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Abstract
State-of-the-art revenue management systems combine forecasting and optimization
algorithms with human decision-making. However, only a few existing contributions
consider the behavioral aspects of revenue management. To extend the related research,
we examine the impact of nonstationary demand and two dynamic decision tasks. We
examine human decision-making strategies and biases by implementing a related exper-
imental design in a laboratory study and comparing participant decisions to systematic
heuristics. Our results highlight that participants struggle to accommodate a nonstation-
ary willingness to pay. In that, they exhibit a combination of optimism and loss aversion
biases. We further find that participants anchor their decisions on customers’ willing-
ness to pay. We draw implications and further research opportunities to behaviorally
inform the design of symbiotic analytics systems from these results.

K E Y W O R D S
analytics, behavioral operations research, pricing, revenue management

1 INTRODUCTION

Since the 1980s, revenue management (RM) has been a
crucial success factor for service industries, such as hotels,
car rentals, and airlines. It lets firms maximize revenue by
predicting demand and optimizing the offered price or the
offered set of fare classes. A large and continuously growing
body of research focuses on extending models and algorithms
to improve predictive and prescriptive analytics for RM—
recent research surveys include Gönsch (2017) and Klein
et al. (2020).

Industry RM systems let analysts adjust model param-
eters, demand forecasts, and offers. In other words, they
let humans override both inputs and outcomes. This idea
became clear to the authors in discussions and demonstrations
with experts from RM departments and software suppliers
and has been considered in some recent contributions on
organizational RM aspects (compare Fürstenau et al., 2020;
Schütze et al., 2020). Our research is mainly motivated by
research-industry cooperation involving a major European
airline that had implemented and funded RM research for
several years at the time of the project. One of the coau-
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thors served as an airline IT consultant prior to the start of
the project; another coauthor took part in an extended intern-
ship with the operational RM department. In this cooperation,
we had the opportunity to observe and support projects
to overhaul both RM analytics systems and organizational
structures.

In these projects, we took part in stakeholder work-
shops collecting requirements, moderated simulation-based
war games, and supported training on analytics methodol-
ogy. Throughout these areas, discussions on the need for
analysts to continue to be able to intervene in all pro-
cess steps motivated us to investigate the existing state of
research on behavioral RM. Yet, few existing contributions
examine human decision-making for RM from a behavioral
perspective. Existing contributions tend to consider demand
as stationary (compare designs based on Bearden et al.,
2008) or let decision-makers implement static controls with-
out dynamic adaptations over the booking horizon (compare
Kocabiyikoglu et al., 2015). Nevertheless, discussions on par-
ticularly challenging aspects of RM caused us to consider the
implications of nonstationary demand and alternative deci-
sion tasks. Theoretical RM literature broadly accepts the idea
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that customer demand is nonstationary over the booking hori-
zon (Kimes, 1989) and that RM decisions are dynamic. To
accommodate these aspects, practical RM often relies on
dynamic price-based controls, such as bid-prices (Talluri &
van Ryzin, 2004, chapter 3.2). Finally, our participation in
industry projects on designing RM interfaces offered insights
into analyst strategies when pursuing secondary objectives,
such as a minimum load. Practitioners’ descriptions of
such strategies inspired us to compare human decision-
making to the patterns created by automated solution
approaches.

To contribute to behavioral research on RM analytics,
we propose considering human decision-making when cus-
tomers’ arrival rate, willingness to pay, or both vary over
the booking horizon. When analysts set controls rather
than deciding on individual acceptance, they do not know
the customers’ actual willingness to pay. Therefore, we
further compare dynamic acceptance and pricing tasks. Dif-
ferent decision tasks result in divergent optimal results, as
price-setting limits the revenue gain to the price, whereas
acceptance decisions can yield the customers’ complete
willingness to pay.

As empirical contributions, we replicate and cross-validate
findings from Bearden et al. (2008) in an experimental study,
following the principles outlined in Pagell (2021). Specif-
ically, we show that a nonstationary willingness to pay
negatively impacts participants’ decision-making, while a
nonstationary customer arrival rate has no significant effect.
At the same time, nonstationary demand appears to offer
more potential for participants to benefit from repeated expe-
rience. Furthermore, we find that, under stationary demand,
the pricing task also reduces participants’ success compared
to the acceptance task. We have extensively discussed the
experimental design and results with airline RM experts.
In particular, these experts also suggested implementing the
minimum-sale heuristics to represent a practical loss-averse
RM strategy. By comparing participants’ decisions to sys-
tematic solution approaches, we analyze underlying biases
and find evidence for anchoring in pricing decisions. The
paper concludes with managerial insights and opportunities
for future research to inform the design of symbiotic analytics
systems in general and RM systems in particular.

2 LITERATURE REVIEW

Existing behavioral research on RM frequently focuses
on demand forecasting. For example, Zeni (2003) evalu-
ates analysts’ contribution through a field study. In a later
study, Mukhopadhyay et al. (2007) focus on forecast adjust-
ments, analyzing data on revenue and bookings at a U.S.
airline. Both contributions find that a complementary sys-
tem of analysts and algorithms can outperform a fully
automated system.

Research on judgmental forecasting is not limited to RM,
as exemplified by the pertinent overview in Petropoulos et al.
(2016). Related contributions may inform related research on

decision-making. For example, Eroglu and Croxton (2010)
highlight human forecasters’ susceptibility to systematic
optimism, anchoring, and overreaction biases.

Beyond revenue maximization, RM is frequently under-
stood to include revenue sharing and contract design
problems. Examples for related behavioral research include
Katok and Wu (2009), Niederhoff and Kouvelis (2019),
and Tokar et al. (2016). However, when considering the
underlying decision problems from a behavioral perspective,
there is no direct connection, as revenue sharing focuses
more on questions related to cooperation and negotiation,
whereas short-term revenue maximization focuses more on
individual decisions.

Here, we build on a set of related efforts examining the
specific task of deciding at what price and when customers
get to buy units of capacity. Table 1 summarizes the research
objectives and settings of closely related contributions and
delineates the presented research.

Bearden et al. (2008) propose a first and impactful experi-
mental design to analyze RM decision biases under stationary
demand. The authors contrast accept errors, where partic-
ipants wrongly accept bookings, and reject errors, where
participants wrongly reject bookings. They conclude that
decision-makers rely on a sophisticated policy, accounting
for the left-over capacity and the time remaining within the
booking horizon.

Bendoly (2011) combines the experimental design from
Bearden et al. (2008) with a real-world decision support
system to measure stress levels via physiological markers.
This study finds that high capacity levels left at the end
of the booking horizon and the number of simultaneous
tasks increase stress and induce decision errors. Bendoly
(2013) conducts a similar experiment with hotel employ-
ees and finds that different levels of feedback influence
revenue performance.

Kocabiyikoglu et al. (2015) implement a more static set-
ting, where participants have to allocate capacity among two
customer segments before the start of the booking horizon.
The authors use this setting to compare the RM decision to
a normatively equivalent version of the newsvendor problem.
Kocabiyikoglu et al. (2018) rely on the same static setting
to investigate different RM decision tasks. Their design asks
participants to set static booking limits or protection levels,
given stationary demand for two fare classes. The authors
analyze whether decision-makers resort to anchoring on mean
expected values, terming this the pull-to-center effect. They
conclude that this effect does not reliably occur in RM.
We follow up on this idea by confronting participants with
dynamic decision tasks and finding evidence for anchoring
when participants set prices.

The newsvendor problem is frequently regarded as
strongly related to a static version of RM and has triggered
a significant body of behavioral research. Its central ques-
tion, how much capacity to reserve for uncertain demand,
is closely related to the quantity-based RM problem when
booking limits are set before the booking horizon and
are not updated dynamically within the booking hori-
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TA B L E 1 Related work on behavioral RM

Demand arrival Willingness to pay Decision

Bearden et al. (2008):
systematic decision errors

constant constant dynamic acceptance or static
threshold

Bendoly (2011): effects from
concurrent tasks and stress

constant constant dynamic acceptance or static
threshold

Bendoly (2013): effects from
feedback

constant constant dynamic acceptance or static
threshold

Kocabiyikoglu et al. (2015):
revenue management versus
newsvendor decision

constant constant per segment static booking limits

Kocabiyikoglu et al. (2018):
booking limit versus
protection-level decisions

constant constant per segment static booking limits or static
protection levels

This paper: effects from
nonstationary demand and
dynamic decisions

constant or triangular constant or increasing dynamic acceptance or
dynamic threshold

zon. However, when Kocabiyikoglu et al. (2015) compare
newsvendor decisions to mathematically equivalent RM
decisions, they conclude that the related insights are not
readily transferable. For the newsvendor problem, Bolton
and Katok (2008) investigate learning environments; they
find that hands-on experience, for example, through sim-
ulation, can improve learning. Benzion et al. (2008) also
analyze newsvendor learning, focusing on different profit lev-
els and demand distributions. In this paper, we observe that
decision-makers do improve over repeated booking horizons
under nonstationary demand.

