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Abstract

This study investigates the least-cost decarbonization 
pathways in the Finnish electricity generation industry in 
order to achieve the national carbon neutrality goal by 
2035. Various abatement measures, such as downscal-
ing production, capital investment, increasing labor and 
intermediate inputs are considered. The marginal abate-
ment costs (MACs) of greenhouse gas emissions are es-
timated using the convex quantile regression method 
and applied to unique register-based firm-level green-
house gas emission data merged with financial state-
ment data. We adjust the MAC estimates for the sample 
selection bias caused by zero-emission firms by apply-
ing the two-stage Heckman correction. Our empirical 
findings reveal that the median MAC ranges from 0.1 
to 3.5 euros per tonne of CO2 equivalent. The project-
ed economic cost of a 90% reduction in emissions is 62 
million euros, while the estimated cost of achieving ze-
ro emissions is 83 million euros.

Natalia Kuosmanen (Corresponding author)
ETLA Economic Research, Finland
natalia.kuosmanen@etla.fi

Timo Kuosmanen
Turku School of Economics, University of Turku, 
Finland

Terhi Maczulskij
ETLA Economic Research, Finland

Xun Zhou
Surrey Business School, University of Surrey, UK; 
Department of Environment and Geography, 
University of York, UK

Suggested citation:
Kuosmanen, Natalia, Kuosmanen, Timo, Maczulskij, 
Terhi & Zhou, Xun (19.1.2024). “Least-cost Decar- 
bonization Pathways for Electricity Generation in 
Finland: A Convex Quantile Regression Approach”. 
ETLA Working Papers No 114. 
http://pub.etla.fi/ETLA-Working-Papers-114.pdf

Least-cost Decarbonization 
Pathways for Electricity 
Generation in Finland
A CONVEX QUANTILE REGRESSION APPROACH



2

ETLA Working Papers | No 114

Kustannustehokkaat polut sähköntuotannon 
hiilidioksidipäästöjen vähentämiseen: 
Konveksiin kvantiiliregressioon perustuva 
analyysi

Tässä tutkimuksessa tarkastellaan kustannustehok-
kaimpia keinoja hiilidioksidipäästöjen vähentämiseksi 
sähköntuotannon toimialalla Suomen kansallisen hii-
lineutraaliustavoitteen saavuttamiseksi vuoteen 2035 
mennessä. Tutkimuksessa verrataan erilaisten päästö-
vähennysstrategioiden vaihtoehtoiskustannuksia huo-
mioiden mahdollisuudet vähentää energiankulutus-
ta, investoida puhtaampaan teknologiaan sekä lisätä 
työvoiman tai välituotteiden käyttöä. Päästövähennys-
ten rajakustannuksia arvioidaan konveksiin kvantiilire-
gressioon perustuvan tilastollisen menetelmän avulla. 
Tutkimusaineistona hyödynnetään ainutlaatuisia rekis-
teripohjaisia kasvihuonekaasupäästötietoja, jotka yhdis-
tetään yritysten tilinpäätöstietoihin. Koska päästöaineis-
to ei kata kaikkia yrityksiä, sovellamme kaksivaiheista 
Heckman-korjausta mahdollisen valikoitumisharhan 
korjaamiseen. Empiiristen tulostemme mukaan pääs-
tövähennysten rajakustannusten mediaani vaihtelee 
välillä 0,1–3,5 euroa hiilidioksiditonnilta. Arvioitu talou-
dellinen kustannus 90 prosentin päästövähennykselle 
nykyisen tasoon verrattuna on vähintään 62 miljoonaa 
euroa, kun taas nollapäästöjen saavuttamisen arvioitu 
minimikustannus on 83 miljoonaa euroa.
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1 Introduction

Efficient carbon abatement depends on the ability of firm managers and policymakers to

identify least-cost abatement options. This requires an understanding of the role of marginal

abatement cost (MAC), the cost associated with reducing the emission of one additional unit

of pollutant or greenhouse gas (GHG). The MAC is a key concept in environmental economics

and climate change mitigation and plays an essential role in pricing pollutants and guiding

environmental policies.

Recent studies on the empirical assessment of MAC and the identification of least-cost

pathways for emission reduction using the convex quantile regression (CQR) approach pro-

posed by Kuosmanen and Zhou (2021) have gained increased popularity. This approach in-

troduces a data-driven procedure that explicitly incorporates multiple abatement options, in-

efficiency, and stochastic noise, thereby providing a robust framework for estimating shadow

prices and MACs. Kuosmanen et al. (2020) pioneered the application of the CQR approach

in a cross-country analysis of OECD countries, revealing that actual abatement costs were

too modest than predicted in the late 1990s. The EU countries bore a greater burden than

their OECD counterparts in adhering to the initial Kyoto commitments. Building on these

developments and findings, subsequent theoretical advancements and extensions by Dai et al.

