2 + x21tθ0,2,0 + x22tθ0,0,2 + x1tx2tθ0,1,1 + x31tθ0,3,0 + x32tθ0,0,3 (41)

+x21tx2tθ0,2,1 + x1tx
2
2tθ0,1,2 + ut (q = 3),

where we test the null hypothesis that the θ parameters are jointly equal to zero in the two specifi-
cations using the IM-OLS estimates. These augmented regressions do not correspond to the DGP,
neither under the null of linearity nor – with one exception – for the alternatives considered. The
IM(O) tests are based on using the OLS residuals of the above augmented regressions (not partially
summed) to obtain a consistent estimator ω̂u·v of ωu·v. The IM(fb) tests are based on the fixed-b
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asymptotic results given in Proposition 3 and use the modified residuals ∆Ŝut,M for estimating ωu·v by
ω̂u·v,M as given in (24).

We first present null-rejection probabilities for IM(fb) for a grid of 50 bandwidth values. These
null-rejection probabilities are computed using the relevant fixed-b critical values depending on the
kernel, the 50 equidistant values of the bandwidth sample size ratio b and q. Figures 1 and 2 plot
null-rejection probabilities for the Bartlett and QS kernels, respectively, for q = 2 and T = 100. Each
figure depicts results for our range of ρ1 and ρ2 values with ρ1 = ρ2 in all cases. In Figures 1 and 2
we see that null rejections are close to 0.05 for all bandwidths when ρ1 = ρ2 = 0. This shows that
the fixed-b critical values are successful in capturing the impact of the kernel and bandwidth choices
on the finite sample behavior of IM(fb) when there is no serial correlation. As ρ1, ρ2 increase, we see
that over-rejections appear. Over-rejections are more substantial for the Bartlett kernel than for the
QS kernel. Increasing the bandwidth helps to reduce over-rejection problems for the QS kernel but
has relatively little effect in the Bartlett kernel case.

Figures 3 and 4 depict null rejections for all three sample sizes and both values of q for ρ1 = ρ2 = 0.3.
Increasing the sample size reduces the over-rejection problem. For a given value of T , increasing
q from 2 to 3 tends to, as expected, inflate the over-rejection problem especially when T = 100.15

Overall, the QS kernel delivers a test with null rejections closer to 0.05 than the Bartlett kernel.

Figures 5 and 6 have the same configuration as Figures 3 and 4, but with ρ1 = ρ2 = 0.8. The Bartlett
kernel leads to a test that has severe over-rejection problems when T = 100, but the tendency to
over-reject quickly falls as T increases. The QS kernel leads to a test with substantially less over-
rejection problems especially if T is not small and/or the bandwidth is not too small. When T = 500,
the QS test is much less sensitive to q than the Bartlett kernel test. Clearly, the QS kernel has some
advantages over the Bartlett kernel regarding size control when using IM(fb).

Table 1 reports empirical null rejections for IM(O) and IM(fb) when the data-dependent bandwidths
of Andrews (1991) and Newey and West (1994) are used. The IM(O) statistic uses chi-squared
critical values whereas IM(fb) uses fixed-b critical values. When there is no serial correlation, IM(fb)
has rejections close to 0.05 in nearly all cases. In contrast, IM(O) has over-rejections that tend to be
higher for the QS kernel and q = 3. These over-rejections fall as T increases. As ρ1, ρ2 increase, both
tests tend to have larger over-rejections for a given sample size. When ρ1, ρ2 = 0.8, IM(fb) can have
substantial over-rejections that are larger than the IM(O) over-rejections. This is because the data
dependent bandwidths tend to be relatively small, thereby not fully exploiting the potential of fixed-b
inference to reduce the extent of over-rejections by using larger bandwidths. That fixed-b inference,
in particular in conjunction with the QS kernel, reduces over-rejections for larger bandwidths is, e.g.,
indicated in Figure 6.16

Overall, both IM(O) and IM(fb) can have over-rejection problems when the serial correlation is
strong enough relative to the sample size. The QS kernel leads to less over-rejection problems than
the Bartlett kernel and increasing q tends to inflate over-rejection problems. When the sample size
is not too small and the serial correlation is not too strong, both IM(O) and especially IM(fb) have
null rejections relatively close to 0.05.

