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Abstract
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tition in a growth model with endogenous labor supply and heterogeneous agents.
AI possesses the ability to improve autonomously through application, testing,
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nomic growth but can also serve as an entry barrier for competing firms. Therefore,
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1 Introduction

The ascent of the ”Tech-Giants”—e.g., Amazon, Alphabet, Meta or Apple—has led to a

significant increase in market power in the industries for software, social media, or com-

munication networks enclosing new policy challenges (Stigler Committee, 2019). There

are more and more calls for increased market regulation of firms in the digital economy

from the political and economic side. An essential cornerstone for the success of the Tech

Giants has been the rise of Information and Communication Technologies (ICT)—and

nowadays, the steadily increasing relevance of Artificial Intelligence (AI). We define AI

as an intangible asset, as it is an ”investment in organizational capabilities, creating or

strengthening product platforms that position a firm to compete in certain markets”

(Hulten, 2010). Other examples for intangible assets are e.g., software, databases, R&D,

design, training, market research, branding or business process engineering (Haskel and

Westlake, 2017). AI is distinct from ”brute-force” (Makridakis, 2017) machines and has

the crucial characteristic of being able to learn from application: AI is increasingly capa-

ble of autonomously improving without human aid and can improve itself by e.g., deep

machine learning or reinforcement learning (Lu, 2020). As information can be broadly

and cheaply assessed nowadays and evaluated using machine-learning algorithms, AI can

autonomously develop over time (Brynjolfsson et al., 2017), which we call self-learning

(Gersbach et al., 2022).

We suppose that a rise in AI algorithms will affect market concentration—not only in the

software industry, where it facilitated the ascent of the Tech Giants, but also in industrial

production. In the spirit of De Ridder (2019), we assume that AI may decrease variable

costs but comes in hand with investments in AI infrastructure for its implementation in

industrial production which we interpret as fixed costs. As a result, the main questions

we address using our theoretical model are the following: When and why do firms prefer

to implement AI, even if additional fixed and variable costs have to be borne? How do

different groups benefit from AI implementation in industrial production? How does AI

implementation affect market concentration, input factor allocation, markups and factor

income shares? What are governmental interventions that guarantee an optimal economic

integration of AI to broadly distribute the benefits of AI to all population groups?

Our main motivation is to theoretically examine how the industrial incorporation of AI—a

self-learning intangible asset—may affect market concentration and factor income shares.

The new feature of our model is that we endogenize the optimal AI infrastructure invest-

ments and analyze the resulting number of firms operating in industrial production in

dependence of the development of AI and the preferences of different stakeholding groups.

Therefore, the rise in market concentration is an endogenous result of our model. We

focus on a neoclassical economy with heterogeneous agents and elastic labor supply and

industrial firms that produce a single consumption good using a nested CES production
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function that incorporates AI as a non-rival input factor. In our model, firms with a high

AI productivity have incentives to invest in AI infrastructure—not only due to its positive

effect on firm-specific productivity, but also to oust competing firms from the market,

to obtain higher market shares and to be able to charge price markups. Depending on

the productivity differences between firms in industrial production, we observe different

levels of market concentration. In our approach, we focus on modelling the optimally-

chosen AI infrastructure investments—promoting firms’ AI productivity but inhibiting

market entry of competing firms—that maximize the income of different groups. Since

we assume that ordinary workers benefit from their capital and labor income, whereas

entrepreneurs additionally benefit from the sale of AI algorithms and firm profits, we

examine how the level of AI affect the income of these agents. Our model shows that the

evolution of the factor income shares and the (endogenous) labor supply depends on the

elasticity of substitution between the input factors aggravating a conclusive statement on

the effects of AI on the labor market. Yet, we generally observe an increase in market

concentration, imperfect competition and rising markups if firm-owners can collectively

decide on the optimal AI investments, leading to allocative inefficiency and socially sub-

optimal output. Moreover, we observe a strong divergence of capital and consumption

rates of entrepreneurs and workers in our economy with AI, especially in case of imperfect

firm competition leading to decreasing capital and labor shares and an increasing profit

share. This trajectory particularly supports wealth inequality promoted by AI, based on

which we discuss potential policy interventions to counteract income divergence.

The remainder of the paper is organized as follows: In Section 2, we present related

literature. We describe the essentials of our theoretical model in Section 3. Afterwards,

the effects via which AI affects price markups and firm competition in industrial produc-

tion, namely via investments in AI infrastructure and resulting firm exit and productivity

effects, are described in Section 4. We define equilibrium conditions in Section 5 and de-

scribe the optimization considerations of different stakeholding groups and show how this

affects AI growth and the long-run equilibrium in Section 6. For illustrative purposes,

we provide a numerical exercise of the model in Section 7, assess comparative statics of

the model and outline the effect of AI on several parameters of interest. We delineate

inefficiencies in our economy and counteracting policy interventions in Section 8 and dis-

cuss our findings and portray the weaknesses of our model in Section 9. We conclude in

Section 10. Additional graphs, tables and equations are relegated to the Appendix.

2 Relation to the Literature

There is a myriad of literature discussing the implications of automation and robots for

economic outcomes, e.g., by Acemoglu and Restrepo (2018a), Acemoglu and Restrepo

(2018b) and Hémous and Olsen (2014). Particular attention has been devoted to the

2



effect of automation on the labor force for assessing how new technologies may affect

for example unemployment rates or the labor income share (Prettner, 2019; Korinek

and Stiglitz, 2017; Grossman and Oberfield, 2021). Karabarbounis and Neiman (2014)

describe that the effect of a new technology on the labor force strongly depends on the

industry under consideration, as especially repetitive tasks that are easily routinizable

such as clerical or simple assembly occupations may be at risk with a rise of automation.

Trammell and Korinek (2020) state that automation allows capital to perform more

tasks that were formerly performed by human labor and Aghion et al. (2017) argue that

automation is labor-augmenting as it allows capital ”to better complement to labor”. On

the opposite, Hémous and Olsen (2014) state that automation displaces especially low-

skilled labor in the long-run and leads to a decline in the labor income share providing

evidence for the connection between automation and the rise in income inequality which

gets underlined by Acemoglu and Restrepo (2021).1

Increasingly, however, the topic of data and AI is also being considered separately in

economic literature (Aghion et al., 2017; Jones and Tonetti, 2020). In contrast to the

definition of e.g., robots in economic literature, AI is not simply a technology that can

be used as a substitute for labor (Trammell and Korinek, 2020) but rather a technology

that improves endogenously via its application. Inspired by Hanson (2001) who revises

learning by doing in light of new technological developments and the concept of machine

intelligence, we focus on the self-learning feature of contemporary AI algorithms as defined

by Gersbach et al. (2022). Moreover, AI is interpreted as a scalable intangible asset

(Haskel and Westlake, 2017), as AI software can be used simultaneously by different

firms and, in contrast to many tangible assets, AI can be re-employed repeatedly at a

relatively little cost.

Being interpreted as a ”general-purpose technology” (Eeckhout, 2021; Cockburn et al.,

2019), AI has already a large impact not only on the Tech-industry, but also on industrial

production. In the automotive industry, for example, software development is becoming

part of the core business and AI plays a decisive role e.g., to support the endeavor

for autonomous driving (Falcini et al., 2017). Patŕıcio and Rieder (2018) reveal in a

meta-analysis that the agricultural and food industry could benefit from AI, which could

enhance production, quality control or food security as it e.g., facilitates the detection

of plant diseases, grain classification or the determination of flowering stages. Cioffi

et al. (2020) state that AI may be applied in supply chain management for demand

forecasts, maintenance for predictive forecasts or improve the effective use and logistics

of non-renewable resources. Ernst et al. (2019) refer to the possible applications of AI,

in particular in the area of algorithmic trading, patients’ pathology diagnosis or the

automated review of legal contracts.

1For more insights into the theoretical and empirical implications of task replacement and automation
on human labor we reference to Hémous and Olsen (2014); Acemoglu and Restrepo (2018a,b, 2020).
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Eeckhout (2021) states that although technological progress may displace workers, it

benefits everyone due to higher real income for everyone—yet, only if markets are com-

petitive. He determines different channels through which technology may foster a rise in

market concentration, namely through the supply side (e.g., ownership of railway tracks)

or through the demand side (e.g., network effects on social media platforms). In particu-

lar, he mentions a third factor affecting market power, namely learning, which becomes

more important in times of machine-learning algorithms and a vast amount of data and

cheap information. Goldin et al. (2020) analyze the link between the intensity of in-

tangible assets—which also comprise AI—in a given industry and a declining degree of

competition. De Ridder (2019) explains that the increasing use of intangible inputs leads

to an increasing importance of fixed costs compared to variable costs. He assumes that

expenditures on intangible inputs can reduce firms’ marginal production costs and high-

lights that the implementation of intangible assets change the production process of a

firm. Despite large initial investments that have to be made for the infrastructure, de-

velopment or maintenance of intangibles—defined as fixed or overhead costs—, variable

costs decrease with scale, which makes the marginal costs converge to zero, indicating the

increased importance of fixed costs compared to variable costs. Grossman and Oberfield

(2021) note that the implementation of new technologies in the production process en-

tails sizable fixed costs. In line with this argument, De Loecker et al. (2021) assume that

firms have to pay fixed costs to enter an industry and to produce with a new technology

or to pay nothing and to not enter the market. Yet, Haskel and Westlake (2017) state

that intangible-intensive economies need new types of physical infrastructure and refer to

the common theme in public debate that high fixed costs can inhibit economic growth.

Schweitzer et al. (2022) point out that the training of AI algorithms after investing in

software development and infrastructure is at near zero marginal costs. A well-known

contribution to the industrial organization literature on the effect of fixed costs and mar-

ket barriers on market competition is provided by Dixit (1979). He models a duopolistic

economy, where an established firm faces potential competition from a prospective en-

trant and assesses the effect of fixed costs on discontinuities on firms‘ reaction functions.

Moreover, he analyzes how the fixed costs of an established firm have to be set to block

the entry of a competing firm. Maskin and Tirole (1988) show that fixed costs can be

that large that only one firm can generate positive profits on the market. Similarly, Os-

borne (1964) states that depending on the fixed costs, the entry of competitors can be

ineffectively impeded, effectively impeded or, in an extreme case, even blockaded.

The concentration of production in a few firms does not necessarily hint at weakened

competition, but may also reveal that the most innovative and productive firms have an

increased market share (Autor et al., 2020a; Bajgar et al., 2021). Nonetheless, Calvano

et al. (2020) point out that the degree of possible collusion on the market declines with

a rising number of competitors. Haskel and Westlake (2017) argue that due to the scala-
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bility of intangibles, technologically-leading firms can outperform technological laggards,

which facilitates the emergence of large and profitable firms which they empirically mo-

tivate by showing that the profitability of US domestic corporate businesses has recently

become increasingly unequal. Bajgar et al. (2021) provide empirical evidence that market

concentration has been increasing, particularly in markets with high levels of intangible

assets, rising profits and markups and declining business dynamism, primarily in glob-

alized and digital-intensive industries. Calligaris et al. (2018) note that the decline in

business dynamism has been especially pronounced in information technology, telecom-

munication and services but highlight that technologically-laggard firms benefit less from

the digital transformation as catching up to the technological frontier has become more

difficult. In this spirit, Autor et al. (2020a) observe that large firms become more produc-

tive with more ICT and that intangible-intensive firms show higher markups and lower

labor shares. Diez et al. (2021) provide empirical evidence that market concentration has

especially risen in the digital economy, in particular in the ICT industry. Akcigit et al.

(2021) state that ”market concentration has risen, firms’ price markups over costs have

increased [...] and profitability has doubled” in the last decades. Ernst et al. (2019) point

out that the digital nature of AI makes large ”first-mover advantages” possible—leading

to increased market concentration and economic inequality. Babina et al. (2021) provide

empirical evidence that AI contributes to a rise in industry concentration as it especially

benefits large firms. Li et al. (2017) emphasize that the AI-induced changes to competi-

tiveness and to social and economic benefits need to be more thoroughly evaluated. On

the opposite, Diez et al. (2021) conclude that technological changes coming in hand with

rising fixed costs do not play a major role in explaining the rise in markups, but caution

against the observation that a rise in market concentration and decline in competition

may lead to imperfect factor allocation, welfare losses or inequality.

In addition to our analysis of an AI-induced rise in fixed costs and markups, we examine

the effects of AI on factor income shares. Autor et al. (2020a) provide empirical evidence

for a declining labor income share (LIS) due to a so-called rise of ”superstar firms”.

One of the main findings of De Loecker et al. (2020) is a negative relation between the

LIS and markups. Diez et al. (2019) state that rising markups have a inverse effect

on firms’ LIS and that national income paid to workers has been decreasing since the

1980s. Empirical studies reveal a decline in the LIS, both from a global perspective

(Elsby et al., 2013) or specifically for the US, where a decline of around 7% in the labor

share can be observed since 2000 (Karabarbounis and Neiman, 2014). With regard to

industry-specific differences, Barkai (2020) points out that larger declines of the LIS are

especially observable in industries with strong market concentration. There is a variety of

reasons that are discussed in the literature for explaining the decline of the labor income

share. Whereas Karabarbounis and Neiman (2014) hint at the decline in the relative

price of investment goods, the reasoning of Raurich et al. (2012) is based on a larger
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capital deepening and price markups. Grossman et al. (2017) explain the decreasing LIS

with the human capital complementarity with physical capital. Trammell and Korinek

(2020) conclude that the reason for a decline in the LIS is that wages rise, but less than

output. In contrast to the literature showing that a decreasing labor share comes hand

in hand with an increasing capital share, Barkai (2020) reveals that—independent of the

industry—both labor and capital shares have been declining, which has been re-balanced

by increasing profit shares.

3 Model

For the sake of simplicity, we choose a neoclassical economy where agents’ savings and

consumption are endogenized and labor supply is elastic. We model an economy with

an industrial sector in which firms produce a consumable good and an AI sector, where

companies produce AI algorithms. Industrial firms with heterogeneous productivities use

capital, labor and AI for production. In the model, AI algorithms can autonomously

develop by being applied, tested and trained in industrial production. We focus on

describing the supply side in detail. We illustrate the main features of our model in

Figure 1 before subsequently explaining each feature in more detail.

