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Abstract
To reverse the trend of rising CO2 emissions in the European Union’s (EU) transportation sector,
several European governments have introduced programs that promote electric vehicles (EVs).
One frequently cited impediment to their uptake is insufficient charging infrastructure. Drawing
on panel data from Germany, this paper estimates the relationship between public charging
infrastructure and the uptake of EVs. We specify models with fixed effects and instrumental
variables to gauge the robustness of our findings in the face of alternative channels through which
endogeneity bias may emerge. We find that charging infrastructure has a statistically significant
and positive impact on EV uptake, with the magnitude of the estimate increasing with population
density. The evidence further suggests that although the incidence of charging points in Germany
far exceeds the EU’s recommended minimum ratio of one point to ten EVs, inadequate
infrastructure coverage remains a binding constraint on EV uptake. We use the model estimates to
illustrate the relative cost effectiveness of normal and fast chargers by region, which supports a
geographically differentiated targeting of subsidies for charging infrastructure.

1. Introduction

The European Union’s (EU) progress in reducing
CO2 emissions has long been impeded by the trans-
portation sector. Transportation is the only sector
in the EU in which CO2 emissions are on the rise,
increasing by 28% between 1990 and 2017 (EEA
2019). To buck this trend, several European gov-
ernments have turned to the promotion of electric
vehicles (EVs). In Germany, the government set a par-
ticularly ambitious goal of registering onemillion EVs
by the end of 2020, encouraged in part by a subsidy
for EV purchases that was introduced in 2016. Total
funding for the subsidy was set at €1.2 billion, but it
was already clear by the close of 2018 that progress
was sluggish. In December of that year, there were
only about 83 000 battery-electric vehicles (BEVs)
and 67 000 plug-in hybrids (PHEVs) registered (KBA
2019a), forcing ChancellorMerkel to concede that the
goal would not be reached and igniting a debate about
the reasons for the shortfall.

The aim of this paper is to assess the validity
of one frequently cited impediment to the uptake
of EVs: insufficient coverage of public charging

infrastructure. EU policy has prioritized guarantee-
ing a minimum ratio of one charge point to ten EVs
(EC 2014). To this end, the German government is
providing €300 million toward expanding the pub-
lic charging infrastructure through a program that
awards grants to the most competitive bids to con-
struct charging stations. This program is comple-
mented by directives that put binding rules in place
to harmonize socket standards for publicly access-
ible charging stations as well as plans to harmon-
ize authentication and payment at charging stations
(BMVI 2020a).

Between 2016 and 2018 the number of public
charging points in Germany increased over three-
fold, from 4561 to 16 085 (BNetzA 2019), resulting in
about one point for every five EVs, far exceeding the
EU’s recommendedminimum. The question arises as
to whether a saturation point was reached, or whether
insufficient infrastructure continues to pose a bind-
ing constraint on the uptake of EVs. Drawing on a
panel of monthly county-level data from Germany
spanning 2016–2018, we take up this questionwith an
econometric analysis that quantifies the effect of pub-
lic charging points on EVs, distinguishing between
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normal and fast charging points as well as between
BEVs and PHEVs.

Our work contributes to a growing body of
research that has identified the accessibility of char-
ging infrastructure to be among the most important
determinants of EV purchases, alongside factors such
as price and driving range (Dagsvik et al 2002, Axsen
et al 2009, Ziegler 2012, Hackbarth and Madlener
2013, Langbroek et al 2016, Coffman et al 2017, Liao
et al 2017, Bobeth and Matthies 2018, Nazari et al
2018). Studies using revealed preference data include
Li et al’s (2017a) and Narassimhan and Johnson’s
(2018) analyses of regional data from the US, which
both identify a positive effect of charging infrastruc-
ture on EVs. Likewise, Zhang et al (2016) find signi-
ficant positive effects of charging station density on
a panel of Norwegian municipalities. Other revealed
preference studies using county data from Califor-
nia (Javid and Nejat 2017), data from Switzerland
(Brückmann et al 2021), and country-level panel
data (Li et al 2017b) provide additional supporting
evidence.

Studies using stated preference data generally
concur with these findings. Achtnicht et al’s (2012)
choice experiment in Germany, for example, finds
that inadequate expansion of alternative fuel stations
represents a significant barrier to the adoption of
alternative-fuel vehicles. Lebeau et al (2012) simil-
arly find that enhancing the charging infrastructure
density would substantially increase the share of EVs
based on a conjoint experiment from Belgium. More
recently, Patt et al (2019) employ a survey experiment
in Switzerland to focus on access to private charging
infrastructure, finding this to be a potentially import-
ant factor in influencing people’s willingness to pur-
chase EVs. This finding is substantiated by Figen-
baum and Kolbenstvedt (2016), who show that most
charging processes take place either at home or at
work (see Hardman et al 2018 for a review on char-
ging behavior). Studies using Chinese (Sovacool et al
2019) and Canadian (Miele et al 2020) survey data
present dissenting evidence that charging infrastruc-
ture plays a negligible role.

