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Abstract
Although agricultural machinery is indispensable for modern agriculture, the
effect ofmachinery structure on food production is rarely scrutinized.Machinery
structure, referring to the proportion of high-capacity machines which are rep-
resented by tractors with relatively high horsepower, is used tomeasure the scale
of agricultural machinery. In response, this article investigates how agricultural
machinery structurally impacts grain production theoretically and empirically,
with particular emphasis on the effects of capacity structure and subsidy policy.
The article estimates a Translog production function with a panel dataset cover-
ing 126 counties across Xinjiang andHubei provinces in China from 2002 to 2012.
Though we find the general elasticity of output with respect to machinery inputs
is .03, the capacity structure of agricultural machines could impact agricul-
tural production by inducing the reallocation of other input factors. Along with
the upsizing of farming machines, we observe the complementarity between
machinery horsepower and land inputs in production increases, while the joint
effect of machinery and fertilizer decreases. The positive land channel is found
in areas with fewer high-capacitymachines, while the negative fertilizer channel
occurs when there are more large machines.

KEYWORDS
agricultural mechanization, agricultural subsidy, capacity structure effect, food security, grain
production
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1 INTRODUCTION

How technology promotes agricultural production and
ensures food security is an important research topic. It
is the investment in agricultural technology that trans-
forms traditional agriculture and facilitates agricultural

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2024 The Authors. Agricultural Economics published by Wiley Periodicals LLC on behalf of International Association of Agricultural Economists.

modernization, thereby contributing to worldwide eco-
nomic growth (Schultz, 1964). Agricultural machinery is
one of the key technologies to promote food production
and facilitate urbanization and industrialization by saving
agricultural labor forces. The different endowments of nat-
ural resources and supportive policies lead to a divergence
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pace of agricultural mechanization between countries all
over the world. According to the induced technology inno-
vation hypothesis, developed countries with large-scale
farms, represented by the United States, rely heavily on
large-scale mechanization to produce food (Binswanger,
1986; Ruttan & Hayami, 1971). According to the Census of
Agriculture in 2017,more than 75% of tractors in theUnited
States have more than 40 horsepower, and almost 31% of
the tractors havemore than 100 horsepower (USDA, 2019).
While in Japan, most tractors sold are mid-sized tractors
with 21–30 horsepower capacity.1 As for China, following
the classification criteria in statistical yearbooks andmany
previous studies, small tractors usually have engines less
than 14.74 kW (20 horsepower), while large tractors refer
to tractors with power capacity over 36.78 kW (50 horse-
power) and medium tractors lay between the above (Chen
& Lan, 2020; Jetté-Nantel et al., 2020; Liu et al., 2014).
Apart from highly mechanized developed countries,

divergent patterns also exist in developing areas like Asian
and African countries. Furthermore, the heterogeneous
scales of agricultural machines keep changing over time
(Benin, 2015; Diao et al., 2020; Lu et al., 2022). Asia and
Northern Africa witnessed rapid agricultural mechaniza-
tion after the 1960s. The exponential increase of tractors
in Asia in the 2000s can be partly explained by the diffu-
sion of pedestrian tractors, a type of small tractor. However,
in sub-Saharan Africa, the efforts to promote mechaniza-
tion mostly failed in the 1960s and 1970s (Benin, 2015). The
shares of rural households with access to tractors are all
below 5% in several selected sub-SaharanAfrican countries
(FAO, 2022).
Recognizing the limited availability of detailed infor-

mation on agricultural machinery types, there exists a
knowledge gap in understanding the effects of agricultural
mechanization on food production particularly regarding
tractor size. In this article, we use machinery capacity
structure to capture the proportion of large-sized agricul-
turalmachinery. Specifically, sincemost specific farm tools
and machines need to be used with tractors, we use the
share of large/medium tractor size based on horsepower or
quantity to proxy the machinery structure. Clarifying the
impact of machinery structure on production is conducive
to improving agricultural machinery subsidy and indus-
trial policies in developing countries so that machines
can better match local production patterns and improve
productivity.
This issue is particularly important when it comes

to the case of China where arable land per capita is

1 Data source: Statistics of production and shipment of agricultural
machinery in Japan from the Japan Agricultural Machinery Manu-
facturers Association (JAMMA). http://jfmma.or.jp/e/trendsstatistics_e.
html

relatively scarce and fragmented for smallholders, espe-
cially in traditional farming regions, in contrast to most
mechanized countries with large-scale machines and land
operations, such as the United States. Growing food
demand and limited production capacity jointly chal-
lenge China’s self-sufficiency policy and highlight the
importance of domestic food security issues. Agricultural
mechanization is raised as a key factor in promoting
agricultural modernization and ensuring food security in
China. The scale of farming machines is closely related to
the development of mechanical technologies. Large trac-
tors, along with their supporting machines and parts, are
recognized as symbols of advanced technology and agricul-
tural mechanization. The rapid change of the tractor size
in China provides a suitable case for this article.
Since the establishment of the People’s Republic of

China in 1949, different stages of agricultural mecha-
nization with different attitudes towards large-scale or
small-scale machinery (Chen & Lan, 2020). The adoption
of large tractors gained momentum during the period of
large collective farms and experienced a reversal following
the implementation of the Household Responsibility Sys-
tem, resulting in the prevalence of small machinery. Since
2004, the government has implemented a subsidy policy
for agricultural machinery purchases, which has sequen-
tially improved mechanization growth in both public and
private sectors. The AgriculturalMachinery Purchase Sub-
sidies (AMPS) initially targeted 66 main grain production
counties in 2004 due to financial constraints (Lu et al.,
Zhang et al., 2020). The targeted counties have increased
year by year and the AMPS gradually expanded to cover all
counties nationwide by 2009. The total amount of subsidies
has increased from 70 million yuan in 2004 to 19 billion
yuan in 2021. Since the AMPS program tends to favor large
machinery, and cross-regional social services increase the
demand for large agricultural machinery, the number of
large tractors has been rapidly increasing. Nevertheless,
studies show that small tractors may be more profitable
and adapted to small farm sizes, thus reducing the mecha-
nization divide in smallholder economies inAsia (Baudron
et al., 2015; Daum, 2023; Kahan et al., 2018). Given the dif-
ference between theory and practice in China, we wonder
how the machinery structure affects grain production in
China.
In response, this article analyses the direct, indirect,

and capacity structure effects of agriculture machinery
on production theoretically and decomposes the struc-
ture effects into land, labor, and fertilizer channels. Then
we employ a panel dataset of 126 counties in Xinjiang
and Hubei province from 2002 to 2012 to empirically esti-
mate the effects. The county-level dataset fits the topic
better than household-level data because it is hard to cal-
culate the machinery structure of one household or even

http://jfmma.or.jp/e/trendsstatistics_e.html
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households aggregated at the village level. Only a few large
farmers or cooperatives can purchase various tractors of
different sizes, whose tractors’ working radius can cover
the arable land of several villages. The limitation of farm
tractor scale in household-level data determines that the
county-level data are more suitable. The reason why we
use data in Xinjiang and Hubei provinces is that only
in these two provinces were we able to collect compre-
hensive and uninterrupted tractor power structure data.
This is due to the scarcity of available mechanical statis-
tics and the incongruity in machinery indicators across
counties, particularly the lack of different types of agri-
cultural machinery at the county level. After matching
the input factors with the mechanical structure and elim-
inating the missing value, the balanced panel dataset is
constrained to these two provinces. We use a fixed-effects
model in conventional OLS regression and a time-varying
true fixed-effects (TFE) model in stochastic frontier analy-
sis (SFA) to estimate the Translog production function and
examine the structure effects of machinery on food output.
The inversed probability weight (IPW) method is also uti-
lized to alleviate the endogeneity problem of the machine
structure. The research also includes the subsidy policy
indicator to explore the role of supportive subsidy policy
in food security.
This article mainly contributes to three strands of litera-

ture. First, it adds to the literature on mechanization and,
more broadly, to technology adoption and diffusion. The
innovation of technology significantly has a positive effect
on economic growth, as is indicated by theoretical models
like induced innovation theory, human capital theory, and
agricultural treadmill theory (Cochrane, 1958; Hicks, 1963;
Hume, 1907; Ruttan & Hayami, 1971; Schultz, 1964). Later
empirical research has focused on different specific tech-
nologies, including seed, irrigation, fertilizer, and what we
care about the most, machinery (Bravo-Ureta et al., 2020;
McArthur & McCord, 2017; Smale et al., 2018; Yang et al.,
2013; Zhang et al., 2017). According to the induced innova-
tion theory,mechanization investments, especially in large
tractors, may only pay off for large farms (Otsuka, 2013).
However, practical experience in China, where the aver-

age farm size is below one hectare, has shown that there
are various forms of mechanization: ownership, rental,
and outsourcing services. China’s steadily increasing farm
output over the past decades is associated with mecha-
nization despite land fragmentation and a rapid decline in
the agricultural labor force (Yang et al., 2013). Outsourcing
services have helped to solve the problem of smallholder
farms not achieving the threshold of scale economy due
to the indivisibility of large machines. However, the role
of the machinery power structure in this process has not
been sufficiently researched. To our knowledge, Liu et al.
(2014) disaggregate machinery inputs into large, medium,

and small categories, defined by horsepower, and investi-
gate the heterogeneous substitution among labor and three
categories of machinery at a household level in China.
Another literature that is closely related to our study is
Foster and Rosenzweig (2022). They utilize economies of
scale in the capacity of power sprayers to explain the con-
tinued rise in agricultural productivity with farm scale at
the right tail of the U-shaped curve, where higher-capacity
machines are matched to large farms and can work at
full capacity at lower costs. In our study, we focus on the
effect of high-capacity tractors on grain production and the
mismatch between large tractors and sown areas in China.
Second, we specifically shed light on the structure effect

