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ORIGINAL ARTICLE

WASSERSTEIN DISTANCE BOUNDS ON THE NORMAL
APPROXIMATION OF EMPIRICAL AUTOCOVARIANCES AND

CROSS-COVARIANCES UNDER NON-STATIONARITY
AND STATIONARITY

ANDREAS ANASTASIOUa AND TOBIAS KLEYb*

aDepartment of Mathematics and Statistics, University of Cyprus, Nicosia, Cyprus
bInstitute for Mathematical Stochastics, Georg-August-University of Göttingen, Göttingen, Germany

The autocovariance and cross-covariance functions naturally appear in many time series procedures (e.g. autoregression or
prediction). Under assumptions, empirical versions of the autocovariance and cross-covariance are asymptotically normal with
covariance structure depending on the second- and fourth-order spectra. Under non-restrictive assumptions, we derive a bound
for the Wasserstein distance of the finite-sample distribution of the estimator of the autocovariance and cross-covariance to the
Gaussian limit. An error of approximation to the second-order moments of the estimator and an m-dependent approximation are
the key ingredients to obtain the bound. As a worked example, we discuss how to compute the bound for causal autoregressive
processes of order 1 with different distributions for the innovations. To assess our result, we compare our bound to Wasserstein
distances obtained via simulation.
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1. INTRODUCTION

Assessing the quality of various asymptotic results has attracted a lot of interest in recent years. One way to
measure the error in distributional approximations is to consider explicit upper bounds on the Wasserstein distance
between the limiting and the actual distribution of the quantity of interest; to derive such bounds is undoubtedly a
technically tedious task.

We consider the empirical autocovariance and cross-covariance

1. without assuming stationarity, and
2. for the case of weakly stationary time series.

Our aim is to facilitate a bound where the rate, but also explicit constants can be computed for a wide range of
time series models.

We consider the case where a d-variate time series X(1), … ,X(n) is available, that is, X(t) are Rd-valued,
t = 1, … , n. The components of X(t) are denoted by Xa(t), a = 1, … , d. We are interested in the empirical
cross-covariance and autocovariance, defined as

𝛾̂

∗
ab(k) ∶=

1
n

n−k∑

t=1

(Xa(t + k) − Xa)(Xb(t) − Xb), k = 0, … , n − 1, (1.1)
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362 A. ANASTASIOU AND T. KLEY

where Xj ∶=
1

n

∑n
t=1Xj(t), j = a, b, denotes the empirical mean. For k = −n+1, … ,−1 we define 𝛾̂∗ab(k) ∶= 𝛾̂

∗
ba(−k).

Other definitions, which are asymptotically equivalent under regularity conditions, also exist in the literature.
For example, see Anderson (1971), Chapter 8, for some common variants in the case of the autocovariance and
in particular Corollary 8.4.1 in Anderson (1971) for a result asserting that these variants converge to the same
Gaussian limit, under specific regularity conditions.

In the case of stationary data where the population means are known, we may substitute the empirical means
in (1.1) by their population counterparts as below

1
n

n−k∑

t=1

(Xa(t + k) − EXa(t + k))(Xb(t) − EXb(t)), k = 0, … , n − 1.

This corresponds to assuming that {X(t)} is centred (i.e. EX(t) = 0), and working with the following definition of
the empirical cross-covariance:

𝛾̂ab(k) ∶=
1
n

n−k∑

t=1

Xa(t + k)Xb(t), k = 0, … , n − 1, (1.2)

and 𝛾̂ab(k) ∶= 𝛾̂ba(−k), k = −n + 1, … ,−1. Autocovariances and cross-covariances are important for many time
series methods; for example, autoregression (Jirak, 2012, 2014) and forecasting (Brockwell and Davis, 2006; Kley
et al., 2019).

Under conditions, it can be shown that 𝛾̂∗ab(k) and 𝛾̂ab(k) are consistent estimates for

𝛾ab(k) ∶= E[Xa(t + k)Xb(t)]. (1.3)

The asymptotic normality for the distribution of the estimator holds as well. We have that

√
n
(
𝛾̂

∗
ab(k) − 𝛾ab(k)

)
−−−−−→

n→∞
N, N ∼ (0,Σab(k)); (1.4)

see, for example, Exercise 7.10.36 in Brillinger (1975). The asymptotic variance

Σab(k)∶= lim
n→∞

var

(
n−1∕2

n−k∑

t=1

Xa(t + k)Xb(t)

)
(1.5)

depends on the second- and fourth-order moment structure of the underlying data; cf. eq. (7.6.11)
in Brillinger (1975). It is usually straightforward to compute Σab(k). Details for the case of an AR(1) time series
that we consider in Section 3 are provided in Section D of the online supplement. To prove (1.4), it is common
practice to make assumptions limiting the intensity of the dependence structure and the moments of the random
variables involved (such as the summability of cumulants); cf. Horváth and Kokoszka (2008) for the discussion
of cases where normality fails.