Several existing studies analyze decision-making under
normatively equivalent but behaviorally diverging settings:
for example, Ho and Zhang (2008) find that participants’
decisions differ when pricing a fixed fee as a discount or
a two-part tariff; Katok and Wu (2009) show that buyback
and revenue sharing contracts change participants’ behav-
ior; Tokar et al. (2016) propose ways how framing can help
to reduce participants’ decision biases when supply chain
managers make inventory control decisions. However, the
RM decision tasks of dynamic acceptance or pricing are not
fully normatively equivalent, as participants can earn the cus-
tomers’ entire willingness to pay for acceptance while only
earning the asking price for pricing tasks.

In summary, existing experimental designs for RM assume
stationary demand and ask participants to either dynami-
cally accept individual customers or to set static thresholds
or limits. We extend this research by introducing nonstation-
ary demand and a dynamic pricing decision. In replicating
and extending results from Bearden et al. (2008), we follow
the call to action given in Pagell (2021). In evaluating the
implications of the extended design as compared to results
from the original design, we implement what Schoenherr and
Swink (2012) term cross-validation. In an experimental study,
we evaluate decision biases, such as anchoring, which have
not previously been examined for RM as dependent on the
demand setting and decision task.

3 THEORY

This section first formalizes the considered RM problem
and two alternative decision tasks. We expect two aspects
of the RM problem to increase its complexity for human
decision-makers: nonstationary demand and a dynamic pric-
ing decision. Accordingly, we consider customer arrivals and
willingness to pay as stochastic parameters, pt and wt, which
depend on time t.

Because we expect human decision-making to rely on sys-
tematic biases and heuristics, we secondly outline systematic
approaches to solve the RM problem. Third, we list measure-
ment variables to describe RM decision-making, where some
of these variables rely on comparisons to outcomes from
systematic approaches. Finally, we formulate the hypothe-
ses that guide our research based on the RM model. These
hypotheses consider human decision making with particular
regard for the RM problem introduced here and describe the
expected development of the measurement variables as based
on existing behavioral theories.

3.1 The RM problem with nonstationary
demand

Following Talluri and van Ryzin (2004, p. 59), we consider
a limited booking horizon defined by a set of time slices t ∈
{T , … , 0}, where at most one customer arrives and decides
to book per time slice. This model also underlies Bearden
et al. (2008) and Bendoly (2011, 2013). Arrival rate pt ∈

[0, 1] indicates the probability of a customer arriving in time
slice t.

We model the dynamic RM decision generally as valuing
the next unit of capacity to be sold by setting a thresh-
old Rt,s, which depends on time t and left-over capacity
s ∈ {0, … , S}. When the booking horizon ends, at t = 0, the
value of capacity perishes.



162 DECISION BIASES IN REVENUE MANAGEMENT REVISITED

The expected willingness to pay of the customer arriving at
t is ŵt and is uniformly distributed in the interval [ŵt

l
, ŵt

u].
We denote the actual willingness to pay of a customer arriv-
ing at t by wt. A customer that arrives at time t, given left-over
capacity s, books one unit of capacity if their willingness
to pay at least equals Rt,s. Given threshold Rt,s, a booking
yields revenue rt(Rt,s). When the threshold is at most equal
to the expected willingness to pay, we expect the customer
to book with certainty: Rt,s ≤ ŵt

l
→ bt(Rt,s) = 1. When the

threshold exceeds the upper bound of the expected willing-
ness to pay, we do not expect the customer to book: Rt,s >

ŵt
u
→ bt(Rt,s) = 0. If the threshold falls within the expected

willingness to pay interval, the booking probability, bt(Rt,s) is
given by

bt(Rt,s) =

⎧⎪⎪⎨⎪⎪⎩

1 if Rt,s < ŵt
l
,

ŵt
u
−Rt,s

ŵt
u
−ŵt

l if ŵt
l
≤ Rt,s ≤ ŵt

u
, ∀t ∈ {T , … , 0},

s ∈ {0, … , S}

0 if Rt,s > ŵt
u
.

(1)

3.2 RM decision tasks

When making acceptance decisions, decision-makers know
the customer’s willingness to pay. If a customer is accepted,
the resulting revenue rt(Rt,s) corresponds to their willingness
to pay. Thus, the expected revenue for the acceptance deci-
sion, r̂acc

t (Rt,s), is at least the threshold Rt,s and at most the
upper bound of the willingness to pay interval ŵt

u:

r̂acc
t (Rt,s) =

ŵt
u
+ Rt,s

2
. (2)

When setting prices ahead of customer arrivals, decision-
makers must rely on the expected willingness to pay. The
resulting price corresponds to the threshold Rt,s from the
acceptance task. Customers book if their willingness to
pay exceeds this price, such that the revenue for the price
decision, rpr

t (Rt,s), corresponds to the threshold:

rpr
t (Rt,s) = Rt,s. (3)

Acceptance and pricing decisions do not earn the same rev-
enue even when applying the same solution approach: The
price decision forfeits the difference between the optimal
threshold and the customer’s actual willingness to pay.

3.3 Systematic solution approaches

We formalize several systematic RM solution approaches
to evaluate human decision-making and explore the conse-

quences of systematic biases. Applying any of these to a
stream of customer arrivals yields a pattern of bookings and
earned revenue.

Optimal dynamic solution (OPTIMAL)
To optimally exploit demand over the booking horizon, this
approach calculates ex-ante optimal thresholds Rt,s per com-
bination of left-over capacity s and time t via a dynamic
program as described in Talluri and van Ryzin (2004,
chapter 2.2).

Optimal static solution (STATIC)
The STATIC approach applies a single revenue-optimal
threshold across the entire booking horizon, Rstat.

Anchoring (ANCHOR-ŵt)
This heuristic anchors on the expected willingness to pay per
time slice, ŵt, to set the acceptance threshold or the price.
In this, it implements the pull-to-center strategy discussed in
Kocabiyikoglu et al. (2018).

Demand chasing (CHASING)
This heuristic first sets the threshold or the price to the
expected willingness to pay, Rt,s = ŵt. After each customer
arrival at time t′, the heuristic updates Rt,s to the newly
observed willingness to pay, Rt,s = wt′ . In this, it implements
“demand chasing” as discussed in Lau and Bearden (2013).

First-come-first-serve (FCFS)
This heuristic indiscriminately sells the given capacity. In the
pricing task, FCFS sets the price to the lowest expected will-
ingness to pay, Rt,s = min∀t ŵt

l. Thereby, it implements the
ultimate loss-averse strategy.

Minimum-sale (MIN-𝜙-ANCH, MIN-𝜙-OPT)
This heuristic aims to sell at least 𝜙 units of capacity via
FCFS before switching to ANCHOR-ŵt (MIN-𝜙-ANCH) or
to OPTIMAL (MIN-𝜙-OPT). It models a loss-averse strategy
and is inspired by our discussions with practitioners outlined
in the Introduction.

Random acceptance (RANDOM)
We model random acceptance by computing the gain
expected from accepting any arriving customer with 0.5
probability for as long as there is left-over capacity, rt =

0.5 ∗ wt if s > 0, else rt = 0. There is no equivalent pricing
strategy.

3.4 Measurement variables

Benchmark gaps
We compute percentage gaps in revenue from any observed
RM strategy to the optimal dynamic strategy (optimality gap)
and the optimal static strategy (static benchmark gap).
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Error types
We count the number of accept and reject errors by comparing
observed decisions to those prescribed by OPTIMAL for the
current combination of expected demand and left-over capac-
ity. If a decision deviates from the current optimal strategy by
accepting a customer or offering an acceptable price, there
results an accept error. If a decision erroneously rejects a
customer or offers an excessive price, this is a reject error.
Both early accept and reject errors affect the left-over capac-
ity, which may cause additional errors to arise later in the
booking horizon. Accept errors limit the capacity and thereby
increase the later tendency for reject errors; reject errors leave
more capacity unsold and increase the later tendency for
accept errors.