of agricultural machinery on farm output and food secu-
rity by estimating a Translog production function. Many
studies use Translog cost or production functions to esti-
mate the elasticity of various inputs and the substitution
(Lin et al., 2022; Liu et al., 2014; Lu et al., 2022; Tian et al.,
2020; Yi et al., 2019; Yu, 2012). The effects ofmechanization
on planting area, off-farm employment, labor, and produc-
tion efficiency are broadly studied (Ji et al., 2012; Ma et al.,
2021; Qing et al., 2019). Agricultural machinery services
even change the combination of inputs in the production
function, thus having a certain impact on economies of
scale and economies of scope (Takeshima, 2017; Takeshima
et al., 2020). Our article builds on the foundation that
agricultural machinery affects grain production not only
directly but also indirectly through its influence on land,
labor, and fertilizer inputs. Furthermore, we analyze the
impact of machinery capacity structure on this indirect
effect.
Third, our article is connected to the literature on

the role of government subsidies in farming production.
Huang et al. (2013) have analyzed a range of subsidy
programs in China, encompassing those related to grain,
input, seed, andmachinery, using survey-basedmicrodata.
They found that the number of farmerswhobenefited from
mechanization subsidies was limited and that machinery
subsidies were mainly reserved for larger machines pur-
chased by high-income households, which only accounted
for a small share of purchases. Other research has exam-
ined the effects of different types of agricultural subsidies,
including the Hundred Billion Plan and Granary County
Subsidy in China (He et al., 2019; Lin & Huang, 2021; Yi
et al., 2015; Zhang et al., 2020; Zou et al., 2020). However,
the limited scale of mechanization and its subsidies have
led to less attention on their impacts in the literature. Mis-
allocation in agricultural production could cause the loss
of productivity. While Zhang et al. (2023) and Zhong et al.
(2023) particularly shed light on the misallocation in land
market in China, the misallocation of machinery inputs
has not been well examined in the literature. In this arti-
cle, we argue that machinery subsidies are a vital control
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variable when analyzing the effect of machinery power
structure on crop production. As an intermediate capital
input, the agricultural machine’s influence on production
may be underestimated in the previous literature.
Our article makes two contributions to the literature.

First, we incorporate the structure of agricultural machin-
ery into the theoretical model and clarify the structure
effect of farming machines on grain production. Using the
Translog production function, we illustrate the heteroge-
neous leverage effects of mechanical structures through
land, labor, and fertilizer channels on output after control-
ling for the pilot of machinery subsidies. Second, we pro-
vide solid evidence of misallocation between large farming
machines and small sown areas, highlighting that upsizing
machinery does not consistently lead to higher technical
efficiency. Our research shows that the promotion of large
agricultural machinery should be adapted to local condi-
tions and the historical biases favoring large-scale tractors
should be carefully reconsidered, particularly for agricul-
tural departments of governments in developing countries
with smaller land scales.

2 BACKGROUND AND RESEARCH
HYPOTHESIS

2.1 Agricultural mechanization in
China

China is the world’s largest grain producer, managing to
feed roughly 20% of the global population with only 7%
of the world’s arable land. Maize, rice, and wheat are the
major grain crops in China. Chinese cropping systems are
based on grain production and are highly diverse from
north to south, including single, double, and triple crop-
ping (Zhang et al., 2015). There are both single and double
cropping inXinjiang, and the cereal-cotton rotation system
is widely practiced there. While in Hubei, the double-
cropping system is dominant, such as the rice-wheat and
double-rice system. The sown area of grain crops accounts
for 71% inChina, 56% inHubei, and 46% inXinjiang in 2012.
Agricultural mechanization contributes to the sus-

tained increase in grain production. The development of
Chinese agricultural mechanization is inextricably linked
to economic reform and institutional evolution, with
different policies being implemented during different
stages of economic development. Since the establishment
of the People’s Republic of China in 1949, the process can
be divided into five phases: startup (1949–1978), transfor-
mation (1979–1990), transition (1991–2003), acceleration
(2004–2014), and readjustment (2014–present). Despite
the initial hardships during the startup phase, the total
power of farmmachinery surpassed 10 billion kW by 2020,
a significant increase from the mere 81 thousand kW in

1949.2 In the startup phase (1949–1978), the government
focused on the development of large machinery, as scale
farmswere equippedwith large tractors under the People’s
Commune System.
However, due to its low productivity, the centralized

planned economy began to disintegrate and was replaced
by the Household Responsibility System (HRS) after
the economic reform in 1978. During the second phase
(1979–1990), the number of small tractors increased from
1.67 million to nearly 7 million, while the growth of
large tractors was relatively slow. The transformation of
ownership allowed farmers to purchase farm machines
independently, whichwas confirmed and supported by the
central government in 1984. Chen and Lan (2020) pointed
out the proliferation of small tractors was suitable to local
factor endowments and farm size, whereas the plummet-
ing use of tractors also symbolized a kind of stagnation of
agricultural mechanization and modernization.
In the third phase (1991–2003), the government began

to promote green technologies like straw returning and
no-tillage sowing, as well as the emergence of agricul-
tural machinery outsourcing services. Until 2003, over
30 million households owned agricultural machines.
After transitioning to a market-oriented economy,

China’s agricultural mechanization entered a new histori-
cal stage of acceleration based on the Law of the People’s
Republic of China on the Promotion of Agricultural Mech-
anization. In 2004, the central government established
a special fund to subsidize the purchase of agricultural
tractors and tools, marking the beginning of the “Golden
Decade.” By 2014, the number of large and medium-sized
tractors had increased by 407.71% compared to 2004, reach-
ing nearly 5.68 million. Meanwhile, the number of small
tractors grew slowly, with a total increase of 2.75 million
units from 2004 to 2011, and the number even began to
decline since 2011, with a total decrease of 815,000 units in
three years.
The accelerating promotion of farmingmachines largely

resulted from the AgriculturalMachinery Purchasing Sub-
sidies (AMPS). The subsidy program was implemented
county by county from 2004, starting with 66 counties in
16 provinces, and gradually expanding to cover all coun-
ties nationwide by 2009. The fund mainly comes from the
central government, which can cover up to 30% of the
cost of farmers’ purchases. The total fund for the subsidy
increased from 70 million in 2004 to 13 billion in 2009.
The total fund of machinery subsidies remained at 9.1 bil-
lion yuan in 2021, accounting for nearly 18% of the total
sales price, and subsidizing over 1.31 million machines
and tools, benefiting more than 975,000 smallholders and

2 Data resource of total power and quantity of tractors in this paper are
from the database on thewebsite ofNational Bureau of Statistics inChina.
https://data.stats.gov.cn/easyquery.htm?cn=C01

https://data.stats.gov.cn/easyquery.htm?cn=C01
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F IGURE 1 The development of different types of agricultural tractors and AMPS funding in China from 2004 to 2014.

Note: The bars depict the number of large and small tractors in China from 2004 to 2014. Small tractors have engines of less than 14.74 kW. Large tractors refer to
tractors with power capacity over 36.78 kW (50 horsepower). Medium tractors lay between the above. Small tractors usually have engines of less than 14.74 kW.
The line shows the funding of the Agricultural Machinery Purchase Subsidies (AMPS) program each year. Data are from the China Agricultural Machinery
Industry Yearbook.

service organizations.3 Figure 1 illustrates the development
of various sizes of agricultural tractors and the funding
of the AMPS during this period in China. However, the
growth rate of tractors and tools slowed down after 2014,
indicating a need for policy readjustment.
In this article, we mainly focus on the acceleration stage

(2004–2014), during which China switched its agricultural
policy from extraction to protection. Modern tractors and
tools were rapidly adopted during this period, and the
size of tractors was undergoing dynamic changes, provid-
ing a typical and historical context for our analysis. In
addition, we use the relative exogenous machinery subsi-
dies program to identify the effect of tractor size on farm
production more clearly.

2.2 Research hypothesis

The article mainly estimates the internal structure effect
of farming machines on grain production, which can be
theoretically divided into three input channels: land, labor,

3 The data source of agricultural machinery subsidy is from the agricul-
tural machinery purchase subsidy information disclosure column in the
website of Ministry of Agriculture and Rural Affairs. http://www.amic.
agri.cn/subsidy/btzx/182

and fertilizer. With the increase in the size of agricultural
machinery, the diffusion of larger tractors may replace
rural labor, cause land consolidation, and introduce col-
lectivized social services. It is estimated that elasticities
of substitution between labor and large machinery are
greater than those between labor and smaller machinery
categories (Liu et al., 2014). Thus high-capacity machinery
weakens the leverage effect of machinery on production
through the labor channel. Closely related to outsourced
services, large agriculturalmachinery can encourage farm-
ers to transfer land in through the labor substitution effect
(Qian et al., 2022), as well as promote production by
indirectly increasing crop sown area.
The structure effect of machinery on agricultural pro-

duction in the fertilizer channel is complicated. The study
of Sun et al. (2021) reveals a U-shaped pattern in the
marginal value product of fertilizer with its increasing
usage. Given China’s fertilizer intensity, saving fertilizer
results in reduced output contribution from chemical fer-
tilizer in most Chinese contexts (Foster & Rosenzweig,
2022). Firstly, tractors with high power capacity in large
farms can be efficiently integrated with high-quality agri-
cultural parts and machinery, leading to reduced opera-
tional time and fertilizer savings. Moreover, large tractors
are capable of effectively executing deep soil prepara-
tion and facilitating subsequent field management. The

http://www.amic.agri.cn/subsidy/btzx/182
http://www.amic.agri.cn/subsidy/btzx/182
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joint effect of machinery and fertilizer on production is
positively influenced by the stronger complementarity of
high-capacity tractors and fertilizer, while it is negatively
affected by reductions in fertilizer application. Secondly,
large-scale mechanization also affects the crop varieties
cultivated by farmers, subsequently impacting the amount
of chemical fertilizer used. With the application of large
tractors, the cultivated areas of corn and soybean in
China continue to expand, compared to wheat and rice.
The phenomenon is also evident in Xinjiang and Hubei
provinces. In general, maize and soybean are relatively
less fertilizer-intensive than other grain crops, especially
during 2004−2013 when corn’s contribution to the annual
change in fertilizer intensity was negative due to shifts in
the structure of crops produced, which is another potential
reason for the lower cross-effect ofmachinery and fertilizer
(Sun et al., 2021). However, distinguishing the joint effects
becomes increasingly intricate when considering different
fertilizer types from the perspective of adjusting crop vari-
eties. Therefore, the structure effect of machinery on farm
output in the fertilizer channel depends on the trade-off
between the above mechanisms.
In summary, machinery structure plays a crucial role

in agricultural production. Using high-capacity machin-
ery could augment the land inputs, leading to positive
complementary effects of machinery and land inputs on
grain production. Additionally, high-capacity machinery
also has the potential to replace labor inputs. The joint
effect of machinery and labor input is expected to decrease
grain production. However, the cross-effect of machinery
and fertilizer is uncertain based on the preceding analysis.
Therefore, we propose the following hypothesis:
The structural effect of machinery on grain output via the

land channel is positive; the effect on grain output through
the labor channel is negative; while the effect on grain
production via the fertilizer channel remains indeterminate.