The question of causality is an issue that looms
large in identifying the impact of charging infrastruc-
ture on EV uptake, particularly when using obser-
vational data as in the present study. To the extent
that chargers are situated according to the prevalence
of EVs, their estimated effect would be biased. We
consequently present results from two estimators that
address different channels through which such bias
could emerge. The first includes county-level fixed
effects (FEs) to control for the influence of time-
invariant unobservables, while the second addition-
ally addresses potential bias from simultaneity and
omitted variables by employing instrumental vari-
ables (IVs) in a two-stage least squares framework.
We draw on three instruments. One follows Li et al
(2017a) by using a regional count of grocery stores.

The other two are counts of interstate gasoline sta-
tions and counts of transformers along the electri-
city grid. To the extent that grocery stores and gas
stations host charging stations, we expect them to
be strongly correlated. A correlation is also expected
between charging stations and transformers, as these
are needed to step down power to a lower voltage
appropriate for charging infrastructure. We expect
none of these instruments to have a direct effect on
EV sales, an expectation that is scrutinized belowwith
a placebo regression.

Our findings suggest that charging infrastructure
remains a binding constraint on the adoption of EVs
in Germany. Specifically, our IV models indicate that
each additional normal charging point installed in
a month is associated with an increase of approx-
imately 0.06 BEVs per county per month, while the
effect of a fast charger is 0.27 BEVs. The correspond-
ing effect sizes for PHEVs are about half the mag-
nitude of BEVs, likely because PHEVs are partially
powered by an internal combustion engine and there-
fore less dependent on charging infrastructure. The
larger effects for fast chargers complements Gnann
et al ’s (2019) results that a market diffusion of EVs
in Germany is possible with exclusive reliance on
fast public charging infrastructure.Moreover, it high-
lights the need for an expanded network of fast char-
gers, as also advocated by Gnann et al (2018).

As a robustness check, we allow for non-linearities
using a quadratic specification, thereby providing a
test of whether a tipping point has been reached after
which the effect of charging infrastructure levels off.
We find no evidence for diminishing effects, sug-
gesting that Germany—although exceeding the min-
imum recommendation of charging point density—
has not reached saturation. We further undertake
a systematic analysis that tests for heterogeneity in
the effect of charging points according to regional
socioeconomic conditions, finding that the estim-
ate increases with population density (in contrast
to Brückmann et al 2021) and fuel prices. Taken
together, these results indicate that the disappointing
uptake of EVs in Germany since the implementation
of the subsidy could be accelerated by an increase in
charging infrastructure, particularly if it is regionally
targeted to reflect the differential effects across rural
and urban areas.

The next section presents the data set for our
analysis. Section 3 introduces the methodology and
section 4 shows the results. Section 5 uses the model
estimates to examine the relative cost-effectiveness of
an ongoing subsidy program for normal- and fast
chargers by county. The final section 6 summarizes
and provides policy implications.

2. Data

The data analyzed in this study is assembled from
several sources that we merged via a Geographical
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Figure 1. Temporal development of uptake of electric cars.

Information System. Data on EV registrations, meas-
ured by month and county, is taken from the Fed-
eral Office for Economics and Export Control (BAFA
2019), which is responsible for the subsidy program
for EV purchases. The program has been effective
since July 2016 and initially extended a subsidy of
€4000 for the purchase of a BEV and €3000 for a
PHEV. The subsidy applies to all cars that are priced
under €60 000, with its cost equally split between
the government and the car manufacturers3. The
data does not include the purchase of non-subsidized
vehicles, which comprised about 12% of EVs sold
in 2017 and 14% in 2018 (KBA 2019b). Although
our analysis thereby captures over 85% of the mar-
ket, the absence of non-subsidized EVs is a potential
caveat, particularly if such purchasers have a system-
atically different response to charging infrastructure
than purchasers of subsidized EVs.

Between 1 July 2016 and 31 December 2018, we
observe 91 456 subsidized purchases in total, which
include subsidies to private customers, companies,
and the public sector. As commercial and public cus-
tomers most likely have their own charging points,
we restrict the sample to private customers, excluding
municipal companies (N = 648), municipal associ-
ations (N = 111), corporations (N = 442), found-
ations (N = 63), associations (N = 360), and com-
panies (N = 50 172)4. In addition, we exclude cars

3 As part of a larger economic stimulus package in the aftermath
of the Covid-19 pandemic, the German government stipulated an
increase in the subsidy. Specifically, since June 2020, the purchase
of BEVs and PHEVs can be subsidized by up to €9000 and €6750,
respectively.
4 Although not the focus here, models estimated on a sample that
includes only company cars (table A8) reveal the coefficients on
charging infrastructure to be statistically insignificant, which likely
owes to the fact that company cars can often be charged at the work
place. Moreover, a large number of electric company cars belong to
car sharing companies, which rely less on public infrastructure.

with fuel cells (N = 13), resulting in a final sample
of 39 647 subsidized purchases that are summed by
county. With a total of 400 counties—or NUTS3
regions—observed over 30 months from July 2016
until December 2018, the data forms a balanced panel
comprising 12 000 observations.

Figure 1 illustrates the uptake of EVs since the
start of the subsidy, which picks upmomentumby the
first quarter of 2017. Moreover, we observe substan-
tial regional variation in the uptake of EVs (figure 2),
both across the East-West divide of the country and
between rural and urban areas. The density of EVs is
higher in urbanized areas, which are more prevalent
in the West. In the East of Germany, which is largely
rural, only the capital Berlin stands out as a hot spot
of electric cars.