15Sun (2014) shows, using higher-order asymptotic theory, that finite sample size distortions of tests based on kernel
HAC estimators increase as the dimension of the null being tested increases when chi-squared critical values are used
for the test. Whilst the results in Sun (2014) do not apply to models with cointegration, our simulations suggest
that Sun’s results might extend to the cointegration case, although this would most likely be very challenging to
establish formally.

16As argued by Sun et al. (2008), bandwidth rules designed to balance size distortions and power of the tests would be
preferable to using bandwidth rules that minimize an approximate MSE of the HAC estimator as in Andrews (1991)
and Newey and West (1994). Such testing-oriented bandwidths tend to be larger than MSE-based bandwidths.
Unfortunately, the theory of Sun et al. (2008) does not apply in our setting because of the integrated regressors. It
would be very challenging but worthwhile to extend the Sun et al. (2008) approach to cointegration settings.

16



Next, we present some simulations that illustrate size-adjusted power of the tests.17 The DGP under
the alternative is specified as:

yt = c+ β1x1t + β2x2t + φG(Xt) + ut, (42)

where G(Xt) takes on six possible functional forms: i) x21t, ii) x21t + x1tx2t, iii) x21t + x1tx2t + x22t,

iv) x1tx2t, v) x31t and vi) x1t (1 + e−x1t)
−1

. The DGPs for x1t,x2t and ut are the same as in (38).
Note that alternative iii) corresponds exactly to the augmented regression for q = 2. Alternative
vi) corresponds to a cointegrating smooth transition regression, as, e.g., considered by Saikkonen
and Choi (2004). Table 2 presents power of the IM(O) test for sample size T = 200. Null-rejection
probabilities are also reported in the tables to put the power results in context. For each alternative,
power is reported for the same values of ρ1, ρ2 as used for the size simulations and a given value of
φ chosen so that power is nontrivial for the sample size considered. Table 3 reports power for the
IM(fb) test and has the same format as Table 2. The two data-dependent bandwidths are used in
both tables.

Several general patterns are evident in Tables 2 and 3. First, power is decreasing in ρ1, ρ2, which
is expected. Second, power is sometimes higher with q = 2 compared to q = 3, but the opposite is
also often true. Because we are not holding bandwidths constant across values of q, since they are
data dependent to mimic applications, we cannot easily disentangle the effect of changing q on power.
Third, power is similar between IM(O) and IM(fb), with IM(O) having slightly higher power in some
cases. As expected, power is highest for alternative iii), with G(Xt) = x21t+x22t+x1tx2t corresponding
exactly to the augmented regression for q = 2. Changing q = 2 to q = 3 in this case entails relatively
little power loss with T = 200, thus illustrating the minimal impact of the degrees-of-freedom loss
incurred by including four extra regressors.

Whilst Tables 2 and 3 have useful information, they give no indication of the shape of the power
curves. Figures 7 to 10 plot power for various configurations of the tests for the alternative with
G(Xt) = x21t for an equidistant grid of 21 values of φ ranging from 0 (the null hypothesis) to 0.04.
Figures 7 and 8 depict power of the Andrews (1991) data-dependent bandwidth versions of the tests
for the Bartlett and QS kernels respectively for our range of values for ρ1, ρ2. We see that the entire
power curves shift down as ρ1, ρ2 increase. Power is similar across kernels and is minimally higher for
IM(O) than IM(fb).

Figures 9 and 10 plot power for IM(fb) for a selection of values for the bandwidth sample size ratio, b.
Figure 9 gives power for the Bartlett kernel and shows that for this kernel power is not that sensitive
to the choice of bandwidth. In contrast, Figure 10 shows that power for the QS kernel is very sensitive
to b and power curves shift down as b increases. Recall that the over-rejection problem was smallest
when using the QS kernel with large values of b. We see that there is a tradeoff between reduction in
size distortions and power when choosing the bandwidth for IM(fb), especially for the QS kernel.