3 THEORETICALMODEL AND
ECONOMETRICMETHODS

To explore the structural effect of the machinery on pro-
duction, we construct a theoretical model derived from
a production function with four inputs and one output.
The four input factors of the function are referred to Gong
(2018), following the general setup. That is,

𝑌 = 𝑦 (𝐿, 𝑀 (𝑠) , 𝑁, 𝑍) (1)

where Y is the agricultural output; L, M, N, and Z denote
farm land input, machinery, labor, and fertilizer, respec-
tively. s refers to the machinery structure, and 𝑀(𝑠)

captures the idealized feature that machinery structure

only indirectly affects other inputs and therefore grain
output through the total horsepower M.4 Taking total dif-
ferentiation for Equation (1), the effect of machinery input
on production can be easily presented:

𝑑𝑌

𝑑𝑀
=

𝜕𝑦
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+
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where 𝜕𝑦

𝜕𝑀
can be defined as the direct effect of machin-

ery on production when other factors are fixed; While the
second part of the decomposition is the indirect effect of
farm machines on farm output that is always ignored in
the empirical analysis. In this part, i represents other three
inputs besides machinery.
The development of mechanization will affect grain

production by changing the allocation of other inputs.
There are substitution or complementation relationships
between input factors. Farming machinery, as the repre-
sentation of advanced production technology, could cause
the adjustment of all the inputs. Then we introduce
machinery structure (s) to the basic model. Mathemati-
cally, Equation (2) can be rewritten in the equivalent form
as follows:
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The final form of Equation (3) consists of two parts:
𝜕𝑦

𝜕𝑀
|𝑠 𝑓𝑖𝑥𝑒𝑑 indicates the direct effect of farm machines on

production when other factors and machinery structures
are all controlled; 𝜕𝑠

𝜕𝑀
(
𝜕𝑦

𝜕𝑠
+
∑

𝑖∈{𝐿,𝑁,𝑍}

𝜕𝑦

𝜕𝑋𝑖

𝜕𝑋𝑖

𝜕𝑠
) shows how

the structure of agricultural machinery affects production,
which can be further divided into two sections. 𝜕𝑠

𝜕𝑀

𝜕𝑦

𝜕𝑠
means the change of farm machines will impact the inter-
nal structure change of large and small tractors, resulting
in variation in production. And 𝜕𝑠

𝜕𝑀

∑
𝑖∈{𝐿,𝑁,𝑍}

𝜕𝑦

𝜕𝑋𝑖

𝜕𝑋𝑖

𝜕𝑠
mod-

els how tractors indirectly impact production through the

4 This framework is subject to the condition that the observed total horse-
power should equal the actual horsepower utilized in the production
function. However, due to the gap between the potential full capacity and
the actual horsepower, the actual machinery input is unobserved in the
data. Considering this practical constraint, we relax the assumption of
M(s) and modify the theoretical framework as 𝑌 = y(𝐿, 𝑀, s, 𝑁, 𝑍). The
detailed illustration is in the Appendix 7.
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mechanism of input-structure effect influenced intermedi-
ately by machinery structure.
In sum, the total effect of agricultural machinery

on production can be decomposed into net direct
effect ( 𝜕𝑦

𝜕𝑀
|𝑠 𝑓𝑖𝑥𝑒𝑑) and machine-structure effect

( 𝜕𝑠
𝜕𝑀

(
𝜕𝑦

𝜕𝑠
+
∑

𝑖∈{𝐿,𝑁,𝑍}

𝜕𝑦

𝜕𝑋𝑖

𝜕𝑋𝑖

𝜕𝑠
)). Compared with Equa-

tion (2), it is obvious that 𝜕𝑦

𝜕𝑀
=

𝜕𝑦

𝜕𝑀
|𝑠 𝑓𝑖𝑥𝑒𝑑 + 𝜕𝑠

𝜕𝑀

𝜕𝑦

𝜕𝑠
and∑

𝑖∈{𝐿,𝑁,𝑍}

𝜕𝑦

𝜕𝑋𝑖

𝜕𝑋𝑖

𝜕𝑀
=

𝜕𝑠

𝜕𝑀

∑
𝑖∈{𝐿,𝑁,𝑍}

𝜕𝑦

𝜕𝑋𝑖

𝜕𝑋𝑖

𝜕𝑠
, which repre-

sents the relationship between the original decomposition
and the final form. Compared with previous studies, the
derivation of theoretical models clarifies and interprets the
direct and different structure effects of farming machines
on total grain output.
To estimate the different structural effects of machinery

via land, labor, and fertilizer on grain output empirically,
we adopt the broadly used Translog production func-
tion which is regarded as a quadratic approximation to
the unknown “true” function. There exist interactions of
different inputs, providing an easy way to explore the
input-structure effect in the basic function. Hence, the
Translog production function can be written as:

𝑙𝑛𝑌 = 𝛽0 + 𝛽𝐿𝑙𝑛𝐿 + 𝛽𝑀𝑙𝑛𝑀 + 𝛽𝑁𝑙𝑛𝑁 + 𝛽𝑍𝑙𝑛𝑍 +
1

2
𝛽𝐿𝐿(𝑙𝑛𝐿)

2

+
1

2
𝛽𝑀𝑀(𝑙𝑛𝑀)

2
+
1

2
𝛽𝑁𝑁(𝑙𝑛𝑁)

2
+
1

2
𝛽𝑍𝑍(𝑙𝑛𝑍)

2

+𝛽𝐿𝑀𝑙𝑛𝐿 ⋅ 𝑙𝑛𝑀 + 𝛽𝐿𝑁𝑙𝑛𝐿 ⋅ 𝑙𝑛𝑁 + 𝛽𝐿𝑍𝑙𝑛𝐿 ⋅ 𝑙𝑛𝑍

+𝛽𝑀𝑁𝑙𝑛𝑀 ⋅ 𝑙𝑛𝑁 + 𝛽𝑀𝑍𝑙𝑛𝑀 ⋅ 𝑙𝑛𝑍

+𝛽𝑁𝑍𝑙𝑛𝑁 ⋅ 𝑙𝑛𝑍 (4)

In our empirical study, we insert the three-way contin-
uous interaction of machinery structure Struc, machinery,
and other inputs. To identify coefficients, we specify the
function as follows:

𝑙𝑛 y𝑖𝑡 = 𝛼0 +

4∑
𝑗 = 1

𝛼𝑗𝑙𝑛𝑥𝑗𝑖𝑡 +
1

2

4∑
𝑗 = 1

𝛼𝑗𝑗
(
𝑙𝑛𝑥𝑗𝑖𝑡

)2

+

3∑
𝑗 = 1

4∑
𝑘≠𝑗

𝛼𝑗𝑘𝑙𝑛𝑥𝑗𝑖𝑡𝑙𝑛𝑥𝑘𝑖𝑡 + 𝛿1𝑆𝑡𝑟𝑢𝑐𝑖𝑡 + 𝛿2𝑙𝑛𝑚𝑎𝑐ℎ𝑖𝑡

×𝑆𝑡𝑟𝑢𝑐𝑖𝑡 + (𝛽1𝑙𝑛𝑙𝑎𝑛𝑑𝑖𝑡 + 𝛽2𝑙𝑛𝑙𝑎𝑏𝑜𝑟𝑖𝑡 + 𝛽3𝑙𝑛𝑓𝑒𝑟𝑡𝑖𝑖𝑡)

×𝑙𝑛𝑚𝑎𝑐ℎ𝑖𝑡 × 𝑆𝑡𝑟𝑢𝑐𝑖𝑡 + 𝛾1𝐴𝑀𝑃𝑆𝑖𝑡 + 𝛾2𝐴𝑀𝑃𝑆𝑖𝑡

×𝑙𝑛𝑚𝑎𝑐ℎ𝑖𝑡 + 𝛾3𝐴𝑀𝑃𝑆𝑖𝑡

×𝑆𝑡𝑟𝑢𝑐𝑖𝑡 + 𝛾4𝐴𝑀𝑃𝑆𝑖𝑡

×𝑙𝑛𝑚𝑎𝑐ℎ𝑖𝑡 × 𝑆𝑡𝑟𝑢𝑐𝑖𝑡 + 𝜃𝑍 ⋅ 𝑍𝑖𝑗𝑡

+𝑢𝑖 + 𝜀𝑖𝑡 (5)

where the dependent variable lny𝑖𝑡 refers to the logarithm
of agricultural production in county i at year t. 𝑙𝑛𝑥𝑗𝑖𝑡
and 𝑙𝑛𝑥𝑘𝑖𝑡 are different input factors, includingmachinery,
land, labor, and fertilizer. 𝑆𝑡𝑟𝑢𝑐𝑖𝑡 refers to the proportion
of the total power of large and medium-sized tractors.
𝐴𝑀𝑃𝑆𝑖𝑡 is an indicator of the AMPS policy. For example,
if the agricultural machinery purchasing subsidy is imple-
mented in county i in year t, then 𝐴𝑀𝑃𝑆𝑖𝑡 = 1 from year t;
otherwise 𝐴𝑀𝑃𝑆𝑖𝑡 = 0. 𝑙𝑛𝑙𝑎𝑛𝑑𝑖𝑡, 𝑙𝑛𝑙𝑎𝑏𝑜𝑟𝑖𝑡, 𝑙𝑛𝑓𝑒𝑟𝑡𝑖𝑖𝑡, and
𝑙𝑛𝑚𝑎𝑐ℎ𝑖𝑡 indicate the natural logarithms of four inputs in
this study, which are land, labor, fertilizer, and machinery.
𝑍𝑖𝑗𝑡 is a set of control variables. 𝑢𝑖 is the country fixed-
effects, and 𝜀𝑖𝑡 is a random error following the normal
distribution.
The parameter vector 𝛼 indicates the coefficient of four