Perfect Competition

Wage Payment 

AI

Inputs

Industry

Entrepreneurs

Workers

Wage Payment 
$ $$

$ $$

L K

Firms

$

Profits
$ $

Learning 

Figure 1: Diagram of the Model
Concept.

Imperfect Competition

AI

Inputs

Wage Payments

Industry

Entrepreneurs

Workers

Wage Payments

$

L K

AI Infrastructure 

Net Profits

$

$

$

$

Market Barrier

$

Profits
$ $

Learning

In an initial state (left part of Figure 1), industrial firms with heterogeneous produc-

tivities (illustrated by dots with different intensities of red color) operate on a perfectly

competitive market, entrepreneurs and ordinary workers obtain a competitive wage and

industrial firms make zero profits. Yet, in particular, productive industrial firms have

an incentive to build up AI infrastructure (e.g., the training of workers, installation of

servers, acquisition of data) serving as market barriers that impedes market entry of in-

dustrial firms with a lower productivity, leading to imperfect competition (right part of
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Figure 1). In such a setting, we show that markets are more concentrated and industrial

firms can charge higher markups, leading to lower wages and positive profit payments for

entrepreneurs.

3.1 Individuals

There are atomistically small agents of mass L ∈ N+ in the economy. The mass L of

agents in the economy stays constant over time. In our growth model, we assume a

multi period but finite time horizon, where t ∈ {1, ..., T} and T ∈ N≥1 is a discrete

time index. All agents live for the entire time period. The mass L of workers in the

economy is endowed with L units of labor that can be used for labor or leisure. We

describe the labor leisure trade-off in more detail at a later stage. Moreover, at t =

0, a total capital endowment of K0 is uniformly distributed amongst all agents in the

economy. Capital can be accumulated over time and total capital in each period is given

by Kt ∈ R+. Individuals inelastically rent out their entire capital supply to industrial

production and obtain the interest rate rt. Individuals differ with regard to their skill

level η, with η ∈ {W,E}. First, agents with index η = {W} are defined as ordinary

workers, who work in industrial production. Second, agents with skill index η = {E}
have the same productivity as agents with η = {W} but have entrepreneurial talent

such that they own all firms in industrial production in all periods. In addition, agents

with entrepreneurial skills own companies that develop AI algorithms.2 Henceforth, we

call agents with entrepreneurial skills entrepreneurs as they own all industrial firms and

all AI-developing companies in the economy. Yet, all agents irrespective of their skill-

level work in industrial production.3 Total labor supply of agents in the economy with

endogenous labor supply is given by Lt = LW
t + LE

t , where LE
t is the labor supply of

agents with entrepreneurial skills and LW
t is the labor supply of ordinary workers. We

define the share of agents with entrepreneurial-skills as lE = LE

L
∈ (0, 1) and of ordinary

workers as lW = 1 − LE

L
. The share of entrepreneurs and workers stays constant over

time, but the time spent on leisure might change over time due to the labor leisure trade-

off, such that we define the amount of supplied labor by group η at time t as Lη
t . The

group of agents collectively decide on the time spent on leisure, given by Nη
t = Llη −Lη

t .

Moreover, there are AI algorithms that can be used in industrial production. The concept

of AI algorithms will be later described in more detail. A more detailed definition of the

income stream of all agents in the economy is provided in Section 5.

2To avoid misunderstandings we use the term ”firm” for corporations in industrial production and
”company” for corporations in the AI-developing sector.

3For the sake of simplicity and in contrast to Lankisch et al. (2019) who assume different elasticities
between automation and heterogeneously-skilled workers, all agents have the same elasticity of substitu-
tion with AI in our approach.
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3.2 Industrial Production

There are j ∈ {1, ..., N} firms with N ∈ N≥1 in industrial production. All industrial firms

produce the same consumption good. The nested CES production function of all j firms

at time t in industrial production has the following form:

Yj,t =

(
αK

ϵ−1
ϵ

j,t + (1− α)

[(
γL

ω−1
ω

j,t + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

] ϵ−1
ϵ

) ϵ
ϵ−1

. (1)

The production function of each firm j is concave, strictly increasing and differentiable

with respect to all input factors (Mas-Colell et al., 1995). Each firm j uses capital

Kj,t ∈ Kt, labor Lj,t ∈ Lt and AI At ∈ R+ as input factors to produce the consumption

good. The parameters ϵ ∈ (0,∞) and ω ∈ (0,∞) define the elasticities of substitution

between labor, capital and AI, and α ∈ (0, 1) and γ ∈ (0, 1) determine the respective

factor income shares. Moreover, we assume that labor Lt is not transferable across

time, whereas capital Kt and AI At accumulate over time. Industrial firms can perform

intra-period trade of labor and capital and can buy AI algorithms from AI-developing

companies.

Depending on the state of the economy, only mt ∈ {1, ..., N} firms are active in industrial

production. We consider two types of firms: Active firms mt have a strictly positive

demand for the input factors for production, whereas N−mt passive firms do not produce

and do not demand any input factors. Only a limited amount of the input factors labor

and capital can be employed in production by each firm depending on the number of

active firms mt ∈ {1, ..., N} at time t.4 As labor and capital are rival and excludable

goods, all mt firms that are active at time t compete for the available input factors. We

denote the labor and capital supply of firm j at time t depending on the number of active

firms m as Lj,t,m and Kj,t,m, respectively. Therefore, also the production Yj,t,m of a firm j

at time t depends on the number of m active firms. We suppose that all industrial firms

can acquire AI algorithms in a non-rival, but excludable fashion (Eeckhout, 2021; Ernst

et al., 2019; Wagner, 2020): every firm that buys AI software At can use it. Recall that

non-rivalry of AI implies that if one firm buys AI algorithms,it does not prevent other

firms’ use of AI (Acemoglu, 2009; Farboodi and Veldkamp, 2021). Yet, it is an excludable

good as only firms that buy AI software can use it for production.

A main assumption in our model is that all industrial firms have a heterogeneous AI

productivity. Our approach stands in line with Aghion et al. (2019), who assume that

there is heterogeneity in firm-specific efficiency that persists over time—in our case, in

firm-specific AI productivity, given by θj,t. Thus, each firm j has a time-variant produc-

tivity θj,t drawn from a fixed probability distribution Φ(θj,t). We assume that the firm

with rank j = 1 draws the highest productivity and the N -th firm draws the lowest from

4In the remainder of the paper we disregard the indices t if we use mt in equations and only use m.
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the distribution.5

Assumption 1

Each firm j has a firm-specific AI productivity θj,t drawn from a fixed productivity distri-

bution Φ(θj,t). The higher the rank j of a firm, the higher its productivity θj,t.

We assume that the productivity of each firm is discernible for all other firms. In this

way, every firm knows its own AI productivity and that of all other firms. For the sake of

simplicity, we suppose that the labor and capital productivity of all firms are identical.

Productivity changes over time are disregarded.6 Thus, our model does not allow for

i.e. firm-specific research and development or innovation, which could improve firms’ AI

productivity over time.

3.3 AI Algorithms

Already in 1965, Moore observed that the number of transistors in a densely integrated

circuit doubles about every two years (Moore, 1998). This technological development

gave rise to Information and Communication Technology (ICT) that has shaped the

path of economic development in the last decades. Similarly, we assume that AI will

grow exponentially in the upcoming years due to its self-learning characteristics and the

immense rise in data availability.

Typical applications of AI (currently) are speech recognition, image recognition, natural

language processing or shortest path derivation.

In our model, we conceptualize that the greater industrial production, based on the pro-

duction of each active firm given by Eq. (1), the greater the application area for the

testing and training of AI algorithms. Although a clear distinction between generic data,

data, information and communication technologies and algorithms is often hard to make,

we focus on the term Artificial Intelligence as we focus on the self-learning capabilities

of AI algorithms. For example, in the agricultural industry, the greater total produc-

tion of wheat grain, the better AI algorithms can be trained to detect grain diseases.

In an example with autonomously-driving cars, the more cars are produced and sold,

the more observations can be assessed and the better the learning of an AI-supported

autonomous driving software. Therefore, we interpret total industrial production as the

”training set” for AI algorithms and suppose that AI is an input factor that autonomously

grows through its application in industrial production. In this sense, as stated by Tram-

mell and Korinek (2020), ”the production process itself contributes to the generation of

productivity-increasing ideas”. Thus, our model is in the fashion of Romer (1986, 1990),

5The initial productivities θj,t0 of all firms are equal at t = 0 and the subsequent dynamics of the
productivity parameter are discussed at a later stage.

6Nonetheless, it could be an avenue for future research to examine how a stochastic evolution of the
firm-specific AI productivity would affect the economy in more detail. For instance, De Loecker et al.
(2021) model the productivities of firms entering the market as AR(1) processes.
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stating that knowledge is a result of learning by doing (Arrow, 1962) in production and

builds on a comparable assumption as Farboodi and Veldkamp (2021) stating that ”data

is a by-product of economic activity”.

Motivated by Gersbach et al. (2022), we simplify our model and assume that AI has

reached a stage at which it can develop autonomously due to its self-learning character-

istics. This autonomous development implies that no labor or capital is required for the

accumulation of AI—nonetheless, this extreme assumption has to be interpreted with

caution and is only imposed for the sake of simplicity. Due to its autonomous devel-

opment over time, AI is distinct from automation that serves as a substitute for labor

or a technology that affects total factor productivity but does not learn by application.

Inspired by an energy system analysis of Höök et al. (2011), we assume bounded growth,

such that AI may grow interminably, but the rate of growth converges to zero in an

infinite time horizon. In the spirit of their arguments, we suppose that the upper bound

of AI may be virtually non-existent, but the steps in self-learning of AI software become

increasingly smaller, thus slowing its growth process. For the sake of tractability and via-

bility of our model, we assume that there is an upper bound B for the level of AI, caused

by restricted hardware availability necessary for the implementation of AI in industrial

production.7 We model the level of AI as follows:

At+1 = min[B,At

(
1 + b

(
m∑
j=1

Yj,t,m

))
], (2)

where A0 > 0. We assume that b(0) = 0 and b is strictly positive for x > 0.

There is a unique company in the AI sector that develops AI algorithms. The AI com-

pany produces self-learning algorithms that autonomously accumulate over time without

using any labor and capital as described in Eq. (2). Entrepreneurs collectively own

the AI-developing company. The AI company sells AI algorithms to firms in industrial

production. Laatikainen and Ojala (2014) argue that a ”flexible and well-designed ar-

chitecture” makes different pricing models for ”software-as-a-service” possible, leading

to firm-specific prices for the AI software. Therefore, we assume that entrepreneurs

owning the AI company can apply competitive differentiation and can perfectly price-

discriminate industrial firms that buy AI software, such that each industrial firm has

to pay its marginal value for acquiring AI algorithms. All active firms buy the entire

non-rival and excludable AI stock if they decide to produce using AI.8 It is a stark as-

7Even if we can assume that the hardware evolves together with the software, we suppose on the basis
of the findings of Kumar (2015) that there are still physical scaling limits that restrict the growth of AI
software. Moreover, also Farboodi and Veldkamp (2021) assume an upper bound of data productivity in
their analysis of a data economy. Thus, AI cannot sustain growth in the long run, as it reaches an upper
bound due to hardware restrictions.

8Entrepreneurs collectively decide on establishing this pricing mechanism. Otherwise, each en-
trepreneur would set a zero price for AI for the industrial firm s/he owns.
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sumption that firms pay different prices for acquiring AI software. Yet, it can also be

interpreted such that all industrial firms pay the same base price for the acquisition of

AI software, but industrial firms with a higher AI productivity also pay for additional

features, functions or services and thus face different variable AI costs. Another inter-

pretation is that the rise in AI enables software-developing companies to better know

customers’ and firms’ preferences and behavior such that the estimation of their price

and income elasticities can be optimized allowing software producers to improve their

pricing strategy and enabling them to charge personalized prices. The profit of the AI

company is given by9

ΠAI
t,m =

m∑
j=1

pj,t,mAt − Λ(At)

We note that the profit of the AI company depends on the number of mt active firms

in industrial production that acquire AI algorithms for a firm-specific price. Moreover,

the costs for the development of AI are defined as Λ(At), but will not be discussed in

more detail. We disregard the behavior and decisions of the AI-developing company, as

we focus on the industrial firms that use AI for production. For further insights on how

to model the behavior of AI-developing companies, we refer to Gersbach et al. (2022).

4 AI Incorporation and its Effect on Competition

In addition to being a non-rival input factor for production, we suppose that there are

channels through which AI additionally affects firm competition in industrial production.

Investments in AI infrastructure increase AI productivity but might serve as market

barriers which affect firms’ market entry and thus affect the number of active firms mt.
10

Furthermore, due to the self-learning feature of AI, its development is supported by a

broad application area—which is defined as total industrial production, as given in Eq.

2.

4.1 AI Infrastructure Investments

Whether AI gets acquired by an industrial firm depends on the expected profit of pro-

ducing with AI versus the profit without using AI. Referring to the corporate integration

of AI, the European Commission (2021) points at the importance of (computational)

infrastructure, in addition to software and an appropriate governance and coordination

9It needs to hold that the AI company does not pay any costs for AI development and gets endowed
with an AI stock A0 at t = 0 free of charge.