(2023c,d) further refine the CQR methodology. These contributions include an extension of

properties to shape-constrained nonparametric functions and the introduction of a penalized

CQR method to address quantile crossing.

Recent empirical studies demonstrated the versatility of the CQR approach. Dai et al.

(2020) evaluated emissions reduction targets of Chinese provinces, revealing substantial cost

variations and potential savings resulting from diverse abatement options and the adoption

of more efficient technologies. Zhao and Qiao (2022) examined US coal-fired power plants,

estimated shadow prices, and emphasized the regulatory impacts on the market prices of pol-

lutants. Wen et al. (2022) assessed soil erosion abatement costs in Shaanxi Province, China,

emphasizing the potential for cost-efficient solutions and highlighting the need for effective

strategies that consider external variables and temporal-spatial distribution. Quinn et al.

(2023) analyzed 125 countries during the Kyoto Protocol period and found that countries

with set CO2 emission targets experienced a higher MAC than prevailing emission pricing
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mechanisms. This highlights the importance of shadow price estimates in an emission trad-

ing system (ETS) regulation and the consequences of policy decisions. Dai et al. (2023a)

utilized CQR-based quantile allocation models to evaluate resource allocation efficiency in

centralized decision-making systems, revealing significant gains in Finland’s business sector.

Finally, Dai et al. (2023b) addressed the issue of secular stagnation in productivity growth

by exploring the impact of a low-carbon transition on OECD countries. Their findings,

based on a quantile shadow-price Fisher index using a penalized CQR approach, showed

that accounting for GHG emissions significantly increases measured productivity growth,

particularly in countries that actively reduce their emissions.

In addition to CQR, closely related estimation approaches in this field include convex

nonparametric least-squares (CNLS; Kuosmanen, 2008) and stochastic nonparametric envel-

opment of data (StoNED; Kuosmanen and Kortelainen, 2012). Mekaroonreung and Johnson

(2012) were the first to apply CNLS and StoNED to estimate shadow prices of SO2 and

NOx emissions of US coal power plants. They find that applying the weak disposability

StoNED method provides consistent estimates of the emission market prices. Xian et al.

(2022) utilized the StoNED method to estimate the least MAC of CO2 for Chinese iron

and steel enterprises. Their findings show that increasing labor is the most cost-effective

abatement measure for most enterprises, proposing policy implications for reducing carbon

abatement costs in the industry. Recently, Rødseth (2023) applied CNLS to estimate CO2

shadow prices, highlighting the importance of incorporating the material balance principle

into shadow price estimation. In the present context, the key difference between the CQR

and CNLS/StoNED approaches is that the latter approach evaluates MACs by projecting all

observations to a single production frontier that represents the average practice (CNLS) or

the best practice (StoNED), in the CQR approach one estimates multiple quantile frontiers

to evaluate MAC locally at the current level of efficiency.

This study offers two contributions to the growing body of literature. First, we make

use of unique register-based firm-level GHG emission data merged with financial statement

data to empirically assess the least-cost decarbonization pathways in the Finnish electricity

generation industry. Our empirical analysis not only considers the historical development of

abatement costs and the least-cost abatement strategies at present, but also presents forward-

looking projections to assess the economic cost of achieving Finland’s carbon neutrality

2
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targets by 2035. Second, we propose a simple practical remedy for the potential sample

selection bias due to zero-emission firms. Zero-emission firms refer to firms that do not report

any GHG emissions. This subset of firms includes a growing number of renewable energy

producers that do not emit any CO2; however, there are also conventional firms that fail

to report their emissions for various reasons. For example, the EU ETS regulation requires

that all power plants with a net heat excess of 20 MW report their GHG emissions; however,

the regulation does not concern smaller plants. Building on the insights of Kuosmanen

et al. (2023), we adjust the MAC estimates to account for zero-emission firms by applying a

two-stage method known as the Heckman correction (Heckman, 1979).

The remainder of this paper is organized as follows. Section 2 provides an overview of

the Finnish electricity generation industry. Section 3 outlines the methodological framework

used to estimate MAC and assesses the economic costs of the decarbonization pathways.

Section 4 presents the data used in this study. Section 5 presents the empirical analysis

findings. Finally, conclusions are presented in Section 6.

2 Electricity generation industry in Finland

Finland’s energy sector is a significant contributor to national GHG emissions (Statistics

Finland, 2022). To align with the EU’s targets for reducing GHG emissions, Finland has

made progress in its energy transition process, resulting in structural changes, particularly

in the electricity generation industry. Currently, nuclear energy dominates, accounting for

over one-third of the total electricity generation, while bioenergy and hydroelectricity fol-

low closely, each contributing approximately 19% to the power mix.1 Increasing renewable

energy is crucial for phasing out the use of fossil fuels. This shift is expected to double indus-

trial electricity consumption and increase the nation’s total electricity use by 50% by 2050

(Paloneva and Takamäki, 2021). Therefore, the success of energy transformation depends on

ensuring the availability of affordable, reliable, and low-emission electricity, with a primary

focus on reducing emissions from electricity production.