inputs in the original Translog production function. The
parameter vector 𝛿 refers to the net direct effect of the agri-
cultural machinery on production. The parameter vector
𝛽 refers to the interaction of the tractor power struc-
ture, farm machine, and other three inputs, which is the
most important coefficient we care about. It captures the
effects ofmachinery structural change. The parameter vec-
tor 𝛾 refers to the policy effect of government subsidy
on purchasing farm machines, mainly reflected in the
role of machinery input and the proportion of large and
medium-sized tractors in agricultural production.
Although the fixed effect model helps to capture some

individual-specific unobserved heterogeneities and allevi-
ate the endogeneity, we also hope to capture both random
and systematic inefficiencies that affect productivity. The
production function is assumed to specify the feasible
maximum output produced by a set of given inputs.
Since output may not reach the frontier in reality, the
stochastic frontier model was raised by Aigner et al. (1977)
to describe technical inefficiency. The stochastic frontier
approach (SFA) offers another perspective by quantifying
the potential distance from the most efficient productivity.
Therefore, we combine these two methods to understand
the role of machinery structure in the agricultural pro-
ductivity dynamics better. Greene (2005) and Yu (2012)
proposed the true effects (TFE) model that allows fixed
effects in time-varyingmodels, hence this study follows the
method, and the empirical model is specified as follows:

ln y𝑖𝑡 = 𝛼𝑖 +

4∑
𝑗 = 1

𝛼𝑗𝑙𝑛𝑥𝑗𝑖𝑡 +
1

2

4∑
𝑗 = 1

𝛼𝑗𝑗
(
𝑙𝑛𝑥𝑗𝑖𝑡

)2

+

3∑
𝑗 = 1

4∑
𝑘≠𝑗

𝛼𝑗𝑘𝑙𝑛𝑥𝑗𝑖𝑡𝑙𝑛𝑥𝑘𝑖𝑡 + 𝛿1𝑆𝑡𝑟𝑢𝑐𝑖𝑡 + 𝛿2𝑙𝑛𝑚𝑎𝑐ℎ𝑖𝑡

× 𝑆𝑡𝑟𝑢𝑐𝑖𝑡 + (𝛽1𝑙𝑛𝑙𝑎𝑛𝑑𝑖𝑡 + 𝛽2𝑙𝑛𝑙𝑎𝑏𝑜𝑟𝑖𝑡 + 𝛽3𝑙𝑛𝑓𝑒𝑟𝑡𝑖𝑖𝑡)

× 𝑙𝑛𝑚𝑎𝑐ℎ𝑖𝑡 × 𝑆𝑡𝑟𝑢𝑐𝑖𝑡 + 𝛾1𝐴𝑀𝑃𝑆𝑖𝑡 + 𝛾2𝐴𝑀𝑃𝑆𝑖𝑡
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× 𝑙𝑛𝑚𝑎𝑐ℎ𝑖𝑡 + 𝛾3𝐴𝑀𝑃𝑆𝑖𝑡

× 𝑆𝑡𝑟𝑢𝑐𝑖𝑡 + 𝛾4𝐴𝑀𝑃𝑆𝑖𝑡 × 𝑙𝑛𝑚𝑎𝑐ℎ𝑖𝑡

× 𝑆𝑡𝑟𝑢𝑐𝑖𝑡 + 𝜃𝑍 ⋅ 𝑍𝑖𝑗𝑡

+ 𝜀𝑖𝑡 (6)

𝜀𝑖𝑡 = 𝜐𝑖𝑡 − 𝑢𝑖𝑡 (7)

𝑢𝑖𝑡 = 𝛿 (𝑡) 𝑢𝑖 (8)

where 𝜐𝑖𝑡 ∼  (0, 𝜎2𝜐), 𝑢𝑖 ∼ 𝐸𝑥𝑝(𝜃), 𝜐𝑖𝑡 and 𝑢𝑖 are iid. The
TFE model allows for the time-varying inefficiency term,
as well as the individual fixed effect. Other variables and
parameters are the same as those in the fixed effect model.
Furthermore, we discuss several issues related to mul-

ticollinearity and endogeneity to address the threat and
ensure the validity of our results. The discussion of mul-
ticollinearity is reported in Appendix 1 in detail. We follow
the methodology of Lin et al. (2022) and report normalized
results of the estimation. Gong (2018) uses province-level
panel data to estimate the production function and reviews
the method to solve the endogeneity problem, in which
all four inputs (labor, land, fertilizer, and machinery) are
proved exogenous. Additionally, we refer to Amsler et al.
(2016) and employ the control functionmethod to solve the
potential endogeneity problem of four inputs in Appendix
2. To address the endogeneity of machinery structure, we
use the inverse-probability-weight methods (IPW, Horvitz
&Thompson, 1952;Wooldridge, 2007). Further discussions
are presented in Section 5.2.2.

4 DATA

The empirical analysis in this study is based on a county-
level dataset in Xinjiang and Hubei provinces during the
period 2002–2012. In addition, we also collect partial data
from Jilin province, therefore the results of the merged
unbalanced panel will also be presented as a robustness
check for supplementary. The main dataset comprises
126 counties in 26 prefectures, with a total of 1386 observa-
tions. The county-level data is collected from the Chinese
County Statistical Yearbook, Xinjiang Statistical Yearbook,
Hubei Rural Statistical Yearbook, and the Ministry of Agri-
cultural and Rural Affairs of the People’s Republic of
China. The cost of crop input is collected from theNational
Farm Product Cost-Benefit Survey. The weather data is
collected from the China Meteorological Data Website.
Hubei province is one of the major grain-producing

areas and Xinjiang is famous for its agricultural modern-
ization and mechanization. Hubei and Xinjiang possessed

1254 thousand and 677 thousand tractors respectively,
ranking sixth and tenth in 2012. However, the internal
structures of tractors’ power capacity appear obvious dif-
ferences in these provinces. From the perspective of the
capacity of farm tractors, the share of large and medium
factors surpassed 70% for Xinjiang in 2012, while the pro-
portion for Hubei province is nearly 38%, and the total
share in China is 45.25%. Similarly, the quantity shares of
large and medium tractors are 51%, 11%, and 21% for Xin-
jiang, Hubei, and the whole country respectively. Due to
data limitations regarding the machinery structure, our
sample consists of two provinces in China. However, it’s
still reasonable and representative to utilize the county-
level dataset. As a supplement, we construct a city-level
dataset in Appendix 4, which includes 126 prefectures
in 10 provinces from 2002 to 2012, providing additional
evidence that supports the validity of our analysis and
results.
The dependent variable in this study is total staple grain

production, which includes rice, maize, wheat, other cere-
als, tuber crops, and soybeans.5 The machinery input is
defined as the total power capacity. The labor input is
represented by the number of rural people employed in
agriculture. The land acreage is defined as the sown area of
grain, for it can measure the land input in production bet-
ter. Meanwhile, the chemical fertilizer is converted to pure
substance equivalent in the statistical yearbook inChina. It
should be noted that, given the widespread use of machin-
ery in the grain production process, we use grain output
as the key dependent variable. However, certain critical
inputs used in the production function, such as labor and
fertilizer, also encompass factors used in the cultivation of
non-grain crops, owing to the absence of clear differentia-
tion in factor inputs for different crops in the county-level
statistics. To better understand the structure effects, we
also show the results of several representative cash crops
in Appendix 6.
The most important variable in the research is the

agricultural machinery structure. Farming machines are
classified into different types according to the food pro-
duction process, including agricultural power machinery
in all phases and other machines and tools related to
each production phase. Tractors are the most common
power machines and other specific machines contain soil
tillage machinery, planting machinery, plant protection
machinery, and crop harvesting machinery in the planting

5 Precisely stated, the dependent variable should be defined as staple crop
production since tuber crops and soybeans are both included in the statis-
tics. Nevertheless, the National Bureau of Statistics of China officially
defines this statistical variable as grain production. Hence, we adhere to
this broader definition for consistency.
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production. Since most specific farm tools and machines
need to be usedwith tractors, the power capacity of tractors
becomes a common indicator to measure the machinery
size structure. In addition, the non-disclosure of detailed
information on different types of supporting machines,
and inconsistent disclosure types in each county make
it impossible to measure the size structure of agricul-
tural machinery by constructing other statistical variables.
Therefore, our article uses the share of medium/large trac-
tors’ capacity to proxy the machinery size structure, the
classification criteria of which have been introduced in
Section 1. We also use the share of large/medium trac-
tors’ quantity in the further robustness check and use the
share of supporting tools and machines for large/medium
tractors in the supplementary prefecture-level dataset.
The construction of the policy indicator is based on the

list of counties supported by the Agricultural Machinery
Purchasing Subsides from 2004 to 2009, collected from the
Ministry of Agricultural and Rural Affairs. The indicator of
the subsidy is equal to 1 from the first yearwhen the county
was subsidized.
Control variables can be divided into three types.