10Yet, in contrast to Hopenhayn (1992), we do not derive a stationary equilibrium of entry and exit
rates of firms that are affected by productivity shocks.
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framework. Recall that if industrial firms decide to employ AI in production, they have

to buy AI software for the firm-specific price pj,t,m for each algorithm At. Moreover, we

assume that industrial firms in our model need to invest in infrastructure for AI (fixed

costs) in addition to the acquisition of AI software (variable costs). Infrastructure invest-

ments in AI can be e.g., the training of workers how to deal with AI, the installation of

computational infrastructure such as computers or servers or the acquisition of data. Mo-

tivated by Noy and Zhang (2023) who experimentally show that output quality rises by

18% if workers have the possibility to use Chat-GPT—a new AI technology—we assume

that AI increases firm productivity. We assume that investments in AI infrastructure

increase the productivity of a firm, but they may serve as a market barrier for competing

firms. Motivated by Markiewicz and Silvestrini (2021), we interpret investments in AI

infrastructure as fixed costs that serve as barriers-to-entry for competing firms. In partic-

ular, exclusive ownership of big data (Rubinfeld and Gal, 2017) and data control (Stigler

Committee, 2019) in digital ecosystems with AI-based services may constitute a barrier

to entry. We claim that if a firm invests in AI infrastructure, all firms have to invest

the same amount to be competitive, which will later be explained in more detail. In this

way, investments in AI infrastructure can hinder market competitors from entering the

market and we focus on modelling the optimally-chosen fixed costs inhibiting the market

entry of competing firms that maximize the utility of different groups of agents.11

In each period t, we assume that every firm j has to undertake a minimum infrastructure

investment denoted as Dl to be able to incorporate AI in industrial production and

to produce with Eq. (1).12 Nonetheless, firms can make the decision to invest more

than the minimum required level, denoted as Fj,t = Fj,t + Dl, where Fj,t represents the

amount of investment that goes beyond the minimum AI investment Dl. Each firms’

productivity depends on its productivity in the preceding period. If a firm invests Fj,t−1

in AI infrastructure, this increases its AI productivity in the following period t. Moreover,

we assume that the firm-specific learning of AI depends on the market share of a specific

firm j, given by ϕj,t−1. The larger the market share of a specific firm, the better tailored

the AI algorithms for firm-specific production. In this way, the AI productivity of a

firm depends both on the firm-specific investments in AI infrastructure, and on the firm-

specific market share, which defines how well-tailored the AI algorithms are to a specific

firm.13 Due to the abovementioned reasons, we define the following function to describe

11Whereas e.g., Hopenhayn (1992) assumes a competitive market structure, Aghion et al. (2019)
assume Bertrand competition and Markiewicz and Silvestrini (2021) assume Cournot competition for
analyzing firm dynamics, we suppose that firms have market power and compete in quantities, but that
the number of firms is variable and we endogenously determine the number of active firms.

12For the sake of simplicity, we set Dl = 0.
13There is no purposefully-directed innovation in our model, but productivity increases due to invest-

ments in AI infrastructure and due to the learning capabilities of AI software. The reason is that firms
are myopic and do not anticipate the effect of infrastructure investments on the productivity in the
following period.
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the development of firm-specific AI productivity

θj,t = θj,t−1 (Fj,t−1)
ι (1 + ϕj,t−1)

η with η < 1, ι < 1. (3)

Both a higher market share and private investments have decreasing returns to scale, due

to ι < 1 and η < 1. Yet, we assume that ι > η such that the effect of investments in AI

have a larger effect on firm-specific productivity than the market share. To sum up, the

special feature of AI that we aim at conceptualizing in our model is that its productivity

can be promoted by private investments, given by Fj,t−1, but also benefits from a higher

market share, given by ϕj,t−1, as algorithms are thus better personalized to firm-specific

needs. Therefore, in addition to the self-learning of AI that is described in Eq. (2), we

have a notion of firm-specific learning, described in Eq. (3).

4.2 Price Markups

If firms operate on a competitive factor and product market, this does not enable them

to charge a markup on the price for the goods sold. Yet, as presented by Raurich et al.

(2012) and Autor et al. (2020a), a firm operating on an imperfectly competitive product

market can sell products at a higher effective price and charge a price markup. The

literature claims that the markup trajectories have changed due to the rise of ICT and

we aim at assessing the potential effect of AI on markups. Diez et al. (2019) state

that the rise in market concentration after the turn of the millennium can be assigned

to (especially digital) technology-driven changes in product markets and underpin the

hypothesis of an increase in average markups in their empirical analysis. Markiewicz and

Silvestrini (2021) show that markups are higher in high-ICT industries than in low-ICT

industries using U.S. CompStat and European CompNet data. Calligaris et al. (2018)

additionally state that markup differentials have risen between digitally high-intensive

and low-intensive industries. Inspired by the abovementioned literature assessing the

link between markups and intangible intensity, and based on the markup definition of

De Loecker et al. (2020), we set up a function µt,m for price markups depending on the

elasticity of demand and the number of active firms that determines total output. If less

firms are active, firms can charge markups due to reduced competition, allowing them

to finance their infrastructure investments. We define the consumers’ demand function

in the following way, where qt [Yt(ν)] is total consumers’ demand at time t depending on

price ν for the industrial good Yt.

qt [Yt(ν)] =
m∑
j=1

qt,j =
N∑
j=1

Yj,tν
−τ
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The elasticity of demand is given by τ ∈ (0,∞), such that the lower the value of τ ,

the more elastic consumers demand to changes in prices of the consumption good. If

firms have the possibility to charge a price markup µt,j, the consumers’ demand looks

the following, where ν̂ is the price if firms operate under perfect competition such that

ν = ν̂ + µt,j is the effective price for the consumption good. We can thus rewrite total

consumers’ demand depending on the effective price as

m∑
j=1

qt,j =
m∑
j=1

Yj,t(ν̂ + µt,j)
−τ . (4)

In this fashion, we additionally observe that firms’ possibility to invest in AI infrastructure

is hampered if the elasticity of demand is too high, as this enables firms to charge lower

markups. Note that by construction, a situation in which mt < N firms are active implies

imperfect competition.14 For this reason, firms have strategic incentives in choosing their

AI infrastructure investments (fixed costs), defined as Fj,t, as it prohibits competing

firms from market entry. Especially profitable firms with high AI productivity can invest

in AI infrastructure to oust firms with low productivity from the market. In spite of

the productivity differences between firms, we suppose that all firms charge the same

markup—for the sake of simplicity. Therefore, we cannot distinguish between firms with

high and low markups and neglect the possibility that changes in markups can arise due

to reallocation effects (De Loecker et al., 2021), namely more output of higher markup

firms. We only consider the case of homogeneous, symmetric and identical markups for

all firms.15 The following condition needs to hold such that firms are able to finance their

AI infrastructure investments and is thus a feasibility constraint for each firm

µj,t ≥
Fj,t

Yj,t

. (5)

As a result, we observe a phenomenon where firms engage in cost-refinancing through

markups to accommodate the expenses associated with AI infrastructure.16 The max-

imum fixed costs that a firm can impose are determined by the markups it can apply,

which are influenced by factors such as demand, total output, and the production output

of each individual firm. Building on the work of Jaimovich (2007), it is evident that

markups tend to increase as firms invest more in AI infrastructure (fixed costs). Firms

that have a high AI productivity and low marginal costs for AI are capable of offering

the most competitive AI prices relative to their competitors. These firms, thanks to their

14A more detailed derivation of markups is provided in the Appendix.
15Our model could be extended by allowing the markups to depend on the output elasticity (Diez

et al., 2021; Jaimovich, 2007), for modelling that only low markups can be charged on goods that are
easily substitutable.

16Nonetheless, we disregard that markups could be set at a level such that they overcompensate the
investments in AI infrastructure.
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cost leadership, are able to capture larger market shares and generate higher profits, as

emphasized by Markiewicz and Silvestrini (2021).

4.3 Productivity Effects and Market Barriers

AI addition to affecting firms’ AI productivity, AI infrastructure investments can be

interpreted as market barriers affecting the number of firms that can enter the market.

Moreover, if a firm decides to invest in AI infrastructure, the emerging costs for the

investments need to be financed. Firms anticipate that with higher Fj,t, less productive

firms will not be able to afford the market entry, such that there will be less active firms.

This allows active firms to apply stronger pricing power due to reduced firm competition.

For the sake of simplicity, we assume that if one firm j invests Fj,t in AI infrastructure,

all other firms j̃, where j̃ ̸= j, have to invest the same amount in AI infrastructure

Fj,t = Fj̃,t to be able to compete against firm j in equilibrium which will be explained

in more detail in Section 5. We suppose that firms enter the market—implying that

they have a strictly positive demand for labor, capital and AI—as long as their profit

is expected to be larger than zero. Entrepreneurs are myopic as they only have static

and intra-period considerations and are unable to anticipate the long-term effects of their

present decisions.17 Therefore, if firm-owning agents make decisions at period t, they

do not consider potential effects of their actions on outcomes in subsequent periods.

Moreover, we assume that each firm j has to pay the fixed costs Fj,t in each period t in

which it produces, implying that infrastructure investments have to be renewed in each

period.

Moreover, recall from Assumption 1 that the production of a firm j depends on its

productivity, defined by its rank j and the productivity distribution Φ(θj,t). The profits

of a firm j at time t depending on the number of active firms mt are defined as

Πj,t,m =(1 + µt,m)Yj,t,m − rt,mKj,t,m − wt,mLj,t,m − pj,t,mAt − Fj,t.

Firms pay competitive wages wt,m, interest rates rt,m and AI prices pj,t,m, which are equal

to the marginal value of labor, capital and AI, respectively. The determination of the

equilibrium factor prices is described in more detail in Section 5. The Euler theorem,

which is explained in the Appendix encloses that the profits can be rewritten as

Πj,t,m = µt,mYj,t,m − Fj,t.

We now show how much any firm has to invest in AI infrastructure, such that firms with

a lower AI productivity cannot afford to enter the market. Recall that firms are ordered

17This can also be interpreted such that firms can only operate for a single period t and thus only
perform intra-period profit maximization and do not face a recursive multi-period problem.
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by their AI productivity, where firm j = 1 has the greatest AI productivity and firm

j = N has the lowest AI productivity. The following equation defines the number of

active firms mt depending on the fixed costs Fj,t chosen by any firm j at time t:

mt(Fj,t) =



N if Fj,t ≤ µt,NYN,t,N ,

N − j if Fj,t ≤ µt,N−jYN−j,t,N−j and

Fj,t > µt,N−j+1YN−j+1,t,N−j+1 ∀ j ∈ {1, ..., N − 1},

0 if Fj,t > µt,1Y1,t,1.

(6)

The explanation of Eq. (6) is the following. If the fixed costs chosen by any firm j are

lower than the net profit of the least productive firm j = N operating under perfect com-

petition, given by ΠN,t,N = µt,NYN,t,N = 0, all firms are active on the market enclosing

that mt = N as all firms can afford the fixed costs and still make positive profits. If the

fixed costs are higher than the profit of the (N − j)-th productive firm operating under

imperfect competition, given by ΠN−j,t,N−j = µt,N−jYN−j,t,N−j, there are (N − j) active

firms. If the fixed costs Fj,t are larger than the profit of the second most productive firm,

given by µt,2Y2,t,2, only one firm can afford to pay the fixed costs and will be the mo-

nopolist.18 In this fashion, we model an economy where investments in AI infrastructure

(e.g., the acquisition of data) raise the barriers to market entry for competitors, pose a

potential threat to competition and facilitate a rise of natural monopolies. By taking

into account Eq. (6), we note that with infrastructure investments Fj,t converging to

0, the number of active firms converges to the maximum number of active firms N , as

limFj,t→0mt(Fj,t) = N , and we therefore note that

mt(Fj,t)

∂Fj,t

≤ 0, (7)

enclosing that the lower the fixed costs paid by any firm, the more firms can afford to enter

the market. Furthermore, we note that the possibility to invest in AI infrastructure to

oust firms from the market depends on the productivity distribution of firms in industrial

production and therefore propose the following

Proposition 1

The factor allocation in equilibrium between mt active firms in industrial production de-

pends on the productivity distribution Φ(θj,t).
19

For instance, if all firms have the same AI productivity, all firms operate under perfect

competition and all firms make zero profits. Therefore no firm invests in AI infrastructure

18We assume that if a firm leaves the market, it can always re-enter the market by investing the
necessary AI infrastructure costs in a future period.

19We show how the productivity distribution affects the number of firms and factor allocation in
equilibrium to prove the Proposition in the Appendix.
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and no firm is ousted from the market. On the opposite, if there is an unequal AI

productivity distribution, high-productivity firms that can afford to pay higher fixed costs

have an incentive to oust low-productivity firms from the market to be able to charge

price markups on a market with imperfect competition. Note that by construction of

our model, the average productivity of active firms in industrial production is higher the

fewer firms are active. This conceptualizes the descriptive results of Effenberger et al.

(2020) that indicate that firms in industries with higher market concentration tend to

have a higher AI productivity. To sum up, we propose the following which is proved in

the Appendix:

Proposition 2

By investing in AI infrastructure that serve as market-barriers, low-productivity firms

are ousted from the market. The higher the infrastructure investments Fj,t ≥ 0 of any

firm j, the lower the number of firms that are active on the market and thus affects firm

competition.

We conclude that depending on the fixed costs chosen by any firm, in particular low-

productive firms can be hindered to enter the market. With less firms being active

enclosing less competition, higher price markups can be charged, affecting each active

firm’s profit, leading to a strategic behavior in deciding on AI infrastructure investments.

5 Equilibrium Definition

In Section 3, we showed our model setup using a simple neoclassical method with in-

dustrial production, self-learning AI algorithms and heterogeneous agents. Then, we

highlighted the effects of incorporating AI on competition in Section 4 and underlined

how AI affects market barriers, firm exit, productivity effects and price markups in the

economy.

Now, we define equilibrium conditions such that firms select the optimal input factor

allocation depending on Kt, At, Lt and Φt. We derive the equilibrium factor allocation

of firms for and wt, rt, pt and Yt. We know that consumers demand q [Yt] is determined

depending on total production and we derive the number of active firms, fixed costs

and markups in equilibrium. Firms’ and agents’ optimization is jointly performed in a

numerical example in Section 6.