Implicit thresholds
While price decisions directly implement the underlying
threshold, we estimate the implicit thresholds that underlie
acceptance decisions following Bearden et al. (2008). These
thresholds embody decision-makers’ assumptions about the
future value of capacity. For each observed acceptance deci-
sion, we calculate the threshold Rpart

t,s that maximizes the
proportion of correctly predicted decisions per left-over
capacity and day of the booking horizon. To eliminate out-
liers, we only calculate Rpart

t,s for days in the booking horizon
when we recorded at least 2% of the decisions for that
capacity. When we exclusively observe accepted or rejected
customers for one combination of day and left-over capacity,
Rpart

t,s is either an upper bound for accept decisions or a lower
bound for reject decisions. In this case, we rely on a best-case
estimate based on the optimal strategy Rt,s. If Rt,s correctly
predicts the decision, we set Rpart

t,s = Rt,s. Otherwise, we set

Rpart
t,s to a value that is as close as possible to Rt,s while still

maximizing the proportion of correctly predicted decisions.

Threshold descriptors
We distinguish two subsets of observed decisions: Rpart

t ≥ ŵt,
where implicit thresholds or prices equal or exceed the will-
ingness to pay, and Rpart

t < ŵt, where they undercut it. We
further quantify the difference between thresholds Rpart

t,s and
the expected willingness to pay ŵt via the mean absolute
percentage deviation (MAPD):

MAPDŵt =
100
n

n∑
t=1

|Rpart
t − ŵt

Rpart
t

|. (4)

Decision bias
To quantify the deviation of a set of observed decisions from
the optimal strategy Rt,s, we calculate the BIAS. In the fol-
lowing equation, n denotes the number of days of the booking
horizon when we recorded decisions for that capacity:

BIAS =
1
n

n∑
t=1

(Rpart
t,s − Rt,s). (5)

Revenue loss
For acceptance decisions, the implied revenue loss EA

t is the
absolute difference between the optimal threshold Rt,s and
the actual willingness to pay wt: EA

t = |Rt,s − wt|. For price-
setting, the implied revenue loss EP

t is the absolute difference
between the optimal price Rt,s and the price Rpart

t as set by

the participant: EP
t = |Rt,s − Rpart

t |. E describes the average
implied revenue loss over t and all rounds.

Revenue distance
To compare sets of decisions across a booking horizon, we
evaluate the revenue pattern, which shows the earned revenue
rt for any time slice where a customer booked. To compute
the absolute distance between any two patterns P and P′ and
normalize it per booking horizon, we divide the sum of abso-
lute distances by the sum of the willingness to pay of all
arriving customers in that booking horizon:

Dr
P,P′ =

∑n
t=1 |rP

t − rP′
t |∑n

t=1 wt

. (6)

3.5 Hypotheses

First, we derive hypotheses on the implications of non-
stationary demand and dynamic price-setting. Second, we
hypothesize that human decision-makers employ systematic
heuristics in line with Katsikopoulos and Gigerenzer (2013),
causing related decision biases. Note that this subsection
assumes the RM problem to align with the model described
in Section 3.1 and to be solvable using the approaches
described in Section 3.3. Furthermore, we formulate hypothe-
ses in terms of the measurement variables described in
Section 3.4.

Some behavioral research, for example, Kremer et al.
(2011), finds that humans cope better with evolving rather
than stationary environments when adjusting time-series
forecasts. However, the RM problem asks decision-makers
to dynamically set controls while anticipating future devel-
opments in customers’ arrival rates and willingness to pay.
This problem corresponds to making intertemporal choices
following Hardisty et al. (2013). Following research on
human error in gauging probabilistic developments (Kahne-
man and Frederick, 2002; Tversky and Kahneman, 1992) and
intertemporal choices (Hardisty et al., 2013), we expect that
human decision-makers struggle in this situation. Following
Hilbert (2012), there results in a greater gap between the input
evidence (the forecast) and the output estimate (decisions). In
terms of the measurement variables, we expect the optimal-
ity gap from human decisions to increase when customers’
willingness to pay wt or arrival rate pt vary over t compared
to when these parameters are stationary. This causes us to
formulate hypothesis 1a:

Hypothesis 1a) Nonstationary demand reduces the suc-
cess of human decision-making for RM.
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While the general idea may be intuitive, this hypoth-
esis further justifies the idea of evaluating RM decisions
under nonstationary demand: If the resulting complexity did
not change the success of human decision-making, a more
straightforward design (e.g., based on Bearden et al. (2008))
could yield the same insights.

As outlined comprehensively in Hinterhuber (2015), price-
setting is notoriously susceptible to biases. Comparing it
to the acceptance task highlights some underlying causes:
As pointed out in Section 3.2, the pricing decision has
to rely on the demand forecast without customer-specific
information entirely. While this is true for both automated
solution approaches and human decision-makers, related
research shows that having to decide under uncertainty
induces stress in humans (De Berker et al., 2016). As Ben-
doly (2011) highlights, stress negatively affects human RM
decisions.

Furthermore, as opposed to the binary decision task of
accepting or rejecting customers, both pricing and the set-
ting of booking limits constitute a multiary decision (Hilbert,
2012). Multiary decisions make it harder for decision-makers
to link input evidence and output estimate. There emerges
a “wicked learning environment” (Hogarth et al., 2015), as
feedback from a pricing decision does not include how much
more the customer might have been willing to pay and as a
multitude of alternative pricing decisions (as opposed to the
single alternative to acceptance) are possible.

Last, the pricing decision also includes an element of
self-fulfilling prophecies (Kollwitz and Papathanassis, 2011):
Setting a lower price is more likely to induce positive feed-
back in the form of earned revenue. Therefore, we expect
this decision task to cause larger optimality gaps, as stated
by hypothesis 1b:

Hypothesis 1b) Setting prices reduces the success of
human decision-making for RM.

Intuitively, we might expect positive effects from learning
as decision-makers confront the RM problem over mul-
tiple booking horizons and can develop a learning curve
(Glock et al., 2019). However, Bearden et al. (2008) do not
find positive effects from experience for acceptance deci-
sions. This may be due to each booking horizon being
unique due to stochastic customer arrivals, making it difficult
for decision-makers to assess a new decision’s similar-
ity to a known situation, as also described in Hogarth
et al. (2015). Furthermore, when relying on demand fore-
casts detailing arrival rates and expected willingness to pay,
human decision-makers may suffer from the description-
experience gap described, for example, in Hertwig et al.
(2018, 2019). Accordingly, we also do not expect to see pos-
itive effects when participants face the problem repeatedly
without explicit reflection or deliberate feedback. Specifi-
cally, we expect the optimality gap to remain stable even
when a decision-maker repeatedly attempts to solve the RM
problem in the same setting, stating hypothesis 1c:

Hypothesis 1c) The more complex the situation, the more
difficult it becomes for humans to get better at solving the RM
problem through mere repetition.

Following Bearden et al. (2008), we expect participants to
be overly optimistic about future demand, thereby overesti-
mating the value of left-over capacity. When decision-makers
fall prey to optimism bias, they overshoot optimal thresholds
and prices as described for forecast adjustments in Eroglu and
Croxton (2010) and transport planning in Flyvbjerg (2008).

Flyvbjerg (2008) claims that relying on reference classes
from historical data, such as given by demand forecasts in
RM, can alleviate this tendency. However, following the pre-
viously stated hypotheses, RM decisions under nonstationary
demand represent intertemporal choices with a gap between
input and output, creating wicked learning environments
(Hogarth et al., 2015). Furthermore, deciding on what to offer
rather than setting a forecast may increase decision-makers’
perception of control, which also increases optimism bias
following Tyebjee (1987). Therefore, we expect optimism
bias to persist even given accurate forecasts. Accordingly, we
expect implicit thresholds or prices set by human decision-
makers to exceed those from the optimal solution, causing a
positive BIAS and reject errors. This constitutes hypothesis
2a:

Hypothesis 2a) Human RM decisions are susceptible to
optimism bias.

Somewhat contradicting the idea of optimism bias,
Schweitzer and Cachon (2000) find that humans underesti-
mate opportunity costs for the newsvendor problem, possibly
due to loss aversion. Hinterhuber (2015) highlights the result-
ing observations of underpricing, particularly concerning new
products, where sellers are trying to explore the market.