We now provide the general framework and notation used throughout the article. For Rd-valued random vectors
U and V, we work with the 1-Wasserstein metric defined as

dW((U),(V)) ∶= sup
h∈

|E[h(U)] − E[h(V)]|,  = {h ∶ R
d → R | ||h||Lip ≤ 1}, (1.6)

where (U) is the law of U. Furthermore, for any vector x = (x1, … , xd), we denote its Euclidean norm by

|x| ∶=
(∑d

i=1x2
i

)1∕2
and ||h||Lip = supu≠v |h(u) − h(v)|∕|u − v|. In this article, we refer short to the distance in
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BOUNDS ON THE NORMAL APPROXIMATION OF EMPIRICAL AUTOCOVARIANCES 363

(1.6) as the Wasserstein distance. The main purpose of the article is to assess the quality of the distributional
approximation in (1.4) through upper bounds on the Wasserstein distance between the actual distribution of the
quantity of interest on the left-hand side of (1.4) and its limiting normal distribution; for centred data, this is
achieved in Theorems 2.1 and 2.3 for the case of a non-stationary or weakly stationary sequence respectively.
Combining Theorem 2.3 with Lemma C.1 to bound the Wasserstein distance between

√
n
(
𝛾̂

∗
ab(k) − 𝛾ab(k)

)
and√

n
(
𝛾̂ab(k) − 𝛾ab(k)

)
in the stationary case, we obtain a bound when the data are non-centred; details can be found

in Sections 2.5 and C.
Our approach depends on the existence of an m-dependent sequence, which allows us to use Stein’s method,

a powerful probabilistic technique first introduced in Stein (1972), under a local dependence structure. Stein’s
method is particularly powerful in assessing whether a given random variable has a distribution close to a target
distribution in the presence of such dependence structures between the random variables. The bounds obtained
through Stein’s method are explicit in terms of the constants and in terms of the sample size; see, for example,
Anastasiou (2017), where bounds for the normal approximation of the maximum likelihood estimator are provided
under a local dependence structure between the random variables.

There has been a lot of interest recently on the assessment of the quality of the normal approximation related to
the sum

∑n
i=1Xi, where X1, … ,Xn are centred and follow a specific dependence structure. While at first sight, it

seems that the empirical autocovariance and cross-covariance fit into this framework (replace n by n− k and Xi by
n−1Xa(t+ k)Xb(t)), the results in the literature for

∑n
i=1Xi do not immediately provide us with the result that we are

interested in: an explicit finite-sample bound assessing the quality of the approximation in (1.4). Amongst other
reasons, this is due to the fact that the empirical autocovariance and cross-covariance are biased. We consider the
empirical autocovariance and cross-covariance to be of such fundamental importance for applications that results
to assess their finite-sample distributional approximation, fully explicit in terms of the underlying process/model
parameters, segment size n and lag k, should be available.

We now continue to discuss work related to assessing the quality of the normal approximation for sums of
dependent data. Staying in the setting of explicit bounds but moving away from the m-dependence structure that
we use, Röllin (2018) provides bounds on the Wasserstein distance between the distribution of

∑n
i=1Xi, where

X1, … ,Xn is a discrete time martingale difference sequence, and the standard normal distribution. The bound
is of the order (n−1∕2 log n) and the strategy followed to obtain the upper bounds consists of a combination
of Stein’s method and Lindeberg’s argument. In their work related to the Polyak–Ruppert averaged stochastic
gradient descent, Anastasiou et al. (2019) derive an explicit upper bound on the distributional distance between
the distribution of the summation of a multi-variate martingale difference sequence and the multi-variate normal
distribution. In their recent work, Fan and Ma (2020) extend the results of Röllin (2018) by relaxing conditions
used in the latter. Apart from the setting of discrete time martingales, work has been done on assessing the normal
approximation of a sum of random variables when these satisfy specific mixing conditions; see Sunklodas (2007,
2011) for the cases of strong and 𝜑-mixing conditions respectively. Dedecker and Rio (2008) provide bounds
for the Wasserstein distance between the distribution of

∑n
i=1Xi and the normal distribution, when either strong

mixing assumptions are satisfied or when (Xi)i∈Z is either an ergodic martingale difference sequence or an ergodic
stationary sequence that satisfies specific projective criteria.

Moving away from the scenario of explicit constants in the bounds, Dedecker et al. (2009) provide, in the case
of X1, … ,Xn being a martingale difference sequence, rates of convergence for minimal distances between linear
statistics of the form

∑n
i=1cn,iXn, where cn,i ∈ R, and their limiting Gaussian distribution. Fan (2019) gives rates of

convergence for the Central Limit Theorem of a martingale difference sequence with conditional moment assump-
tions. For X1, … ,Xn a stationary sequence with finite p ∈ (2, 3]moments, Jirak (2016) proves under a weak depen-
dence condition a Berry–Esseen theorem and shows convergence rates in Lq-norm, where q ≥ 1. The obtained
bounds are though not explicit, in the sense that they depend on a varying absolute constant not given explicitly.

Apart from the machinery employed, the proof methodology followed, and the focus to the specific statistics
of the empirical autocovariance and cross-covariance functions, the results presented in this article are novel in
three additional main aspects. First, our results are applicable to non-stationary data sequences. Second, our focus

J. Time Ser. Anal. 45: 361–375 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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364 A. ANASTASIOU AND T. KLEY

is not only on rates of convergence, but the Wasserstein distance bounds derived in the article are fully explicit
in terms of the sample size n, the lag k, as well as constants that are related to the underlying data; this makes
the bound completely computable in examples. Third, the assumptions that we have used are non-restrictive, and
they are partly based on an m-dependence approximation of the original time series, which is convenient to work
with in applications, making our results applicable in a wide range of scenarios. In the case where the range of
dependence is finite, for example, independent observations or a moving average process of fixed order, the order
of our bound is (n−1∕2). In more general cases where the serial dependence vanishes quickly at large lags and
moments of order eight exist, the order of our bound is (n−1∕2 log n). A discussion on the order of the bound can
be found in Remark 2.5 and, in more detail, in Section 2.6.