5.1 Factor Market Equilibrium

Now, we examine the factor market equilibrium. In an initial step, we derive the optimal

allocation of the rival and excludable input factors labor and capital—which are traded

on a perfectly competitive input factor market—between firms with heterogeneous AI
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productivities. Each firm j produces an industrial good Yj,t using a vector of primary

inputs (At, Lj,t,m, Kj,t,m) and all firms produce using the production function, given by

Eq. (1), maximize their expected profit and take the level of aggregate input factor

demand and the level of marginal costs of all active firms as given. We define an input

price vector, such that the prices clear the input factor markets to determine the factor

market equilibrium. In this way, we derive wages, interest rates, firm-specific AI prices

and the distribution of capital and labor amongst all firms depending on the number of

mt active firms. Recall that in contrast to AI, which is a non-rival good that can be

simultaneously used by multiple firms, each unit of the labor and capital supply can only

be used by a single firm. If a firm uses AI software for production, the same software can

also be used by another firm. If a firm hires a worker, this worker cannot be employed

by a different firm—the same holds for capital. Recall that total capital endowment at

t = 0 is uniformly distributed amongst all agents in the economy, total labor supply

is given by L and the initial level of AI in the economy is given by A0. Due to firms’

concave production functions, first-order conditions are necessary and sufficient for the

determination of optimal input factor demands of each firm. The optimal demand for

each input factor Kj,t,m, Lj,t,m and At of each firm j in period t, with mt active firms, is

given by:20

rj,t,m =
∂Yj,t,m

∂Kj,t,m

, wj,t,m =
∂Yj,t,m

∂Lj,t,m

, pj,t,m =
∂Yj,t,m

∂At

. (8)

Thus, the marginal costs of the input factors, given by rj,t,m, wj,t,m and pj,t,m, respectively,

are equal to their marginal product.
21 Due to the concavity of the production function, an increasing use of a single input

factor in production leads to an opposite effect on the factor price. The input factor

equilibrium at time t with mt active firms is defined as

(A∗
t , L

∗
j,t,m, K

∗
j,t,m) =

(
(A∗

t , L
∗
1,m, K

∗
1,t,m), ..., (A

∗
t , L

∗
N,m, K

∗
N,t,m)

)
∈ R+,

where market clearing conditions for all j firms are given by

A∗
t ∈ At(wj,t,m, rj,t,m, pj,t,m), L∗

j,t,m ∈ Lj,t,m(wj,t,m, rj,t,m, pj,t,m)

K∗
j,t,m ∈ Kj,t,m(wj,t,m, rj,t,m, pj,t,m),∀j ∈ {1, ..., N},∀t.

The equilibrium production of each firm, depending on the number of mt active firms, is

20For the sake of simplicity, we fix the price of the industrial output to the numeraire.
21If the marginal benefit of a firm j with regard to capital is higher than for another firm j̃ for all levels

of capital, firm j will use the entire capital stock, whereas no capital is allocated to firm j̃ in equilibrium.
This implies a corner solution where firm j̃ is not active and all capital is allocated to firm j. The same
reasoning applies to the marginal benefit of labor and possible corner solutions. This implies that if firms
productivity are very heterogeneous, it is not necessarily optimal that all firms are active.

18



defined as

Y ∗
j,t,m = G(A∗

j,t,m, L
∗
j,t,m, K

∗
j,t,m) ∀j ∈ {1, ..., N},∀t.

The equilibrium wage and interest rate which are the same for all firms, are given by:

r∗t,m = α
K∗

j,t,m

Y ∗
j,t,m

−1
ϵ

w∗
t,m = (1− α)γL∗

j,t,m

−1
ω Y ∗

j,t,m

1
ϵ

[(
γL∗

j,t,m

ω−1
ω + (1− γ)(θj,tA

∗
t )

ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL∗

j,t,m

ω−1
ω + (1− γ)(θj,tA

∗
t )

ω−1
ω

) 1
ω−1

.

We note that the marginal values of labor and capital depend on the number of active

firms mt among which the input factors have to be distributed. As described in Section

3, all firms are charged their marginal value for AI for the acquisition of AI software such

that the price for AI may differ between firms. Firms pay a firm-specific price pj,t,m for

using the period-specific level of AI, At. As AI is a non-rival good, all firms can use the

entire AI stock simultaneously. The price for AI in equilibrium is given by:

p∗j,t,m =(1− α)θj,t(1− γ)A
−1
ω
t Y ∗

j,t,m

1
ϵ

[(
γL∗

j,m

ω−1
ω + (1− γ)(θj,tAt)

ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL∗

j,m

ω−1
ω + (1− γ)(θj,tAt)

ω−1
ω

) 1
ω−1

.

The higher the AI productivity θj,t, the higher the marginal product of AI of a firm j

and thus the higher the firm-specific price that is charged for acquiring AI algorithms.

The input factor equilibrium determines K∗
j,t,m, L

∗
j,t,m and A∗

t for each firm, depending

on its productivity and the number of competing firms. These equilibrium values can

also be obtained by considering the approach of a revenue-maximizing social planner

who maximizes the economy-wide revenue from production, which we describe in the

Appendix.22 Therefore, we propose the following which we prove in the Appendix:

Proposition 3

With an increasing level of AI and a higher number of active firms, the effect on the

allocation of the rival input factors—capital and labor—depends on the elasticities of

substitution ω and ε between capital, labor and AI.

With regard to the effect of an increasing level of At on optimal factor allocation, recall

from Eq. (1) that the marginal returns to labor, capital and AI depend on the level of

the respective input factors and the elasticity parameters ω and ϵ, due to the functional

22For more insights into the micro-foundation for the demand for industrial goods, see e.g., Atkeson
and Burstein (2008); Jaimovich (2007).
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form of the production function. For example, if labor and AI are substitutable, given

by ω ≥ 1, firms demand less labor with an increasing level of AI (ceteris paribus). In

the Appendix, we discuss conditions for e.g., the elasticity parameters ϵ and ω and how

they affect capital, labor and AI income depending on the level of AI in more detail. Yet,

recall that since AI is non-rival and can be simultaneously used by all active firms, and

as each firm pays its marginal value for the acquisition of AI, the greatest AI income is

obtained if all firms are active on a competitive market and all firms buy AI algorithms.

Moreover, we know due to the properties of the production function, given by Eq.(1),

that
∂Yj,t,m

∂At
≥ 0 so that each individual firm produces more as the level of AI increases.

Yet, the effect of the number of active firms on the firm-specific factor allocation remains

unclear. The following example can illustrate this. On the one hand, more active firms

lead to higher total production. On the other hand, with more active firms mt, each

firm can only obtain a lower share of the input factors labor and capital due to more

competition for the rival input factors. Therefore, the effect of mt on the input factor

allocation and, thus firm-specific production Yj,t,m remains unclear. We discuss this in

more detail in the Appendix.

5.2 Equilibrium for Consumers’ Demand and Markups

The investments in AI infrastructure are financed by the charge of markups. This im-

plies that firms need to charge markups such that they can (at least) refinance their

expenditures on AI infrastructure in equilibrium where they make non-negative profits.

Moreover, it holds that consumers’ demand is satisfied such that

N∑
j=1

qt,j =
N∑
j=1

Yj,t(ν̂ + µt,j)
−τ ≥

N∑
j=1

Yj,t(ν̂ +
Fj,t

Yj,t

)−τ . (9)

As a result, we can derive a lower bound for the markups charged by every firm, given

by

µj,t ≥

(∑N
j=1 qt,j∑N
j=1 Yj,t

)− 1
τ

− ν̂. (10)

This implies that

Fj,t ≤ Yt,j

(∑N
j=1 qt,j∑N
j=1 Yj,t

)− 1
τ

− ν̂

 . (11)

In our analysis, we focus on an equilibrium scenario where all firms within the market

opt for the same fixed costs and apply identical markups. It is important to note that
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in such a scenario, the greatest equilibrium output level is achieved when no markups

are charged. This is the case in a market scenario with perfect competition, where firms

operate in a manner that maximizes total output.

5.3 Individual Utility

Recall that the economy is populated by infinitely many agents with mass L. En-

trepreneurs and ordinary workers do not only work, but also save and consume, maxi-

mizing the following life-time utility:

Uη =
∞∑
t=0

βtu(cηt , N
η
t ). (12)

The individual utility is given by an instantaneous concave utility function u(cηt ), which

depends on the consumption cηt of an agent η in period t. Moreover, it depends on agents’

leisure, given by Nη
t = Lη − Lη

t . Each individual discounts future consumption with the

parameter β. Agents’ utility is given by

u(cηt , L
η
t ) = log(cηt ) + κ log(Nη

t ),

where parameter κ > 0 gives the weight that each agent attributes to leisure with regard

to overall utility. All agents rent out their labor and capital supply to firms in all periods.

Furthermore, we assume that capital depreciates at some exogenously given rate δ ∈ (0, 1)

such that total capital of all agents has the following law of motion

Kη
t+1 = (1− δ)Kη

t + sηt , (13)

where st are the total savings. We consolidate our demand function, contingent on con-

sumers’ price elasticity, with the neoclassical framework, acknowledging that production

can be either consumed or accumulated as capital for future production. This consolida-

tion necessitates that the following condition remains valid at the aggregate level:

Yt = ct +Kt+1 − (1− δ)Kt (14)

In contrast to ordinary workers, entrepreneurs receive profits from the sale of AI algo-

rithms such that they face different budget constraints. 23 Therefore, an agent’s budget

constraint in period t depends on the individuals’ skill level η and the number of active

firms in industrial production. Thus, consumption of agents with skills η and mt active

23Since individuals will optimally rent out all capital Kt,η = KS
t,η, where Kt,η is the capital an indi-

vidual with skill level η has rented out to firms, we will only use Kt,η.
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firms at period t is written as follows:

cηt + sηt =
m∑
j=1

[
wt,mL

η
j,t,m + rt,mK

η
j,t,m

]
for η ∈ {W},

cηt + sηt =
m∑
j=1

([
wt,mL

η
j,t,m + rt,mK

η
j,t,m

]
+ pj,t,mAt + µt,mYj,t,m − Fj,t

)
,

for η ∈ {E} ; with K0, L0, A0 given.

Whereas ordinary workers with η ∈ {W} only obtain labor and capital income, en-

trepreneurs with η ∈ {W} additionally receive all profits from industrial production and

from selling AI algorithms, but pay all fixed costs. We define st,η,m as the savings made

by agents with skills η at time t and mt active firms. From now on, we assume that

the equilibrium conditions are satisfied in the economy and assess firms’ and consumers’

utility maximization in the following section.24

6 Optimization Problem

Our analysis involves an two-step optimization problem within a neoclassical model,

where agents in the economy cannot anticipate firm decisions with regard to their infras-

tructure investments in AI, and take wages, prices and interest rates as given. Firms seek

to maximize profits by selecting their AI infrastructure investments (fixed costs). First,

firms make their decision with regard to their AI infrastructure investments. Afterwards,

agents must recursively determine their capital, consumption, and labor supply such that

we face a two-stage optimization problem.

Various stakeholding groups in the economy consider different factors when deciding

on firms’ optimal AI infrastructure investments, as these investments can act as mar-

ket barriers, affecting the number of active firms, markups, profits, wages, and interest

rates. We define the stakeholding group as the set of agents responsible for determin-

ing firms’ optimal AI infrastructure investment strategy, which additionally affects firms’

AI productivity and AI growth (see Eq. (2)). Three potential stakeholding groups are

considered:

1. Entrepreneurs 2. Workers 3. Social Planner

Whereas entrepreneurs and workers select the AI infrastructure investments that maxi-

mize their group-specific total income, the social planner aims at maximizing total income

of all agents. We address the optimization problem in two steps. First, we solve the static

24For the sake of simplicity, we drop the notation using q and v for the demand that depends on the
effective price that is affected by the markups and the price elasticity of demand but only use Yt,j for
the realized equilibrium production from now on.
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profit maximization problem of firms, determining the optimal values of AI infrastructure

investment of each firm (Fj,t) depending on the stakeholding group. Investments in AI

infrastructure have productivity effects (see Eq. 3), but can also serve as market barriers

(see Eq. 6) affecting the number of active firms, markups, profits, total output and input

factor demand. Furthermore, depending on the the AI infrastructure investments, the

growth rate of AI and firm-specific AI productivity is affected. After determining the op-

timal AI infrastructure investments of different stakeholders and deriving firms’ demand

for labor, capital and AI, we subsequently model agents’ decision-making with regard to

ct, Kt, and Lt.

In our analysis, we consider an economy where stakeholders do not have inter-temporal

considerations when deciding on firms’ AI infrastructure investments. Instead, stakehold-

ers solely focus on maximizing their income within the current period, leading to a myopic

optimization. Consequently, stakeholders do not take into account the indirect impact of

AI infrastructure investments on e.g. the growth rate of AI.25 To find potential equilibria

and determine the preferred market equilibrium for each stakeholding group based on

the level of AI, we employ constrained nonlinear optimization algorithms (Lagomarsino,

2020). Nonetheless, agents’ decision-making with regard to capital, consumption and

labor is optimized using a recursive inter-temporal utility maximization where agents

take the period-specific prices, wages and interest rates as given. To sum up, whereas in

the first-step, stakeholders only consider the intra-period effect of AI infrastructure in-

vestments on their income, agents perform a recursive utility maximization (in the usual

neoclassical fashion) in the second step.

6.1 Initial State

In an initial state at t = 0, all N firms produce with AI productivity θj,t = 0 ∀j ∈ N .

Therefore, AI has no effect on production and all firms produce with the same production

function

Yj,0 =
(
αK

ϵ−1
ϵ

j,0 + (1− α) (γLj,t)
ϵ−1
ϵ

) ϵ
ϵ−1

. (15)

It is straightforward to see that if the level of AI is zero, At = 0, or if AI has no positive

effect on production, entailing that θj,t = 0, all N firms have the same productivity and

are all active, such that mt = N . Every firm makes the optimal decision regarding its

input factor demand in a competitive setting and obtains zero profits Πt(θj,t) = 0, such

that no firm invest any amount on AI infrastructure. Therefore, all (symmetric) firms

produce with the production function Yj,0 = G(
∑N

j=1 Kj,0

N
,
∑N

j=1 Lj,t

N
) and make zero profits.

25We assume that firms cannot predict future prices of input factors or the future level of AI.
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6.2 Drawing of Firm-specific AI Productivity

At t = 1, each firm draws a firm-specific AI productivity from an AI productivity distri-

bution θj,t ∼ Φ(θj,t) as explained in Section 3. Thus, all firms have a new AI productivity

compared to t = 0. We suppose that each firm knows both, its own AI productivity and

the AI productivity of all other firms. Recall that if a firm decides to incorporate AI in

production, it has to build up minimum initial infrastructure capacities Dl ≥ 0. Nonethe-

less, each firm can decide to invest more in AI infrastructure, namely Fj,t = Fj,t + Dl

to increase its own AI productivity, but to also challenge the market entry of competing

firms with a lower AI productivity, as described in Section 4.26

6.3 First Step: Firms’ Optimization

Assume that a firm j invests an amount Fj,t ≥ 0 in AI infrastructure. All other firms j̃,

with j̃ ̸= j can fully observe the AI infrastructure investments of firm j. After observing

Fj,t, a competing firm j̃ can decide how much to invest in AI infrastructure. We have to

distinguish between the following cases:

1: Fj̃,t = 0. A firm j̃ does not invest in AI infrastructure and thus cannot compete

against firm j which is active and thus does not enter the market.