In our setting, loss aversion would induce decision-makers
to set thresholds or prices that undercut the optimal solution,
causing a negative BIAS and accept errors. As Bearden et al.
(2008) note, loss aversion may combine with optimism bias
for larger values of left-over capacity; the authors term this
phenomenon inventory mis-sensitivity. We expect loss aver-
sion to manifest through implicit thresholds or prices that
undercut the optimal solution, causing a negative BIAS and
accept errors. This leads us to formulate hypothesis 2b:

Hypothesis 2b) Human RM decisions are susceptible to
loss aversion.

The previously stated hypotheses indicate that RM
decision-makers follow a systematic but flawed strategy. This
idea goes with the idea of price-setting following overly sim-
plistic heuristics described in Hinterhuber (2015). Following
Epley and Gilovich (2006), we expect that such heuristics
include relying on anchors to decide which customers to
accept or what prices to set. Furnham and Boo (2011) sum-
marize relevant literature describing the anchoring bias and
its implications for decision-makers. As the authors state,
“people are influenced by specific information given before
a judgment.”

For newsvendor decisions, Kocabiyikoglu et al. (2018)
expect to find a related pull-to-center effect but cannot
confirm this in their static setting. In the dynamic RM
problem, we expect that decision-makers are overly influ-
enced by information on the expected or the most recently
observed willingness to pay, neglecting other crucial param-



CLEOPHAS AND SCHÜETZE 165

eters like arrival probabilities, capacity, and time left. Thus,
we conclude with hypothesis 2c:

Hypothesis 2c) Human RM decisions rely on anchors.
When relying on the most recently observed willingness to

pay as their anchor, decision-makers further exhibit demand
chasing behaviors (Kirshner and Moritz, 2021). Demand
chasing represents a particular type of anchoring bias that
research frequently examines for inventory decisions and the
related newsvendor problems (Kremer et al., 2010; Lau and
Bearden, 2013). From the perspective of the systematic solu-
tion approaches formulated in Section 3.3, anchoring creates
revenue patterns that resemble those from ANCHOR-ŵt or
those from CHASING.

4 RESEARCH METHODS

Researchers may gain insight into RM analysts’ decision-
making via surveys, field observations, or examining RM
decisions in a laboratory setting. In line with the references
listed in Table 1, the research presented in the remainder of
this paper relies on laboratory experiments.

This choice of research method is motivated by drawbacks
of field surveys and observations when aiming to analyze
decision biases and by one main advantage of laboratory
experiments. As emphasized, for example, by Furnham and
Boo (2011), humans are rarely aware of their decision biases.
Accordingly, we do not expect survey answers to provide
clear insights. Nevertheless, as outlined in the Introduction,
we rely on talks with RM experts to inform the hypotheses
and systematic solution approaches.

Second, the opportunity to observe operational RM experts
in situ, as described in Schütze et al. (2020), is severely lim-
ited by company policy and labor councils. These seem to
effectively prevent much empirical research on human ana-
lysts overruling analytics systems, with a few recent notable
exemptions, such as Sun et al. (2021).

Third, when aiming to analyze decision-making for RM,
field experiments suffer from a severe limitation even when
overcoming these barriers: The real-world market environ-
ment is intransparent and dynamic. Accordingly, judging the
quality of empirical RM decisions is difficult, as described
in the literature on RM performance evaluation (Vock et al.,
2022).

The laboratory setting lets us implement a controlled RM
challenge by confronting both participants and systematic
solutions with the same sets of arriving customers. This set-
ting enables observations under ceteris paribus conditions:
All participants in the same treatment confront the same
information and the same customer arrivals. By varying the
demand generation parameters, we can systematically vary
customer arrival probability pt and willingness to pay wt to
cross-validate hypotheses.

As participants in the related experiments, we recruit uni-
versity students. This recruitment strategy creates a large pool
of subjects, ensuring the statistical significance of experimen-
tal results. On a related note, Thomas (2011) emphasizes the

opportunity for homogeneous sampling to maximize preci-
sion and control in logistics experiments. Accordingly, we
sample participants with a homogeneous degree of educa-
tion and experience. Furthermore, student participants enable
us to organize the experiments over a short period, exclud-
ing any long-term changes in the participant pool. Finally,
we assume that findings from Bolton et al. (2012) for the
newsvendor problem also apply to RM so that behavioral
effects for students and managers are comparable.

We implement all treatments in the software z-Tree from
the University of Zurich (Fischbacher, 2007). As emphasized
in Schram and Ule (2019, chapter 17), z-Tree is widely used
because it is free of charge and requires only little coding
effort, as opposed to, for example, implementing a custom
front- and back-end through PHP, MySQL, and Javascript.
In addition, the client-server system enables closed-system-
data-handling, as opposed to, for example, commercial and
cloud-based offers, such as ChoiceFlow. Last, the exist-
ing infrastructure and support of the experimental lab were
another point in favor of z-Tree.

4.1 Treatment design

Following the same general settings as Bearden et al. (2008)
and Bendoly (2011, 2013), we ask subjects to manage capac-
ity over a booking horizon of 40 days. Participants have to
handle the same RM task in 40 consecutive rounds, where
each round constitutes one booking horizon. Within each
booking horizon, they have to sell 5 units of capacity. Partici-
pants do not have to process every day of the booking horizon
individually but only handle customer arrivals. Thus, their
experience of the booking horizon jumps from, for exam-
ple, t = 39 to t = 24 if no customers are arriving on the days
in-between. Because of that, the number of decision stages
within a booking horizon varies between rounds. In each
booking horizon, the number of decisions that participants
have to make, for example, rejecting and accepting, is lim-
ited by the capacity and the number of customer arrivals.
For example, if a participant accepts the first five customers
that arrive, they have no capacity left and will not need to
make another decision for the remainder of the horizon. Note
that all participants experience the same customer arrivals, as
these are drawn randomly per round but not per participant.

The system announces the current time in the booking hori-
zon and the left-over capacity whenever a customer arrives.
Subjects have 30 s to decide; if they indicate nothing, the
customer is rejected or the previously set price continues to
apply. After each customer arrival, the system informs partic-
ipants about the accumulated revenue and left-over capacity.
Each round ends when the booking horizon ends or when
there is no capacity left. An entire session takes at most
2 h.

For all participants, an accurate demand forecast indicates
the mean customer arrival rate pt and the interval of the
expected willingness to pay ŵt per time slice of the booking
horizon t ∈ {T , … , 0}. This information follows the practice
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TA B L E 2 Treatment overview

Treatment Decision task Arrival rate Willingness to pay

T1 acceptance – –

T2 acceptance X –

T3 acceptance – X

T4 acceptance X X

T5 price – –

T6 price X X

Note: Overview of treatments. “X” indicates that the parameter evolves over the booking
horizon, whereas “–” indicates that it is stationary.

of considering expected booking curves in real-world RM
systems. As no information on the presentation of informa-
tion and interface design from Bearden et al. (2008) was
available upon inquiry, we provide our own design. How-
ever, for transparency, we include related screen-shots in the
online Appendix.

Table 2 lists all treatments; the remainder of this sec-
tion describes the underlying parameters.

Treatment T1 seeks to replicate the setting of Bearden
et al. (2008) by combining stationary demand and the accep-
tance decision task. The arrival rate is pt = 0.3 for all t ∈
{40, … , 1}, resulting in an average of 12 customers arriving
per round. Across the booking horizon, customers’ willing-
ness to pay is uniformly distributed in the interval [5;10]
with mean ŵt = 7.5. The interval differs from Bearden et al.
(2008) to make the treatment comparable to those where the
willingness to pay evolves.

In treatments T2 and T4, the customer arrival rate evolves
over the booking horizon. The arrival rate peaks 30 days
before the end of the booking horizon. It decreases linearly
to zero at t = 0 and t = 40. While the number of days is arbi-
trary, we match the arrival rate to that of empirical airline
RM data.

In treatments T3 and T4, customers’ willingness to pay
increases over the booking horizon, so late arrivals are more
valuable than early arrivals. Thus, at 40 days to departure, w40
is €2.5, increasing to w1 = €12.5. Again, the absolute num-
bers are arbitrary, whereas the span of revenue differences is
based on empirical airline RM data.

Treatments T5 and T6 ask participants to set prices. While
T5 features stationary demand, T6 combines nonstationary
arrival rates and willingness to pay. For parsimony, we do
not implement a completely symmetrical treatment design but
instead test the pricing decision only on the extreme cases of
stationary and nonstationary demand.

4.2 Experimental procedure

We recruit participants via the AixLab database, implemented
by the School of Business and Economics at RWTH Aachen
University Laboratory. The database lists anonymous poten-
tial participants with their program and year of studies, age,

gender, and flags indicating prior participation. We randomly
invite business, engineering, or mathematics students who
have studied for at least a year. We pick a unique set of par-
ticipants for every treatment, such that none can participate
more than once.