Data on charging infrastructure is obtained by
the Federal Network Agency BNetzA (2019), which
provides a list of registered charging stations, includ-
ing their start date of operation and their geographical
coordinates. The data additionally includes the num-
ber of charging points at each station, distinguishing
between normal- and fast charging points. Normal
charging points have a maximum capacity of 22 kW,
while fast charging points reach up to 350 kW. There
are a total of 7988 charging stations having an aver-
age of two charging points that were put in operation
until 31 December 2018. Themajority of these, about
88%, is normal charging points, which, as in the case
of EVs, saw a more rapid growth in the recent past
than fast charging points (figure 3). Moreover, a spa-
tial pattern similar to that of EVs is evident, with char-
ging points clustering in big cities, in particular Berlin
and Hamburg (figure 4).

Table 1 presents descriptive statistics on the
dependent and explanatory variables used in the
models. Overall, we observe a mean of 2.260
BEVs purchased per county and month as well
1.157 PHEVs. In about 31% of the month-county
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Figure 2. Dispersion of EVs across counties by December 2018.

Figure 3. Temporal development of charging points.

combinations, we do not observe any purchase of an
BEV, whereas this share increases to 46% in the case
of PHEVs. On average, in a given month a county
has about 20 normal charging points and three fast

charging points. In 14% of the observations, no nor-
mal charging point is installed and in 53% no fast
charging point is installed. Given the presence of
zeros in the measurements of cars and chargers, we
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Figure 4. Dispersion of charging stations (normal and fast) across counties in December 2018.

maintain measurement in levels rather than logar-
ithms to avoid missing values5.

The data is completed by a suite of regional,
time-varying control variables taken from the RWI-
GEO-GRID km2 raster data (Breidenbach and Eilers
2018), including purchasing power per capita, which
we aggregate to the county level. Moreover, we con-
trol for regional characteristics, such as population
density and the number of one- and two-family
homes. The latter variable captures home-readiness
to recharge, which has been shown to be a particu-
larly important determinant of BEV uptake (Patt et al
2019).

Last, we control for the deflated fuel price in the
county by drawing on data from an online portal
called the Market Transparency Unit for Fuel, which
records the petrol and diesel price at 3 min inter-
vals for each of Germany’s roughly 15 000 gas stations
(LeSage et al 2017). We aggregated this data by calcu-
lating themean petrol price by county over themonth
directly preceding the observation month.

5 We also explored Poisson and hurdlemodels to accommodate the
zeros in the data (see table A9), which yield similar results to the
linear models presented in the main text.

3. Methodology

Our empirical point of departure is a fixed effects (FE)
regression specified as

evit = β+βcchargeit +βT
xXit + θi +µt + νit, (1)

where evit denotes either the number of BEVs or
PHEVs in county i in period t, chargeit measures the
number of points, vector Xit contains time-varying
control variables, and the β are the corresponding
parameters to be estimated. In addition, we control
for county FEs θi and a set of year-month FEs µt .
The county FEs θi capture unobservable characterist-
ics that do not vary over the three-year period on the
county level. Such characteristics could include the
sluggish development of traffic infrastructure, such
as highways, railways, and gas stations, as well as
the presence of car dealers. The term ν it is an idio-
syncratic error that captures unobserved shocks. We
estimate separatemodels for normal and fast charging
points.

One of the assumptions required for identifying
the causal effect using the above model is the absence
of simultaneity, which would emerge if the number
of EVs was simultaneously a determinant of charging

5
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Table 1. Summary statistics of the estimation sample.

Mean St. dev. Min Max

Uptake of electric cars (#) 2.260 3.091 0.000 45.000
Uptake of plug-in hybrids (#) 1.157 1.795 0.000 28.000
Stock of normal charging points (#) 19.727 46.765 0.000 776.000
Stock of fast charging points (#) 2.736 5.997 0.000 128.000
Family houses (# in 1000) 27.789 17.440 1.983 116.868
Purchase power pc (€1000) 22.933 2.504 18.111 34.758
Population (1000/km2) 0.529 0.694 0.036 4.678
Fuel price (€/liter) 1.291 0.055 1.201 1.492
Supermarkets (#) 84.805 89.504 11.000 1375.000
Transformers (#) 15.125 26.227 0.000 445.000
Interstate fuel stations (#) 0.860 1.407 0.000 8.000
No. of observations 12 000

Note: All variables are time-varying except for Supermarkets, Transformers, and Interstate fuel stations. The fuel price

captures the mean petrol price of the month preceding the observation month.

points.We address this potential source of endogenity
by instrumenting ourmeasure of charging points and
employing two-stage-least squares along with FEs to
estimate Model (1). We draw on three instruments.

The first follows Li et al’s (2017a) analysis of
the EV market in the United States, which instru-
ments charging stations using a measure of the num-
ber of grocery stores and supermarkets in a metro-
politan statistical area (MSA). As this measure does
not vary over time, the authors multiply it with the
one-quarter lagged number of existing charging sta-
tions in all MSAs other than the MSA correspond-
ing to a given observation. The variable so con-
structed thereby allows differential effects of grocery
stores according to national shocks in charging sta-
tion investment, as measured by the lagged number
of stations in other MSAs.We apply the same proced-
ure here, drawing on the RWI-GEO regional database
to construct counts of grocery stores for each county,
which does not vary over the time interval of the
data.We then interact this with the one-month lagged
count of charging points in all remaining counties,
denoting the resulting instrument as groceries6.