2: Fj̃,t ∈ (0, Fj,t). A firm j̃ invests to some degree into AI infrastructure, but no suffi-

cient amount to be able to compete with firm j that invests Fj,t > Fj̃,t. Although

firm j̃ invests in AI infrastructure, it cannot enter the market.

3: Fj̃,t = Fj,t. A firm j̃ invests the same amount into AI infrastructure as firm j.

They compete for input factors and both have a strictly positive total industrial

output.

4: Fj̃,t ∈ (Fj,t,∞). A firm j̃ invests more into AI infrastructure than firm j. Therefore,

firm j cannot compete against firm j̃ and is ousted from the market due to preceding

considerations.

Consider the following example: If the technological frontier—the most productive firm

with j = 1, where θj,t > θj̃,t spends a sufficient amount Fj,t on AI infrastructure to

be the monopolist, it will be the only producer. Competing firms j̃ ̸= j (technological

laggards) are always less productive than the technological frontier and can thus only

afford to invest Fj̃,t < Fj,t. As investing Fj̃,t ∈ (0, Fj,t) only leads to negative profits

for competing firms, they decide between not entering the market (Case 1) or competing

26In contrast to the approach of Hopenhayn (1992), firms in our model first know their productivity
and can then decide on how much they are willing to invest in fixed costs (in our case AI infrastructure).
In line with the assumption of Antras and Helpman (2004), firms first observe their productivity level
and then decide whether they want to start producing.
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against the technological frontier by investing the same amount in AI infrastructure (Case

3).27 Consequently, the investments in AI of firms j̃ are given by Fj̃,t ∈ {0, Fj,t}. Yet, as
technological laggards would make negative profits if they invested Fj,t, they do not enter

the market and the technological frontier is the unique active firm on the market. We note

that with a decreasing amount paid for infrastructure investments by the technological

frontier, more firms can afford to enter the market.28

6.3.1 Stakeholder: Entrepreneurs

Recall that entrepreneurs obtain a share lE of the total labor and capital income. More-

over, they receive the entire profits generated by selling AI algorithms as they collectively

own the AI company. Furthermore, they benefit from the entire profits made by firms in

industrial production, but have to bear all fixed costs for installing AI infrastructure. If

entrepreneurs are the stakeholding group, they maximize their income in each period by

collectively deciding on the profit-maximizing AI infrastructure investments of each firm.

Entrepreneurs’ income is given by

Et,m :=
m∑
j=1

wt,mL
E
j,t,m + rt,mK

E
j,t,m︸ ︷︷ ︸

(I)

+ pj,t,mAj,t,m︸ ︷︷ ︸
(II)

+µt,mYj,t,m − Fj,t︸ ︷︷ ︸
(III)

 (16)

Thus, if entrepreneurs are the stakeholding group, they chose the AI infrastructure in-

vestments that maximize their income in each period in line with

max
{Fj,t}

Et,m s.t. Fj,t ≤ Yt,j

(∑m
j=1 qt,j∑m
j=1 Yj,t

)− 1
τ

− ν̂

 ,

Aj,t,m = Ât,

m∑
j=1

LE
j,t,m ≤ LE

t ,

m∑
j=1

KE
j,t,m ≤ KE

t , ∀t.

There are different channels via which the number of active firms and the level of AI affect

the income of entrepreneurs. Referring to (I), the highest labor and capital income can

be obtained if firms operate on a competitive market where no markups are charged.29.

Yet, the effect of a higher level of AI on the capital and labor income depends on the

elasticity of substitution, given by ϵ and ω and thus remains unclear, but is further

discussed in the Appendix.30 Moreover, entrepreneurs benefit from the profit by selling

27Technological laggards can never afford to invest more than the technological frontier (Case 4).
28As no other firm is able to pay more on AI infrastructure than the technological frontier, it suffices

to only consider its decision. The decisions of all other firms follow analogously.
29Linked to Proposition 3, we discuss how the number of firms affects total production and thus the

capital and labor income due to the heterogeneous AI productivity across firms in the Appendix
30Nonetheless, we see that the higher the share of entrepreneurs in the economy—the greater lE—the

more they benefit from wage and interest payments relative to net profits.
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AI algorithms, given by (II), which depends on the level of AI, the number of firms to

which the algorithms are sold and their respective AI productivity and total production.

Recall that total production depends on the number of active firms, markups and the AI

productivity of firms such that general statements on the dependence of (II) on the level

of AI and the number of active firms are not possible. In addition, the effect of more

active firms (a higher level of AI) on entrepreneurs’ profits (III) remains unclear as less

(more) fixed costs have to be paid, but also lower (higher) markups can be charged.

For example, in a market with zero markups, entrepreneurs do not earn any profits (III),

but receive the greatest total wage and capital income (I), and can sell their algorithms

to many firms as total production is high. Conversely, in a monopoly situation with only

one active firm mt = 1, entrepreneurs gain monopoly revenue but incur high fixed costs to

drive all competing firms from the market and a lower labor and capital income due to a

reduced output. Furthermore, they are restricted to selling the AI algorithms exclusively

to a sole industrial firm (II) with a lower output that has a lower output than it would

have in a competitive setting. Thus, we cannot derive general conclusions with regard

to the optimal AI infrastructure investments from the perspective of the entrepreneurs.

The reason is that depending on the level of AI, the different channels (I)− (III) have

changing relative importance for the income stream of the entrepreneurs.

6.3.2 Stakeholder: Workers

A share of lW agents in the economy are ordinary workers who only receive capital and

labor income. Workers’ income is given by

Wt,m :=
m∑
j=1

wt,mL
E
j,t,m + rt,mK

E
j,t,m︸ ︷︷ ︸

(I)

 . (17)

Their income maximization problem when they are the stakeholding group is analogous

to the one of entrepreneurs, as previously explained. As workers only benefit from labor

and capital income (see (I)), they obtain the highest income if firms operate on a compet-

itive market where no markups are charged. This is economically intuitive as wage and

interest payments are the greatest on a perfectly competitive market in our model. Thus,

workers and entrepreneurs have different considerations when deciding on the optimal AI

infrastructure investments.

6.3.3 Stakeholder: Social Planner

A benevolent social planner aims at maximizing total income of all agents in the economy.

The social planner chooses the AI infrastructure investments Fj,t that maximize the
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total income of all agents, given by It,m, jointly maximizing the income of workers and

entrepreneurs. Therefore, the social planner maximizes the following income stream:

It,m :=
m∑
j=1

[(1 + µt,m)Yj,t,m − Fj,t] (18)

Again, the income maximization is analogous to the one of workers and entrepreneurs.

Note that it can be socially optimal for the total income of all agents that active firms

operate on an imperfectly competitive market and charge markups. In such a case,

fewer firms would be active, leading to lower capital and labor income, but higher profits

would be distributed, with the latter outweighing the former effect. Then, although total

income would be the greatest, there would be inequality between the incomes of workers

and entrepreneurs if no redistribution mechanisms were embraced. Therefore, we will

later show the income inequality depending on the stakeholding group.

6.4 Second Step: Individual Optimization

After the determination of the optimal AI infrastructure investments depending on the

stakeholding group and obtaining the input factor allocation, the wages, interest rates,

AI prices, markups, and profits are derived. Agents in the economy subsequently opti-

mize with regard to their consumption, savings and endogenous labor supply which then

determines the input factor availability in the next period. Due to income accounting

in our economy, income either has to be consumed or saved, such that on aggregate, it

holds that

∑
η

cηt +
∑
η

sηt =
m∑
j=1

[(1 + µj,t,m)Yj,t,m − Fj,t] . (19)

Total consumption and saving need to be equal to the total demanded aggregate output in

equilibrium, given by
∑m

j=1 Yj,t,m times one plus the possible markup, given by (1+µj,t,m)

minus the total fixed costs spent on AI infrastructure, given by
∑m

j=1 Fj,t.

Agents assume the level of AI to be fixed and given exogenously. Thus, they do not

anticipate its growth dynamics, but assume the value of AI to be fixed, which we call Ât.

The utility maximization problem of agents—if we regard a simplified framework with a

single group of agents indexed by parameter η—reads as follows

max
{Kη

t+1,N
η
t }

∞∑
t=0

βtu
(
cηt + (1− δ)Kη

t −Kη
t+1, N

η
t .
)

cηt ≥ 0 Kη
t+1 ≥ 0 Llη ≥ Nη

t ≥ 0 Ât ≥ 0 Kη
0 given .
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In the Appendix, we show the utility optimization framework in a simplified framework

with a single group of agents, including the first-order condition and the recursive for-

mulation of the problem.31 Based on agents’ decision on their capital, consumption and

labor supply in the second step, the available input factors in the next period for the

determination of the optimal AI infrastructure in the first step of the next period are

specified. Thus, the two steps of our optimization problem are interlaced, where firms’

decisions in the first step affect the equilibrium prices and agents’ decisions in the second

step, which again affect the available inputs for firms’ optimization in the subsequent

period.

To sum up, we note that different stakeholding have different preferences with regard

to the optimal AI infrastructure investments due to different income streams. On the

one hand, the profit interest of entrepreneurs can lead to high AI infrastructure invest-

ments enclosing imperfect competition, markups and reduced output. On the other hand,

workers prefer a competitive environment without markups charged. Given the interlaced

optimization problem and the intricate growth pattern of AI within the economy, it proves

difficult to derive universally applicable insights through algebraic solutions in our model.

As a viable alternative, we use a numerical model quantification to highlight the primary

conclusions drawn from our framework. We additionally show the effect of different

stakeholders’ decision on the development of income inequality and factor income shares.

7 Numerical Exercise

As described in Section 6, we execute a two-step optimization procedure. First, we

conduct firms’ intra-period profit maximization and, subsequently, agents’ recursive op-

timization problem of capital, labor and consumption. We illustrate the optimal AI

infrastructure investments depending on three stakeholding groups: i) Workers, ii) En-

trepreneurs and iii) the Social Planner. Depending on the stakeholding group, we compare

the resulting market outcomes, namely the number of active firms, markups, labor supply

and capital and consumption development. Moreover, we assess the growth rate of AI

and the development of the factor income shares. We can partly motivate our parameter

choice using findings of the literature. In our numerical exercise, we choose the following

parameters, given in Table 1. For modelling each firms’ AI productivity, we are moti-

vated by trade literature (e.g., Helpman et al. (2004); Perla and Tonetti (2014)) and use

a Pareto distribution.32

31We set up the utility maximization problem for a framework with perfect competition and in a
framework with imperfect competition.

32The Pareto distribution is given by ϕ(j) = ζλζ

(N−j+1)ζ+1 , where we set the shape parameter ζ and

the scale parameter λ. Yet, motivated by Nigai (2017), we use a lower value for ζ than in Melitz and
Redding (2013).
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Class Parameter Choice Literature Literature Calibration
Production α = 0.33 Mankiw et al. (1992); Kydland and Prescott (1982); α = 0.33; 0.36; 0.33

King and Rebelo (1989)
ω = 1.25 Lu (2020); Aghion et al. (2020) ω = 1.2222; 1.011

ϵ ∈ {0.8, 1.25} Klump and Saam (2008); Raurich et al. (2012) ϵ ∈ [0.8, 1.2]; [0.63, 1.58]
γ = 0.9 Lu (2020) 0.76; 0.5

Individuals lEt = 0.15 Lu (2020) lWt = (0.0965, 0.3)
δ = 0.1 King and Rebelo (1989) δ = 0.1
τ = 2.5 Cette and Lopez (2012) τ = 2.42

Pareto Dist. ζ = 1 Melitz and Redding (2013) ζ = 4.25
λ = 1 Melitz and Redding (2013) λ = 1

AI x = 0.9 N.A.
w = 4 N.A.

B = 300 N.A.
ι = 0.1 N.A.
ν = 0.1 N.A.

Table 1: Parameters for the Numerical Exercise.

Parameters determining the growth dynamics of AI and the effect of AI infrastructure

investments and better tailored algorithms due to a higher market shares cannot be

motivated by economic literature. However, inspired by the analysis of Epoch, a team of

researchers investigating and forecasting the development of AI, we refer to the predicted

AI growth rate as given by https://takeoffspeeds.com/ that we aim at rebuilding using

an incomplete beta distribution for modelling the growth function of AI. Yet, we choose

parameters determining the growth pattern of AI in line with the forecast of Epoch.

Moreover, the concept of price elasticity has not yet been applied to (AI) software. Thus,

we cannot motivate our chosen price elasticity of AI demand using related literature, but

set it to τ = 2.5. We base this value on findings on the price elasticity of ICT at its

gradual introduction in the 1980s (Cette and Lopez, 2012).33

Moreover, there is no estimate for κ in an AI-based economy which we set to 0.78.34

Based on our knowledge and the statement of Lu (2020), there is no empirical data on

the elasticity of substitution between human labor and AI and the factor share of AI,

yet. Therefore, we infer the values for our numerical exercise based on the literature on

automation, machines, robots and labor. For our default analysis, we set ϵ = 1.18 and

ω = 1.25 as we assume substitutability between labor and AI, and capital and labor.

In the Appendix, we consider complementarity between labor and capital and the effect

on the factor income shares. We select the following starting values for capital, labor

and AI in the economy: K0 = 50, L0 = 50 and A0 = 2. Moreover, we observe the

33Although we expect some gradual integration of AI into economic processes, we do not assume a
time-variant price elasticity τ .

34We use an incomplete beta distribution for modelling the growth function of AI, given by b(·), using
x = 0.5 and w = 4. The incomplete beta function is defined as :

Ix(Yt, w) =
1

B(Yt, w)

∫ x

0

hYt−1(1− h)w−1dh

where we use the beta function B(Yt, w)

B(Yt, w) =

∫ 1

0

hYt−1(1− h)w−1dh =
Γ(Yt)Γ(w)

Γ(Yt + w)

which is based on the gamma function Γ(Yt) =
∫∞
0

hYt−1e−hdh.