Tables 2 and 3 show that the tests also have power to detect departures from linearity given by the
logistic function, G(Xt) = x1t (1 + e−x1t)

−1
. Whilst the logistic function departs slowly from linearity,

the polynomial terms in the augmented regressions used to compute IM(O) and IM(fb) are able to
detect that the cointegrating relationship is not linear. To give a better sense of the shape of the power
functions in this case, Figures 11 and 12 plot power for the logistic alternative for an equidistant grid
of 21 values of φ ranging from 0 (the null hypothesis) to 1. In the figures, results are reported for
both q = 2 and q = 3, the Andrews (1991) data-dependent bandwidth and only the Bartlett kernel,
given that power is similar for the QS kernel. As the figures show, power increases as φ increases,
but power tends to flatten out for large values of φ. The fact that power is lower and increases not
as fast for the logistic alternative compared to the polynomial alternatives stems from the fact that

17Throughout the paper, all power considerations refer to size-adjusted power, for notational brevity simply referred to
as power.
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larger values of φ do not generate as large and fluctuating regressors in the logistic case as in the
polynomial case. Comparing Figures 11 and 12, we see that increasing q increases power, especially
when ρ1, ρ2 are not too large. This reflects the fact that the logistic function is better approximated
by a higher-order polynomial and the effect of the better approximation outweighs the loss of degrees
of freedom throughout our simulations in the logistic case.

Our simulation results suggest the following about the practical performance of the IM-OLS RESET
test for detecting departures from linear cointegration. First, if the sample size is large enough relative
to the strength of endogeneity and serial correlation, then both tests, IM(O) and IM(fb), have null
rejections not too far from the nominal level when data-dependent bandwidths are used. In addition,
the IM(fb) statistic has stable null rejections for the full range of bandwidths especially when the QS
kernel is used. Second, if the sample size is small relative to the strength of serial correlation and
endogeneity, the tests can have over-rejection problems under the null that are sometimes severe. If
the QS kernel is used, then increasing the bandwidth of IM(fb) can substantially reduce over-rejection
problems. This is less true for the Bartlett kernel. Third, the tests have respectable power in detecting
nonlinearities in the cointegrating relationship, especially, by construction, when the nonlinearity is
a polynomial in the regressors. In addition, the tests do have power to also detect smooth, gradual
departures from linearity as in the case of a logistic alternative and, in such a case, increasing the order
of the polynomial in the augmented regression can increase power. Finally, increasing the bandwidth
has relatively little effect on power of IM(fb) when the Bartlett kernel is used but causes power to
drop substantially when the QS kernel is used. That increasing the bandwidth when using the QS
kernel reduces size distortions at the expense of power is a typical finding in the fixed-b literature,
also found in cointegrating linear regression settings by Vogelsang and Wagner (2014a).

4 Summary and Conclusions

The paper has shown that the simple idea underlying the IM-OLS estimator of Vogelsang and Wagner
(2014a), which uses partial summation cum augmentation with the original integrated regressors,
allows to immediately extend the scope of IM-OLS estimation from cointegrating linear regression to
cointegrating multivariate polynomial regressions (CMPRs). Compared to cointegrating polynomial
regressions (CPRs) as considered in, e. g., Wagner and Hong (2016), CMPRs allow to include arbitrary
products of (non-negative) integer powers of integrated regressors (and time). The CMPR setting,
therefore, overcomes, admittedly only for polynomial functions, the almost omnipresent additively
separable (between integrated regressors) setting used in the nonlinear cointegration literature, which
in very large parts actually only considers one integrated regressor.

One important (simple) special case of CMPRs, not covered, e. g., in Wagner and Hong (2016), are
Translog-type (cost, demand or production) functions. The second important illustration of the appli-
cability of the IM-OLS estimator in the CMPR setting is that a RESET specification test for testing
the null hypothesis of a CMPR – with important special cases being cointegrating linear regressions,
cointegrating polynomial regressions and Translog-type cointegrating relationships – follows directly.
For the special case of full design of the CMPR relationship, we have furthermore developed fixed-b
hypothesis tests. Fixed-b inference allows to capture the impact of kernel and bandwidth choices,
required for the estimation of a scalar conditional long-run variance parameter, on the sampling dis-
tributions of test statistics. As in the cointegrating linear case, the IM-OLS residuals themselves
cannot be used to construct asymptotically pivotal fixed-b test statistics and, instead, a specifically
modified version of the IM-OLS residuals has to be used.