1Statista, Electricity generation in Finland: https://www.statista.com/statistics/1391223/

finland-electricity-production-by-source/.
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Fig. 1. GHG emissions of Finland’s energy sector (NACE code 35 Electricity, gas, steam,
and air conditioning supply ; solid grey line) and electricity generation industry (TOL 2002
code 4011 Production of electricity ; broken grey line) in 2008–2019, measured in Mt of CO2

eq. Data sources: Eurostat air emissions accounts (solid line) and the national Greenhouse
Gas Inventory of Statistics Finland (broken line).

Fig. 1 shows the GHG emissions in million tonnes of CO2 equivalent (CO2 eq.) for the

entire energy sector (represented by the 2-digit NACE Rev. 2 code 35 Electricity, gas, steam

and air conditioning supply) based on industry-level data from Eurostat, and specifically

for the electricity generation industry (represented by the 4-digit TOL 20022 code 4011

Production of electricity) based on firm-level data from Statistics Finland for the period

2008–2019. The electricity generation industry is the largest emitter of GHG within the

energy sector, accounting for approximately 70-80% of the total GHG emissions of the entire

energy sector. Although emissions from the electricity generation industry (represented by

the broken gray line in Fig. 1) decreased from 20 to approximately 12 million tonnes of

CO2 eq. between 2010 and 2012, the emission levels remained relatively stable thereafter.

Given that this industry is expected to provide low-emission electricity in the near future to

ensure low-emission energy, these trends provide a strong empirical motivation to investigate

the MAC for electricity generation firms and identify the least-cost pathways for emission

reduction.

2Statistics Finland, Standard Industrial Classification 2002: https://www.stat.fi/en/luokitukset/

toimiala/toimiala_1_20020101/?code=0201.
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Table 1. Number of electricity generation firms in Finland in 2000 and 2019 and the number
of firms with reported GHG emissions.

Subdivision 2000 2019

All firms With reported
emissions

All firms With reported
emissions

Production of electricity with
hydropower and wind power

34 - 202 2

Separate production of electricity
with thermal power

4 1 10 2

Combined heat and power
production

36 18 58 30

Production of electricity with
nuclear power

2 1 7 2

Combined heat and power
production for industry

2 1 7 2

Other production of electricity 9 3 - -

Total 101 28 299 47

Source: Greenhouse Gas Inventory and the Business Register Database of Statistics Finland.

The Finnish electricity generation industry (the 4-digit TOL 2002 code 4011 Production

of electricity) is further subdivided into five distinct 5-digit industries, as outlined in Table 1.

This table provides an overview of electricity generation firms in Finland in 2000 and 2019,

including those with reported emissions. The data were sourced from both the Greenhouse

Gas Inventory3 and Business Register4 of Statistics Finland. The latter covers all Finnish

enterprises, including those with no reported emissions. This table reveals a substantial

transformation in the number of electricity generation firms in Finland between 2000 and

2019, reflecting the diversity of the industry. Noteworthy trends include an increase in

the number of firms specializing in hydropower and wind power production coupled with

an increase in combined heat and power generation. In 2000, the electricity generation

industry comprised 101 firms, 28 of which reported their emissions. By 2019, the industry

had experienced substantial growth, reaching 299 firms, of which 47 had reported emissions.

Specific categories, such as hydropower and wind power production, thermal power, and

3Greenhouse Gas Inventory: https://www.stat.fi/tup/khkinv/index_en.html.
4Financial Statement Data Panel: https://taika.stat.fi/en/aineistokuvaus.html.
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combined heat and power have shown variations in the number of firms over the past two

decades.

However, the data in Table 1 also reveal a notable aspect: emissions are not reported for

a substantial number of firms. This may be attributed to the fact that zero-emission firms

refrain from emitting. Examples of zero-emission firms include those that utilize renewable

energy sources, such as solar or wind power. Additionally, reliance on statistical authorities

to estimate GHG emissions using energy consumption data may contribute to non-disclosure,

as these data may be incomplete or missing for certain businesses.

3 Methodology

3.1 Convex quantile regression

In this study, we employ convex quantile regression (CQR) to estimate the marginal cost

of abatement of GHG emissions. CQR is a data-driven method introduced by Kuosmanen

and Zhou (2021) that builds upon previous studies by Wang et al. (2014) and Kuosma-

nen et al. (2015). Compared to previous approaches using convex regression and stochastic

nonparametric envelopment of data (StoNED), where MAC estimation requires additional

parametric distributional assumptions to identify a single frontier, the main advantage of

CQR is that it employs multiple quantiles without making any parametric distributional as-

sumptions. This approach is fully nonparametric and adheres to standard economic theory

axioms such as monotonicity and convexity, without depending on arbitrary functional as-

sumptions.5 CQR addresses biases in the estimation of MAC by considering factors that are

frequently overlooked or inadequately addressed in traditional shadow pricing methods, such

as inefficiency, the direction vector, random noise in the data, and heteroscedasticity, which

is a common issue in which the variability of a variable varies across its predicted range.