The first part is other inputs, including agrochemicals
(pesticides and mulching film), seeds, mechanical hiring
services, and irrigation. Among them, agrochemicals and
seeds are aggregated into expenses as the mediate input.
Apart from irrigated areas, other expenses are obtained by
multiplying the input cost per mu of each province by the
sown area as proxies. The second part is agroecological
variables including average annual temperature and pre-
cipitation. The last type is the budget constraint used in
the robustness check, including the proxy of deposit, loan,
and agricultural GDP per capita.
There are also concerns about whether the machinery

structures of the adjacent counties will affect agricultural
production, especially due to the rapid development of
agricultural mechanization outsourcing services. Firstly,
the cross-regional services focus on harvesting across
provinces, so the main machinery involved is the combine
harvester rather than tractors (Zhang et al., 2017). As for
four-wheel tractors, themaximumdesigned speed does not
exceed 40 km/h, and tractors are prohibited on highways
and roads in central urban areas of large andmedium-sized
cities. In our dataset, the average administrative area of
Xinjiang’s counties exceeds 20,000 square kilometers, thus
tractors are hard to travel beyond the county boundaries.
Secondly, the more common form of machinery hiring
service is provided by specialized teams within villages,
which are typicallymadeup of several familymembers and
equipped with large/medium tractors (Wang et al., 2016).
Because of the above characteristics, the neighboring trac-
tor sizes are omitted in the current control variables for
simplification.

The descriptive statistics for all dependent and indepen-
dent variables are displayed in Table 1.

5 RESULTS AND DISCUSSIONS

5.1 Impact of machinery capacity
structure

5.1.1 Conventional OLS regression

Table 2 represents the estimation of the production func-
tion in the fixed effect model. Column (1) reports the
coefficients in the original Translog function, and controls
other input factors, weather conditions, and county-fixed
effects. Among the four major input factors, land affects
production directly and is significant at 1% level. The key
factor we focused on, machinery, has an indirect influence
mainly through the sown area, significant at 1% level. Pre-
cisely, the rising use of machinery encourages farmers to
increase sown area, thus improving grain production. Col-
umn (2) additionally reports the capacity structure effect
of machinery on grain output compared with Column
(1). Meanwhile, Column (3) reports the effect of the sub-
sidy policy on total grain production. Columns (4) and
(5) combine all the inputs, capacity structure interactions,
machinery subsidy policy, and other control variables. The
coefficients of three-way interactive terms between tractor
size, machinery, and another input potentially reveal the
existence of machinery capacity structure effect on grain
production.
During the window period of the machinery subsidy,

the structure of machinery capacity (represented by the
capacity share of large tractors) mainly affects food output
by readjusting fertilizer input in the production pro-
cess. The land and labor channels are not significant in
the fixed effect model. At the same time, the gradual
implementation of the nationwide AMPS program could
enhance grain production directly. Mathematically, after
being supported by the AMPS program, the grain output in
beneficiary prefectures will experience an approximately
20% increase. But there are also large negative effects of
the subsidy policy throughmachinery structure change on
grain output.

5.1.2 Stochastic frontier analysis

This subsection will display the estimated results of the
SFA analysis. The prerequisite to applying the stochastic
frontier model is the existence of the inefficiency term.
After the likelihood-ratio test of the original Translog pro-
duction function, it is reported that the null hypothesis is
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TABLE 1 Summary statistics.

Xinjiang Hubei
Variable Definition Mean S.D. Mean S.D. Mean S.D.
Panel A: Dependent variable
lny Total grain output (104 ton) 2.457 1.124 1.969 1.142 3.174 .584
lny_ha Grain output per hectare (ton/ha) 1.746 .304 1.789 .271 1.681 .338
lncotton Total output of cotton (104 ton) −.373 1.570 −.048 1.499 −.851 1.551
lnoil Total output of oil plants (104 ton) −.505 1.734 −1.387 1.602 .792 .909
lncashcrop Total output of cotton and oil

plants (104 ton)
.372 1.351 .034 1.464 .869 .972

Panel B: Main input factors
lnmach Machinery total capacity (104 kw) 2.552 .846 2.227 .808 3.030 .652
lnlabor Rural population employed in

agricultural sector (104 units)
1.687 .893 1.193 .785 2.414 .423

lnland Grain sown area (103 ha) 3.014 1.077 2.483 1.049 3.795 .473
lnferti Use of chemical fertilizers (ton) 9.333 1.315 8.749 1.293 10.19 .759
lnland_cash Sown area of cash crop (103 ha) 3.010 .869 2.708 .900 3.454 .587
Panel C: Other input factors
lnmaterial Total cost of other agricultural

materials, including pesticide,
seeds and agricultural film (104

yuan)

7.731 1.108 7.269 1.130 8.412 .614

lnservice Cost of agricultural machinery
service (104 yuan)

7.255 1.098 7.058 1.179 7.544 .893

lninput Total cost of agricultural materials
and machinery service (104

yuan)

8.235 1.083 7.865 1.151 8.779 .673

lnirr Effective irrigated area (103 ha) 3.049 .865 3.156 .831 2.891 .889
Panel D: Machinery structure
Struc_kw Share of large/medium tractors for

the total capacity
.542 .203 .508 .160 .592 .246

Struc_q Share of large/medium tractors for
the total quantity

.357 .220 .321 .173 .408 .266

Panel E: Subsidy policy
AMPS =1 since the county is supported

by AMPS subsidy; = 0 if not
subsidized

.630 .483 .635 .482 .622 .485

Panel F: Weather condition
temperature Average annual temperature (◦C) 12.321 4.038 9.318 2.186 16.737 .682
lnrainfall Average annual precipitation

(mm)
8.369 .850 7.712 .354 9.336 .176

Panel G: Budget constraint
lnagrincome Agricultural income per capita

(yuan)
4.913 .719 4.992 .762 4.797 .634

lnsavings Household savings balance (104

yuan)
7.121 1.254 6.550 1.191 7.958 .786

lndebt Balance of loans (104 yuan) 6.844 1.238 6.370 1.284 7.538 .745
Observations 1386 (100%) 825 (59.5%) 561 (40.5%)

Note: The table summarizes all the variables in the baseline regression and robustness check. All the inputs and outputs are in the form of a logarithm.
Large/medium tractors refer to tractors with power capacity over 14.74 kW (20 horsepower), among which large tractors are over 36.78 kW (50 horsepower)
and medium tractors lay between 20 and 50 horsepower. All the variables related to the cost have been adjusted by the price index.
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TABLE 2 Fixed effect estimation.

(1) (2) (3) (4) (5)

Variables
Original production
function

Add machinery
structure

Add AMPS
policy Baseline

Aggregating other
control inputs

lnmach .042 −.151 .114 −.109 −.063
(.218) (.227) (.214) (.227) (.226)

lnland 1.008*** 1.028*** 1.082*** 1.090*** 1.057***
(.281) (.285) (.269) (.282) (.283)

lnlabor −.294 −.261 −.257 −.260 −.257
(.341) (.313) (.311) (.293) (.293)

lnferti .201 .157 .147 .118 .103
(.150) (.131) (.159) (.146) (.146)

lnmach×lnmach −.036 −.024 −.048* −.037 −.036
(.023) (.024) (.025) (.027) (.027)

lnland×lnland .021 .010 .021 .009 .008
(.016) (.015) (.015) (.015) (.015)

lnlabor×lnlabor .114** .106** .117** .106** .103**
(.051) (.051) (.052) (.051) (.050)

lnferti×lnferti −.008 −.005 −.004 −.002 −.001
(.013) (.012) (.013) (.012) (.012)

lnmach×lnland .207*** .160*** .210*** .166*** .167***
(.046) (.052) (.046) (.053) (.054)

lnmach×lnlabor −.098* −.124** −.112** −.119** −.107*
(.053) (.053) (.054) (.054) (.054)

lnmach×lnferti −.038 −.010 −.039 −.012 −.018
(.028) (.029) (.028) (.029) (.029)

lnland×lnlabor −.315*** −.291*** −.319*** −.295*** −.296***
(.066) (.062) (.066) (.063) (.062)

lnland×lnferti −.048 −.044 −.052 −.048 −.046
(.040) (.040) (.039) (.040) (.040)

lnlabor×lnferti .129*** .126*** .129*** .127*** .123***
(.048) (.045) (.045) (.042) (.043)

Struc_kw −.336* −.266 −.287
(.173) (.199) (.201)

Struc_kw×lnmach .445 .439 .426
(.289) (.288) (.288)

Struc_kw×lnmach×lnland .064 .062 .060
(.050) (.050) (.051)

Struc_kw×lnmach×lnlabor .007 .001 .003
(.045) (.045) (.045)

Struc_kw×lnmach×lnferti −.057** −.055** −.054**
(.025) (.025) (.025)

AMPS .257** .191* .134
(.100) (.110) (.112)

AMPS×lnmach −.065* −.035 −.020
(.035) (.039) (.040)

AMPS×Struc_kw −.504*** −.353* −.276
(.179) (.212) (.216)

(Continues)
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TABLE 2 (Continued)

(1) (2) (3) (4) (5)
Variables Original production

function
Add machinery
structure

Add AMPS
policy

Baseline Aggregating other
control inputs

AMPS×lnmach×Struc_kw .156** .087 .072
(.062) (.076) (.077)

lnirr .082*** .080** .073** .074** .068**
(.031) (.032) (.032) (.034) (.034)

lnmaterial −.002 −.001 −.031 −.033
(.027) (.027) (.024) (.024)

lnservice .066*** .067*** .069*** .074***
(.022) (.021) (.022) (.022)

lninput .061**
(.031)

Constant −3.468*** −3.310*** −3.133*** −2.963*** −3.099***
(.626) (.577) (.652) (.592) (.601)

County FE YES YES YES YES YES
Weather condition variables YES YES YES YES YES
R-square .821 .824 .824 .826 .825
Observations 1386 1386 1386 1386 1386

Note: The dependent variable is total grain output, and the explanatory variables sequentially consist of main input factors, capacity structure proxies, and the
policy indicator. Columns (4) and (5) include all these explanatory variables. All regressions control county fixed effects, and also control other input and weather
condition variables. The variable lninput represents the total cost of agricultural materials and machinery service. The robust standard errors are all clustered at
the county level. Robust standard errors are in parentheses with *** denoting significance at 1%, ** at 5%, and * at 10%.

rejected, which means it’s reasonable to apply SFA. The
estimated results are reported in Table 3.
The regression order in Table 3 is consistent with Table 2

for the sake of comparison. The estimated coefficients
of our interest in the regression remain similar, and the
machinery structure effect through the land channel is
significant in the SFA model. The results indicate that
a higher input of large/medium tractors can strengthen
the influence of machinery on grain output through two
channels, the positive mechanism in land and the negative
mechanism in fertilizer. This is consistent with the eco-
nomic intuition we discussed in the background section,
as the introduction of more large machinery encourages
farmers to expand production scale. The negative mech-
anisms are dominant in the structure effects through the
fertilizer channel. Meanwhile, the effects of subsidies on
grain output are also consistent with previous results.
The AMPS program not only directly affects production,
but also indirectly affects grain production through the
interaction with agricultural machinery and the power
structure of machinery.
FE model and TFE model both confirm the existence

of a capacity structure effect of agricultural machinery
on grain production, with different channels displaying
opposite effects. The TFE model is not only a robustness
check but also captures how the combination of input fac-

tors produces the maximum possible output and identifies
the technical efficiency compared to the FE model. And
we will further discuss how technical efficiency changes
with subsidy policies and the scale of machinery capacity
based on the SFA method in the later section. Next, we
will decompose and calculate various structure effects of
machinery.