The finite-sample RESET test simulations show that the fixed-b asymptotic distribution adequately
captures the impact of kernel and bandwidth choices on the test statistics. Comparing the standard
with the fixed-b test statistic shows that fixed-b asymptotic theory trades partly substantially smaller
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size distortions for marginally lower size-adjusted power. This is a typical finding in the fixed-b
literature. As is also well known in the fixed-b literature the size/power tradeoff as a function of
bandwidth sample size ratio b differs substantially between the Bartlett and the QS kernels, with the
latter being more sensitive in this respect. The tests do not only have power against the polynomial
alternatives simulated but also against smoothly varying logistic alternatives. It has to be noted that
commonly used data-dependent bandwidth rules, like those of Andrews (1991) or Newey and West
(1994), which typically lead to relatively small bandwidths are not necessarily optimal for (fixed-
b) inference in terms of size/power tradeoffs. Developing in some sense optimal bandwidth rules
for fixed-b inference in a cointegration framework thus appears to be an important but challenging
problem.
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Proofs

Proof of Proposition 1

Using standard algebra and the fact that the block of AIM corresponding to γ is an identity matrix,
allows to write:

A−1IM

(
ϑ̂− ϑ∗

)
=
(
T−2AIMS̃

Z′S̃ZAIM

)−1 (
T−2AIMS̃

Z′Su
)
− [0, (Ω−1vv Ωvu)′]′ (43)

=

(
T−1

(
T−1/2AIMS̃

Z
)′ (

T−1/2AIMS̃
Z
))−1(

T−1
(
T−1/2AIMS̃

Z
)′ (

T−1/2Su
))

− [0, (Ω−1vv Ωvu)′]′.

The asymptotic distribution follows from the continuous mapping theorem upon combining the li-
mits of the constituent components, which are given by T−1/2SubrT c ⇒ Bu(r) for 0 ≤ r ≤ 1 and

T−1/2AIMS̃
Z
brT c ⇒ [

∫ r
0 Z(s)′ds,Bv(r)

′]′ = f(r) for 0 ≤ r ≤ 1, with Z(r) as defined in the main text
above Proposition 1. These results in turn lead to:

A−1IM

(
ϑ̂− ϑ∗

)
⇒
(∫ 1

0
f(s)f(s)′ds

)−1 ∫ 1

0
f(s)Bu(s)ds− [0, (Ω−1vv Ωvu)′]′. (44)

Next, using Bu(s) = ω
1/2
u·vwu·v(s) +Bv(s)

′Ω−1vv Ωvu implies that:∫ 1

0
f(s)Bu(s)ds = ω

1/2
u·v

∫ 1

0
f(s)wu·v(s)ds+

∫ 1

0
f(s)Bv(s)

′dsΩ−1vv Ωvu. (45)

Given that Bv(s) corresponds to the last m elements of f(s) it follows that:(∫ 1

0
f(s)f(s)′ds

)−1 ∫ 1

0
f(s)Bv(s)

′dsΩ−1vv Ωvu = [0, (Ω−1vv Ωvu)′]′, (46)

which implies that:

A−1IM

(
ϑ̂− ϑ∗

)
⇒ ω

1/2
u·v

(∫ 1

0
f(s)f(s)′ds

)−1 ∫ 1

0
f(s)wu·v(s)ds, (47)

which is the result given in (13). The representation in the second line of (13) in terms of dwu·v(s)
follows using integration by parts and the definition of F (s).

Proof of Proposition 2

Under the null hypothesis H0 : Rϑ = r, the test statistic can be written as:

TW =
(
R(ϑ̂− ϑ∗)

)′ [
RV̂IMR

′
]−1 (

R(ϑ̂− ϑ∗)
)

(48)

=
(

(ARRAIM)A−1IM (ϑ̂− ϑ∗)
)′ [

(ARRAIM)A−1IM V̂IMA
−1
IM (ARRAIM)

]−1 (
(ARRAIM)A−1IM (ϑ̂− ϑ∗)

)
.