CQR provides valuable information on the prices of abatement measures aligned with local

efficiency levels.

Further, CQR incorporates a broader range of abatement options, including input-side

options, such as fuel switching and clean technology investments, rather than simply as-

suming downscaling of production as the sole option, which has rarely been considered in

5The number of quantiles can be specified based on the sample size and desired precision. However, it is
recommended to use an equidistant grid of 10 quantiles for most applications (Kuosmanen and Zhou, 2021).
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previous studies (e.g., Lee, 2005). The present study recognizes the importance of consid-

ering capital investments and increased input utilization as potential strategies for emission

reduction in addition to output scale reductions.

3.2 Estimation

Consider a generic semi-nonparametric production model

yit = f(Kit, Lit,Mit, Eit) + δ′zit + εit, (1)

where yit and Eit represent the economic output (revenue) and bad output (GHG emissions)

of firm i in period t, respectively; K, L, and M refer to capital, labor, and intermediate

inputs, respectively; f is a nonparametric production function assumed to be monotonically

increasing, concave, satisfying constant returns to scale (CRS); zit is the contextual variable

(to be discussed in more detail in the next sub-section); and εit is a composite error term

that encompasses potential inefficiency and random noise.

Conditional quantile production function Qy is defined as follows:

Qy [τ | (K,L,M,E)] = f(K,L,M,E) + δ′zit +
(
F−1
ε (τ)

)
, (2)

where τ (0 ≤ τ ≤ 1) indicates the order of the quantile, and Fε is the cumulative distribution

function of the composite error term ε. For a given quantile τ , the CQR estimator of Qy is

obtained by solving the quadratic programming (QP) problem for quantile τ :6

min
(β,ε−,ε+)

(1− τ)
T∑
t=1

n∑
i=1

(ε−it)
2 + τ

T∑
t=1

n∑
i=1

(ε+it)
2, (3)

subject to

yit = βK
it Kit + βL

itLit + βM
it Mit + βE

itEit + δ′zit − ε−it + ε+it , ∀i, ∀t

βK
it Kit + βL

itLit + βM
it Mit + βE

itEit ≤ βK
jsKit + βL

jsLit + βM
jsMit + βE

jsEit, ∀i, ∀t

βK
it ≥ 0, βL

it ≥ 0, βM
it ≥ 0, ∀i, ∀t

ε−it ≥ 0, ε+it ≥ 0, ∀i, ∀t.
6In the empirical analysis, the open-source Python package pyStoNED with the Mosek solver

was utilized. pyStoNED can be accessed at https://github.com/ds2010/StoNED-Python and
https://pypi.org/project/pystoned/.
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Our main interest is in the coefficients βK
it , β

L
it , β

M
it , β

E
it , which are the estimated subgra-

dients of the quantile production function Qy(τ |K,L,M,E). The non-negative variables, ε−it

and ε+it , represent the negative and positive deviations, respectively, from the quantile fron-

tier. The asymmetric loss function ensures that 100 · τ% of the observations fall below that

performance level τ . While ε−it and ε+it encompass inefficiency (u) and noise (v) captured by

the error term ε, our study does not explicitly identify or isolate these sources of deviation.

Following Kuosmanen and Zhou (2021), we solve Problem (3) ten times, varying pa-

rameter τ = {0.05, 0.15, . . . , 0.95}. Thus, we obtain ten sets of subgradient estimates

{βK
it , β

L
it , β

M
it , β

E
it } for each firm i in year t. To obtain the unique shadow prices for each

observation, we take the weighted average of the coefficients for the two quantiles closest to

the observed data point. However, for observations that fall below the quantile τ = 0.05

or above the quantile τ = 0.95, we utilize the shadow prices associated with the nearest

quantile.

Conventionally, the shadow price βE
it is directly interpreted as the MAC of emissions.

However, this interpretation implicitly assumes that downscaling production is the only way

to reduce emissions. Alternatively, a firm could invest in cleaner technology, which usually

requires additional capital investment and labor resources, or switch to cleaner fuels, which

would increase intermediate inputs. To account for a broader set of abatement strategies,

Kuosmanen and Zhou (2021) defined MAC as the least-cost abatement alternative:

MACit = min

{
rit

βE
it

βK
it

, wit
βE
it

βL
it

,
βE
it

βM
it

, βE
it

}
, (4)

where r and w refer to the capital rents and wage rate, respectively.7 Note that MACit ≤ βE
it

by construction, taking a broader set of abatement strategies into account, will always yield

a lower MAC estimate.

3.3 Heckman correction of zero-valued observations

The estimation of MAC in Equation (4) critically relies on the shadow price of emissions βE
it .