5.1.3 Structure effects and misallocation

In Section 3, the theoretical models show that
𝜕𝑠

𝜕𝑀
(
𝜕𝑦

𝜕𝑠
+

∑
𝑖∈{𝐿,𝑁,𝑍}

𝜕𝑦

𝜕𝑋𝑖

𝜕𝑋𝑖

𝜕𝑠
) presents the capacity struc-

ture effect of agricultural machinery on total grain output.
We consequently calculate the marginal effects of machin-
ery and the capacity structure effects in grain production
estimated by the TFE model. Using the coefficients
displayed in Column (5) in Table 3 and mean values of
key input factors in the overall sample and subsamples,
we decompose the structure effects of machinery into
the direct channel and three input factor channels, and
mainly focus on land and fertilizer channels. Table 4
reports the average marginal effects and capacity structure
effects of agricultural machinery in total and for different
provinces. The estimated structure effects are components
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TABLE 3 Stochastic frontier estimation.

(1) (2) (3) (4) (5)

Variables

Original
produc-
tion
function

Add
machinery
structure

Add AMPS
policy Baseline

Aggregating
other control
inputs

lnmach .225 .055 .375* .185 .237
(.189) (.207) (.213) (.225) (.215)

lnmach×lnmach −.016 −.000 −.032 −.020 −.022
(.025) (.029) (.029) (.032) (.030)

lnmach×lnland .213*** .160*** .214*** .165*** .170***
(.057) (.060) (.056) (.061) (.060)

lnmach×lnlabor −.155** −.155** −.167*** −.149** −.134**
(.065) (.066) (.063) (.067) (.067)

lnmach×lnferti −.055** −.035 −.062** −.043 −.050*
(.026) (.027) (.029) (.030) (.029)

Struc_kw −.315 −.193 −.227
(.192) (.212) (.214)

Struc_kw×lnmach .372 .362 .365
(.282) (.270) (.275)

Struc_kw×lnmach×lnland .079* .079* .073*
(.046) (.043) (.044)

Struc_kw×lnmach×lnlabor −.040 −.047 −.044
(.047) (.044) (.044)

Struc_kw×lnmach×lnferti −.045* −.044** −.043*
(.023) (.022) (.023)

AMPS .233** .204* .161
(.100) (.112) (.114)

AMPS×lnmach −.060* −.040 −.029
(.034) (.040) (.041)

AMPS×Struc_kw −.560*** −.490** −.439*
(.190) (.220) (.225)

AMPS×lnmach×Struc_kw .178*** .132* .125
(.064) (.078) (.080)

lnirr .097** .086** .082** .075** .068*
(.039) (.039) (.037) (.037) (.037)

lnmaterial .008 .013 −.001 .002
(.027) (.028) (.028) (.029)

lnservice .075*** .075*** .073*** .083***
(.020) (.020) (.021) (.020)

lninput .096***
(.031)

County FE YES YES YES YES YES
Weather condition variables YES YES YES YES YES
Wald chi-square 1699.42 2027.82 1929.56 2505.69 2540.23
σu .105 .106 .107 .108 .110
σv .077 .075 .073 .070 .071
λ 1.366 1.413 1.454 1.556 1.559
Observations 1386 1386 1386 1386 1386

(Continues)



236 MENG et al.

TABLE 3 (Continued)

Note: The dependent variable is total grain output, and the explanatory vari-
ables sequentially consist of main input factors, capacity structure proxies and
the policy indicator. Columns (4) and (5) include all these explanatory vari-
ables. All regressions control county fixed effects, and also control other input
and weather condition variables. The variable lninput represents the total cost
of agricultural materials and machinery service. Other independent variables
are not displayed due to the limited space. λ = 𝜎𝑢∕𝜎𝜈 . The robust standard
errors are all clustered at the county level and are in parentheses with ***
denoting significance at 1%, ** at 5%, and * at 10%.

of the average marginal effects of agricultural machinery
on production.
It is observed that the positive direct effect and structure

effect dominate in the full sample, resulting in a positive
overall effect6. Even though the total structure effect of
farming machines on grain output is not significantly pos-
itive, capacity structure effects are observed significantly
in the form of readjustment of land and fertilizer factors.
When the input of machinery increases by 10%, grain pro-
ductionwill increase by about 1.19% through apositive land
channel of structure effect. Conversely, a 10% growth in the
input of agricultural machines also will reduce grain out-
put by nearly 2.20% due to the adverse impact of fertilizer
reduction.
The decomposition of overall effects displays a hetero-

geneous pattern in subsamples. The total effect and direct
effect are both positive in Xinjiang, but the total effect
has almost disappeared in Hubei because of the smaller
direct effect compared to Xinjiang. However, the land and
fertilizer channel of the capacity structure in Hubei is sig-
nificantly larger. The disparities between the two groups
may be attributed to the fact that Hubei is a traditional
major grain-producing area with labor-intensive small-
holders. With the limitation of land fragmentation, the
direct effect of agricultural machinery on production is
smaller. However, there still exists ample opportunity to
restructure the land factor through collective large-scale
social services.
Some studies suggest that the impact of agricultural

machinery on food security is relatively small compared
to other factors like land, labor, and fertilizer (Ji et al.,
2012). This article shows that only focusing on the total
marginal effect of the machinery is far from enough, the
leverage effect of machinery on grain production should
not be ignored. Different from other inputs, agricultural
machines are production tools with properties of both
capital investment and technology, which do not directly
convert to the energy that plants need to grow. This char-
acteristic of agricultural machinery determines the way

6 The output elasticities of all factors are reported in Appendix 3. The con-
tribution to grain production is land, labor, machinery, and fertilizer in
descending order.

it affects agricultural production. Previous literature has
mainly focused on the direct influence of machines in the
production function, ignoring the indirect and structure
effects of agricultural machinery as advances in technol-
ogy through other input channels. On the one hand, with
the popularization anduse of agriculturalmachinery, grain
harvest areas will gradually expand through land integra-
tion and social service, thus promoting food production.
On the other hand, large-scale agricultural machines are
usually operated by professional operators and cooper-
atives, and they can also promote planting grain crops
that need less fertilizer. These mechanisms systematically
reduce the input of fertilizer, further decreasing food pro-
duction. The results of this study show that the promotion
of the structure effect via the land channel is smaller than
the inhibition via the fertilizer channel. While the posi-
tive direct channel (Struc_kw×lnmach) offsets the negative
effects. The overall structure effect is therefore numerically
small, which may explain the reason why studies always
underestimate the influence of agricultural machinery on
food production.
We then calculate the average marginal effects of capac-

ity structure varying with the sown area of grain, as
displayed in Figure 2. Besides the averagemarginal effects,
there is also a kernel density curve of land input shown
in this figure. The major y-axis represents kernel den-
sity while the marginal effects are on the minor y-axis.
We find the average marginal effects of capacity struc-
ture change from negative to positive as the sown area
grows, with the turning point between lnland = 3 and
lnland = 4. The results make intuitive sense, as large trac-
tors are more productive when the land input is larger
due to the economies of scale. Conversely, if the arable
land is inadequate, large machines cannot be used at
maximum efficiency. The marginal effect is slightly neg-
ative at the average value of the sown area, indicating
that the structure misallocation of agricultural machin-
ery hinders the potential influence of farming machines
on food security. The findings complement the results of
Foster and Rosenzweig (2022). Following their theory of
the U-shaped relationship between farm scale and produc-
tivity, government programs like the AMPS policy aim to
promote high-capacity machines to increase farm produc-
tivity, but insufficient land leads to large-scale agricultural
machinery not reaching its production potential.

5.1.4 Robustness check

Our robustness checks of this study include replacing
important variables, changing the setup of empirical mod-
els, and using the alternative unbalanced panel data,
respectively shown in TablesA6–A8 inAppendix 5. Instead
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TABLE 4 The marginal effects of agricultural machinery.

Total Xinjiang Hubei
marginal effects Estimation S.E. Estimation S.E. Estimation S.E.
Panel A: Marginal effects of machinery and decomposition
Total effect .0305 (.037) .0506 (.049) .0009 (.036)
Direct effect .1240 (.288) .1385 (.275) .1028 (.309)
Indirect effect −.1778 (.283) −.1732 (.266) −.1845 (.310)
Structure effect .0577 (.053) .0582 (.055) .0561 (.051)
Panel B: Decomposition of power capacity structure effect
Direct channel .1981 (.149) .1856 (.140) .2165 (.163)
Land channel .1194* (.072) .0922* (.055) .1643* (.099)
Labor channel −.0399 (.040) −.0265 (.027) −.0624 (.063)
Fertilizer channel −.2199* (.114) −.1931* (.100) −.2623* (.137)

Note: The capacity structure effects of machinery are calculated according to the TFE model as follows: (𝛿2 + 𝛽1𝑙𝑛𝑙𝑎𝑛𝑑 + 𝛽2𝑙𝑛𝑙𝑎𝑏𝑜𝑟 + 𝛽3𝑙𝑛𝑓𝑒𝑟𝑡𝑖) × 𝑆𝑡𝑟𝑢𝑐 where
𝑙𝑛𝑙𝑎𝑛𝑑, 𝑙𝑛𝑙𝑎𝑏𝑜𝑟, 𝑙𝑛𝑓𝑒𝑟𝑡𝑖 and 𝑆𝑡𝑟𝑢𝑐 are the mean of input factors and capacity structure. The structure effects of Xinjiang and Hubei are based on the mean value
of these two provinces respectively. Standard errors are shown in parentheses with *** denoting significance at 1%, ** at 5%, and * at 10%.