The second instrument is a measure of the count
of transformers along the electric grid (denoted trans-
formers), while the third is a count of the number
gasoline stations located along the interstate (denoted
interstate stations). Both variables are measured at the
county level. As both variables do not vary over time,
we interact them with a linear year-month trend to
allow for differential effects over time7. On average,
there are around 15 transformers and one interstate
fuel station per county (table 1). About 40% of all
counties have at least one interstate fuel station, while
95% of counties have at least one transformer.

6 Weused amonth lag because this is the time-unit in our data. Like
Li et al (2017a), we also explored the use of a quarter lag (table A10),
but found this had little bearing on the results.
7 To allow for more flexibility, we looked into interacting the
transformers and fuel stations with year-month dummy variables,
presented in table A11. The main conclusions remain unchanged.
As expected, the J-statistic suggests overidentification in the model
of fast chargers.

The validity of the instruments, denoted Zit , rests
on two assumptions pertaining to their covariance
(cov): (i) they are correlated with charging points, i.e.
cov(Zit, chargeit) ̸= 0, while (ii) they are not correlated
with the error term ν it , i.e. cov(νit,Zit) = 0. The first
assumption, which is tested below for each instru-
ment (table A1), comports with intuition. As in the
US, grocery stores in Germany commonly host char-
ging points to attract EV motorists who can combine
charging with shopping excursions. Hence, a pos-
itive correlation is expected between grocery stores
and chargers. A positive correlation of chargers with
transformers and interstate gas stations is also expec-
ted: Transformers are required to reduce transmission
voltages for end uses such as charging stations (Khan
et al 2019, Brinkel et al 2020), while interstate gas sta-
tions serve as a convenient location for recharging,
particularly in the case of fast chargers. We find that
the correlation between transformers and the num-
ber of normal chargers is ρ= .58, while ρ= .46 for the
correlation between interstate fuel stations and fast
chargers.

The second assumption—that the IV has no dir-
ect causal effect on the outcome—cannot be formally
tested, but receives further scrutiny below.

4. Results

We focus our analysis on BEV uptake, beginning with
separate models for normal and fast chargers that
ignore heterogeneity. The appendix presents models
where the dependent variable is PHEV uptake, docu-
mented below.

Figure 5 presents point estimates and 95% confid-
ence intervals from four models of BEVs that either
employ standard FE or that additionally couple FE
with IVs to control for simultaneity and omitted
variables (see tables A1 and A2 for the regression
tables of the first and second stage, respectively). For
normal chargers, we explored the use of two altern-
ative instruments: groceries and transformers. Not-
ing that they yield virtually identical point estimates,

6



Environ. Res. Lett. 16 (2021) 064092 S Sommer and C Vance

Figure 5. Coefficient estimates for normal and fast charging points.

figure 5 presents results using the transformers instru-
ment, which has a slightly narrower confidence inter-
val.8 For fast chargers, we use the instrument inter-
state stations, recognizing that such stations almost
exclusively deploy fast chargers.

Across all models, the estimates of normal and
fast chargers are positive and statistically significant.
The FE estimate indicates that each additional nor-
mal charger is associated with an increase of 0.03
BEVs in the month following its installation, with the
estimate doubling to 0.062 in the instrumented case.
Multiplying this coefficient with the ratio of mean
normal charging points to mean EV purchases yields
an elasticity estimate of 0.54. Thus, a 10% increase
in normal charging points is associated with a 5.4%
increase in BEVs, which falls within the 1.8%–8.4%
range of estimates reported by Li (2017a)9.

Fast chargers are seen to have a considerably
stronger influence on BEV uptake, with an FE estim-
ate of 0.10310. The instrumented model suggests an
even higher point estimate that reaches 0.273. How-
ever, its wide confidence interval renders it statistic-
ally indistinguishable from the FE estimate.

With regard to the strength and validity of
the instruments, diagnostic checks presented in the
appendix are generally supportive. The first stage
F-statistics, ranging between 1364 and 7422, all far
exceed the commonly referenced threshold of 10 as

8 Wealso estimate amodel inwhichwe use both variables to instru-
ment the number of normal charging points (table A12). The res-
ults are very similar to those that we present in the main text.
Moreover, the J-Statistic fails to reject the null hypothesis that the
instruments are valid.
9 The analysis of Li et al (2017a) groups normal and fast chargers in
a single model. We also explored grouping, and find that the point
estimate is relatively close to the one for normal chargers presented
above (see table A3). The elasticity increases to 0.58.
10 The stronger effect found for fast chargers parallels the study of
Neaimeh et al (2017), who find a stronger influence of fast chargers
on distance driven.

well as the threshold of 104.7 recently suggested by
Lee et al (2020). We additionally explored the valid-
ity of the IV by employing a placebo test sugges-
ted by Bound and Jaeger (2000) and popularized by
Altonji et al (2005) and Angrist et al (2010) (see also
van Kippersluis and Rietveld 2018). The test involves
regressing the IV on the outcome variable using a sub-
sample of the data with zero charging points. A stat-
istically insignificant coefficient would lend support
to the exclusion restriction, i.e. that the IV does not
directly affect the outcome. As presented in table A4,
this is found to be the case for the transformer and
interstate IVs. The estimated coefficient on the gro-
cery store IV, by contrast, is highly significant, cast-
ing doubt on the exclusion restriction in this instance.
We surmise that one reason why the exclusion is not
supported in this case is that a high density of gro-
cery stores would require shorter driving distances
for maintenance-related travel like shopping, which
could directly bear on the uptake of EVs.