Unfortunately, the shadow prices are unidentified for zero-emission firms for which emissions

7In the empirical part of this study, the capital rents are estimated by the ratio of the operating profit
and capital stock, and the wage rate by the ratio of the total payroll costs and the number of employees (full
time equivalent). By construction, the prices of value added and intermediate inputs are equal to one.
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Eit = 0. As stressed in the introduction, the subset of zero-emission firms includes renewable

producers that do not emit any GHG emissions, as well as small conventional producers that

emit GHG emissions but are not required to report their emissions according to the EU

directive.

Since the subset of zero-emission firms is relatively large (see Section 2) and subject to

endogenous selection (e.g., the use of renewable resources), simply excluding zero-emission

firms from the estimation would likely cause sample selection bias. To mitigate this bias,

we employ the two-step procedure introduced by Heckman (1976, 1979) to model selection

in microeconometrics, such as in the context of wage equations or consumer expenditure.

Recently, Kuosmanen et al. (2023) applied the Heckman correction in the nonparametric

setting of convex expectile regression when the output variable y had zero-valued observa-

tions. In this study, we apply a similar approach, in which the most critical variable is Eit,

which has a large share of zero-valued observations.

In the first step, we define a binary variable, Y , indicating whether the emission of firm i

in period t, Eit, is greater than zero or not, as Yit = {1 if Eit > 0, and 0 otherwise}. We then

use standard probit regression to estimate the likelihood of a firm having positive emissions

based on the predictor variables x :

Yit = Φ(x′
itγ) + εit. (5)

In Equation (5), Φ denotes the cumulative distribution function of the standard normal

distribution, N(0, 1), and variables x include predictors, which consist of variables such as

the number of employees, firm value added, firm age, and dummy variables for sub-industry

and year. Given the parameter estimates γ̂, the inverse Mills ratios are calculated as:

IMit =
ϕ(x′

itγ̂)

Φ(x′
itγ̂)

, (6)

where ϕ and Φ are the density function and the cumulative distribution function of the

standard normal distribution N(0, 1), respectively.

In the second step, we apply the CQR estimator (3) to the subsample of firms with

positive emissions Eit > 0, taking the inverse Mills ratios (IMit) as a contextual variable

z. While the shadow prices of zero-emission firms remain unidentified, the inverse Mills

ratio alleviates sample selection bias caused by the exclusion of zero-emission firms. Note

9
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that renewable energy producers with zero emissions cannot decrease their own emissions;

thus, their MAC becomes infinite. While the market share of renewable producers needs to

increase to achieve the policy targets, actual abatement must take place in those firms that

currently generate GHG emissions.

4 Data and variables

To evaluate the MAC for reducing GHG emissions, we utilize two data sources from Statistics

Finland, the national statistical authority. The first source is register-based firm-level data on

GHG emissions from the National Greenhouse Gas Inventory.8 These yearly panel data cover

the period from 2000 to 2019 and include all electricity-generating firms that participated

in the EU ETS, the first large-scale GHG emissions trading scheme in the world. According

to EU directives, all power plants with a net heat excess of 20 MW must participate in

the EU ETS. The firm-level data of the national greenhouse gas inventory used in this

study are based on plant-level monitoring information submitted to the Finnish Energy

Authority, which covers emissions at both the establishment and firm levels, reported as

CO2 and GHG emissions in CO2 eq. This dataset serves as a foundation for climate policy

planning and monitoring and is managed by Statistics Finland under the United Nations

Framework Convention on Climate Change (UNFCCC), EU regulations, and the Kyoto

Protocol. This dataset originates from official registers maintained by Statistics Finland,

ensuring the reliability and precision of our analysis.

The second source is Financial Statement panel data, which provide information on all

independent businesses across various industries in Finland. These panel data encompass

essential firm-level details from income statements and balance sheets, including industry

classification, employee count, value added, and financial metrics such as sales and fixed

assets. For enterprises with at least 20 employees, data are collected directly, while informa-

tion for smaller businesses is sourced from administrative records such as business taxation

registers.

8Further information on the Greenhouse Gas Inventory is available at: https://www.tilastokeskus.

fi/tup/khkinv/index_en.html.
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Table 2. Descriptive statistics of the key variables.

Revenue,
Me

Emissions,
103t of CO2 eq.

Labor,
full-time eq.