The article is organised as follows. In Section 2.1, we give our main result in the general case; this is an upper
bound on the Wasserstein distance between the distribution of the empirical autocovariance and cross-covariance
functions 𝛾̂ab(k), defined in (1.2), and their limiting normal distribution. We highlight that the data are not neces-
sarily obtained from a stationary process. In Section 2.2, we state and discuss the key assumption for the weakly
stationary case. In Section 2.3, the main result under stationarity is given. Sections 2.4 and 2.5 are devoted to
computing bounds in terms of moments of the m-dependent approximation or the original centred process, respec-
tively; details on the computation of bounds in terms of moments of the original uncentred process are deferred to
Section C. A detailed explanation of the order of the bound with respect to the sample size n is given in Section 2.6.
In Section 3, we apply our general results to the specific case of a causal autoregressive process of order 1. In
Section 4, our main result is proven. Section 5 concludes the article with a brief discussion on the results. Tech-
nical details on the computation of the bound from Section 2.4, step-by-step proofs that were not included in the
main text, technical details regarding computation and simulation, as well as additional tables for the example in
Section 3 are provided in a supplement, which is available online. Sections, results, etc. that are numbered with
letters from the Latin alphabet are always to be found in the supplement.

2. MAIN RESULTS

2.1. The Explicit Upper Bound for the General Case

Here we present a general result that does not require the data to be from a stationary process. To apply the result,
an m-dependent sequence of the same length, n, and dimension, d, with finite sixth moments needs to exist. The
closeness of the data to the m-dependent approximation will determine the size of the bound.

For ease of presentation, some notation is in order. For any vector x = (x1, … , xd), we denote its Euclidean

norm by |x| ∶=
(∑d

i=1x2
i

)1∕2
, while for a random vector X, its Lq-norm is denoted by ||X||q ∶= (E[|X|q])1∕q, q ≥ 1.

We denote N ∶= {1, 2, …} and N0 ∶= N∪{0}. Recall, the rth order joint cumulant of a random vector (𝜁1, … , 𝜁r)
is defined as

cum(𝜁1, … , 𝜁r) ∶=
∑

𝜈

(−1)p−1(p − 1)!

(
E

∏

j∈𝜈1

𝜁j

)
· · ·

(
E

∏

j∈𝜈p

𝜁j

)
, (2.7)

where the sum is with respect to all partitions 𝜈 ∶= {𝜈1, … , 𝜈p} of {1, … , r}; cf. Brillinger (1975). The general
result for the case of a not necessarily stationary sequence is given in Theorem 2.1 below. Its proof is deferred to
Section 4.

Theorem 2.1. Let X(1), … ,X(n) be a sequence of d-variate random vectors, and assume E(X(t)) = 0 for all
t ∈ {1, … , n}. Fix a, b ∈ {1, … , d}, and k ∈ {0, … , n − 1}, and let 𝛾̂ab(k) be defined as in (1.2). Fix m ∈ N0,
and let Y(1), … ,Y(n) be a sequence of m-dependent d-variate random vectors, such that ||Y(t)||6 < ∞ for all
t = 1, … , n and assume that

̃Σab(k) ∶= var

(
n−1∕2

n−k∑

t=1

Ya(t + k)Yb(t)

)
> 0. (2.8)

wileyonlinelibrary.com/journal/jtsa © 2023 The Authors. J. Time Ser. Anal. 45: 361–375 (2024)
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BOUNDS ON THE NORMAL APPROXIMATION OF EMPIRICAL AUTOCOVARIANCES 365

Let

̃Da,t ∶= ||Xa(t) − Ya(t)||2 < ∞, t ∈ {1, … , n} ,

and if b ≠ a, let ̃Db,t be defined analogously. Moreover, for t = 1, … , n − k, let

̃Z(t) ∶= Ya(t + k)Yb(t) − E[Ya(t + k)Yb(t)]

and define the quantities

̃Qt ∶= E
|||
(
̃Z(t) ̃Z(At) − E

(
̃Z(t) ̃Z(At)

))
̃Z(Bt)

||| +
1
2

E
|||
̃Z(t)

(
̃Z(At)

)2||| , (2.9)

where ̃Z(A) =
∑

j∈A
̃Z(j) for A ⊂ N and

At ∶= {𝓁 = 1, … , n − k ∶ |𝓁 − t| ≤ m + k},
Bt ∶= {𝓁 = 1, … , n − k ∶ |𝓁 − t| ≤ 2(m + k)}.

Finally, let

̃Kt ∶= ̃Da,t+k||Xb(t)||2 + ̃Da,t+k
̃Db,t + ||Xa(t + k)||2 ̃Db,t.

Then, for any 𝛾 ∈ R and any 𝜎2
> 0,

dW

(

(
n1∕2

(
𝛾̂ab(k) − 𝛾

))
, (0, 𝜎2)

)
≤

1√
n

n−k∑

t=1

̃Kt +
1√
n

n−k∑

t=1

||||
n

n − k
𝛾 − E[Ya(t + k)Yb(t)]

||||

+
√

2
𝜋𝜎

2
||𝜎2 − ̃Σab(k)|| +

2

n3∕2
(
̃Σab(k)

)3∕2

n−k∑

t=1

̃Qt. (2.10)

In the theorem and throughout the rest of the article, we use the convention to distinguish notation related to the
m-dependent approximation with the tilde symbol (e.g. ̃Da,t,

̃Z(t), ̃Qt).
Due to the non-restrictive assumptions and explicitness of the constants, Theorem 2.1 can, for example, be used

to show asymptotic normality of sequences of estimators where the underlying model or the lag k depends on
the segment length n. It can also be applied to models with time-varying coefficients. Because of the countless
situations in which the result can potentially be applied, but this article only offers limited space, we will focus on
one of the most relevant situations for applications in the following sections: the case of weakly stationary data.