We complete the econometric analysis with mod-
els that allow for alternative sources of heterogeneity.
The first includes a quadratic specification of char-
ging points, presented in table A5, to allow for a non-
linear effect. The evidence for such an effect is weak.
The small magnitude of the squared term suggests
that there are no counties in Germany approach-
ing a saturation point after which additional char-
ging points have a zero effect. Specifically, the estim-
ate indicates a turning point in the effect at more
than 300 chargers, which is far beyond the range
observed in our sample. We conclude that charging
infrastructure continues to be a binding constraint
on the uptake of BEVs, lending support to the gov-
ernment’s plan to expand charging infrastructure
(BMVI 2020b).

We subsequently estimate models that inter-
act charging points with each of the four control
variables, allowing for differential effects according

7
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Figure 6. Heterogeneitiy in the estimates of normal charging points.

to local socioeconomic circumstances. This analysis
reveals evidence for a statistically significant inter-
action effect of fuel prices and population density,
both of which increase the positive effect of char-
ging points on BEV uptake (table A6). These effects
jibe with intuition. A stronger effect of chargers in
more densely populated areas likely reflects the influ-
ence of a larger customer base and a larger demand
for off-street parking, while higher prices for fuel
would presumably increase the salience of chargers
as an alternative energy source for meeting mobil-
ity needs. To glean further insight into these effects,
figures 6 and 7 present cartographic depictions of
the marginal effects from the models of normal and
fast chargers with the interactions. The mean mar-
ginal effect of normal chargers amounts to 0.073
and the 95% confidence interval spans from 0.046 to
0.101. Among fast chargers, the mean marginal effect
is 0.250 [0.113, 0.386]. Both maps indicate a clear
division between the East and the West, with higher
marginal effects in the latter. Moreover, a pattern is
seen wherein higher estimates tend to be clustered
in more dense areas, particularly in the Ruhr Val-
ley, a polycentric urban area in the West that was
formerly the country’s industrial heartland. This may
owe to the fact that city dwellers tend to be renters and
are thus less likely to have access to private chargers,
making them more sensitive to additional charging
points.

A notable exception to this pattern is the city-state
of Berlin, which registers an estimatedmarginal effect
of fast chargers that is essentially equal to zero in the
case of fast chargers. One explanation for this anom-
aly is that Berlin has an exceptionally large number
of houses, about four times as high as the national
average without Berlin. Given the negative interac-
tion effect of houses and charging points evidenced
from the econometric model, this high incidence
of houses would pull down the estimated marginal
effect, rendering it statistically indistinguishable from
zero (p= 0.760).

In a final step, we estimate the impact of char-
ging points on the uptake of PHEVs (table A7). In
general, the magnitude of the effects are half the size
identified in the models of BEVs (table A2) and only
statistically significant at the 5% level whenwe instru-
ment the number of charging points with the num-
ber of transformers. This finding supports the intu-
ition that the uptake of PHEVs, with their partial
reliance on fossil fuels, is less responsive to charging
infrastructure.

5. On the subsidy allocation

TheGerman government has earmarked €300million
in subsidies for the establishment of charging infra-
structure. The maximum subsidy for a single nor-
mal charging point is set at €2500 and for a fast

8
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Figure 7. Heterogeneitiy in the estimates of fast charging points.

charging point at €12 000 (BAV 2019). From a
cost-effectiveness perspective, an optimal allocation
would dictate that the budget is spent so as to equal-
ize the return per Euro on normal- and fast charging
points.

Using the estimates from the models with the
transformers and gas stations instruments (table A2),
respectively, we find that the subsidy for normal char-
ging points leads on average to 0.062∗12/2500=
0.298 BEVs per year per €1000, while the subsidy
for fast chargers leads to 0.273∗12/12000= 0.273
EVs per €1000. The difference of 0.025 between
the two estimates is small and statistically insig-
nificant, suggesting that the subsidies are indeed
well-calibrated.

An additional consideration concerns how the
spatial distribution of subsidies for chargers across
Germany impacts BEV uptake. The recently passed
budget allocates two thirds of funding for charging
infrastructure to fast chargers with the remaining one
third to normal chargers (BMVI 2020a). Taking the
subsidies noted above of €2500 and €12 000 for nor-
mal and fast chargers would result in 40 000 normal
and 16 667 fast chargers. One extreme scenario would
distribute these chargers uniformly across counties,
which, based on the mean marginal effects estimates

from table A6, would yield about 75 500 new EVs over
the course of a year11.

Alternatively, a cost-efficiency perspective recog-
nizes that the subsidy is optimally allocated when
the per Euro return to charging points is the same
across the counties in Germany. Applying the county-
specific marginal effects estimates derived from the
models in table A6 results in about 83 000 new EVs
over a year, nearly an 11% increase relative to the cal-
culation assuming a homogeneous effect of chargers.
With geographically differentiated targeting, policy-
makers can thus substantially improve the effective-
ness of the subsidy.