The sample size per treatment is 30 participants, yield-
ing 180 participants overall. According to our survey, the
age of the 180 participants ranges from 18 to 45, with the
median at 23 years. In addition, 39% of subjects identify as
female, while 61% identify as male. We do not survey partic-
ipants’ ethnic backgrounds. To accommodate limited room
sizes and reduce external effects, we divide the participants
into groups of 15 and schedule sessions at different times
and on different dates. We conducted all experiments within
6 weeks.

In line with the recommendations stated in Eckerd et al.
(2021), we design the experimental procedure as trans-
parently as possible, clearly informing subjects about the
research objectives and intended analysis and avoiding decep-
tion. Furthermore, as the research objective is to observe
decision-making when participants are motivated to achieve
good results, we rely on performance-dependent payments
calibrated to the difficulty of the treatments. Specifically,
after each experiment, we compute a fixed factor that, when
multiplied by each participant’s performance relative to the
optimum, results in an average payment of €10 per hour
across all participants. These payments approximate the wage
of a student assistant at the time. Thus, for an exemplary
factor of 13, a participant who earned 90% of the optimal rev-
enue would earn 11.70 Euro. As the duration of the sessions
and the relative performance of participants vary, the factor is
recalibrated per session.

In the introductory explanation, the researcher reads
out extensive written instructions and informs the partic-
ipants that their payment will depend on their revenue
across all rounds. The instructions explain the distribu-
tions of arrival rate and willingness to pay graphically and
in text. After reading the instructions, the researcher ver-
bally queries the participants’ understanding. The online
Appendix includes the instructions as well as screen-shots
from the experimental study.

Subsequently, the participants perform an initial training
round to familiarize themselves with the setting; their perfor-
mance in that round does not affect their reward and does not
enter the analysis. Before the evaluated part of the experiment
begins, the researcher asks the participant to confirm their
understanding again or to ask questions. After the experimen-
tal task, all participants fill out a survey stating demographic
data and their view of the task.

We implement manipulation checks to check whether the
participants have understood the task, feel comfortable with
handling the interface, and do, in fact, attempt to solve the
RM problem. To avoid distracting participants with traps
or potentially annoying attention checks (Hauser et al.,
2018), we rely on verbal checks and a behavior check.
We verbally query participants’ understanding of the task
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TA B L E 3 Participants’ results

Optimality Reject E % per E % per Static benchmark

gap errors accept error reject error gap

T1 **2.69% 75% 1.07% 1.44% **−9.67%

T2 **2.76% 66% 1.14% 1.60% **−10.35%

T3 **5.69% 19% 2.05% 1.72% 0.84%

T4 **4.38% 27% 1.87% 1.97% 0.58%

T5 **5.32% 80% 2.80% 3.60% −1.41%

T6 **3.72% 44% 2.95% 4.22% *−1.68%

Note: ** significantly different from 0 with p < 0.01.
*significantly different from 0 with p < 0.05.

before the experiment and include a related question in
the survey. All participants stated that they understood the
instructions.

As a behavior-based manipulation check, we compare
the results from participants’ decision-making to those from
RANDOM and FCFS. Participants’ revenue patterns strongly
differ from those approaches. However, on average, partic-
ipants’ decision-making is more similar to OPTIMAL than
to random or indiscriminate strategies. In conclusion, we
assume that all participants understood the task and were
reasonably motivated to perform well.

5 RESULTS

This section first presents results from replicating the setting
of Bearden et al. (2008). Subsequently, it describes results
from the extended setting featuring nonstationary demand
parameters and the pricing decision. Finally, we discuss the
hypotheses stated in Section 3.5 in the light of these results.

Unless otherwise stated, we conduct two-sample nonpara-
metric Wilcoxon tests to check the average benchmark gaps
over participants and rounds for significant differences. We
check the significance of BIAS indicators using a simple
binomial sign test, where the probability of success under
the null hypothesis is p = 0.5, given a confidence level of
95%. The resulting significance values are given in the
respective tables.

The optimal revenue varies across treatments: When the
arrival rate and the willingness to pay are not stationary, the
value randomly deviates across rounds due to the stochastic
demand. For the same demand streams (T1 vs. T5, T4 vs. T6),
the optimal strategies earn less through pricing, where only
the price paid turns into revenue, than through acceptance,
where the complete willingness to pay turns into revenue.

5.1 Replication and validation

To validate the experimental design, treatment T1 replicates
the findings from Bearden et al. (2008). It yields a significant
optimality gap of 2.69% (see Table 3), where Bearden et al.

(2008) observe an optimality gap of 3.23%. Furthermore, we
observe a larger share of reject errors, with 75% as opposed
to 54% in Bearden et al. (2008).

We visualize decision errors for T1 in Figure 1. The left
panel shows how the percentage of decision errors varies
across the booking horizon: The bars’ height indicates the
percentage of erroneous decisions per day in the booking
horizon, whereas the bars’ color indicates the share of accept
versus reject errors. Thus, for example, the first bar from the
left in Figure 1 shows that of all decisions that participants
took on the first day, 10% deviated from the optimal strat-
egy. Specifically, 8% were reject and 2% were accept errors.
The right panel compares the participants’ implicit thresholds
to the optimal thresholds dependent on the left-over capac-
ity. Figures 2–4 follow the same logic. The nature of the
RM problem is such that the optimal threshold is lower when
there is more capacity left or when there are fewer days left
in the booking horizon. Comparing the participants’ implicit
thresholds to those from OPTIMAL indicates an over- or
underestimation of the value of left-over capacity.

In T1, most reject errors occur during the second half
of the booking horizon when optimal thresholds per left-
over capacity decrease as the accumulated future customer
arrival probability decreases. Participants’ implicit thresholds
exceed the optimal thresholds for left-over capacities of 2–5
units. For left-over capacities of 4 and 5 units, we observe
a significant positive BIAS: Participants seem to have an
exaggerated notion of the future value of capacity and, there-
fore, accept fewer bookings than optimal. However, the BIAS
for 1 and 2 units of left-over capacity is not significantly
negative.

Implied revenue loss from reject errors significantly
exceeds that from accept errors. This finding contradicts
Bearden et al. (2008), but seems intuitive: For accept errors,
the implied revenue loss describes the difference between
the optimal threshold and customers’ willingness to pay.
This value increases when the optimal threshold decreases
throughout the booking horizon so that a late reject error
is more costly than an early accept error. Since the implicit
thresholds are not systematically lower than the optimal
thresholds, the higher number of late reject errors explains
the higher implied revenue loss for reject errors.

5.2 Results from the extended experimental
design

Contrary to H1a, nonstationary customer arrivals do not sig-
nificantly worsen participants’ acceptance decisions. There
is no significant difference between the optimality gaps from
T1 to T2, and subjects outperform the static benchmark in
both treatments. In addition, the number of accept and reject
errors, estimated thresholds, and biases do not significantly
differ. However, comparing participants’ revenue patterns to
those from systematic approaches (Table 6) shows a slight
shift in strategies: The number of participants that earn
revenue patterns that most closely resemble OPTIMAL or
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F I G U R E 1 T1: Decision errors and estimated thresholds
Notes: Results for acceptance decision with constant demand. The left panel shows the percentage of decision errors over the booking horizon. The right panel
shows implicit thresholds in Euro per unit of left-over capacity across the booking horizon. Horizontal lines represent the average willingness to pay (wtp) and
the optimal static threshold (static).

F I G U R E 2 T4: Decision errors and estimated thresholds
Notes: Results for acceptance with nonstationary arrival rate and willingness to pay (wtp). The left panel shows the percentage of decision errors over the
booking horizon. The right panel shows implicit thresholds per unit of left-over capacity. Additional lines represent the average willingness to pay (wtp) and
the optimal static threshold (static).

STATIC shrinks from 23 in T1 to 14 in T2, while the number
of revenue patterns that most closely resemble ANCHOR-ŵ
increases from 7 to 16.

In line with H1b, customers’ nonstationary willingness to
pay does impede participants’ decision-making. To analyze
this effect, we compare treatments T1 versus T3, T2 versus
T4, and T5 versus T6. When pt is stationary but ŵt is non-
stationary, the optimality gap more than doubles, increasing
from 2.69% in T1 to 5.69% in T3. This difference is sig-
nificant at p < 0.001. Thus, given a stationary arrival rate,
a nonstationary willingness to pay negatively affects par-
ticipants’ performance. Remarkably, the number of revenue

patterns that most closely resemble OPTIMAL is largest in
T3 and T4. However, while this strategy is the most similar,
its average distance to participants’ patterns is wider in T3
and T4 than in T1.