2.2. The Key Assumption for the Stationary Case

From this section onwards, we consider {X(t) ∶ t ∈ Z} to be a d-variate, centred and weakly stationary process,
denoted by {X(t)}, from which a sequence X(1), … ,X(n) is available, with X(t) being Rd-valued, t = 1, … , n.
The main assumption used for the result under stationarity is given below.

Assumption 2.2. For a given m ∈ N0 there exists an m-dependent, d-variate process {Y(t)} where, for a ∈
{1, … , d}, and t ∈ {1, … , n},

̃D
(q)
a,t ∶= ||Xa(t) − Ya(t)||q < ∞.

The number q ≥ 1 is specified whenever we refer to Assumption 2.2.

J. Time Ser. Anal. 45: 361–375 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
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366 A. ANASTASIOU AND T. KLEY

We denote by

̃D
(q)
a ∶= sup

1≤t≤n

̃D
(q)
a,t . (2.11)

We highlight that if there is a choice on the m-dependent sequence, then one could define ̃D
(q)
a ∶=

infY sup1≤t≤n ||Xa(t) − Ya(t)||q, with the infimum taken with respect to all possible choices of {Y(t)} that satisfy
||Xa(t) − Ya(t)||q < ∞; in the interest of obtaining an easily computable bound, however, we state our result for a
specific choice.

Even though in this section, we assume stationarity of {X(t)} to allow for a meaningful definition of 𝛾ab(k), our
method of proof, as already stated, does not require stationarity. We state and discuss the result for the stationary
case in full detail because of its relevance for applications and because it sheds light on the more general result.
Assumption 2.2 implies that the original process can be approximated in Lq by an m-dependent sequence. For
Theorem 2.3, approximation in L2 is sufficient; that is, we require Assumption 2.2 with q = 2. In Section 2.5 we
explain the general steps to obtaining a bound in terms of properties of the original process {X(t)}. Lemmas B.3
and B.4 can be used to pursue such a bound; Assumption 2.2 with q = 4 and q = 6 respectively, is then required.
We do not require {Y(t)} to be stationary or centred, though in applications this will often be the case. In the
example discussed in Section 3, ||Xa(t) − Ya(t)||q is actually independent of t; details on how to compute ̃D

(q)
a

as in (2.11) for the example are available in Section D. If {(X(t),Y(t))} is jointly stationary up to moments of
order q, then ̃D

(q)
a = ̃D

(q)
a,0 and the supremum in (2.11) could be omitted. Our Assumption 2.2 is similar in spirit

to Assumption 2.1 in Aue et al. (2009); also see the examples provided in their Section 4 that illustrate how to
apply such a framework to several popular time series models. Note the following important difference though.
The quantity ̃D

(q)
a gives a bound to the goodness of the m-dependent approximation measured in Lq and while a

larger m will typically result in a better approximation (i.e. a smaller ̃D
(q)
a ), there is no requirement at the rate of

decay that we would usually have if we were deriving an asymptotic result. For our main results, which are finite
sample in nature, we only require that Xa(t) − Ya(t) is in Lq; that is, the quantity ̃D

(q)
a,t is finite.

2.3. The Explicit Upper Bound for Centred Stationary Data

The upper bound on the quantity of interest in the case of a weakly stationary sequence is given below.

Theorem 2.3. Let {X(t)} be a d-variate, centred and weakly stationary process. Fix a, b ∈ {1, … , d}, and k ∈
{0, … , n − 1}, and let 𝛾̂ab and 𝛾ab(k) be defined as in (1.2) and (1.3) respectively. Fix m ∈ N0, and let {Y(t)} be a
process as in Assumption 2.2, which we assume holds with q = 2, and also ||Y(t)||6 < ∞ for all t = 1, … , n. For
given n ∈ N, assume that both Σab(k) and ̃Σab(k), defined in (1.5) and (2.8) respectively, are positive. Finally, with
̃D
(q)
a as in (2.11), let,

̃K ∶= ̃D
(2)
a ||Xb(0)||2 + ̃D

(2)
a
̃D
(2)
b + ||Xa(0)||2 ̃D

(2)
b .

For At and Bt as in Theorem 2.1, and ̃Qt as in (2.9), we have that

dW

(


(√
n
(
𝛾̂ab(k) − 𝛾ab(k)

))
,

(
0,Σab(k)

))

≤
k√
n
|𝛾ab(k)| +

√
2

√
𝜋Σab(k)

||Σab(k) − ̃Σab(k)||

+ 2(n − k)
√

n
̃K + 2

(
n ̃Σab(k)

)3∕2

n−k∑

t=1

̃Qt. (2.12)
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BOUNDS ON THE NORMAL APPROXIMATION OF EMPIRICAL AUTOCOVARIANCES 367

Proof of Theorem 2.3. Choose 𝛾 ∶= 𝛾ab(k) and 𝜎2 ∶= Σab(k). Note that the conditions of Theorem 2.3 imply that
the conditions of Theorem 2.1 are satisfied. The bound in the stationary case then follows from ̃Kt ≤