29

https://epochai.org/research
https://takeoffspeeds.com/
https://epochai.org/research


economy for T = 35 periods where AI grows endogenously via its self-learning features

as described in Eq. (2) and assume that a maximum of N = 50 firms can operate in

industrial production.

(a) Infra. Investments. (b) AI Productivity.

Figure 2: Development of AI Infrastructure Investments and AI Productivity Depending
on the Stakeholder.

In Figure 2, we depict the optimal AI infrastructure investments depending on the stake-

holder and the development of the AI productivity over time. We note that in particular

if entrepreneurs are the stakeholding group, there are high investments in AI infrastruc-

ture to foster AI productivity growth and to maximize firms’ profits.35 The reason is that

entrepreneurs aim at investing in AI infrastructure, not only to increase firms’ productiv-

ity via Eq. (3), but to hamper competitors’ market entry via Eq. (6) for obtaining larger

profits. In contrast, workers solely aim at maximizing their capital and labor income,

which is the greatest in a perfectly competitive environment without markups, such that

there are no AI infrastructure investments going beyond the necessary investments Dl for

the installation of AI in production.

Moreover, we note that there is a persistent increase in the average AI productivity—

irrespective of the stakeholding group. This phenomenon stems from the advantageous

position held by large firms, as AI algorithms are better tailored to their production,

leading to significant increases in their AI productivity.36 Increased market shares, in a

reciprocal fashion, enable the continual fine-tuning of AI algorithms to better suit the

unique needs of larger firms, thereby facilitating ongoing enhancements of their AI produc-

tivity. The social planner, taking into account the income of entrepreneurs and workers,

35This trend persists even though agents in the economy do not consider the potential influence of
increased infrastructure investments on firms’ productivity due to their static and myopic profit consid-
erations.

36Two opposing effects influence the growth of AI: AI can be improved by being applied to more
productive firms or by being applied to more firms. Determining which effect dominates is challenging
and cannot be generalized.
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chooses AI infrastructure investments that encompass a growth rate of AI productivity

positioned between that of entrepreneurs and workers.

We note that the necessary AI infrastructure investments (fixed costs) that firms need

to incur to oust competing firms from the market decrease over time. The reason is

that large firms have a persistently-growing AI productivity making market entry of

less productive firms increasingly difficult anyway. Firms with a low productivity cannot

catch up to the productive firms as they invest less in AI infrastructure and algorithms are

decreasingly tailored to their production, enhancing the increase in market concentration.

We interpret this as an indicator that the self-learning feature of AI and the tailoring of

algorithms to firm-specific needs can lead to monopolisation.

(a) Total Production. (b) AI Growth Rate.

Figure 3: Development of Total Production and AI Growth Depending on the Stake-
holder.

In Figure 3, we depict the development of the growth rate of AI and total production in our

economy. Regardless of the decisive stakeholding group, we observe a persistent increase

in total production due to the increasing level of AI and the higher AI productivity of

firms. This finding highlights the importance of AI as a driver for growth. Yet, we

observe that total production is initially higher if the social planner or workers decide

on the optimal AI infrastructure investments. The reason is that entrepreneurs aim at

charging markups to refinance their investments in AI infrastructure leading to reduced

total production and an output gap. Yet, as entrepreneurs invest in AI infrastructure

which enhances firms’ productivity, we note that total production starts being the largest

in case entrepreneurs are the stakeholding group after around 10 periods. Moreover, we

note that the AI growth rate is especially high in the first periods due to entrepreneurs’

high investments in AI infrastructure, as depicted in Figure 3b). In the long run, the

growth rate declines over time for all stakeholding groups. After reaching its upper bound

in the long run, the AI growth rate becomes zero due to the assumption of an upper bound

for AI due to hardware restrictions, as explained in Eq. (2).
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In addition, we illustrate the development of the market concentration with a rising

level of AI and depending on the stakeholding group in Figure 4 using the Herfindahl-

Hirschman Index (HHI).37

(a) HHI. (b) Number of Active Firms.

Figure 4: Development of Market Concentration Depending on the Stakeholder.

For the sake of simplicity, we set the parameters to assess a scenario, where entrepreneurs

favor an imperfectly competitive market with a single operating firms such that they

benefit from monopoly profits. However, in scenarios where workers or the social planner

act as the stakeholding group, we still observe an increase in market concentration, driven

by the rising productivity disparity between active firms.38 The reason is that especially

large and productive firms have an increased market share due to investments in AI

infrastructure and the tailoring of AI algorithms that especially benefit large firms such

that there is a decline in the number of active firms. We observe that if the social planner

selects the optimal AI infrastructure investments, there is a decline in the number of

active firms coming in hand with a rising market concentration. However, this increase

in concentration is even more pronounced if workers are the stakeholding group such that

a scenario eventuates where the HHI reaches a level of around 4000, with only 4 firms

being active in the long-run.39

37We determine the HHI using the following equation, where xi represents the output of a single firm

i, and H =
∑N

i=1

(
xi∑N

j=1 xj

)2

. The value of HHI thus obtained is multiplied by 10000 and thus takes

values between 10000
N ≤ H ≤ 10000.

38In the numerical example at hand, as the share of entrepreneurs in the economy is relatively small,
the social planner solution mainly corresponds with the market outcome that maximizes workers’ income.

39We set the parameters in our numerical exercise such that the HHI at the first period is around 1500,
which approximates the value for the HHI in the ICT sector in Germany in 2020 (Maydell and Menzel,
2023).
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7.1 Markups and Output

In Figure 5b), we depict how the share of total output demanded is negatively correlated

with the markups charged by active firms, as defined in Eq. 4.40 Recall that markups can

only be charged when there is a reduction in output, as defined by the demand equation

(Eq. 4). This implies that higher markups lead to an increase in the output gap.

(a) Markup Development.
(b) Share of Demanded Output
with τ = 2.5.

Figure 5: Markup Development and Share of Demanded Output.

Consequently, firms that charge markups on their products reduce their overall output,

resulting in a decreased use of capital and labor in industrial production. We note that

if workers are the stakeholding group, no markups are charged, such that the highest

possible capital and labor income is paid out. Whereas the markups in the social plan-

ner’s solution remain at a low, but nonzero value, we observe decreasing markups if

entrepreneurs decide on investing in AI infrastructure, as they charge markups for refi-

nancing their costs. We note that if entrepreneurs are the stakeholding group, markups

are charged especially in the first periods as firms with high AI productivity invest in

infrastructure to oust competing firms from the market and to increase their profits and

market shares. Subsequently, due to the self- and firm-specific learning of AI, invest-

ments in AI infrastructure increasingly decline coming in hand with lower markups. The

reason is that the possibility to obtain larger AI profits by having a high total output

and the possibility to sell many AI algorithms to industrial firms (Channel (II) in Eq.

(17)) increasingly outweighs the profit surplus by reducing output and charging markups

(Channel (III) in Eq. (17)) with a rising level of AI. In the long-run, even if entrepreneurs

are the stakeholders, only low markups are charged as a single firm has reached such a

high productivity that a scenario with low markups and a low output gap leads to the

40We additionally emphasize that the magnitude of markups imposed by firms is inversely related with
consumer price elasticity. When consumers are highly responsive to price changes and have a greater
price sensitivity, given by τ , firms find themselves with limited pricing power.
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highest income for entrepreneurs. Therefore, we note that the markups converge to a

positive but non-zero value in the social planner’s and entrepreneur’s solution in the

long-run.

In summary, our findings reveal that when entrepreneurs are the stakeholding group,

they invest in AI infrastructure—in particular in the first periods after the introduction

of AI—leading to larger productivity increases, in particular of firms with high AI pro-

ductivity. This is accompanied by higher markups for the refinancing of the investments,

albeit at the expense of lower total production. Increased AI infrastructure investments

lead to enhanced AI productivity while additionally acting as market barriers for firms

with a low AI productivity such that we observe high markups and high investments

in AI infrastructure, particular at the beginning of the period under investigation if en-

trepreneurs are the stakeholders. We emphasize that due to the learning of AI algorithms

that are increasingly tailored to the needs of large and productive firms that can afford

to invest in AI infrastructure, it becomes increasingly difficult for small firms to compete

against these large firms. Therefore, we note a growing market concentration due to the

self-learning and firm-specific tailoring of AI algorithms that is especially pronounced if

entrepreneurs are the stakeholding group, but can still be observed to a reduced extent

if workers or the social planner are the stakeholder. Yet, we emphasize that AI is a

driver for economic growth, productivity increases and total production, irrespective of

the stakeholding group.

7.2 Income Divergence

Now, we aim at illustrating how the income of workers and entrepreneurs and in par-

ticular the divergence between the income of the two different groups is affected by the

stakeholder deciding on the AI infrastructure investments. The income of workers—who

solely benefit from renting out their labor and capital to firms—is directly linked to total

production, which, in turn, is affected by the number of active firms and the markups

charged. Following our theoretical considerations, it is optimal for workers to receive

competitive wages and interest rates in a scenario where no markups are charged, irre-

spective of the level of AI. Recall, from Eq. (17), that entrepreneurs also generate income

by renting out their capital and labor. Additionally, they obtain the entire profits from

the AI-developing company and from industrial production. However, they are also re-

sponsible for covering the entire fixed costs associated with AI infrastructure investments.

A benevolent social planner aims at choosing the AI infrastructure investments that

maximize the total income of all agents in the economy which is a linear combination of

the income of entrepreneurs and the income of workers.41

41Nonetheless, the social planner does not take into account potential income divergence between
workers and entrepreneurs as only total income when determining the optimal infrastructure investments.
The reason is that the social planner only regards the effect of income on the utility of agents when
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(a) Stakeholder:
Workers.

(b) Stakeholder:
Entrepreneurs.

(c) Stakeholder:
Social Planner.

Figure 6: Income Inequality Depending on the Stakeholding Group.

We depict how the capital and consumption of entrepreneurs relative to that of workers

develops in the economy over time in Figure 6. We differentiate between the scenarios if i)

Workers, ii) Entrepreneurs or the iii) Social Planner are the stakeholding group deciding

on the optimal AI infrastructure investments. In particular in the first 20 periods when

there are high markups charged, we observe large differences between the capital and

consumption between entrepreneurs and workers. Yet, also in the long run, income

inequality is more pronounced in scenario ii) than in scenario i) or iii). Therefore, we

contend that the rise of AI contributes to growing income inequality between workers

and entrepreneurs, in particular in a scenario when entrepreneurs favor an imperfectly

competitive market with high markups and reduced competition. Our findings suggest

that the primary driver of this income gap is not solely the fact that only entrepreneurs

benefit from selling AI algorithms. Rather, it is the preference of entrepreneurs for firms

to operate on imperfectly competitive markets for charging markups and obtaining high

profits, which amplifies income disparity.

7.3 Factor Income Shares

Now, we compare the evolution of the factor income shares depending on the stakeholding

group. We examine the development of the factor income shares in Figure 7 for specific

elasticity parameters, namely ε = 1.18, ω = 1.25 and the additional parameters defined

in Table 1. Note that the elasticities between labor and AI, given by ω, and between

capital and labor and AI, given by ε are decisive for the development of the factor income

shares. We argue that it is most reasonable that ε > 1 and ω > 1 due to our expectation

that AI will be able to substitute for labor.42

selecting firms’ optimal AI infrastructure investments in their intra-temporal profit maximization and
cannot infer agents’ resulting utility from their inter-temporal utility maximization.

42Motivated by Aghion et al. (2020), stating that the elasticity of industry-level employment to
industry-level automation is 1.011, we assume that the elasticity of substitution between labor and
AI is given by ω > 1. Furthermore, Karabarbounis and Neiman (2014) argue that the elasticity of
substitution between labor and capital is ε = 1.25.
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(a) Stakeholder:
Entrepreneurs

(b) Stakeholder:
Workers.

Figure 7: Development of the Factor Income Shares with ϵ = 1.18 and ω = 1.25.

As we suppose that ω > 1, which implies that AI is a substitute for labor, we observe a

decreasing labor share and an increasing AI share in both scenarios, irrespective whether

workers or entrepreneurs are the stakeholding group.43 However, we note that the devel-

opment of the factor income shares strongly depends on the stakeholding group. Whereas

the labor share decreases from 63% to 51% in an environment under perfect competition

if workers are the stakeholder, the labor share would reach a level of only 55% 35 periods

after the introduction of AI if entrepreneurs are the stakeholders, but reaches a tempo-

rary minimum of around 40%. After the introduction of AI on a market with imperfect

competition, we note that the declining labor share is accompanied with an increasing

profit share that only benefits entrepreneurs. The reason is that an increasing share of

total income would be attributed to the profit payments due to markups on the output

price. Yet, after 11 periods the profit share declines again as the markups decrease,

leading to lower profits. However, there is a higher capital share on the market with

imperfect competition than on the market with perfect competition after 35 periods. For

the sake of completeness, we additionally illustrate the development of the factor income

shares if we assumed complementarity between capital and labor, given by ϵ = 0.85 in

the Appendix.

In our model, the number of active firms and the total supplied output affect the demand

for the input factors labor, capital and AI. Moreover, in our framework with a labor-

leisure tradeoff, we observe that the labor supply depends on the level of AI, i.e., with

a rising level of AI, all agents adapt their labor supply depending on the elasticity of

substitution between the input factors and their income stream. Therefore, we illustrate

the share of working agents depending on the stakeholding group in Figure 8, based on

43If we assumed e.g. a larger substitutability between labor and AI, the decline of the labor share
would be attenuated. The same reasoning holds for changes in the elasticity between labor and capital.
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our baseline parameter values provided in Table 1.

(a) Stakeholder:
Workers.

(b) Stakeholder:
Entrepreneurs.

(c) Stakeholder:
Social Planner.

Figure 8: Share of Employed Agents Depending on Stakeholder.

We note that entrepreneurs reduce their labor supply over time irrespective of the stake-

holding group. If workers are the stakeholding group, we note that workers increase their

labor supply over time, whereas entrepreneurs decrease their labor supply as they increas-

ingly benefit from AI and profit income that they obtain without labor effort. Irrespective

of the stakeholder, it holds that entrepreneurs reduce their labor supply more than work-

ers as they additionally benefit from firms’ profits which makes them less dependant on

the labor income. If entrepreneurs are the stakeholding group, we observe a lower level

of employed workers in the long run. The observed phenomenon is not only caused by

agents reducing their labor supply, as we might see if workers or the social planner are

the stakeholder, but mainly due to a decreased labor demand. This is especially the case

in the first 15 periods, where a lower total output is produced and markups are charged.