F IGURE 2 Average marginal effects of machinery structure varying with sown land area.

Note: The figure shows how average marginal effects of machinery structure (Struckw) vary with lnland. The density of lnland is labeled in the major y-axis, and
the average marginal effects of Struckw are labeled in the minor y-axis. The effects are shown with 90% confidence intervals. The vertical dash-dot line shows the
mean of lnland (mean = 3.014) and the next dash line points to the median of lnland (median = 3.250). The average marginal effects are calculated according to
the results of the true fixed effect (TFE) model and the kernel density estimation is based on the Epanechnikov kernel function. The marginal effects and kernel
density are estimated using balanced panel data of Xinjiang and Hubei from 2002 to 2012.
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of capacity share, we use the quantity proportion of large
and medium-sized tractors as the proxy to measure agri-
cultural machinery structure. We also use arable land
area instead of planting acreage of grain crops. The grain
sown area calculates actual planting acreage of multiple
cropping while arable land area is a stock. Both of themea-
surements are widely used in estimating the production
function empirically. Furthermore, we use grain output
per hectare instead of total grain output to capture the
effect. For alternative setups of the empirical models, our
study changes the distribution of the inefficiency term
in the TFE model. We also use the random-effects time-
varying efficiency decaymodel (RE) and the Iterative Least
Squares time-varying fixed-effects model (FELS) to check
the robustness. Since the farmers’ decisions on the usage
of tractors and other inputs allocation are influenced by
budget constraints, we add savings, loans, and agricultural
GDP per capita in rural areas to control variables based on
the TFEmodel. Themain coefficients are generally robust,
while the land channel is less stable than the fertilizer
channel.
As mentioned in Section 4, we also report the results

of the unbalanced panel data. The results remain robust
when measuring the tractor size based on horsepower.
However, when measuring the tractor size based on
quantity, only the structure effect in fertilizer is still
robust. In this circumstance, the tractor size positively
affects the direct machinery channel, rather than the joint
machinery-land channel.

5.2 Further discussion

5.2.1 Alternative specification and model
validity

In the basic regressions, we use the Translog production
function to match the theoretical model. As aforemen-
tioned, this framework is subject to the condition that
the observed total horsepower should equal the actual
horsepower utilized in the production function. However,
the actual machinery input is unobserved in the data
because of the gap between the potential full capacity
and the actual horsepower. Therefore, we further relax
the assumption of M(s) and modify the theoretical frame-
work as Y = y(L,M,s,N,Z). A more detailed demonstration
is in Appendix 7. To fit the less constrained framework, we
provide empirical results of alternative production func-
tion forms including both the Cobb-Douglas function and
Translog function where machinery structure is embed-
ded like an input factor rather than a moderator. Figure 3
plots the key coefficients related to machinery structure
in different models and the corresponding estimations

are in Tables A10 and A11. In the simplified setup, the
structure effects comprise a direct effect on output and
indirect effects, where the latter manifest as interaction
terms betweenmachinery structure and input factors. The
direct effect of the tractor scale is neither significant in the
baseline nor robust, but the positive indirect effects via the
land channel and negative indirect effects via the fertilizer
channel are strongly robust.7
As the empirical model contains both the production

and AMPS policy components, we also check if our pro-
duction function estimation is reasonable by separately
estimating these two parts and deducing the output effect.
Appendix 7 illustrates the method and estimation. We
back out the effects of AMPS on total output and find
it is consistent with the direct estimated effect. Theoreti-
cally, the Frisch–Waugh–Lovell Theorem emphasizes the
equivalence of the coefficients from both full and par-
tial regressions. Solid evidence shows that our production
function model is valid.

5.2.2 Endogeneity of machinery structure

Given that agricultural machinery structure is the focal
variable in this article, special attention has been directed
towards the endogeneity issue associated with it. The
tractor scale might be influenced by changes in input
endowments, and the measurement error can also intro-
duce endogeneity. Therefore, we use the aforementioned
IPW method to address this concern. With reference to
Takeshima (2017), the machinery structure is converted
to binary variables by using the median as the threshold.
After conducting the Probit regression on the machinery
power structure in the first stage, the IPWmethod assigns
weights and adjusts for the unequal probability of each
individual receiving the treatment, thus reducing the esti-
mation bias. By utilizing the R package in machine learn-
ing,wehave also provided estimation resultswhen treating
machinery structure as the continuous dependent variable
in the first stage. Table 5 summarizes the estimated coeffi-
cients through the IPW-OLS method, differentiated by the
tractor scale status.
In general, the results adjusted by the IPW method

remain consistent compared with the baseline, as shown
in Column (3). Nonetheless, the results exhibit highly
interesting heterogeneities between the high share of
large/medium tractors and the low share group in

7 In addition, Cobb–Douglas function form also help to explore struc-
ture effects interacting with more other inputs. The expansion of
large/medium tractors indirectly promotes grain output by expanding the
irrigation area and also generates negative indirect effects by reducing the
marginal impact of agricultural machinery outsourcing services.
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F IGURE 3 Structure effects in different alternative models. This figure presents the main coefficients related to machinery structure in
the Cobb–Douglas production function, Translog production function with fixed effects, and Translog production function with true fixed
effects, respectively. The machinery structure is proxied by the horsepower capacity share in the left figure, and the dependent variable is the
total grain output. The corresponding results are in Column (1) of Table A10 and Columns (2) and (5) of Table A11. Similarly, the machinery
structure in the right figure is measured by quantity share, and the dependent variable is the grain output per hectare. The corresponding
results are in Column (3) of Table A10 and Columns (3) and (6) of Table A11.

Columns (1) and (2). In the low proportion group, the
increased adoption of large tractors significantly pro-
motes the joint effect of machinery and land on grain
output. While the coefficient of the fertilizer channel
turns out to be significantly positive. When the adop-
tion of large/medium tractors is low, the growth of large
tractors has a direct promoting effect on grain output,
but also weakens the direct marginal effect of machin-
ery on production. Conversely, in the high proportion
group, the sustained growth of large machines leads to a
direct decline in grain production, yet amplifies the direct
marginal effect ofmachinery. The promotion ofmachinery
structure also results in a lower joint effect of machinery
and fertilizer on production.
The heterogeneous results illustrate the marginal

effect of introducing large tractors mainly reflects on
expanding cultivated area and promoting complemen-
tarity between machinery and fertilizer when there are
fewer high-capacity tractors. Nonetheless, in scenarios
where high-capacity machines are more prevalent, the

marginal effect is no longer reflected in the land expansion
channel. Instead, the negative structure effects through
the fertilizer channel are dominant due to fertilizer saving
and grain crop changes. Since recent mechanization
literature delves into focus on the farming systems and
mechanization typology issues, our findings enrich the
literature, and the heterogeneity of farming systems may
need more in-depth research in future studies (Takeshima
et al., 2013; Warren, 2023).

5.2.3 Subsidy policy effect

To investigate the impact of the AMPS policy through
various input factors on grain production, we extend the
subsidy policy effects by introducing interaction terms
between policy indicator and input factors, using both
Cobb–Douglas andTranslog specifications. The estimation
results are summarized in Table 6. After being supported
by the subsidy policy, the positive effects of land and
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TABLE 5 Results estimated by IPWmethod.

Low-share group High-share group Continuous Structure
(1) (2) (3)

Variables Total output Total output Total output
Struc 1.008** −.983** −.111

(.426) (.408) (.155)
Struc×lnmach −1.330*** 1.439*** .380**

(.487) (.438) (.173)
Struc×lnmach×lnland .134** .034 .048**

(.057) (.048) (.023)
Struc×lnmach×lnlabor −.104 .013 .021

(.064) (.055) (.020)
Struc×lnmach×lnferti .088* −.127*** −.054***

(.047) (.039) (.016)
AMPS −.066 .430 .130**

(.175) (.292) (.062)
AMPS×lnmach .062 −.140 −.026

(.064) (.115) (.024)
AMPS×Struc .154 −.728* −.346**

(.425) (.439) (.152)
AMPS×lnmach×Struc −.139 .241 .109**

(.163) (.168) (.054)
County FE YES YES YES
Other input variables YES YES YES
Weather condition variables YES YES YES
Budget constraints variables YES YES YES
R-square .836 .738 .821
Observations 693 691 1384

Note: The low-share group in Column (1) refers to the group with a proportion of large/medium tractors below the median, while the high-share group in Column
(2) refers to those above the median. The weights of the first two columns are estimated by the Probit model, while the weight of Column (3) is estimated by the
generalized linear model (GLM). The robust standard errors are all clustered at the county level and are in parentheses with *** denoting significance at 1%, ** at
5%, and * at 10%.

outsourcing services on grain output are significantly
strengthened. However, the subsidy has also significantly
weakened the role of labor, chemical fertilizer, and other
agricultural material inputs in production.8 The coeffi-
cients of the major input factors are also consistent in the
Translog specification.
Furthermore, to avoid the potential estimation biases in

the traditional Difference-in-Difference (DID) model, we
simply use the Local Projection Difference-in-Differences
(LP-DID) approach to check the robustness of the results
and also capture the potential dynamic responses to the
policy change over time (Dube et al., 2023). The treatment
effects are estimated using three different LP-DIDmethods
based on the simplified Cobb–Douglas specification and

8 The effects of AMPS policy on different input factors are also demon-
strated in Table A12 of Appendix 7.

are depicted in Figure 4. It illustrates that the AMPS pol-
icy has a lag effect on production. It takes approximately
2 years for the subsidy to significantly show a directly
positive influence on grain output.