Capital,
Me

Intermediate
inputs, Me

All firms

Mean 45.00 251.17 60.00 166.01 34.78
Median 25.43 90.22 11.78 31.74 19.55
Std. Dev. 70.74 436.97 155.03 727.29 53.86

Hydropower and wind power

Mean 9.01 0.78 21.48 20.79 6.25
Median 11.77 0.18 27.00 25.51 8.25
Std. Dev. 5.19 1.13 10.89 11.56 3.83

Separate production of electricity with thermal power

Mean 45.27 688.39 27.63 62.92 42.07
Median 36.77 348.21 12.36 46.11 28.79
Std. Dev. 40.48 871.60 45.09 51.13 38.01

Combined heat and power production

Mean 42.22 256.68 51.34 64.56 32.70
Median 25.61 82.91 11.06 28.90 18.87
Std. Dev. 56.10 413.36 118.11 83.54 44.66

Production of electricity with nuclear power

Mean 335.97 193.16 779.85 4197.78 235.60
Median 296.71 0.48 814.30 4843.38 214.47
Std. Dev. 137.21 861.14 123.76 1816.86 121.80

Combined heat and power production for industry

Mean 25.43 187.01 18.43 38.12 20.87
Median 24.89 145.16 3.00 29.21 20.66
Std. Dev. 14.49 253.34 31.16 29.05 11.38

Other production of electricity

Mean 8.72 16.88 1.25 42.20 4.21
Median 7.61 8.73 0.30 25.58 4.97
Std. Dev. 5.28 16.81 2.13 30.69 2.01

By merging these two datasets using firm identification codes, we obtain a unique dataset

that combines firm-level emission records with business register data, allowing us to inves-

tigate the cost of GHG abatement and alternative pathways of emission reduction. The
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merger produced a sample of 3,628 observations (523 firms) for the period 2000–2019. Af-

ter excluding firms with unreported GHG emissions, the sample consisted of 798 firm-year

observations (85 firms).

To estimate MAC, we use the following variables: revenue (desirable output), GHG

emissions (undesirable output), labor (measured in full-time equivalent units), capital (rep-

resented by fixed assets), and intermediate inputs (derived as the difference between revenue

and value added). Table 2 presents descriptive statistics for these variables across the six

sub-industries according to the Finnish TOL 2002 classification. This table reveals interest-

ing patterns across the sub-industries. For example, firms specializing in hydropower and

wind power may also generate electricity from fossil fuels, but, on average, they have lower

emissions and revenues than firms in other sub-industries. By contrast, firms that mainly fo-

cus on nuclear power but also have fossil fuel-powered plants are characterized by significant

capital intensity, along with higher labor and intermediate inputs. Table 2 shows that many

firms classified as renewable or nuclear electricity producers also have conventional plants

that use fossil fuels to generate GHG emissions.

5 Results

5.1 Probit regression

We first employ a standard probit regression to predict the probability of firms having

GHG emissions greater than zero over the period 2000–2019 for a sample of 523 firms. The

binary outcome variable takes the value of one if a firm’s emissions are greater than zero

and zero otherwise. The model includes essential predictor variables, including the number

of employees (measured in full-time equivalents), firm value added, firm age, and dummy

variables representing sub-industry and year effects, as control variables. Table 3 reports the

estimated coefficients for each predictor, along with their robust standard errors, calculated

using the Stata software.

Regression analysis reveals that, on average, the probability of firms having positive GHG

emissions is influenced by several key factors. The coefficient of firm size, measured by the

number of employees, suggests that an increase in employees is generally associated with

a lower probability of positive emissions. This relationship may be strongly influenced by
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nuclear power plants, as they contribute significantly to the observed patterns. By contrast,

firm age has a positive impact, indicating that older firms tend to have a higher probability

of positive emissions. The coefficient for firm value added is positive but has a minimal

impact on the probability of positive emissions.

Table 3. Probit estimates.

Variable Coefficient Robust st. error

Intercept -3.333*** 0.237
Employees -0.003*** 0.001
Value added 0.000*** 0.000
Firm age 0.014*** 0.003
Control variables for sub-industry and year Yes

Log likelihood -933.636

Note: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

The results presented in Table 3 were used to calculate the inverse Mills ratio for a

subset of 798 observations from 85 electricity generation firms for which emissions were

greater than zero. By incorporating the inverse Mills ratio as an explanatory variable in the

subsequent analysis, this study aims to address the truncation bias that arises from excluding

observations with zero emissions.

5.2 Decarbonization of the Finnish electricity generation

After excluding zero-valued observations and considering the inverse Mills ratio as a con-

textual variable, we estimate the CQR for a subset of 798 observations from 85 electricity

generation firms that have GHG emissions greater than zero. This analysis aims to determine

MACs for GHG emissions and cost-effective abatement alternatives for Finnish electricity

generation firms. We evaluate several options, including (i) downscaling production, (ii)

investing in capital for carbon reduction or cleaner production technologies, (iii) increasing

labor input by hiring additional technicians, and (iv) expanding intermediate inputs by in-

creasing the use of renewable energy. The most cost-effective MAC for GHG emissions is

determined by identifying the least-cost option.
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Table 4 provides an overview of the MAC estimates for emission abatement in the indus-

try, presenting the median, mean, and standard deviation values for each efficiency tier. This

information offers insights into variations in abatement costs across different firm segments.

Notably, higher-efficiency firms in the upper quantiles generally exhibit higher MAC values,

which aligns with the economic principle that as firms optimize their processes and attain

higher efficiency levels, the cost of additional emissions reductions increases.