By assumptionARRAIM → R∗ ∈ Rs×s of full rank and Proposition 1 has established thatA−1IM

(
ϑ̂− ϑ∗

)
converges to the limiting distribution given in (13). It thus remains to consider A−1IM V̂IMA

−1
IM , with V̂IM

as defined in (16):

V̂IM = ω̂u·v

(
T−2AIMS̃

Z′S̃ZAIM

)−1 (
T−4AIMC

′CAIM

) (
T−2AIMS̃

Z′S̃ZAIM

)−1
. (49)
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The asymptotic behavior of the outer term has been established in the proof of Proposition 1 and it
remains to consider the term in the middle. Straightforward calculations show that T−3/2AIMCbrT c ⇒
F (1)− F (r) for 0 ≤ r ≤ 1, which implies that the central term converges to

∫ 1
0 [F (1)− F (s)][F (1)−

F (s)]′ds for 0 ≤ r ≤ 1. Consequently, when ω̂u·v
P→ ωu·v it follows that A−1IM V̂IMA

−1
IM ⇒ VIM. The,

conditional upon Bv(r), limiting distribution of A−1IM

(
ϑ̂− ϑ∗

)
is normal with covariance matrix VIM.

This immediately – and as usual in the cointegration literature – implies that TW converges under
the null hypothesis, conditional upon Bv(r) and due to the independence of the limiting distribution
from Bv(r) also unconditionally, to a chi-squared distribution with s degrees of freedom. The t-type
test statistic result for Tt as defined in (18) follows entirely analogously.

Proof of Corollary 1

The result follows immediately by rewriting using f(s) = Πg(s).

Proof of Proposition 3

The key results to be established are (i) the asymptotic behavior of the partial sum process T−1/2
∑brT c

t=2 Ŝut,M
and (ii) that this limiting process is independent of the chi-squared random variable appearing in
the numerator of the null limiting distribution of the test statistic. Both steps are similar to the
corresponding results for cointegrating linear regressions derived in Vogelsang and Wagner (2014a,
Theorem 3).

In relation to Remark 3, note that Ŝut,M is equivalently given by the OLS residuals of estimating (31)

with M⊥t replaced by Mt. Defining S∗t := [S̃Z′t ,M
′
t ]
′, it thus follows that:

Ŝut,M = Sut − S∗′t

(
T∑
t=1

S∗t S
∗′
t

)−1 T∑
t=1

S∗t S
u
t . (50)

With respect to the asymptotic behavior of a properly scaled version of S∗t , we already know from
the proof of Proposition 1 that T−1/2AIMŜ

Z
brT c ⇒ f(r) for 0 ≤ r ≤ 1. It thus remains to consider the

second block-component:

T−5/2AIMMbrT c =
brT c
T

T−1
T∑
j=1

T−1/2AIMS̃
Z
j − T−1

brT c−1∑
j=1

T−1
j∑
i=1

T−1/2AIMS̃
Z
j (51)

⇒ r

∫ 1

0
f(s)ds−

∫ r

0

(∫ s

0
f(v)dv

)
ds =

∫ r

0
F (1)−

∫ r

0
F (s)ds

=

∫ r

0
[F (1)− F (s)]ds.

Defining A∗IM := diag(AIM, T
−2AIM) leads to:

T−1/2A∗IMS
∗
brT c =

[
T−1/2AIMŜ

Z
brT c

T−5/2AIMMbrT c

]
⇒
[

f(r)∫ r
0 [F (1)− F (s)]ds

]
. (52)

Defining Π∗ := diag(Π,Π), it follows immediately that:[
f(r)∫ r

0 [F (1)− F (s)]ds

]
=

[
Πg(r)

Π
∫ r
0 [G(1)−G(s)]ds

]
= Π∗h(r). (53)
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The next step requires full design, i. e., invertibility of Π and thus of Π∗:

T−1/2ŜubrT c,M = T−1/2SubrT c − T
−1/2Ŝ∗′brT c

(
T∑
t=1

S∗t S
∗′
t

)−1 T∑
t=1

S∗t S
u
t (54)

⇒ Bu(r)− (Π∗h(r))′
(

Π∗
∫ 1

0
h(s)h(s)′dsΠ∗′

)−1(
Π∗
∫ 1

0
h(s)Bu(s)ds

)
= Bu(s)− h(s)′

(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
h(s)Bu(s)ds.

The argument now continues similarly to the argument used in the proof of Proposition 2, using that

Bu(s) = ω
1/2
u·vwu·v(r) +Wv(s)

′Ω
−1/2
vv Ωvu. Noting next that Wv(s) is a block of h(r) implies, similarly

to (46), that:

h(r)′
(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
h(s)Wv(s)

′dsΩ−1/2vu Ωvu = h(r)′

 0
Im
0

Ω−1/2vv Ωvu = Wv(r)
′Ω−1/2vv Ωvu.