5.2.4 Technical efficiency pattern

Based on the Translog SFA, we estimate the technical effi-
ciency for every county each year. Figure 5 depicts the
distribution of estimated TE and the time trend. With
consideration of capacity and subsidy policy, the mean
technical efficiency is .883, shown in Panel A of Table 7.
Our estimations of technical efficiency are comparable
with those in the literature (Tian & Wan, 2000).
In Table 7, we also simply summarize the mean of

TE under various situations. Panel B reports the average
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TABLE 6 AMPS policy effect.

C-D C-D Translog FE Translog FE Translog TFE Translog TFE
(1) (2) (3) (4) (5) (6)

Variables Total output Total output Total output Yield Yield Total output
AMPS 1.372** 1.414** −.149 −.149 .014 −.025

(.559) (.560) (.200) (.200) (.186) (.165)
AMPS×Struc .044 .020 −.069 −.069 −.342* −.457**

(.080) (.078) (.229) (.229) (.207) (.221)
AMPS×lnmach −.042 −.043 −.014 −.014 −.059 −.062**

(.030) (.029) (.047) (.047) (.042) (.030)
AMPS×lnland .461*** .464*** .173*** .173*** .178*** .176***

(.122) (.123) (.029) (.029) (.039) (.034)
AMPS×lnlabor −.155*** −.154*** −.153*** −.153*** −.145*** −.149***

(.043) (.044) (.036) (.036) (.035) (.034)
AMPS×lnferti −.037* −.041* −.007 −.007 −.005 −.002

(.021) (.021) (.024) (.024) (.022) (.021)
AMPS×lnmaterial −.533*** −.524***

(.177) (.183)
AMPS×lnservice .277*** .265***

(.091) (.093)
AMPS×lnirr .000 .005

(.024) (.023)
AMPS×lnmach×Struc −.006 −.006 .075 .120

(.080) (.080) (.075) (.080)
Constant −1.077 −.889 −.053 2.249*** - -

(.915) (.840) (.860) (.860) - -
Other input variables YES YES YES YES YES YES
Weather condition YES YES YES YES YES YES
Poor×Year FE YES YES YES YES NO NO
HBP×Year FE YES YES YES YES NO NO
County FE YES YES YES YES YES YES
R-square .755 .757 .792 .365 - -
Wald chi-square - - - - 429.88 3375.59
Observations 1386 1386 1386 1386 1386 1386

Note: Results in Columns (1) and (2) are based on the Cobb-Douglas production function, and results in Columns (3) to (6) are based on the Translog production
function. The machinery structures in Columns (2) and (6) are calculated by the quantity, and others are calculated by the horsepower. The robust standard errors
are all clustered at the county level and are in parentheses with *** denoting significance at 1%, ** at 5%, and * at 10%.

TE before and after the subsidy policy, while Panel C
represents how means of TE vary across five quantiles
of agricultural machinery capacity structure. The results
reveal a heterogeneous pattern of technical efficiency
across different quantiles of machinery capacity structure.
On average, the larger estimations of TE are observed
in Quantile 1 and Quantile 4. Quantile 1 has an average
share of large and medium-sized tractors of 26.71%. The
high technical efficiency may be attributed to inten-
sive cultivation using small tractors. The next peak
level appears in Quantile 4 either on average (capacity
structure ranges from 58.95% to 72.95%) or in Xinjiang

(53.81%–64.62%), whereas in Hubei province, the highest
value is shown in Quantile 3 (55.66%–65.90%). High
TE does not always correspond to high mechanization
symbolled by the proportion of large and medium-sized
tractors. The matching pattern between agricultural
machinery and farming conditions plays an essential
role. When the share of large tractors exceeds a certain
threshold, the technical efficiency will go into reverse.
This phenomenon implies that agriculturalmodernization
should not blindly pursue the scale of machinery, but
should adjust according to local endowments, considering
both production and efficiency.
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F IGURE 4 Treatment effects of the AMPS policy estimated by LP-DID method.

Note: The figure illustrates the treatment effects of the Agricultural Machinery Purchase Subsidies (AMPS) on grain production over time which are estimated by
the Local Projection Difference-in-Differences (LP-DID) model using the county-level dataset of Xinjiang and Hubei from 2002 to 2012. The horizontal axis
represents the periods before and after the first implementation of the AMPS policy. These three treatment effects are estimated by the basic LP-DID, LP-DID
with interaction terms, and pre-mean-differenced LP-DID.

TABLE 7 Summary statistics of technical efficiency.

Total Xinjiang Hubei
Category Mean S.D. Mean S.D. Mean S.D.
Panel A: Overall
Technical efficiency .8827 .070 .8825 .074 .8830 .065
Panel B: Policy implementation
Before subsidy .8815 .045 .8832 .048 .8792 .041
After subsidy .8833 .030 .8820 .030 .8853 .029
Panel C: Quantiles of capacity structure
Quantile 1 .8864 .057 .8870 .060 .8839 .054
Quantile 2 .8750 .078 .8746 .075 .8841 .072
Quantile 3 .8840 .076 .8794 .089 .8874 .063
Quantile 4 .8920 .056 .8895 .058 .8854 .057
Quantile 5 .8759 .080 .8817 .082 .8742 .076

Note: For simplicity and intuition, the technical efficiency is calculated on the foundation of the basic TFE model without other control variables, where the
inefficiency term follows the prevailing half-normal distribution. We create five quantiles to capture the difference in technical efficiency when the share of large
andmedium-sized tractors changes. Quantiles of two subsamples are recreated within each group. Themeans of capacity structure for five quantiles in the overall
dataset are .27, .42, .53, .66, and .84; for Xinjiang, the means of each quantile are .30, .41, .50, .58, .75; for Hubei, the means are .22, .44, .63, .76, and .91, respectively.
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F IGURE 5 Time trend of technical efficiency in Xinjiang and Hubei from 2002 to 2012.

Note: The figure shows the technical efficiency (TE) of different counties in the dataset in Xinjiang and Hubei from 2002 to 2012. TE is estimated by the
stochastic frontier analysis (SFA) and represented by the scatters. The boxplot displays the TE distribution in each year and the mean TE is labeled as well.

6 CONCLUSION AND POLICY
IMPLICATIONS

Given that agricultural modernization and food secu-
rity are always the top priorities in developing countries,
this article investigates how agricultural machinery affects
grain production, with a particular emphasis on its capac-
ity structure effect and the role of subsidy policy. We
present the empirical study by constructing a panel dataset
of China’s counties in Xinjiang and Hubei provinces from
2002 to 2012, covering the period in which the subsidy
policy was gradually promoted, and estimating the results
through the fixed effect model and SFA.
The main finding is that the total machinery capacity

can increase grain output, and the structure of machinery
also matters. The general elasticity of output with respect
to machinery inputs is .03. The capacity structure effect of
agricultural machinery contributes to grain production by
readjusting land and fertilizer input in the production pro-
cess. The diffusion of larger tractors significantly improves
crop sown area and reduces fertilizer use, thus jointly
resulting in variation in food output. When the input of
machinery increases by 10%, grain productionwill increase
by about 1.19% through a positive land channel of structure
effect. In contrast, a 10% growth in the input of agricultural
machines alsowill reduce grain output by nearly 2.20% due

to the adverse impact of fertilizer reduction. The average
marginal effects of machinery structure turn from nega-
tive to positive with increasing sown area, but the effects
remainmostly negative given the land scale in our sample.
The structural misallocation of agricultural machinery

hinders the potential influence of farming machines on
food security. Our results also indicate that the AMPS
policy helps directly increase the grain output, while
it has a lag effect and it takes two years to show a
significantly positive direct effect due to the temporal hys-
teresis. Furthermore, we estimate the technical efficiency
of each county based on the SFAmodel. Simple descriptive
statistics display that the mean value of TE is .883 and esti-
mations between different quantiles ofmachinery capacity
structure are heterogeneous.
Our results are robust when controlling for various fixed

effects, changing measurements of variables, and adjust-
ing the SFA model. Other doubts about multicollinearity,
endogeneity, and sample selection are all discussed as far
as possible. After adjusting for the endogeneity issue of
machinery structure using the IPW method, we find that
the land channel of the structure effect primarily exists
in the group with a lower proportion of large/medium
tractors. Meanwhile, the structure effect in the fertilizer
channel is negative in the high share group, but turns to
positive in the low proportion group. We also construct
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a prefecture-level and unbalanced panel dataset, trying
to find solid empirical evidence for our theory of the
mechanical structure effect through different factor chan-
nels. Moreover, we also relax the assumption and compare
structure effects among different alternative function spec-
ifications. Solid evidence verifies the validity of our model
and the robustness of the results.
This article distinguishes between the direct effect, indi-

rect effect, and capacity structure effect of machinery on
grain output in the Translog production function theoret-
ically. These findings contribute to a more comprehensive
understanding of how the scale of agricultural machinery
impacts productivity. Even though the article only consists
of two provinces as representation on account of the limita-
tion of power capacity structure in different counties, all of
the above analyses support that the power capacity struc-
ture of farming machines should be carefully considered
by the government when establishing subsidy policies to
promote the diffusion of agricultural machinery. The aver-
age size of tractors in China is still smaller than those in
developed countries like America, so current government
subsidies in China tend toward larger machines. However,
more utilization of large-sized tractors does not always
guarantee higher outputs, because the matching pattern
between agricultural machinery and farming conditions
matters, concerning both grain production and efficiency.
Our results suggest that investments in modernized mech-
anization in production tend to be meaningful in fighting
against starvation, addressing food insecurity, and promot-
ing sustainable agricultural development, primarily due
to the leverage impact of machinery capacity structure.
Our findings may apply to developing countries whose
grain production is dominant and arable land is scarce
and fragmental. As a policy recommendation for countries
with limited land endowment, agricultural modernization
should not blindly pursue the scale of machinery. The
experience and conclusions in China have strong policy
implications for other developing countries on the road to
agricultural modernization, but the findings may not be
readily extended to countries with considerably different
characteristics from those in this study.
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