6. Conclusion

Using data on a subsidy program for EVs that was
implemented in Germany in July 2016, we have ana-
lyzed the effect of charging infrastructure on the
uptake of EVs. The subsidy was implemented as part
of an effort to introduce one million EVs on the road
by 2020, an effort that currently faces a substantial

11 We arrive at this figure by summing two products: (0.049 (the
mean marginal effect of normal chargers) ∗ 40 000 ∗ 12)+ (0.260
(the mean marginal effect of fast chargers) ∗ 16 667 ∗ 12).
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shortfall of over 400 000 vehicles. Our analysis sug-
gests that insufficient charging infrastructure remains
a binding constraint on the uptake of EVs.Our instru-
mented estimate suggests that an additional nor-
mal charging point is associated with 0.062 addi-
tional BEVs per month per county, corresponding to
an uptake of 0.74 BEVs per county over the course
of a year. The instrumented point estimate for fast
chargers is, at 0.273, over four times the magnitude,
corresponding to 3.28 BEVs per county. These are
average effects that mask substantial heterogeneity
detected over space, with stronger effects of char-
gers found in densly populated areas and where fuel
prices are high. Through a back-of-the-envelop calcu-
lation, we show that geographically targeted subsidies
for chargers in recognition of this heterogeneity can
greatly improve their effectiveness in promoting BEV
uptake.

Germany’s budget to encourage EV car purchases
via subsidies is €1.2 billion, while the budget for char-
ging infrastructure is more modest at €300 million.
An important question for future research is how
to balance support for these two mechanisms. We
suspect that a reallocation of expenditure toward

charging infrastructure would be warranted, follow-
ing a similar recommendation by Li et al (2017a)
for the US. Nevertheless, it would be import-
ant to gauge the likely extent of free-rider effects
for both EV purchases (Chandra et al 2010) and
charging infrastructure before implementing such a
reallocation.
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Appendix A. Online appendix

Table A1. First stage estimation results for the uptake of BEVs.

Normal Fast

Groceries Transformers Gas stations

Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.

# Grocery stores× L(Charging points) 0.003∗∗∗ (0.001) — — — —
# Transformers× Year-month — — 0.001∗∗∗ (0.000) — —
# Fuel stations — — — — 0.003∗∗ (0.001)
Purchase power pc 0.803 (1.621) −2.917 (2.175) 0.536∗∗ (0.260)
Population density 137.818∗∗ (58.543) 130.076 (138.393) −4.158 (12.585)
No. of houses −3.806 (2.653) 2.471∗ (1.433) −0.302 (0.307)
Fuelprice 61.145∗∗∗ (15.520) 54.614∗∗ (26.865) 2.218 (5.995)
Constant −0.000 (0.000) 0.000 (0.000) 0.000∗∗∗ (0.000)

Year-month fixed effects Yes Yes Yes
Individual fixed effects Yes Yes Yes
Cragg–Donald Wald F-statistic 7422 1364 1923

No. of observations 12 000 12 000 12 000

Note: Standard errors are clustered at the NUTS3 level. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% level,

respectively.

Table A2. Second stage estimation results for the uptake of BEVs.

Normal Fast

FE Groceries Transformers FE Gas stations

Coeff. Std.eErr. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.

Normal
chargers

0.031∗∗∗ (0.004) 0.058∗∗∗ (0.011) 0.062∗∗∗ (0.006) — — — —

Fast
chargers

— — — — — — 0.103∗∗∗ (0.007) 0.273∗∗∗ (0.087)

Purchase
power pc

−0.163∗∗ (0.083) −0.039 (0.127) −0.022 (0.132) −0.327∗∗∗ (0.094) −0.359∗∗∗ (0.105)

Population
density

−0.757 (3.893) −1.934 (7.629) −2.096 (8.118) 1.831 (3.478) 3.838 (4.907)

No. of
houses

0.704∗∗∗ (0.085) 0.422∗∗∗ (0.156) 0.383∗∗∗ (0.146) 0.978∗∗∗ (0.222) 0.890∗∗∗ (0.217)

Fuelprice 5.246∗∗∗ (1.835) 4.337∗∗ (2.074) 4.212∗∗ (2.010) 5.795∗∗∗ (1.831) 4.966∗∗ (2.207)
Constant 2.260∗∗∗ (0.113) 2.260∗∗∗ (0.113) 2.260∗∗∗ (0.113) 2.260∗∗∗ (0.113) 2.260∗∗∗ (0.113)

Year-month
fixed effects

Yes Yes Yes Yes Yes

Individual
fixed effects

Yes Yes Yes Yes Yes

No. of
observations

12 000 12 000 12 000 12 000 12 000

Note: Standard errors are clustered at the NUTS3 level. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% level,

respectively.
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Table A3. Second stage estimation results for the uptake of BEVs with grouped charging points.

FE IV

Coeff. Std. err. Coeff. Std. err.