(55)

This yields:

T−1/2ŜubrT c,M ⇒ ω
1/2
u·v

(∫ r

0
dwu·v(s)− h(r)′

(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
h(s)wu·v(s)ds

)
(56)

= ω
1/2
u·v

(∫ r

0
dwu·v(s)− h(r)′

(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
[H(1)−H(s)]dwu·v(s)

)
= ω

1/2
u·v P (r).

It remains to establish independence of Os, the chi-squared distributed random variable in the numer-
ator of the fixed-b test statistic, and the process P (r). This is shown, using again the same argument
as in Vogelsang and Wagner (2014a, Theorem 3) by showing that the two quantities – Os and P (r)
– are independent conditionally upon Wv(r). With Os independent of Wv(r) this also establishes
unconditional independence.

Conditional upon Wv(r), both the numerator and the denominator are (deterministic) functionals of
wu·v(r), i. e., of a Gaussian process. The random variable Os is effectively a (scaled) quadratic form of
the (conditionally) Gaussian process

∫ 1
0 [G(1)−G(s)]dwu·v(s), compare (20). Therefore, to establish

(conditional) independence it suffices to calculate:

Cov

(
P (r).

∫ 1

0
[G(1)−G(s)]dwu·v(s)

)
=

∫ 1

0
[G(1)−G(s)]′ds− (57)

− h(r)′
(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
[H(1)−H(s)][G(1)−G(s)]′ds.

The first term above in (57) equals, by definition, the transposed second lower block of h(r) =
[g(r)′, h2(r)

′]′ as defined in (29), referred to as h2(r) from now on. Zero covariance is, therefore,
established upon showing that the second term on the right hand side of (57) is also equal to h2(r)

′.
In this respect, using integration by parts shows that:∫ 1

0
[H(1)−H(s)][G(1)−G(s)]′ds =

∫ 1

0
h(s)h2(s)

′ds, (58)
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which implies that:

h(r)′
(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
h(s)h2(s)

′ds = h(r)′
[

0
I|I|+m

]
= h2(r)

′. (59)

This establishes that Cov(P (r),
∫ 1
0 [G(1) − G(s)]dwu·v(s)) = 0. The result for the fixed-b t-type test

statistic Tt,b as defined in (30) follows entirely analogously.
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Table 1: Empirical Null-Rejection Probabilities, Data-Dependent Bandwidths

Panel A: IM(O)

Bartlett QS
And NW And NW

T ρ1,ρ2 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

100 0 .1545 .3187 .0947 .1667 .1963 .4054 .1194 .2319
.3 .2033 .4006 .2009 .3560 .2043 .4137 .1781 .3310
.6 .2706 .4902 .3573 .5946 .2449 .4453 .3023 .5071
.8 .4034 .6767 .5667 .8343 .3962 .6545 .4901 .7633

200 0 .1008 .1888 .0733 .1128 .1128 .2139 .0870 .1494
.3 .1314 .2403 .1452 .2457 .2457 .2231 .1188 .2035
.6 .1714 .3117 .2513 .4349 .4349 .2686 .2019 .3428
.8 .2460 .4905 .4152 .7008 .7008 .4593 .3342 .6016

500 0 .0735 .1085 .0600 .0725 .0740 .1080 .0622 .0766
.3 .0917 .1416 .1083 .1662 .0803 .1183 .0910 .1279
.6 .1046 .1696 .1646 .2752 .0910 .1387 .1444 .2342
.8 .1158 .2256 .2673 .4932 .1020 .2001 .2445 .4596

Panel B: IM(fb)

Bartlett QS
And NW And NW

T ρ1,ρ2 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

100 0 .0566 .0743 .0580 .0825 .0529 .0659 .0548 .0828
.3 .1716 .2850 .1327 .2508 .1300 .2037 .0858 .1325
.6 .4062 .7442 .3283 .6290 .3349 .6180 .2041 .3296
.8 .7045 .9707 .6926 .9432 .6148 .9433 .5418 .7778