Therefore, as these firms that charge markups and aim at achieving greater profits, active

firms demand fewer input factors and reduce their labor demand such that not the labor

supply but the labor demand determines the lower bound for the labor market equilib-

rium. However, we again observe that entrepreneurs reduce their labor supply to a larger

extent than workers, also in the long-run. If the social planner is the stakeholding group,

we still notice that entrepreneurs reduce their labor supply over time, but workers first

increase and then decrease their labor supply.

As empirical research on the elasticities of substitution between labor, capital, and AI is

limited, we are unable to reach a definitive conclusion regarding the impact of AI on factor

income shares. However, regardless of the elasticities, we note that if entrepreneurs are

the stakeholding group, there is a rise in imperfect competition coming in hand with the

rise of AI and an increasing profit share particularly benefiting entrepreneurs. Moreover,

entrepreneurs increasingly reduce their labor supply as they can benefit from non-human

work and are the only group that benefits from AI profits. As a result, we observe a

widening income gap between entrepreneurs and workers in particular on markets with

AI-induced imperfect competition.
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8 Policy Interventions

Comparing the equilibrium allocation in an economy where entrepreneurs are the stake-

holders with the allocation preferred by a social planner, we observe that fewer firms are

active, charge higher markups, (initially) produce less than the social optimum, and de-

mand a smaller amount of labor than in the social optimum. Moreover, in particular on

an imperfectly competitive market, due to the profit distribution solely to entrepreneurs,

there is an increasing divergence between workers’ and entrepreneurs’ capital and con-

sumption, enclosing increasing inequality. The group of entrepreneurs has a shared in-

terest in colluding to intentionally set the investments in AI infrastructure at a higher

level than desired by the social planner. This collaborative effort aims to create an en-

vironment of imperfect competition in industrial production, with the ultimate goal of

maximizing entrepreneurs’ income.

We aim at exploring potential mechanisms that help promoting the development of AI as

a driver of growth but prevent the rise of an increasingly unequal society in an AI-based

economy. Thus, we discuss the effect of a profit tax, new data sharing standards and a

modernization of competition and merger legislation. The main political difficulty is to

not stifle the investments of entrepreneurs in AI infrastructure that lead to high growth

in AI productivity and total output accompanied by rises in market concentration and

markups, but to also mitigate growing income inequality.

8.1 Profit Tax

Our model highlights that a social planner focuses solely on maximizing the total income

of all individuals in the economy fails to consider the growing disparity in income dis-

tribution. By exclusively prioritizing total income, this approach overlooks the widening

gap between the income of entrepreneurs and regular workers. Consequently, we under-

score the importance of implementing re-distributive taxes to curb the exacerbation of

income inequality resulting from the rise of AI. For instance, to counterbalance this trend,

wage income could receive preferential treatment compared to income from capital and

AI. This encloses that profits which are solely distributed to entrepreneurs, should be

subject to higher tax rates than human-earned wage income. Similarly, Faulhaber (2019)

highlights the necessity to modernize digital taxation to target multinational Tech com-

panies and to establish an effective international tax system, e.g., using a minimum tax to

guarantee international competition. Maintaining a competitive environment for broadly

sharing technological rents (Ernst et al., 2019) could prevent firms from reaching market

dominance, which may render a fair and socially-beneficial economic integration of AI

difficult. One viable strategy for reducing income inequality involves the introduction of

a profit tax for entrepreneurs. Through the imposition of a tax on entrepreneurs’ profits,

workers can also participate in the benefits arising from the integration of AI. By intro-
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ducing a profit tax ν ∈ (0, 1) that is deducted by the entrepreneurs and re-distributed

to the workers, the budget constraints of the agents would be rewritten in the following

way:

cWt + sWt =
m∑
j=1

[
wt,mL

W
j,t,m + rt,mK

W
j,t,m

]
+ νµt,mYj,t,m,

cEt + sEt =
m∑
j=1

([
wt,mL

E
j,t,m + rt,mK

E
j,t,m

]
+ pj,t,mAt + (1− ν)µt,mYj,t,m − Fj,t

)
.

In this way, the interest of entrepreneurs to invest in AI infrastructure such that firms

operate under imperfect competition would decrease. The reason is that they would

benefit less from profits as a share ν would be deducted. We note in our numerical

exercise that a profit tax of ν = 0.498 would be necessary to encourage entrepreneurs

to invest in AI infrastructure in a way such that the economy coincides with the social

planner’s optimum.

8.2 Data Sharing and Intellectual Property Rights

Haskel and Westlake (2017) state that due to the transition to an intangible economy,

new institutional foundations have to be defined to undermine the lobbying in intangible-

intensive industries and to foster market competition. The first steps in this direction have

been taken with the Digital Markets Act or AI Act in the European Union and comparable

proposals in the United States, such as the American Choice and Innovation Online Act.

Governments should establish policies that require data-rich companies to share certain

types of data with competitors or third parties under specific conditions. These policies

should strike a balance between promoting innovation and protecting privacy.

Governments should evaluate existing patent laws and consider reforms that explicitly

address AI-generated inventions. This might involve revisiting the criteria for patentabil-

ity and redefining concepts like inventorship, ownership, and disclosure requirements to

better accommodate non-human labor. Collective ownership or public trusts for the

generation of AI could ensure broader access and promote data sharing while still in-

centivizing innovation. Therefore, an avenue for future research that goes beyond this

project might be to not only analyze market barriers due to investments in AI infras-

tructure, but to discuss the effect of the duration of patents, data sharing and knowledge

spillovers on AI development and on income inequality.
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8.3 Competition and Merger Law

Income inequality occurs primarily when firms are able to collude such that the AI in-

frastructure expenditures are chosen that maximise entrepreneurs’ income. Brynjolfsson

(2022) denotes the development that technological change through AI can disproportion-

ately benefit or harm some groups, even if it is beneficial on average, as ”Turing Trap”

and speaks in favor of reaping the unprecedented benefits of AI by widely redistributing

its economic profits. Thus, we emphasize that workers need to be restored as ”stake-

holders in collective bargaining and corporate decision-making” (Autor et al., 2020b) so

that firms increasingly strive for the interests of the entire workforce instead of solely

maximising the profits of the firm-owning entrepreneurs. There is a vicious circle that

firms with large market shares can increasingly invest in lobbying to create legislation

that enables them to even augment their market power (Eeckhout, 2021). With a rising

level of AI, we expect that technological frontiers have increasing technological and po-

litical power. Yet, the extreme outcome in our numerical exercise that the technological

frontier is powerful enough to oust all firms from the market has to be interpreted with

caution. Nonetheless, potential collusion or cartel agreements for building up large mar-

ket barriers of the most productive firms can be thwarted by a benevolent and neutral

market-observing institution. In particular, there is a need for modernization of compe-

tition and anti-trust policies to ensure that companies entering digital markets are not

impeded by high market barriers, in order to maintain competitiveness and firms’ innova-

tive potential. Gersbach (2017) proposes a tightening of competition law with regard to

the tech-industry, ranging from ex-ante regulation of platforms facilitating contestability

and data sharing requirements up to the break-up of Tech Giants. Authorities such as

the Monopolkommission (2022) already emphasize the importance of limiting the market

power that arises in the course of digitalization. We thus point towards governmental

interventions for the promotion of competition in industries most susceptible to AI, a

redistribution of profits to impede a rise in income inequality in digital economies and a

modernization of competition and anti-trust policies.

9 Discussion

In our model, we only regard the effects that AI may substitute for labor leading to

reduced employment. Yet, we disregard that with a rising level of AI, firms may have

better possibilities to employ more input factors for production, as AI enables better

coordination, combination and more efficient use of labor and capital. For example,

Black and van Esch (2020) state that AI has affected and will further improve recruiting

efficiency, which will give firms the possibility to ”more effectively identify, attract, screen,

assess, interview, and coordinate with job candidates”, whereas Ernst et al. (2019) hint at
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the improved matching process of workers with a rising level of AI. More general, Dogan

and Birant (2021) provide a literature review on how machine learning applications could

improve processes at the production line, human resource organisation or machine and

material monitoring due to the increasing availability of manufacturing data. Li et al.

(2017) argue that an integrated application of AI in the area of intelligent manufacturing

may affect firms’ production capacity.

In general, firm-specific investments in AI infrastructure can be interpreted as Research

and Development (R&D) expenditures that may improve firms’ AI productivity θj,t or

may allow firms to produce goods with higher qualities (Aghion et al., 2019). On the one

hand, if the technological frontier invested in R&D to expand its productivity advantages,

it could easier oust competitors with inferior productivity from the market. In particular,

this could be the case if competition policy is weakened (Haskel and Westlake, 2017), such

that productive and advantaged firms can remain in powerful market positions. This is

the channel that we particularly highlight in our model. Haskel and Westlake (2017)

state that productivity differences between firms have risen, in particular in industries

where firms employ intangible assets in production. On the other hand, if technological

laggards can improve their AI productivity relative to the technological frontier, they may

catch up to the technological frontier, leading to increased competition. For example,

the European Fund for Strategic Investment aims at supporting start-ups and SMEs to

strengthen their competitiveness via the AI/Blockchain Investment Support Programme

(European Commission, 2021). In our model, especially large firms persistently increase

their AI productivity. We do not allow for leap-frogging in the model and market entry

of firms that can catch up to the technological frontier. Therefore, it might be worth

investigating how the catching up of technological laggards in digital economies might be

affected by the rise of AI.

Another shortcoming of our model is that imperfect competition due to less active firms

encloses a higher average productivity of active firms. Nonetheless, Brynjolfsson et al.

(2017) state that the average productivity has not improved noticeably in the last decades

and our conceptual model has to be interpreted with caution. It is left aside by our

model that reduced competitive pressure can also lead to negative incentives in terms of

innovation activities, leading to lower productivity.

Furthermore, we assume homogeneous markups and do not consider potential compo-

sition or reallocation channels (Markiewicz and Silvestrini, 2021) that may enclose het-

erogeneous markups. Yet, it can be argued that less productive firms would need to set

higher markups than highly productive firms to cover their expenditure for financing AI

infrastructure. We disregard that larger firms might be able to choose higher markups,

which is the case e.g., using a Klenow-Willis specification as in Edmond et al. (2018).

For instance, heterogeneous markups can be obtained if we assumed a framework with

price competition, where firms’ markup is a decreasing function of the firm’s market share
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Atkeson and Burstein (2008).

A stable relationship between the labor and capital share in production is a main char-

acteristic of CES models, which is one of Kaldor’s facts about economic growth (Kaldor,

1961). Nonetheless, there is empirical evidence that the assumption of a constant elastic-

ity ϵ between capital K and labor L cannot be taken for granted, especially in advanced

economies. For example, Piketty and Zucman (2015) provide historical evidence that

the elasticity of substitution ϵ has been increasing over the last centuries. The validity

of studies such as Karabarbounis and Neiman (2014) or Acemoglu and Restrepo (2020)

analyzing LIS dynamics heavily depends on the elasticity of substitution between capital

and labor. In our model, the elasticity of substitution between AI, capital and labor is

pivotal for the long-term development of the factor income shares. An appropriate way to

generalize our framework might be by incorporating a variable elasticity of substitution

(VES) model with time-variant factor income shares to be able to address the question

of how a time-variant elasticity of substitution between capital, labor and AI affects the

factor income shares in an economy with a rising level of AI. Furthermore, more empirical

research should be conducted to determine the elasticity between AI and labor.

In our model, the number of firms is endogenously defined by the investments in AI infras-

tructure in the first step of our optimization procedure. Moreover, the number of active

firms affects the growth rate of AI. Thus, it might be necessary to model the number of

firms as a state variable in an inter-temporal analysis when modelling the decisions of the

different stakeholding groups. For the sake of computational tractability, we only solve

an intra-temporal optimization problem in the first step as we assume that stakeholders

in the economy are myopic. Yet, if entrepreneurs had inter-temporal considerations, they

would anticipate the effect of a lower number of active firms and a lower total industrial

output on the growth rate of AI. Indeed, an inter-temporal analysis with idiosyncratic

exit, entry and productivity shocks could yield new insights on firm dynamics in AI-

intensive economies but would make the analysis of endogenously determined optimal AI

infrastructure investments more challenging. Moreover, it still remains hard to forecast

how the future growth trajectory of AI will look like. Thus, further models and experi-

mentation are needed to optimally model the growth pattern of AI in a straightforward

and tractable fashion.

10 Conclusion

We model the effects of the incorporation of AI in industrial production on firm com-

petition. The new feature of AI is that it learns by application—in contrast to existing

automation and robotisation technologies. Therefore, we define AI as a type of self-

learning technology that accumulates over time and can develop autonomously due to its

self-learning characteristics. Industrial firms pay variable costs for the acquisition of AI
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algorithms and invest in AI infrastructure to be able to integrate AI into production.

While investments in AI infrastructure foster the continuous improvement of self-learning

AI algorithms, especially trained and tailored for the production of firms with a large mar-

ket share, they are also the foundation for increasing AI productivity, amplified market

concentration, high markups and high profit shares. Depending on whether entrepreneurs,

ordinary workers, or a benevolent social planner constitute the stakeholder that decide on

the AI infrastructure investments of industrial firms, we examine the evolving economic

growth trajectory with a rising level of AI.

We emphasize the findings of Autor et al. (2020b) that rising market dominance acceler-

ates the decline in the labor share that is especially pronounced on imperfectly competitive

markets if AI serves as a substitute for labor. Moreover, we show how the rise of AI leads

to increasing income inequality between workers and entrepreneurs. Hence, we discuss

potential instruments like profit taxes, modernized competition and merger laws, or new

data sharing standards for preventing the rise of an increasingly unequal society in an

AI-based economy.
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Appendix

Markups in the Economy

For conceptualizing markups in a simple way, we consider a production function Yt =
G(Kt, L, At) and take into account a single representative firm. Total income accrues as
payments to production factors or is composed of profits minus fixed costs (Grossman and
Oberfield, 2021). Thus, holding the goods’ selling price fixed at the numeraire, Euler’s
theorem implies the following in a setting with perfect competition on the product market
and zero profits44

Proposition 4
Suppose that G(Kt, L, At) → R is differentiable in L ∈ R+, Kt ∈ R+ and At ∈ R+, where
the partial derivatives are given by wt, rt and pt, respectively and fixed costs Ft have to
be paid for production. Then,

Yt − Ft = G(L,Kt, At)− Ft = wtL+ rtKt + pA,tAt − Ft.