Chargers 0.028∗∗∗ (0.004) 0.058∗∗∗ (0.012)
Purchase power pc −0.184∗∗ (0.081) −0.050 (0.134)
Population density −0.277 (3.703) −1.244 (7.980)
No. of houses 0.726∗∗∗ (0.097) 0.392∗∗ (0.175)
Fuelprice 5.226∗∗∗ (1.828) 4.052∗ (2.263)
Constant 2.260∗∗∗ (0.113) 2.260∗∗∗ (0.113)

Year-month fixed effects Yes Yes
Individual fixed effects Yes Yes
Cragg–Donald Wald F-Statistic — 1212

No. of observations 12 000 12 000

Note: Standard errors are clustered at the NUTS3 level. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%,

and 10% level, respectively.

Table A4. Placebo estimation results.

Groceries Transformers Stations

Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.

# Grocery stores× L(Charging points) 0.000∗∗∗ (0.000) — — — —
# Transformers× Year-month — — −0.000 (0.000) — —
# High way gas stations× Year-month — — — — −0.000 (0.000)
Purchase power pc −0.410∗∗ (0.168) −0.211 (0.177) −0.247 (0.172)
Population 0.874 (8.123) −1.292 (8.436) −1.297 (8.692)
Family houses −0.290 (0.259) 0.175 (0.258) 0.103 (0.218)
Fuel price −2.006 (6.528) −5.225 (5.790) −4.675 (6.286)
Constant 16.168∗ (8.416) 13.340 (9.282) 10.965 (8.944)

Year-month fixed effects Yes Yes Yes
Individual fixed effects Yes Yes Yes

No. of observations 1230 1230 1230

Note: Standard errors are clustered at the NUTS3 level. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% level,

respectively.
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Table A5. Second stage estimation results for nonlinearities in the deployment of charging infrastructure.

Normal Fast

FE Transformers FE Stations

Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.

Normal chargers 0.031∗∗∗ (0.003) 0.061∗∗∗ (0.006) — — — —
Normal chargers×
Normal chargers

−0.000 (0.000) −0.000∗∗∗ (0.000) — — — —

Fast chargers — — — — 0.100∗∗∗ (0.007) 0.274∗∗∗ (0.088)
Fast chargers× Fast
chargers

— — — — −0.001∗∗∗ (0.000) 0.001 (0.001)

Purchase power pc −0.158∗∗ (0.080) −0.013 (0.126) −0.323∗∗∗ (0.094) −0.363∗∗∗ (0.106)
Population density −1.891 (3.430) −3.892 (7.384) 1.390 (3.321) 4.355 (5.027)
No. of houses 0.692∗∗∗ (0.082) 0.363∗∗∗ (0.139) 0.965∗∗∗ (0.227) 0.908∗∗∗ (0.220)
Fuelprice 5.160∗∗∗ (1.862) 4.074∗∗ (1.935) 5.730∗∗∗ (1.847) 5.061∗∗ (2.250)
Constant 2.260∗∗∗ (0.113) 2.260∗∗∗ (0.113) 2.260∗∗∗ (0.113) 2.260∗∗∗ (0.113)

Year-month fixed effects Yes Yes Yes Yes
Individual fixed effects Yes Yes Yes Yes
Cragg–Donald Wald
F-Statistic

— 663 — 981

No. of observations 12 000 12 000 12 000 12 000

Note: Standard errors are clustered at the NUTS3 level. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% level,

respectively.

Table A6. Second stage estimation results for heterogeneous effects of charing points.

Transformers Stations

Coeff. Std. err. Coeff. Std. err.

Normal chargers 0.073∗∗∗ (0.014) — —
Purchase power pc 0.241 (0.228) −0.349∗∗∗ (0.110)
Population density −12.859 (8.669) 2.235 (5.068)
# Houses 0.264 (0.232) 0.870∗∗∗ (0.215)
Fuel price 1.532 (2.346) 2.489 (2.710)
Normal chargers× Purchase power pc −0.073 (0.070) — —
Normal chargers× Population density 1.131∗ (0.601) — —
Normal chargers× # Houses −0.001 (0.008) — —
Normal chargers× Fuel price 0.263∗∗∗ (0.079) — —
Fast chargers — — 0.250∗∗∗ (0.070)
Fast chargers× Purchase power pc — — 0.026 (0.190)
Fast chargers× Population density — — 1.577 (5.519)
Fast chargers× # Houses — — −0.076 (0.076)
Fast chargers× Fuel price — — 1.225∗ (0.660)

Year-month fixed effects Yes Yes
Individual fixed effects Yes Yes
Cragg–Donald Wald F-Statistic 20 282

No. of observations 12 000 12 000

Note: Standard errors are clustered at the NUTS3 level. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% level,

respectively.
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Table A7. Second stage estimation results for the uptake of PHEVs.

Normal Fast

FE Transformers FE Stations

Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.

Normal chargers 0.005 (0.004) 0.020∗∗∗ (0.004) — — — —
Fast chargers — — — — 0.005 (0.009) 0.075 (0.048)
Purchase power pc −0.117 (0.093) −0.048 (0.118) −0.143∗ (0.082) −0.156∗ (0.080)
Population density −7.795∗ (4.109) −8.455 (5.494) −7.499∗∗ (3.696) −6.670∗ (3.990)
No. of houses 0.443∗∗∗ (0.100) 0.285∗∗∗ (0.080) 0.496∗∗∗ (0.114) 0.459∗∗∗ (0.117)
Fuelprice 2.719∗∗ (1.362) 2.210 (1.557) 2.871∗∗ (1.276) 2.529 (1.584)
Constant 1.229∗∗∗ (0.064) 1.229∗∗∗ (0.064) 1.229∗∗∗ (0.064) 1.229∗∗∗ (0.064)

Year-month fixed effects Yes Yes Yes Yes
Individual fixed effects Yes Yes Yes Yes
Cragg–Donald Wald F-Statistic — 1634 — 1924

No. of observations 12 000 12 000 12 000 12 000

Note: Standard errors are clustered at the NUTS3 level. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% level,

respectively.