̃K for all
t = 1, … , n − k and

1√
n

n−k∑

t=1

||||
n

n − k
𝛾 − E[Ya(t + k)Yb(t)]

||||
≤

1√
n

n−k∑

t=1

||||
n

n − k
𝛾ab(k) − 𝛾ab(k)

||||

+ 1√
n

n−k∑

t=1

E ||Xa(t + k)Xb(t) − Ya(t + k)Yb(t)||

≤
n − k√

n

||||
k

n − k
𝛾ab(k)

||||
+ n − k√

n
̃K,

where we used (1.3) and a telescoping sum argument (Lemma B.1 with 𝛼 = 1 and p = 2). ◾

Remark 2.4. The four terms that make up the right-hand side of (2.12) can roughly be interpreted as follows: (i)
kn−1∕2|𝛾ab(k)|, is due to the fact that 𝛾̂ab(k) is a biased estimate for 𝛾ab(k), but the limiting normal distribution has
mean equal to zero; (ii)

√
2∕(𝜋Σab(k))|Σab(k) − ̃Σab(k)|, is related to the fact that the variance of 𝛾̂ab(k) may differ

from n−1Σab(k); (iii) 2(n− k)n−1∕2
̃K, is due to our method of proof where we use the m-dependent approximation,

and (iv) 2(n ̃Σab(k))−3∕2∑n−k
t=1

̃Qt, is due to an application of Stein’s method; cf. Lemma 4.2.

The following remark provides a brief discussion of the computation and of the order of the bound; detailed
explanations are given in Section 2.6.

Remark 2.5. At first glance, the bound might seem slightly complicated, especially due to the expression ̃Qt. In
Section 2.4, we explain two methods that allow to bound ̃Qt by expressions whose exact value can be computed
in examples. In Section 3, we then calculate the exact value of such a bound term by term for the case of a causal
autoregressive process. To obtain a rate, we choose m as a function of n. The choice that allows optimisation of
the order of the bound with respect to n depends on the underlying process {X(t)}. In Section 2.6, we discuss two
general scenarios where the bound is of the order (n−1∕2) or (n−1∕2 log n) respectively.

2.4. The Bound in Theorem 2.3 when the m-dependent Approximation is Known

Let X(t) be such that, for given n, k, and m, we can compute 𝛾ab(k), Σab(k), ||Xa(0)||2 and ||Xb(0)||2. Assume further

that we may choose Y(t) such that ̃Σab(k), ̃D
(2)
a and ̃D

(2)
b can be computed. Then, the only missing piece to obtain the

upper bound in (2.12) is ̃Qt, defined in (2.9). The absolute joint moments in the definition of ̃Qt can be inconvenient.
To address potential problems in the computation of ̃Qt, we now describe two ways to bound ̃Qt by quantities
that can be explicitly computed in examples. First, if {Y(t)} is stationary (otherwise see below, within Method 1),
we bound ̃Qt in terms of ||Y(0)||6, which is finite from the statement of Theorem 2.3. Second, we obtain a better
bound for ̃Qt when m is large. The price we pay for the second method is a more complicated computation and
the requirement that ||Y(0)||8 < ∞.

Method 1 to bound ̃Qt. Denoting 𝜇jq ∶= ||Yj(0)||q, we have

̃Qt ≤
∑

j1∈At

∑

j2∈Bt

(
E || ̃Z(t) ̃Z(j1) ̃Z(j2)|| + E || ̃Z(t) ̃Z(j1)||E || ̃Z(j2)||

)
+ 1

2

∑

j1∈At

∑

j2∈At

E || ̃Z(t) ̃Z(j1) ̃Z(j2)||

≤ |At||Bt|
(
𝜇

3
a6𝜇

3
b6 + 𝜇

2
a4𝜇

2
b4𝜇a2𝜇b2

)
+ 1

2
|At|2𝜇3

a6𝜇
3
b6 ≤

5
2
(4m + 4k + 1)2||Y(0)||66. (2.13)

Employing the triangle inequality, a generalised version of Hölder’s inequality, and the stationarity of Y(t), the
joint moments in the definition of ̃Qt were broken up into moments of the marginals. If {Y(t)} is not stationary we
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368 A. ANASTASIOU AND T. KLEY

can use the supt=1,… ,n ||Y(t)||6 instead. The bound in (2.13) is particularly simple and straightforward to compute.
In essence, we see a product of the marginal moments ||Yj(0)||q for j = a, b and q = 2, 4, 6 scaled by a multiple
of m2. A bound of the order m2 is most useful when m is small. To improve (2.13) in the case when m is large, we
next derive a bound for ̃Qt in terms of joint (non-absolute) moments.

Method 2 to bound ̃Qt. We apply the Cauchy–Schwarz inequality and E( ̃Z(t)) = 0 to obtain

̃Qt ≤ var
(
̃Z(t) ̃Z(At)

)1∕2
var

(
̃Z(Bt)

)1∕2 + 1
2

[
E
(
̃Z(t) ̃Z(At)

)2
]1∕2

var
(
̃Z(At)

)1∕2
. (2.14)

A crucial difference between the right-hand side of (2.14) and the first bound in (2.13) is that the former is in
terms of joint moments of ̃Z(t) and the later in terms of joint moments of | ̃Z(t)|. Using standard combinatorial
arguments (cf. Theorem 2.3.2 in Brillinger (1975)), the right-hand side in (2.14) can be computed from cumulants
of {Y(t)}. These arguments are straightforward but tedious and therefore deferred to Section A. Another important
advantage of the second method is that, in the common situation where serial dependence is less pronounced at
larger lags, such that cumulants are summable, the bound obtained by the second method is of the order (m),
which, compared with the(m2) bound obtained by Method 1, is much advantageous when m is large. Intuitively,
this can be seen from the fact that the variance of a sum of m elements of a short-range-dependent sequence is of
the order m. Additional details are available in the proof of Proposition 2.7 that can be found in Section F.5.