On a product a market with perfect competition, we can thus define the labor, capital
and AI share, respectively as

κL,t =
wtL

Yt

, κK,t =
rtKt

Yt

, κA,t =
ptAt

Yt

.

In case of imperfect competition on the product market, firms can sell products to a
higher effective price and charge a price markup µt > 1. Therefore, we write the net
profit of a firm at time t as

Πt = (1 + µt)G(Kt, L, At)− rtKt − wtL− ptAt − Ft.

Therefore, we define the labor share under imperfect competition in the following way:

ϕIC
L,t =

wtL

(1 + µt)Yt

.

We see that the higher the markup µt the lower the labor share in production. Using
analogous definitions for AI and capital, we obtain ϕIC

K,t =
rtKt

(1+µt)Yt
and ϕIC

A,t =
ptAt

(1+µt)Yt
.

Moreover, we are in a position to show that the profit share is defined as

ϕIC
P,t =

µtYt − Ft

(1 + µt)Yt

,

and the share of total income that has to be paid on fixed costs is given by

ϕIC
F,t =

Ft

(1 + µt)Yt

.

By applying Proposition 4, we note that

ϕIC
L,t + ϕIC

K,t + ϕIC
A,t + ϕIC

P,t + ϕIC
F,t =

wtL+ rtKt + ptAt + µtYt − Ft + Ft

(1 + µt)Yt

= 1,

44The proof for this this theorem is derived from Euler’s homogeneous function theorem.
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Proof Proposition 1

We show for two extreme cases, how the productivity distribution could look like to show
how the number of active firms and the resulting factor allocation in equilibrium depends
on Φ(θj,t):

1. All firms have the same AI productivity, such that Φ(θj,t) = Φ(θj+ν) ∀ν ∈ N, ∀j ∈
N

2. The technological frontier is the only firm that can produce with AI, such that
Φ(θj) > Φ(θ1+ν) = 0 ∀ν ∈ N

In the first extreme case, all firms have the same equilibrium production Y ∗
j,t,m = Y ∗

j̃,t,m
∀j,

as no firm has a comparative advantage compared to the others. Thus, no firm can afford
to oust competing firms from the market and all firms are active, enclosing that mt = N .
In another extreme case, when Φ(θ1) − Φ(θ1+ν) > δ such that there is a productivity
difference between the technological frontier and all other firms, the technological fron-
tier can afford to oust all firms out of the market. Thus, only one firm—namely the
technological frontier—will be active. This stands in line with the findings of Ernst et al.
(2019), stating that large productivity differences are indeed a barrier for technological
progress leading to a rise in market concentration. Apart from the two extreme cases,
where either all or only one firms are active, we conclude that the number of active firms
m ∈ [1, N ] depends on the underlying productivity distribution.

Proof Proposition 2

Assume Fq,t ≤ Fw,t, for arbitrary firms q and w. It holds that q < w such that q is ranked
lower in productivity than w.

Case 1: Fq,t = µt,NYN,t,N

Given that Fq,t = µt,NYN,t,N , it necessarily follows that Fw,t > µt,NYN,t,N . Thus, due to
profit maximizing considerations of the firms, only N − w firms will be active on the
market.

Case 2: µt,N−q+1YN−q+1,t,N−q+1 ≤ Fq,t ≤ µt,N−qYN−q,t,N−q

In such a setting, there are a maximum of N − q active firms in the market. Analogously,
it holds that there are N −w active firms if the fixed costs are Fw,t. As Fq,t ≤ Fw,t there
are Nw active firms, which is fewer than Nq firms.

Proof Proposition 3

Increasing Number of Active Firms

There are different channels that affect firms’ total output depending on the number of
active firms in opposite directions

1. If less firms are active, there is less competition for the available rival input factors,
leading to more available input factors for each active firm.
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2. If less firms are active, only more productive firms are operating, leading to different
productivity relations between active firms affecting the labor and capital allocation.

We thus note that

∂L∗
j,t,m

∂mt

⋛ 0,
∂K∗

j,t,m

∂mt

⋛ 0.

This encloses that

∂r∗t,m
∂mt

=
∂

∂mt

α
Y ∗
j,t,m

K∗
j,t,m

1
ϵ

⋛ 0,

∂w∗
t,m

∂mt

=
∂

∂mt

(1− α)γL∗
j,t,m

−1
ω Y ∗

j,t,m

1
ϵ

[(
γL∗

j,t,m

ω−1
ω + (1− γ)(θj,tAt)

ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL∗

j,t,m

ω−1
ω + (1− γ)(θj,tAt)

ω−1
ω

) 1
ω−1

⋛ 0,

∂p∗j,t,m
∂mt

=
∂

∂mt

(1− α)θj,t(1− γ)A
−1
ω
t Y

1
ϵ

j,t,m

[(
γL

ω−1
ω

j,t,m + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL

ω−1
ω

j,t,m + (1− γ)(θj,tAt)
ω−1
ω

) 1
ω−1

⋛ 0,

Partial Derivatives of the Input Factors

We observe that due to the nested CES structure of our production function, the cross-
derivatives with regard to AI are given by

∂Yj,t,m

∂Kj,t,m∂At

=
∂rt,m
∂At

=
∂

∂At

α

(
Yj,t,m

Kj,t,m

) 1
ϵ

. (20)

Due to the CES production function, we conclude that
∂r∗t,m
∂At

≥ 0 irrespective of ϵ.

∂Yj,t,m

∂Lj,t,m∂At

=
∂wt,m

∂At

=
∂

∂At

(1− α)γL
−1
ω
j,t,mY

1
ϵ

j,t,m

[(
γL

ω−1
ω

j,t,m + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL

ω−1
ω

j,t,m + (1− γ)(θj,tAt)
ω−1
ω

) 1
ω−1

. (21)

We note that
∂w∗

t,m

∂At
≥ 0 if ω > 1. The opposite holds if ω ≤ 1. Due to the concavity of

our nested CES production function, we additionally note that

∂Y 2
j,t,m

∂A2
t

=
∂pj,t,m
∂At

=
∂

∂At

(1− α)θj,t(1− γ)A
−1
ω
t Y

1
ϵ

j,t,m

[(
γL

ω−1
ω

j,t,m + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL

ω−1
ω

j,t,m + (1− γ)(θj,tAt)
ω−1
ω

) 1
ω−1

≤ 0. (22)

We can conclude from Eq. 21 and Eq. 20 that the wage increases in the level of AI
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if we assume an elasticity of substitution larger than 1 between labor and AI, given by
ω ≥ 1. The opposite holds if we assume ω < 1. In addition, we note that ∂rt,m

∂At
≥ 0

if ϵ > 1. The opposite holds if ϵ ≤ 1. Thus, the equilibrium allocation of the input
factors is affected by the elasticities of substitution. Moreover, due to Proposition 1, the
productivity distribution additionally affects the equilibrium factor allocation.

Revenue-maximizing Social Planner: Factor Market Equilibrium

The equilibrium factor allocation can also obtained by assessing the approach of a revenue-
maximizing social planner who maximizes the economy-wide revenue from production.
A social planner maximizes the following:

max
At,Lj,t,m,Kj,t,m

m∑
j=1

G(Aj,t,m, Lj,t,m, Kj,t,m)

s.t.

m∑
j=1

Lj,t,m = Lt,

m∑
j=1

Kj,t,m = Kt ∀t.

This approach resembles a revenue-maximizing problem, where the total production of
all firms gets maximized. The equilibrium factor price for each production input must be
equal to its aggregate marginal revenue (Mas-Colell et al., 1995). Therefore, the marginal
rate of technical substitution (MRTS) of the input factors labor, capital and AI of all
active firms have to be equal, given by

MRTSL
j,t,m = MRTSL

j̃,t,m

MRTSA
j,t,m = MRTSA

j̃,t,m

MRTSL,A
j,t,m = MRTSL,A

j̃,t,m
∀j,∀t.

Growth Path of the Economy

We know from Eq. (1) that the production function has the following form:

Yj,t =

(
αK

ϵ−1
ϵ

j,t + (1− α)

[(
γL

ω−1
ω

j,t + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

] ϵ−1
ϵ

) ϵ
ϵ−1

.

Moreover, we assume that the available labor force remains constant, such that its growth
rate is given by gL = 0. Moreover, due to the assumption of bounded growth of AI, we
see that limt→∞At = B, such that the growth rate of AI in the long-run is given by
gA = 0. In addition, we know from Eq. (5) that the fixed costs have to comove with the
level of production if the markups stay constant in the long-run and only depend on the
number of active firms mt if AI has reached its upper boundary. Thus, we note that the
growth rate of fixed costs spent, given by gF has to be proportional to the production
of each firm gY , such that gF ∝ gY in the long-run. As a result, as gA = gL = gµ = 0
in the long-run, we note that the capital growth rate, given by gK is the decisive for
determining the growth rate of production, as defined by Eq. (13). For any Kt > 0, we
have ∂Kt

∂t
> 0 and therefore limt→∞Kt = ∞. Due to Uzawa (1961)’s theorem, we can

additionally conclude that gK = gY . Furthermore, due to the constant savings rate and
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the relation between consumption and total production, given by Eq. (19), we observe
that gC = gY .

Utility Maximization with Elastic Labor Supply: Perfect Com-
petition

In this subsection, we set up the maximization problem for an economy with perfect
competition, zero markups, a representative agent and no fixed costs. The first order
conditions of the maximization problem described are given by:

uc (ct, Lt) = β
[
fK

(
Kt+1, Lt+1, Â

)
+ (1− δ)

]
uc (ct+1, Lt+1) ,

ul (ct, Lt) = −uc (ct, Lt) fl

(
Kt, Lt, Â

)
.

This implies for the steady state that

fk

(
kss, Lss, Â

)
= 1/β − 1 + δ

ul (css, Lss) = −uc (css, lss) fl

(
kss, Lss, Â

)
.

Combining these results with our production function, defined in Eq. 1, we obtain that

α
Kt

Yt

−1
ϵ

=
1

β
− 1 + δ,

γ

1− Lss

=
1

css
(1− α)γL

−1
ω
ss Y

1
ϵ

t

[(
γL

ω−1
ω

ss + (1− γ)(θj,tÂ)
ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL

ω−1
ω

ss + (1− γ)(θj,tÂ)
ω−1
ω

) 1
ω−1

.

Consequently it has to hold for the minimal Lmin
t to have ct > that

(
αK

ϵ−1
ϵ

t + (1− α)

[(
γL

ω−1
ω

t + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

] ϵ−1
ϵ

) ϵ
ϵ−1

+ (1− δ)Kt −Kt+1 > 0.

This implies that

Lmin
t >

1

γ



(
(Kt+1 − (1− δ)Kt)

ϵ
ϵ−1 − αK

ϵ−1
ϵ

t

) ϵ
ϵ−1

1− α


ω−1
ω

− (1− γ)(θj,tAt)
ω−1
ω


ω

ω−1

.

The recursive optimization problem of the agents is given by the following equation
Assuming a lower and upper bound for ct and Lt enclosed the feasibility constraint that

Γ(K) = [0, f(K, 1, Â) + (1− δ)k].
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Finally, we can set up a recursive formulation of the agents’ problem that do not anticipate
the growth of AI

V (K) = max
K′∈Γ(K)

F (K,K ′) + βV (K ′) ,

where F (K,K ′) is the value of the recursive maximization procedure

F (K,K ′) = max
c,L

u(c, L)

s.t. c+K ′ ≤ f(K,L.Â) + (1− δ)K and c ≥ 0, 1 ≥ L ≥ 0.

Utility Maximization with Elastic Labor Supply: Imperfect Com-
petition

In this subsection, we set up the maximization problem for a representative agent in an
environment with imperfect competition, non-zero markups and positive fixed costs. The
first order conditions of the maximization problem described are given by:

uc (ct, Lt) = β
[
(1 + µt)fK

(
Kt+1, Lt+1, Â

)
+ (1− δ)

]
uc (ct+1, Lt+1) ,

ul (ct, Lt) = −uc (ct, Lt) (1 + µt)fl

(
KE

t , L
E
t , Â

)
.

This implies for the steady state that

(1 + µt)fK

(
kss, Lss, Â

)
= 1/β − 1 + δ

ul (css, Lss) = −uc (css, lss) (1 + µt)fl

(
kss, Lss, Â

)
.

Combining these results with our production function, defined in Eq. 1, we obtain that

(1 + µt)α
Kt

Yt

−1
ϵ

=
1

β
− 1 + δ,

γ

Lmax − Lss

=
1

css
(1 + µt)(1− α)γL

−1
ω
ss Y

1
ϵ

t

[(
γL

ω−1
ω

ss + (1− γ)(θj,tÂ)
ω−1
ω

) ω
ω−1

]−1
ϵ

(
γL

ω−1
ω

ss + (1− γ)(θj,tÂ)
ω−1
ω

) 1
ω−1

.

Consequently it has to hold for the minimal Lmin
t to have ct > that

(1 + µt)

(
αK

ϵ−1
ϵ

t + (1− α)

[(
γL

ω−1
ω

t + (1− γ)(θj,tAt)
ω−1
ω

) ω
ω−1

] ϵ−1
ϵ

) ϵ
ϵ−1

− Ft + (1− δ)Kt −Kt+1 > 0.

54



This implies that

Lmin
t >

1

γ



(
(Kt+1−(1−δ)Kt+Ft

(1+µt)
)
ϵ−1
ϵ − αK

ϵ−1
ϵ

t

) ϵ
ϵ−1

1− α


ω−1
ω

− (1− γ)(θj,tAt)
ω−1
ω


ω

ω−1

.

Additional Figure on the Factor Income Shares

(a) Stakeholder: Entrepreneurs (b) Stakeholder: Workers.

Figure 9: Development of the Factor Income Shares with ϵ = 0.85 and ω = 1.25.
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