Combining nonstationary arrival rate and willingness to
pay does not complicate the problem further. Rendering both
demand aspects nonstationary (T4) does not significantly
increase the optimality gap compared to T3. Instead, the
optimality gap seems to shrink, but applying a one-sided
Wilcoxon test shows that this effect is insignificant at p <
0.01. Comparing T4 to T2, thereby adding a nonstationary
willingness to pay ŵt to a nonstationary arrival rate pt, results
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F I G U R E 3 T5: Decision errors and prices
Notes: Results for pricing with stationary demand. The left panel shows the percentage of decision errors over the booking horizon. The right panel shows the
price per unit of left-over capacity across the booking horizon. Additional lines represent the average willingness to pay and the optimal static threshold
(static).

F I G U R E 4 T6: Decision errors and prices
Notes: Results for pricing with nonstationary arrival rate and willingness to pay (wtp). The left panel shows the percentage of decision errors over the booking
horizon. The right panel shows the prices per unit of left-over capacity across the booking horizon. Additional lines represent the average willingness to pay
(wtp) and the optimal static threshold (static).

in an increased optimality gap with a significance level of
p < 0.01. Adding this insight to our findings on the insignifi-
cant change from T1 to T2, we conclude that a nonstationary
arrival rate does not make RM harder for human decision-
makers. The opposite is true for a nonstationary willingness
to pay.

Contrary to H1b, pricing decisions are only less success-
ful than acceptance decisions when demand is stationary.
When participants set prices for stationary demand, the opti-
mality gap grows from 2.69% in T1 to 5.32% in T5. Once
more, this increase is significant at p < 0.01. Additionally,
participants no longer outperform the static benchmark (see

Table 3). In contrast, for nonstationary demand, the optimal-
ity gaps from acceptance decisions (T4) and pricing decisions
(T6) do not significantly differ (p > 0.2). Even under difficult
circumstances, participants achieve at least 82% of the opti-
mal revenue (see Table 5). In contrast, systematic approaches
earn as little as 34% (FCFS in T5, see Table 7).

Contrary to H1c, human RM decisions do benefit from
repetition under nonstationary demand. To test this effect,
we compare the optimality gap between the first and last
20 rounds of each treatment in Table 4. Under the station-
ary demand given in T1 and T5, participants’ performance
slightly but significantly decreases over multiple rounds.
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TA B L E 4 Gaps over rounds

Treatment First 20 rounds Last 20 rounds Percentage point difference

T1 **2.26% **3.12% *+0.86PP

T2 **3.63% **1.85% **−1.78PP

T3 **7.14% **4.26% **−2.88PP

T4 **6.77% **1.91% **−4.86PP

T5 **4.56% **6.09% +1.53PP

T6 **5.14% **2.31% **−2.83PP

Note: ** significantly different from 0 with p < 0.01.
* significantly different from 0 with p < 0.05.

TA B L E 5 Variation in participants’ individual optimality gaps

Avg. Min. Max. Coefficient

Treatment opt. gap opt. gap opt. gap of variance

T1 2.26% 1.53% 4.71% 0.92%

T2 3.63% 0.37% 5.99% 1.34%

T3 7.14% 1.40% 17.41% 3.65%

T4 6.77% −0.62% 8.50% 2.38%

T5 4.56% −1.89% 17.20% 5.13%

T6 5.14% −1.65% 15.23% 4.05%

TA B L E 6 Percentage revenue distance between participants and
systematic approaches versus the absolute number of participants for whom
the strategy is most similar

Strategy T1 T2 T3 T4 T5 T6

OPTIMAL 19% 10 17% 9 24% 28 23% 27 20% 4 27% 20

STATIC 19% 13 19% 5 31% 0 28% 2 18% 23 28% 8

CHASING 28% 0 26% 0 45% 1 37% 1 25% 0 33% 1

ANCHOR-ŵt 21% 7 16% 16 30% 1 37% 0 21% 3 35% 0

MIN-2-ANCH 27% 0 27% 0 39% 0 39% 0 27% 0 35% 0

MIN-3-ANCH 32% 0 34% 0 45% 0 41% 0 32% 0 35% 0

MIN-2-OPT 25% 0 27% 0 37% 0 36% 0 24% 0 31% 0

MIN-3-OPT 31% 0 34% 0 43% 0 41% 0 29% 0 34% 0

RANDOM 45% 0 43% 0 48% 0 45% 0 - - - -

FCFS 40% 0 45% 0 57% 0 54% 0 39% 0 42% 0

Note: All percentages significantly differ from 0 with p < 0.01.

TA B L E 7 Optimality gaps from heuristics

Heuristic T1 T2 T3 T4 T5 T6

STATIC 12.36% 11.92% 5.09% 3.82% 8.91% 8.13%

CHASING 6.79% 7.55% 27.43% 19.18% 10.70% 31.21%

ANCHOR-ŵt 8.13% 3.75% 4.46% 12.86% 6.91% 26.80%

MIN-2-ANCH 7.56% 3.45% 17.74% 12.17% 29.58% 26.68%

MIN-3-ANCH 7.45% 5.83% 26.55% 18.55% 40.38% 34.07%

MIN-2-OPT 3.11% 3.19% 12.73% 12.77% 23.71% 18.64%

MIN-3-OPT 5.37% 5.60% 19.53% 19.45% 36.44% 29.46%

RANDOM 15.39% 13.13% 29.90% 24.02% - -

FCFS 9.95% 11.1% 45.61% 37.64% 65.14% 60.09%

Participants 2.69% 2.76% 5.69% 4.38% 7.45% 6.38%

Note: All gaps significantly different from 0 with p < 0.01.

However, the gap shrinks for decisions under nonstationary
demand (T2, T3, T4, and T6), as indicated by bold values
in the table. In all treatments except T4, the number of pat-
terns that most resemble OPTIMAL steeply increases with
repetition. Across the board, fewer participants earn revenue
patterns that most closely resemble ANCHOR-ŵ and fewer
participants appear to attempt a CHASING strategy.

Human decision-making for RM is comparatively success-
ful. Participants’ decisions generally outperform systematic
heuristics. To underline this, Table 7 lists the optimality gap
from all approaches and compares them to the average gap
from participants’ decisions. Across all treatments, only a few
approaches achieve similarly small optimality gaps as the par-
ticipants’ decisions, and besides STATIC, only ANCHOR-ŵt
can ever undercut it.

In line with H2a, participants exaggerate the value of
capacity when the willingness to pay is stationary. We take a
positive BIAS, where the participants’ threshold exceeds the
optimum, to show that they overestimate the value of capac-
ity. As Figure 1 illustrates for T1, participants do express a
significant positive BIAS when 4 or 5 units of capacity are
left for sale. Also, they express a significant positive BIAS
regardless of capacity when only the arrival rate varies (T2,
not shown). However, this is not the case for the acceptance
decision when the willingness to pay varies (T3, not shown,
and T4, Figure 2): In T3 and T4, the subjects’ thresholds
undercut the optimum. For pricing under stationary demand
(T5, Figure 3), participants’ exaggerated expectations are
even more apparent, as 79% of all errors are reject errors,
and the average implied revenue loss per reject error exceeds
that per accept error. Reject errors occur throughout the book-
ing horizon, as opposed to T1, where they are limited to the
second half. However, this is not the case when demand is
nonstationary (T6, Figure 4).

In line with H2b, participants underestimate the value of
capacity when the willingness to pay is nonstationary for the
acceptance decision. When participants decide on acceptance
under a nonstationary wt, BIAS is significantly negative for
left-over capacities of 2, 4, and 5 units. However, participants’
revenue patterns are rarely closer to the MIN-𝜙-ANCH or
MIN-𝜙-OPT approaches than to, for example, the OPTIMAL
strategy. This observation holds when considering individual
revenue patterns.

Conciliating H2a and H2b, for pricing under nonstation-
ary demand, participants overcontrol in both directions. As
the right panel of Figure 4 illustrates, participants’ pricing
depends on the left-over capacity and increases steeply in the
latter half of the booking horizon. Participants’ prices first
undercut the optimal prices when 3 or more units of capacity
are left. Then, they overshoot the optimal prices given less
left-over capacity, displaying a significant positive BIAS.