Table A8. Estimation results for the uptake of company BEVs.

Normal Fast

Coeff. Std. err. Coeff. Std. err.

Normal chargers 0.092 (0.063) — —
Fast chargers — — 0.007 (0.084)
Purchase power pc −1.900 (1.422) −2.324 (1.637)
Population density −136.372 (120.452) −132.286 (119.538)
No. of houses −0.157 (1.312) 0.799 (0.871)
Fuelprice 7.279 (7.453) 10.334 (7.175)
Constant 2.670∗∗∗ (0.561) 2.670∗∗∗ (0.561)

Year-month fixed effects Yes Yes
Individual fixed effects Yes Yes

No. of observations 12 000 12 000

Note: Standard errors are clustered at the NUTS3 level. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%,

and 10% level, respectively.

Table A9. Estimation results for the uptake of BEVs using nonlinear models.

Poisson Hurdle (second stage)

Normal Fast Normal Fast

Coeff. Std. err. Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.

Normal chargers 0.009∗∗∗ (0.001) — — 0.033∗∗∗ (0.004) — —
Fast chargers — — 0.037∗∗∗ (0.005) — — 0.106∗∗∗ (0.008)
Purchase power pc −0.075 (0.051) −0.147∗∗ (0.061) −0.184 (0.121) −0.387∗∗∗ (0.118)
Population density 4.503 (3.163) 3.619 (3.714) 0.883 (6.321) 4.656 (4.645)
No. of houses 0.255∗∗∗ (0.045) 0.398∗∗∗ (0.055) 0.835∗∗∗ (0.097) 1.169∗∗∗ (0.231)
Fuelprice 2.140∗∗∗ (0.712) 2.397∗∗∗ (0.772) 4.576∗ (2.332) 5.287∗∗ (2.376)
Constant 0.714∗∗∗ (0.012) 0.714∗∗∗ (0.012) 3.168∗∗∗ (0.131) 3.165∗∗∗ (0.131)

Year-month fixed effects Yes Yes Yes Yes
Individual fixed effects Yes Yes Yes Yes

No. of observations 12 000 12 000 7489 7489

Note: Standard errors are clustered at the NUTS3 level. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% level,

respectively.
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Table A10. Second stage estimation results for the uptake of BEVs when using a quarter lag for the groceries instrument.

Coeff. Std. err.

Normal chargers 0.057∗∗∗ (0.011)
Purchase power pc −0.046 (0.123)
Population density −1.862 (7.384)
No. of houses 0.439∗∗∗ (0.150)
Fuelprice 4.393∗∗ (2.050)
Constant 2.260∗∗∗ (0.113)

Year-month fixed effects Yes
Individual fixed effects Yes
Cragg-Donald Wald F-Statistic 7662

No. of observations 12 000

Note: Standard errors are clustered at the NUTS3 level. ∗∗∗, ∗∗, and ∗ denote statistical

significance at the 1%, 5%, and 10% level, respectively.

Table A11. Second stage estimation results for the uptake of BEVs when using dummy variables for the instrument.

Normal Fast

Coeff. Std. err. Coeff. Std. err.

Normal chargers 0.064∗∗∗ (0.006) — —
Fast chargers — — 0.279∗∗∗ (0.090)
Purchase power pc −0.014 (0.135) −0.360∗∗∗ (0.105)
Population density −2.166 (8.362) 3.910 (4.969)
No. of houses 0.366∗∗ (0.148) 0.887∗∗∗ (0.216)
Fuelprice 4.158∗∗ (2.026) 4.937∗∗ (2.233)
Constant 2.260∗∗∗ (0.113) 2.260∗∗∗ (0.113)

Year-month fixed effects Yes Yes
Individual fixed effects Yes Yes
Cragg–Donald Wald F-Statistic 48 67
Hansen J-Statistic 34.51 (p= 0.185) 42.601 (p= 0.038)

No. of observations 12 000 12 000

Note: Standard errors are clustered at the NUTS3 level. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%,

and 10% level, respectively.

Table A12. Second stage estimation results for the uptake of BEVs when using two instruments.

Normal

Coeff. Std. err.

Normal chargers 0.056∗∗∗ (0.011)
Purchase power pc −0.049 (0.123)
Population density −1.837 (7.312)
No. of houses 0.445∗∗∗ (0.153)
Fuelprice 4.412∗∗ (2.050)
Constant 2.260∗∗∗ (0.113)

Year-month fixed effects Yes
Individual fixed effects Yes
Cragg–Donald Wald F-Statistic 3859
Hansen J-Statistic 0.121 (p= 0.7279)

No. of observations 12 000

Note: Standard errors are clustered at the NUTS3 level. ∗∗∗, ∗∗, and ∗ denote statistical significance at the

1%, 5%, and 10% level, respectively.
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