2.5. The Bound with Respect to the Original Data

In Section 2.4 we explained computational details regarding a bound for the case when {Y(t)}, the m-dependent
approximation, is known. The method described required the computation of joint moments of {Y(t)} to obtain
̃Σab(k) and the right-hand side of either (2.13) or (2.14). If such computation is possible, then numerically evaluating
the bound obtained from (2.12) in combination with (2.13) or (2.14), for fixed values of n and m, is the preferred
method. The aim of this section is to facilitate our result for situations where a bound that depends on {Y(t)}might
be inconvenient (e.g. when {Y(t)} is unknown).

There are, at least two, good reasons to pursue a bound that only depends on quantities defined in terms of
{X(t)}. The first reason is a philosophical one. Noting that the statistic of interest, 𝛾̂ab(k), is defined in terms of the
original process {X(t)} we observe that the left-hand side of (2.12) only depends on {X(t)}, too. Therefore, the
right-hand side of (2.12) being defined, amongst others, in terms of ̃Σab(k) and ̃Qt, both depending on {Y(t)}, can
be considered a discrepancy. The second reason is a practical one. In Sections 2.6 and F.5 it can be seen that the
discussion of asymptotic properties of the bound can be simplified when the dependence on m is not via properties
of Y(t).

To obtain a bound in terms of moments of {X(t)}, it suffices to quantify the effect of replacing ̃Σab(k) by Σab(k)
and the effect of replacing ̃Qt by

Qt ∶= E
|||
(
Z(t)Z(At) − E

(
Z(t)Z(At)

))
Z(Bt)

||| +
1
2

E
|||Z(t)

(
Z(At)

)2||| , (2.15)

where Z(t) ∶= Xa(t + k)Xb(t) − E[Xa(t + k)Xb(t)], t ∈ N, and Z(A) =
∑

j∈A Z(j),A ⊂ N.
In Section B, we provide results that can be used to derive a bound in terms of moments of {X(t)}.

Further, in Section C, we discuss the case of non-centred data and provide a result to derive a bound for

dW

(


(√
n
(
𝛾̂

∗
ab(k) − 𝛾ab(k)

))
, (0,Σab(k))

)
in this case.

2.6. Explanation on the Order of the Bound

In Remark 2.5, we have stated the outcomes of the asymptotic analysis of our bound. In this section, the details
are provided. We begin by making the conditions we work under precise. For simplicity, we consider only the
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case where the underlying process {X(t)} and the lag k are not allowed to change with n. The two regimes we
consider are:

Regime 1. Let {X(t)} be d-variate, centred and stationary, with ||X(0)||6 < ∞, and also be M-dependent (for a
fixed M ∈ N0).

Regime 2. Let {X(t)} be d-variate, centred and stationary, with ||X(0)||8 <∞, and it also satisfies Assumption 2.2
with q = 8, and (2.16) and (2.17), below.

We assume stationarity up to moment of order 6 or 8 in Regimes 1 and 2 respectively. In Regime 2, we require
summability of cumulants up to order 8; that is, for p = 2, … , 8, we have

∑

k1,… ,kp−1=−∞
(1 + |kj|)|cum(Xa1

(k1), … ,Xap−1
(kp−1),Xap

(0)| < ∞, (2.16)

for j = 1, … , p − 1 and any p tuple a1, … , ap. Further, we require that the m-dependent approximation from
Assumption 2.2 is good enough such that the Lq-error vanishes at an exponential rate; that is, there exist constants
K ≥ 0 and 𝜌 ∈ (0, 1) such that for every n ∈ N we can choose m = mn ∈ N0 and an m-dependent, d-variate
process {Y(m)(t)} that satisfies

̃D
(q)
a ∶= sup

1≤t≤n
||Xa(t) − Y (m)a (t)||q ≤ K𝜌m

, for a = 1, … , d; q = 8. (2.17)

Remark 2.6.

(i) Examples for Regime 1 include moving average processes of finite order and independent data. In this regime,
(2.16) holds for p = 2, … , 6, as cumulants vanish if one of the variables is independent of the others.
Further, for any M-dependent process, as in Regime 1, the canonical choice for the m-dependent approx-
imation of Assumption 2.2 is Y(m)(t) = X(t) for m ≥ M. Choosing the quantity m in the bound (2.12)
as m = min{M, n} we see that a stronger version of (2.17) is satisfied, where we have ̃D

(q)
a = 0 for

n ≥ M.
(ii) As an example for Regime 2, one can consider a linear process X(t) =

∑∞
j=0𝚿(j)𝝐(t − j) where the spectral

norms of the coefficients satisfy ||𝚿(j)||2 ≤ 𝜌j for some 𝜌 ∈ (0, 1) and the innovations are i.i.d. with ||𝝐(t)||8 <
∞. Then, it can be shown that (2.16) holds and (2.17) holds with C ∶= ||𝝐(t)||8𝜌∕(1− 𝜌). In particular, causal
autoregressive processes are included.

The following proposition gives the order of the bound (2.12) in Theorem 2.3. The proof is in Section F.5.

Proposition 2.7.

(i) In Regime 1, with m ∶= min{M, n}, the order of the bound is (n−1∕2).
(ii) In Regime 2, with m ∶= C log n, C ≥ 3

2 log(1∕𝜌)
, where 𝜌 is as in (2.17), the order of the bound is(n−1∕2 log n).