In line with H2c, participants anchor on the willingness
to pay for pricing. Figure 3 highlights that, during the first
half of the booking horizon, participants do not differentiate
between 3, 4, and 5 units of left-over capacity when pricing
for stationary demand. They seem to statically wait for valu-
able customers to arrive, potentially based on the stationary
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TA B L E 8 Anchoring effect and deviation from ŵt

% with % where MAPD for MAPD for

anchor Rpart
t > ŵt Rpart

t ≥ ŵt Rpart
t < ŵt

T1 61% 60% 44.10 55.89

T4 88% 57% 105.06 119.75

T5 37% 87% 64.71 46.09

T6 82% 70% 86.25 39.58

Note: Percentage of participants’ decisions that indicate an anchor. Mean average per-
centage deviation (MAPD) calculated across the booking horizon. Bold type indicates
notable differences.

expected willingness to pay. In that setting, participants’ rev-
enue patterns are similar to both those from CHASING and
ANCHOR-ŵt. Even though the optimality gaps from accep-
tance versus pricing under nonstationary demand (T4 vs. T6)
do not significantly differ, the prices in T6 are even steeper
than the implicit thresholds in T4. When comparing T5 and
T6, differences in participants’ strategies become apparent
once more. In T5, participants set excessively high prices
throughout the booking horizon, whereas, in T6, they only
express a positive BIAS late in the booking horizon. The
slightly smaller revenue distance (see Table 6) indicates that,
in pricing for nonstationary demand, participants’ strategies
more closely resemble CHASING, relying on the previously
observed wt, than ANCHOR-ŵt, relying on the expected
willingness to pay. However, when considering individual
participants’ revenue distances to the systematic approaches,
this only holds for a few participants and mainly in the first
20 rounds of the experiment.

Participants rely most on customers’ willingness to pay
when setting prices and under nonstationary demand. To
further evaluate anchoring, we calculate the percentage of
implicit thresholds or prices that fall between the optimal
strategy and the average willingness to pay. We assume that
participants rely on the expected willingness to pay if this
percentage exceeds 50%. Table 8 shows that the number of
related decisions is much higher for nonstationary demand
in T4 and T6. The revenue distance from participants’ rev-
enue patterns to both OPTIMAL and to CHASING and
ANCHOR-ŵt grows as the RM problem gains complexity
through nonstationary demand and pricing.

Participants rely less on anchors for the acceptance
decision. For acceptance decisions, the deviation from the
willingness to pay is always greater in the subset Rpart

t < ŵt.
In contrast, for the price decision, the deviation from the will-
ingness to pay is always smaller in the subset Rpart

t < ŵt.
When setting prices, participants hesitate to adjust strategy
to undercut ŵt, whereas they are more flexible when deciding
on acceptance.

5.3 Discussion

In terms of replicating and validating results from Bearden
et al. (2008), T1 was largely successful. Our results confirm

that participants’ strategies depend on the left-over capac-
ity and the time left within the booking horizon. Differences
in the results observed here and those reported by Bearden
et al. (2008) may be due to several factors. As noted in Pagell
(2021), it is almost impossible to exactly replicate behavioral
laboratory experiments. Our experiments relied on a different
pool of participants that also differed in cultural background,
they were conducted about a decade later, and we could not
perfectly replicate the instructions or screens from Bearden
et al. (2008). However, we argue that these differences make
it even more impressive that the qualitative direction of most
findings remains stable.

In considering the hypotheses from Section 3.5 in the light
of experimental results, we extend and cross-validate these
findings. We summarize the approach to evaluation and our
conclusions in Table 9.

Hypothesis 1a) If hypothesis 1a did apply without
restrictions and any nonstationary demand rendered human
decision-making less successful, both T2 and T3 should yield
a wider optimality gap than T1. However, since there is
no significant difference in optimality gaps between T1 and
T2, we must dismiss this hypothesis when considering only
customers’ arrival rate. Nevertheless, while participants han-
dle nonstationary arrival rates well, they struggle under a
nonstationary willingness to pay.

Hypothesis 1b) For stationary demand, the price decision
in T5 causes a wider optimality gap than the acceptance deci-
sion in T1. However, for nonstationary demand, the pricing
decision does not negatively affect participants’ outcomes
(T4 vs. T6). Thus, we conclude that varying the decision
task does not further exacerbate results when RM decision-
making is already challenged by nonstationary demand, and
we reject the hypothesis in its most general form. However,
the pricing decision does not alleviate the adverse effects
of nonstationary demand. This observation indicates a floor
to human decision-making in RM, possibly due to humans’
ability to adapt a strategy that returns unsatisfactory results.

Hypothesis 1c) Following hypothesis 1c, the participants’
optimality gap should not shrink as they repeatedly engage
with the same task. We can confirm this for stationary demand
and acceptance decisions in T1, replicating Bearden et al.
(2008). However, we find evidence for improvement in T2,
T3, T4, and T6, rejecting the hypothesis for those settings:
under nonstationary demand, experience improves partici-
pants’ decision-making. This observation confirms findings
from Kremer et al. (2011), who stress humans’ ability to
learn in evolving environments. Nevertheless, we note that
our study’s experimental setting does not focus on different
types of repetition or on different approaches to providing
feedback. These aspects are deserving of further research.

Hypothesis 2a) This hypothesis states that human RM
decisions are susceptible to optimism bias. We observed
confirmatory results in T1 and T2 for acceptance decisions
but not under a nonstationary willingness to pay in T3 and
T4. Accordingly, for the acceptance decision, we can only
confirm hypothesis 2a when, at most, the customer arrival
rate is nonstationary. A similar pattern emerges for pric-
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TA B L E 9 Hypotheses reconsidered

Evaluation Conclusion

H1a Compare the optimality gap from T1 to T2 and T3. Reject, as there is no significant difference between T1 and
T2. Specify to nonstationary willingness to pay due to the
significant difference in T3.

H1b Compare the optimality gap from T1 to T5 and the optimality
gap from T4 to T6 to evaluate acceptance versus pricing
tasks.

Confirm for stationary demand, given a significant difference
between T1 and T5, but reject for nonstationary demand,
given insignificant differences between T4 and T6.

H1c Compare the optimality gap in the first 20 rounds to that in the
last 20 rounds for all treatments.

Confirm for stationary demand, lacking significant
improvements in T1 and T5, but reject for nonstationary
demand, given significant improvements in T2, T3, T4, and
T6.

H2a Analyze the share of reject errors, excessive implicit
thresholds, and positive BIAS for all treatments.

Confirm optimism bias in T1, T2, and T5, where the
willingness to pay is stationary, but reject in T3, T4, and T6,
where it is nonstationary.

H2b Analyze the share of accept errors, low implicit thresholds,
and negative BIAS for all treatments. Compare participants’
revenue patterns to those from MIN-𝜙-ANCH and
MIN-𝜙-OPT.

Reject for T1 and T2, when participants accept requests under
stationary willingness to pay, but confirm in T3 and T4,
under nonstationary willingness to pay. Under the pricing
task in T5 and T6, confirm for early parts of the booking
horizon.

H2c Analyze distance between implicit thresholds and potential
anchors across treatments. Compare participants’ revenue
patterns to those from CHASING and ANCHOR
approaches.

Reject for acceptance decisions (T1-T4), but confirm for
pricing (T5 and T6).

ing decisions: participants are more optimistic when setting
prices under stationary demand (T5) than when demand is
nonstationary (T6).

Hypothesis 2b) The loss aversion predicted by hypothesis
2b would cause participants to accept many bookings early in
the booking horizon, exhibiting a negative BIAS, to avoid los-
ing revenue from reject errors. We observe a corresponding
BIAS and accept errors in T3 and T4, where the willing-
ness to pay is nonstationary, but not in T1 and T2, where
the willingness to pay is stationary. This observation also
reconciles the apparent contradictory hypotheses 2a and 2b:
Both biases apply to the acceptance decision but in differ-
ent demand settings. For the price decision, participants’ bias
depends on the time in the booking horizon: They first under-
estimate the value of capacity, possibly due to loss aversion,
and later attempt to catch up by setting excessively high
prices.