200 0 .0520 .0521 .0520 .0521 .0524 .0549 .0524 .0549
.3 .0682 .0833 .0682 .0833 .0547 .0612 .0547 .0612
.6 .0996 .1586 .0996 .1586 .0692 .0877 .0692 .0877
.8 .1829 .3873 .1836 .3884 .1240 .2314 .1240 .2314

500 0 .0520 .0499 .0520 .0499 .0524 .0521 .0524 .0521
.3 .0681 .0816 .0681 .0816 .0547 .0590 .0547 .0590
.6 .1026 .1609 .1026 .1609 .0702 .0853 .0702 .0853
.8 .2048 .3921 .2075 .3942 .1326 .2342 .1326 .2343
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Table 2: Empirical Size-Adjusted Power, Data-Dependent Bandwidths, T = 200

Panel A: IM(O)

Bartlett QS
And NW And NW

G(Xt) φ ρ1,ρ2 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

NA, Null 0 0 .1008 .1888 .0733 .1128 .1128 .2139 .0870 .1494
.3 .1314 .2403 .1452 .2457 .2457 .2231 .1188 .2035
.6 .1714 .3117 .2513 .4349 .4349 .2686 .2019 .3428
.8 .2460 .4905 .4152 .7008 .7008 .4593 .3342 .6016

x21t .01 0 .8600 .8487 .8631 .8547 .8549 .8388 .8615 .8499
.3 .7473 .7260 .7520 .7325 .7453 .7193 .7488 .7289
.6 .5243 .4830 .5162 .4714 .5209 .4789 .5184 .4668
.8 .2495 .2157 .2611 .2263 .2441 .2097 .2589 .2256

x21t + x1tx2t .01 0 .9202 .9136 .9220 .9193 .9176 .9048 .9208 .9151
.3 .8270 .8164 .8312 .8177 .8239 .8099 .8276 .8181
.6 .6191 .5798 .6136 .5693 .6177 .5748 .6125 .5675
.8 .3066 .2660 .3199 .2871 .3010 .2617 .3177 .2822

x21t + x22t + x1tx2t .01 0 .9756 .9758 .9774 .9784 .9745 .9728 .9765 .9772
.3 .9283 .9214 .9286 .9243 .9270 .9179 .9288 .9229
.6 .7755 .7458 .7715 .7368 .7733 .7415 .7721 .7350
.8 .4551 .3967 .4691 .4195 .4490 .3894 .4668 .4163

x1tx2t .01 0 .8209 .8028 .8267 .8099 .8176 .7899 .8244 .8024
.3 .6786 .6404 .6790 .6411 .6744 .6314 .6765 .6435
.6 .4082 .3548 .4015 .3402 .4049 .3508 .4017 .3390
.8 .1572 .1324 .1647 .1409 .1543 .1287 .1628 .1396

x31t .001 0 .8380 .8690 .8470 .8780 .8310 .8670 .8480 .8750
.3 .7810 .8200 .7920 .8290 .7780 .8180 .7850 .8240
.6 .6850 .7180 .6910 .7090 .6830 .7160 .6880 .7020
.8 .5300 .5480 .5410 .5550 .5170 .5370 .5390 .5620

x1t (1 + e−x1t)
−1

.5 0 .5320 .5856 .5456 .5901 .5250 .5773 .5390 .5850
.3 .4660 .5115 .4753 .5157 .4645 .5066 .4724 .5143
.6 .3261 .3446 .3260 .3377 .3241 .3414 .3237 .3334
.8 .1466 .1336 .1535 .1429 .1445 .1299 .1511 .1395
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Table 3: Empirical Size-Adjusted Power, Data-Dependent Bandwidths, T = 200

Panel B: IM(fb)