3. EXAMPLES

3.1. Causal Autoregressive Processes of Order 1

As an example, for which we discuss the result of Theorem 2.3, we now consider the case where the data stem
from a causal AR(1) process {X(t)} that satisfies X(t) = 𝛼X(t − 1) + 𝜀(t), with |𝛼| < 1, where {𝜀(t)} are i.i.d. and
satisfy E|𝜀(t)|8 < ∞. We consider 𝛼 ∈ {0, 0.1, 0.3, 0.5, 0.7} and three cases for the distribution of the innovations:

• 𝜀(t) ∼ (0, 1), or
• 𝜀(t) ∼ 𝜈−1∕2(𝜈 − 2)1∕2t

𝜈

, where we choose 𝜈 ∈ {9, 14}.
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We have chosen the normal distribution as an example with light tails, the scaled t9-distribution as a distribution
with heavier tails that still satisfies the condition of existence of the eighth moments, and the scaled t14-distribution
as an example in-between. Note that for each of these three cases we have standardised cumulants of orders 1 and
2; that is, 𝜅1 ∶= E (𝜀(t)) = 0 and 𝜅2 ∶= var(𝜀(t)) = 1. Cumulants of higher order depend on the distribution of the
innovations. If 𝜀(t) ∼ (0, 1), then cumulants of order higher than or equal to 3 vanish; that is, 𝜅p ∶= cump(𝜀(t)) =
0, for p = 3, 4, … . In the case when 𝜀(t) ∼ 𝜈−1∕2(𝜈 − 2)1∕2t

𝜈

, 𝜈 > 8, we have that cumulants of orders p = 3, 5, 7
vanish due to symmetry, and that cumulants of order 4, 6 and 8 are

𝜅4 =
6

𝜈 − 4
, 𝜅6 =

240
(𝜈 − 4)(𝜈 − 6)

, and 𝜅8 =
5040(5𝜈 − 22)

(𝜈 − 4)2(𝜈 − 6)(𝜈 − 8)
.

R code and instructions to replicate the results of Section 3 are available on https://github.com/tobiaskley/ccf
_bounds_replication_package.

3.2. Computing the Bound

We compute the bound from Theorem 2.3 in combination with (2.14) of the second method to bound ̃Qt, described
in Section 2.4, where the data stem from an AR(1) process as described in Section 3.1. Details of how the bound
is obtained in the case of the example are deferred to Section D. Note that, for given autoregressive parameter 𝛼,
distribution of 𝜀(t), segment length n, and lag k the bound is still a function of m. We denote the bound by Bn(m) to
emphasise that it can be computed for different values of m. Further, we denote by m∗ ∶= arg minm=0,1,… ,mmax

Bn(m)
the value of m for which the minimum is achieved. We have introduced the upper bound mmax as a stopping rule
for computations, which we chose large enough such that m∗

< mmax was satisfied in all cases of our example,
meaning that the minimum is not obtained for m = mmax. We chose mmax = 30. In Figure 1, values of the bound
Bn(m) are shown as they depend on m, for different n and different distributions of 𝜀(t). Comparing the plots in
Figure 1 from left to right, it can be seen that m∗ increases very slowly as n increases. This is unsurprising because
in this example of the causal AR(1) process, we are under Regime 2 explained in Section 2.6; recall the asymptotic
considerations of Proposition 2.7 where m∗ = (log n), which leads to Bn(m∗) = (n−1∕2 log n). Comparing the
plots in Figure 1 from top to bottom, it can be seen that the value of the bound gets larger as the tails get heavier.
We expect this as well, as the cumulants of the distribution of the innovations 𝜀(t) become larger when we have
distributions with heavier tails.

In Table I the values of the bound Bn(m∗) for different values of k, 𝛼 and n are shown for the case where
𝜀(t) ∼

√
7∕9 t9. The numbers for the cases where 𝜀(t) ∼ (0, 1) or 𝜀(t) ∼

√
12∕14 t14 are shown in Tables 5 and

7 respectively, in Section G. We chose to present the case with the heaviest tails in the main paper, because in this
case the convergence of the estimator of the autocovariance and cross-covariance functions to the Gaussian limit
is the slowest. We have omitted considering negative 𝛼, because in the case considered the results are the same as
for −𝛼. It can be seen that the value of the bound increases as |𝛼| increases. Comparing the bounds across tables,
we see that for most cases the value of the bound is larger for heavier tails. It can be seen that the value of the
bound decreases as n increases.

For comparison with our bound, as displayed in Tables I, 5 and 7, we also present simulated numbers for the
true Wasserstein distance in Tables II, 6 and 8, with Tables 5–8 shown in Section G. Additional details about
simulation of the true Wasserstein distance are deferred to Section G. By inspection of the numbers, it can be seen
that, as expected, our bound is always larger than the true Wasserstein distance obtained by simulation.

4. PROOF OF THEOREM 2.1

Before the main proof of this section, we discuss a useful lemma that summarises the Stein’s method result used
in this article, which is applicable to a general local dependence condition. Consider a set of random variables{
𝜉i, i ∈ J

}
, for a finite index set J. Then, the local dependence condition is
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Figure 1. Value of the bound from Theorem 2.3 for empirical autocovariances of lag k = 0 and for an AR(1) process with
𝛼 = 0.7 as a function of m. The dashed vertical line indicates m∗ where the minimum is achieved. The grey horizontal line
indicates the minimum value. Top, middle and bottom row show 𝜀(t) ∼  (0, 1), 𝜀(t) ∼

√
12∕14 t14 and 𝜀(t) ∼

√
7∕9 t9

respectively. The left, centre and right columns show n = 25,500, and 2000 respectively

(LD) For each i ∈ J there exist Ai ⊂ Bi ⊂ J such that 𝜉i is independent of
{
𝜉j ∶ j ∉ Ai

}
and

{
𝜉j ∶ j ∈ Ai

}
is

independent of
{
𝜉k ∶ k ∉ Bi

}
.