The median MACs range from 0.05 to 3.46 euros per tonne of CO2 eq., while the average

values span from 9.63 to 3,435 euros per tonne of CO2 eq. The large disparity between the

median and mean arises from a few firms with exceptionally high MAC values, resulting in

positive skewness in the distribution. This skewness may be influenced by factors such as

technological constraints or industry-specific conditions of these firms. Consequently, relying

on the average MAC may present a misleading picture of abatement costs, emphasizing the

use of median values. Notably, most firms can abate their emissions at a very low cost.

Table 4. Marginal abatement cost (MAC) for Finnish electricity generation (2000–2019),
e/t of CO2 eq.

Efficiency tier, % Median Mean Std. Dev.

0-5 0.05 18.23 80.62
5-15 0.41 19.55 94.09
15-25 0.28 430.89 3613.60
25-35 0.60 9.63 21.28
35-45 0.96 20.93 106.07
45-55 0.26 15.86 52.15
55-65 2.09 13.07 34.99
65-75 0.69 34.13 152.66
75-85 2.33 3435.79 28213.00
85-95 1.27 35.51 106.26
95-100 3.46 52.79 101.06

Table 5 presents the distributions of the least-cost abatement options across different

efficiency tiers. Specifically, the figures in each row represent the share of firms within an

efficiency tier with a specific least-cost strategy to reduce emissions. For instance, within

the 0-5% efficiency tier, 4.9% of firms are recommended to decrease production as the most

cost-effective approach, while 32.8% should make capital investments, 59.0% should increase

labor, and 3.3% should increase intermediate inputs as the most cost-effective options.
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Table 5. Distribution of least-cost abatement options for Finnish electricity generation
firms.

Efficiency
tier, %

Downscale
output (y), %

Capital
investment, %

Increase
labor, %

Increase intermediate
inputs, %

0-5 4.92 32.79 59.02 3.28
5-15 3.53 29.41 62.35 4.71
15-25 1.27 22.78 73.44 2.53
25-35 5.48 16.44 73.97 4.11
35-45 0.00 10.39 85.71 3.90
45-55 2.63 7.89 88.16 1.32
55-65 2.56 5.13 85.90 6.41
65-75 3.61 3.61 80.72 12.05
75-85 2.94 8.82 79.41 8.82
85-95 1.47 2.94 75.00 20.59
95-100 6.67 6.67 66.67 20.00

Downscaling production is the least-cost alternative for a limited subset of firms, sug-

gesting that reducing the scale of production is not the most economical strategy for all

efficiency levels. For less efficient firms in the lower tiers (0-5% to 35-45%), the least-cost

strategies for reducing emissions involve more focus on capital investment and an increase

in labor input. This highlights that at lower efficiency levels, investing in technology and

human resources is more cost-effective for emission reduction. By contrast, more efficient

firms in higher quantiles (45-55% to 95-100%) identify increasing labor and intermediate

inputs as the most cost-effective approaches for abatement. These findings suggest that as

firms become more efficient, optimizing labor and utilizing intermediate inputs become key

strategies for achieving cost-effective emission reduction.

5.3 Forward-looking assessment of the GHG abatement cost

This part of our study is based on the work of (Dai et al., 2020), who advanced the CQR to a

forward-looking assessment based on MAC estimates. Utilizing MAC estimates and aligning

them with Finland’s carbon emissions reduction targets, this section focuses on a forward-

looking assessment of abatement costs within the country’s electricity generation industry

for 2021–2035. Specifically, we examine the projected economic cost for a 90% reduction and
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the cost of attaining zero emissions. To achieve this, we first fit an exponential trend line

using nonlinear regression applied to the observed GHG emissions and the estimated MAC

values spanning the period 2000–2019. The equation is as follows:

MACt = A · eb·Et (7)

where MACt is the average abatement cost in year t, A is a constant, b is the slope, and Et

is total emissions in year t. Table 6 presents the regression coefficients.

Table 6. Nonlinear regression results (2000–2019).

Least cost Downscale
output

Capital
investment

Increase
labor

Increase intermediate
inputs

Constant 33.22 22.33 42.22 105.18 33.77
Slope -0.38 -0.21 -0.09 -0.45 -0.23

Note: Authors’ calculations are based on Statistics Finland’s data. All the coefficients are statistically
significant at the 1% significance level.

Using the predicted trend, we next extrapolate the MAC of future GHG abatement and

estimate the associated abatement costs. To provide insights into the potential economic

costs associated with different strategies for reducing GHG emissions, Table 7 provides esti-

mates of the abatement costs for two distinct scenarios: achieving a 90% reduction in current

GHG emissions and achieving complete decarbonization (reducing emissions to zero). The

abatement cost options considered in the analysis include the least-cost option, downsizing

production (output reduction), investing in capital, increasing labor input, and increasing

intermediate inputs.