Bartlett QS
And NW And NW

G(Xt) φ ρ1,ρ2 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

NA, Null 0 0 .0520 .0521 .0520 .0521 .0524 .0549 .0524 .0549
.3 .0682 .0833 .0682 .0833 .0547 .0612 .0547 .0612
.6 .0996 .1586 .0996 .1586 .0692 .0877 .0692 .0877
.8 .1829 .3873 .1836 .3884 .1240 .2314 .1240 .2314

x21t .01 0 .8544 .8395 .8544 .8395 .8455 .8205 .8455 .8205
.3 .7362 .7000 .7362 .7000 .7258 .6853 .7258 .6853
.6 .4997 .4404 .4956 .4381 .4910 .4246 .4899 .4246
.8 .2274 .1982 .2215 .1951 .2221 .1928 .2190 .1891

x21t + x1tx2t .01 0 .9160 .9031 .9160 .9031 .9087 .8918 .9087 .8918
.3 .8185 .7912 .8185 .7912 .8091 .7763 .8091 .7763
.6 .5925 .5363 .5898 .5353 .5858 .5174 .5842 .5172
.8 .2774 .2458 .2771 .2388 .2782 .2377 .2733 .2331

x21t + x22t + x1tx2t .01 0 .9741 .9720 .9741 .9720 .9711 .9656 .9711 .9656
.3 .9226 .9084 .9226 .9084 .9157 .8987 .9157 .8987
.6 .7549 .7052 .7522 .7035 .7460 .6886 .7452 .6885
.8 .4145 .3622 .4138 .3584 .4094 .3522 .4093 .3472

x1tx2t .01 0 .8163 .7865 .8163 .7865 .8050 .7648 .8050 .7648
.3 .6625 .6059 .6625 .6059 .6510 .5838 .6510 .5838
.6 .3827 .3176 .3782 .3164 .3731 .3024 .3717 .3023
.8 .1430 .1221 .1404 .1209 .1427 .1212 .1391 .1192

x31t .001 0 .8400 .8700 .8400 .8700 .8360 .8620 .8360 .8620
.3 .7940 .8140 .7940 .8140 .7890 .8040 .7890 .8040
.6 .6820 .6930 .6790 .6920 .6780 .6830 .6770 .6830
.8 .5150 .5220 .5160 .5190 .5220 .5110 .5130 .5080

x1t (1 + e−x1t)
−1

.5 0 .5440 .5816 .5440 .5816 .5344 .5702 .5344 .5702
.3 .4711 .4970 .4710 .4970 .4629 .4862 .4629 .4862
.6 .3197 .3147 .3161 .3135 .3119 .3008 .3105 .3007
.8 .1302 .1221 .1291 .1197 .1282 .1162 .1275 .1153
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Figure 1: Empirical Null Rejections, IM(fb), q = 2, T = 100, Bartlett Kernel, 5% Nominal Level

Figure 2: Empirical Null Rejections, IM(fb), q = 2, T = 100, QS Kernel, 5% Nominal Level
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Figure 3: Empirical Null Rejections, IM(fb), ρ1 = ρ2 = .3, Bartlett Kernel, 5% Nominal Level

Figure 4: Empirical Null Rejections, IM(fb), ρ1 = ρ2 = .3, QS Kernel, 5% Nominal Level
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Figure 5: Empirical Null Rejections, IM(fb), ρ1 = ρ2 = .8, Bartlett Kernel, 5% Nominal Level

Figure 6: Empirical Null Rejections, IM(fb), ρ1 = ρ2 = .8, QS Kernel, 5% Nominal Level
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φ

Figure 7: Empirical Size-Adjusted Power, T = 200, q = 2, G(Xt) = x21t, Bartlett Kernel, Andrews
Bandwidth, 5% Nominal Level

Figure 8: Empirical Size-Adjusted Power, T = 200, q = 2, G(Xt) = x21t, QS Kernel, Andrews
Bandwidth, 5% Nominal Level
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φ

Figure 9: Empirical Size-Adjusted Power, IM(fb), T = 200, q = 2, ρ1 = ρ2 = .3, G(Xt) = x21t,
Bartlett Kernel, 5% Nominal Level

φ

Figure 10: Empirical Size-Adjusted Power, IM(fb), T = 200, q = 2, ρ1 = ρ2 = .3, G(Xt) = x21t, QS
Kernel, 5% Nominal Level
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φ

Figure 11: Empirical Size-Adjusted Power, T = 200, q = 2, G(Xt) = x1t (1 + e−x1t)
−1

, Bartlett
Kernel, Andrews Bandwidth, 5% Nominal Level

φ

Figure 12: Empirical Size-Adjusted Power, T = 200, q = 3, G(Xt) = x1t (1 + e−x1t)
−1

, Bartlett
Kernel, Andrews Bandwidth, 5% Nominal Level
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