Accept and reject errors are not independent. By affecting
the remaining capacity and thereby the RM decision space,
accept errors early in a booking horizon can induce reject
errors later: When selling all capacity early, decision-makers
have to reject bookings that an optimal strategy would accept
later in the booking horizon. Accordingly, when decision-
makers express a loss aversion bias early in the booking
horizon, their later decisions are likely to appear overly opti-
mistic. Even reverting to an optimal strategy for the reduced
left-over capacity would mean rejecting more customers than
the initial optimal strategy. In contrast, early reject errors
do not affect the capacity and, therefore, enable, but do not
enforce, later accept errors. Here, we compare the “currently
optimal” dynamic strategy when measuring errors so that

unavoidable deviations from the initial optimum should not
obfuscate actual biases from overcorrecting.

Hypothesis 2c) Given the results from the extended
experimental setting, we can broadly confirm that human
decision-making for RM relies on anchors. For pricing under
stationary demand, participants do not differentiate their
strategy based on the left-over capacity, which we attribute
to their reliance on a stationary anchor. In addition, dif-
ferences between the prices observed in T5 and implicit
thresholds estimated for T1 indicate that the pricing anchor
is the expected willingness to pay. However, this finding can
be partially attributed to the optimistic approach to estimat-
ing implicit thresholds. Nevertheless, the similarity between
participants’ revenue patterns and those from ANCHOR-ŵt
supports the idea that participants anchor on the expected
willingness to pay. When participants set prices under non-
stationary demand, they apparently rely on the most recently
observed willingness to pay as a nonstationary anchor. The
slightly smaller revenue distance to CHASING supports this
idea. When we consider the share of implicit thresholds or
prices that fall between the optimal strategy and the aver-
age willingness to pay as an indicator, anchoring increases
when demand varies, as in T4 (acceptance) and T6 (pric-
ing). However, participants appear more open to adjusting
their anchor when tasked with acceptance decisions, as the
variance observed in acceptance decisions is higher than that
observed in pricing decisions.

Excursus: Individual differences. While the main focus
of the result analysis is on aggregate measurements, we
observe considerable variation across subjects. This varia-
tion increases under nonstationary demand and for pricing
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decisions. Notably, participants can outperform the optimal
solution when pricing, as the optimal solution is based on
expected demand, and actual demand may deviate from the
forecast. This deviation explains the negative optimality gaps
in Table 5. However, the average optimality gaps and par-
ticularly the gaps induced by the worst performers increase
for pricing. While surveying participants’ demography and
task experience in our study, we could not link either fac-
tor to performance. The same applies to the strategy choices
apparent from revenue distances (Table 6). To relate partic-
ipants’ strategies to characteristics such as their motivation,
as proposed in Eroglu and Knemeyer (2010), we recommend
a separate study with little variation in task or demand and a
larger pool of participants per treatment.

6 CONCLUSION AND MANAGERIAL
IMPLICATIONS

As its first theoretical contribution, this paper extended the
experimental setting from Bearden et al. (2008) by adding
variables describing nonstationary demand over the booking
horizon. In a related empirical contribution, we replicated
results from Bearden et al. (2008) under stationary demand.
Furthermore, we cross-validated the results in the sense of
Schoenherr and Swink (2012) by setting the same task under
different degrees of nonstationary demand. A nonstationary
willingness to pay significantly increased the subjects’ gap to
the dynamic optimum and canceled out their advantage over
the static optimum. Additionally, we cross-validated results
from Bearden et al. (2008) regarding benefits from experi-
ence: Participants did not benefit from gaining experience
under stationary demand, but their performance improved
under nonstationary demand.

As a second theoretical contribution, we extended research
on RM decision-making by asking participants to set prices
dynamically. In a related empirical contribution, we cross-
validated results from Bearden et al. (2008) for the pricing
task under stationary and nonstationary demand. We found
that the pricing decision complicates human decision-making
more than dynamic acceptance.

As a third theoretical contribution, we formalized sev-
eral systematic RM solution approaches that extend beyond
the dynamic and static optima, and that implement deci-
sion biases, such as demand chasing (Lau & Bearden, 2013),
anchoring (Kocabiyikoglu et al., 2018), and loss aversion
(Schweitzer & Cachon, 2000). In a related empirical con-
tribution, we compared the participants’ revenue patterns to
those that resulted from systematic approaches given the
same demand streams. In the experiments, subjects outper-
formed the systematic approaches. Furthermore, we found
evidence for both optimism bias and loss aversion in dif-
ferentiated demand settings. Last, we concluded that the
pricing decision caused participants to anchor on the expected
willingness to pay.

6.1 Implications and research opportunities

We conclude this paper by considering implications for the
behaviorally informed design of RM systems and pointing
out related research opportunities.

Individual perspective: the analyst. Insights from the
pricing task are relevant for the work of individual analysts, as
many RM systems let analysts adjust the opportunity cost of
capacity via a bid price. We found that decision-makers tend
to anchor on the given information, such as the expected will-
ingness to pay. Analysts may neglect essential aspects, such
as the demand variance, left-over time, or remaining capac-
ity. Therefore, RM systems need to emphasize the role of
alternative key indicators. For example, contrasting the val-
ues of different capacity levels may help to reduce bias. To
test this, an experimental study that provides participants with
a demand forecast and indicates the resulting opportunity cost
of capacity could offer further insights.

Other related approaches are conceivable when examining
systematic solution approaches, for example, systematically
increasing the implicit threshold or the price by a set incre-
ment per time step. Additionally, to investigate implications
from early decisions for later parts of the booking hori-
zon and dependencies in error types, future research could
implement approaches that revert to systematic rules after
an initial period of human decision-making. For example, a
“revert to dynamic optimum” strategy could apply controls
set by a human decision-maker for the first part of the book-
ing horizon and later dynamically optimize revenue for the
remaining capacity. Such a strategy would differ per decision-
maker, remaining capacity, and the timing of the revert.
To further examine individual differences, confronting more
participants with the same RM task and the same demand set-
ting and clustering the resulting revenue patterns could also
provide valuable insights.

Managerial perspective: the team. Managers may coun-
terbalance anchoring behavior by adapting their performance
evaluation. However, in this assessment, they need to be
aware of the dangers of communicating simplified strate-
gies, such as achieving a minimum load, as this might
worsen loss-averse decision biases. A multiobjective problem
emerges when organizational loss aversion calls for robust
RM beyond revenue maximization. In this regard, research on
human decision-making for multiobjective problems would
be promising. Further research assigning merit for good RM
decisions could draw on existing work regarding revenue
sharing and contract design.

Design perspective: the system. In contrast to the clas-
sical definition of decision support systems (Kasper, 1996),
RM systems do not support infrequent, managerial decisions
but instead guide dynamic operational planning. There-
fore, we view such systems as symbiotic analytics systems
(Schütze et al., 2020). System designers need to consider
the implications of biases for the human–algorithm interface
of symbiotic analytics systems. For example, existing RM
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systems communicate demand forecasts in terms of mean
and variance. However, when the system visualizes expected
booking curves as deterministic bar charts or does not exem-
plify the implications of a high variance in bookings, analysts
may be tempted to undervalue the variance of demand. There-
fore, we argue that system design needs to include careful
framing for such information.

As emphasized, for example, in Bendoly (2016), data visu-
alization also plays a significant role in systems design. To
test different approaches to visualization, we recommend
implementing such experimental interfaces as an interactive
app, for example, based on the Shiny package and R or the
Dash package and Python.

In the experimental setting described here and in large parts
of RM practice, decision-makers struggled to complement
demand forecasts with dynamic booking information. Well-
designed systems should provide dynamic guidance, alerts,
and the opportunity to pursue what-if analyses (Parikh et al.,
2001). We recommend following advice found in Kasper
(1996) and Fildes et al. (2006) to communicate the relevant
information without inspiring overconfidence.

As opposed to the minimalist setting given here, a max-
imalist experimental setting could evaluate the interaction
of experts within the business context and when facing a
realistic user interface. Such a setting would let researchers
assess many differences in both process and system design.
Furthermore, researchers could observe how participants han-
dle interlinking RM subproblems, for example, adjusting the
demand forecast versus overriding optimization parameters.
However, to yield meaningful results, we expect a maximal-
ist study to require participants with in-depth expertise. This
requirement severely limits the pool of potential participants.
In addition, the broad diversity of possible RM system and
process designs and the complexity of the related models cre-
ate a wide range of possible system variants. In the light of
this challenge, empirical studies, for example, as described in
Zeni (2003) or Schütze et al. (2020), might offer a better way
of considering RM in its full complexity.

Future research on symbiotic analytics systems is needed
to consider the interaction between automated systems and
analysts in dynamic, operational decision scenarios. As also
emphasized in O’Keefe (2016), such future research must
draw on experimental behavioral research from the interface
of information systems and operational management.
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