Table 7. Estimated economic cost of abatement (Me).

Least cost Downscale
output

Capital
investment

Increase
labor

Increase intermediate
inputs

90% reduction 62.16 69.22 193.35 162.01 97.64
To zero 82.61 83.77 221.97 225.21 119.49

For the scenario aimed at a 90% reduction in emissions, the projected least cost is esti-

mated to be 62.16 million euros (Me). The other abatement cost options for this scenario
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include 69.22 Me for downsizing output, 193.35 Me for capital investment, 162.01 Me for

increasing labor input, and 97.64 Me for increasing intermediate inputs. In the case of com-

plete decarbonization, the estimated least cost rises to 82.61 Me. The corresponding costs

for the other abatement options are 83.77 Me for downsizing output, 221.97 Me for capital

investment, 225.21 Me for increasing labor input, and 119.49 Me for increasing intermediate

inputs.

To further explore abatement alternatives, we extend our analysis to predict the marginal

cost of abating GHG emissions using either input or output. This prediction is illustrated

in Fig. 2, which offers a visual representation of the evolving dynamics of abatement costs.

Specifically, the figure illustrates the MAC of GHG emissions using the same four strategies:

downsizing output, investing in capital, increasing labor, and increasing intermediate inputs.

The horizontal axis represents GHG emissions, which decrease to zero over time, and the

vertical axis represents the MAC.

Fig. 2. MAC of abating GHG emissions using four options: downsizing output, investing
in capital, increasing labor, and increasing intermediate inputs.

As discussed above, currently increasing labor input is the least-cost alternative for most

firms. However, as GHG emissions continue to decrease (moving right on the x-axis), the

MAC of increasing labor rises sharply. Downsizing production remains a cost-effective strat-
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egy until a certain point at which the MAC increases over time. Increasing intermediate

inputs is another cost-effective option to lower GHG emissions; for instance, increasing the

proportion of renewable energy consumption is the next least-cost alternative. Finally, the

MAC of investing in capital has an initially higher value than the other options and is not

the most cost-effective strategy for GHG abatement. However, as GHG emissions decrease,

the MAC of investing in capital moderately increases and becomes a better alternative to

increasing labor input. Finally, while Fig. 2 provides a useful tool for predicting the MAC of

abating GHG emissions using either input or output, it is important to note that the graph

is based on prediction and not actual data; therefore, it should be used as a guide rather

than a definitive source of information.

6 Conclusions

Finland’s electricity generation industry plays an essential role in achieving its ambitious car-

bon neutrality objectives and the need to provide low-emission electricity to other industries

transitioning away from fossil fuels. To establish effective emission reduction targets and

policies, it is necessary to determine the costs of reducing GHG emissions. To address this

issue, this study examines the MACs of GHG emission reduction for the Finnish electricity

generation industry using unique firm-level GHG emission data merged with register-based

financial statement data. Because the starting dataset of electricity generation firms in-

cluded a large number of firms for which GHG emissions were not available, we first used

the Heckman correction to address the selection bias caused by excluding observations with

zero emissions. Then, by employing convex quantile regression, we identify the least-cost

options for each firm in our sample to reduce its emissions. Finally, we examine the least-cost

decarbonization pathways in relation to Finland’s carbon neutrality goal by 2035.

The empirical findings reveal that the median MACs of GHG emissions span from 0.1

to 3.5 euros per tonne of CO2 eq., indicating substantial cost variability across different

efficiency tiers. Notably, more efficient firms in higher quantiles exhibit higher MACs, con-

sistent with the principle that achieving greater environmental efficiency often involves higher

marginal costs for emission reductions. For less efficient firms in lower tiers, focusing on cap-

ital investment and increasing labor input has emerged as a least-cost strategy to reduce

emissions. This emphasizes the potential benefits of technological upgrades and investments
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in human resources for emission reduction in the early stages of efficiency improvement. In

contrast, more efficient firms in higher tiers find increasing labor and intermediate inputs

to be the least-cost strategies, suggesting a shift towards optimizing labor and utilizing in-

termediate inputs for efficient emission reduction. The estimated costs of achieving a 90%

reduction in carbon emissions and complete decarbonization were 62.1 and 82.6 million eu-

ros, respectively. These projections demonstrate that the feasibility of emission reduction

strategies depends on the stringency of the set target. Although the least-cost option is

financially attractive for a 90% reduction, the cost increases significantly for zero emissions.

In the context of existing research, our study aligns with the growing body of literature on

MAC assessments (Xian et al., 2022).

The application of least-cost abatement strategies has yielded new insights into developing

effective environmental policies. By examining both efficient and inefficient firms, our study

provides a better understanding of this subject matter. However, a significant drawback of

our study is the inability to determine the exact reason for the absence of emissions from

zero-emission firms. It is uncertain whether these firms truly do not emit emissions or if

there are inconsistencies in the data.
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