For any A ⊂ J, we now denote by

𝜉(A) =
∑

j∈A

𝜉j. (4.18)

Remark 4.1. Consider an m-dependent sequence of random variables X1, … ,Xn. Then the sets of random vari-
ables

{
Xj ∶ j ≤ i

}
and

{
Xj ∶ j > i + m

}
are independent for each i = 1, … , n. Thus, (LD) is satisfied with

J ∶= {1, … , n}, Ai ∶= {𝓁 ∈ J ∶ |𝓁 − i| ≤ m}, and Bi ∶= {𝓁 ∈ J ∶ |𝓁 − i| ≤ 2m}.

The following lemma gives an upper bound on the Wasserstein distance between the distribution of a sum of
random variables satisfying condition (LD) above and the normal distribution. The random variables are assumed
to have mean zero and the variance is not necessarily equal to one. The proof is in Section F.1 and is based on the
steps followed for the proof of Theorem 4.13 in p. 134 of Chen et al. (2011).
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Table I. Value of the bound from Theorem 2.3 in combination with (2.14), with m = m∗ to minimise the bound as described in
Section 3.2, for empirical autocovariances, for a range of lags k and sample sizes n

k 𝛼 | n 25 50 75 100 150 200 250 500 1000 2000

0 0 0.912 0.645 0.527 0.456 0.372 0.322 0.288 0.204 0.144 0.102
0.1 11.003 9.294 8.822 8.707 7.509 6.658 6.091 4.779 3.770 2.773
0.3 16.088 12.932 11.481 10.287 8.937 8.192 7.484 5.751 4.386 3.375
0.5 16.952 13.518 11.760 10.689 9.245 8.365 7.706 5.955 4.579 3.514
0.7 16.871 14.042 12.434 11.367 9.945 9.018 8.343 6.531 5.087 3.961

1 0 2.564 1.818 1.485 1.286 1.050 0.909 0.813 0.574 0.406 0.287
0.1 7.711 5.701 4.808 4.285 3.686 3.350 3.118 2.283 1.708 1.326
0.3 9.811 7.567 6.601 5.939 5.063 4.554 4.217 3.213 2.491 1.908
0.5 12.512 9.980 8.716 7.861 6.825 6.133 5.671 4.394 3.402 2.641
0.7 14.968 12.828 11.376 10.387 9.092 8.247 7.644 5.983 4.668 3.647

2 0 4.088 2.916 2.385 2.067 1.688 1.462 1.308 0.924 0.653 0.462
0.1 10.398 7.659 6.409 5.667 4.804 4.309 3.925 2.833 2.074 1.561
0.3 10.801 8.273 7.175 6.405 5.424 4.850 4.467 3.353 2.557 1.913
0.5 12.211 9.739 8.459 7.632 6.592 5.921 5.471 4.210 3.233 2.486
0.7 14.392 12.610 11.215 10.236 8.954 8.111 7.509 5.866 4.565 3.556

Note: The data stem from an AR(1) process with 𝜀(t) ∼
√

7∕9 t9 where 𝛼 takes a range of values.

Table II. Value of the true 1-Wasserstein distance considered in Theorem 2.3 for empirical autocovariances, for a range of lags
k and sample sizes n

k 𝛼 | n 25 50 75 100 150 200 250 500 1000 2000

0 0 0.288 0.218 0.184 0.163 0.136 0.120 0.109 0.080 0.058 0.041
0.1 0.294 0.222 0.188 0.166 0.139 0.123 0.111 0.081 0.059 0.042
0.3 0.354 0.266 0.224 0.198 0.165 0.145 0.131 0.095 0.069 0.049
0.5 0.536 0.401 0.336 0.296 0.246 0.216 0.194 0.140 0.101 0.072
0.7 1.185 0.891 0.746 0.655 0.544 0.475 0.428 0.307 0.219 0.156

1 0 0.072 0.040 0.028 0.021 0.015 0.011 0.009 0.005 0.002 0.001
0.1 0.103 0.069 0.055 0.047 0.038 0.032 0.029 0.020 0.014 0.010
0.3 0.256 0.187 0.155 0.135 0.111 0.097 0.087 0.062 0.044 0.031
0.5 0.524 0.384 0.319 0.279 0.230 0.200 0.180 0.128 0.091 0.065
0.7 1.282 0.951 0.791 0.693 0.572 0.499 0.448 0.320 0.227 0.161

2 0 0.083 0.045 0.031 0.024 0.016 0.013 0.010 0.005 0.003 0.001
0.1 0.088 0.049 0.034 0.026 0.018 0.014 0.012 0.006 0.004 0.002
0.3 0.167 0.113 0.091 0.078 0.063 0.055 0.049 0.034 0.024 0.017
0.5 0.449 0.329 0.272 0.237 0.195 0.170 0.152 0.109 0.077 0.055
0.7 1.307 0.966 0.802 0.701 0.578 0.504 0.452 0.322 0.229 0.162

Note: The data stem from an AR(1) process with 𝜀(t) ∼
√

7∕9 t9 where 𝛼 takes a range of values.

Lemma 4.2. Let
{
𝜉i, i ∈ J

}
be an R-valued random field with mean zero, satisfying Condition (LD). Denote

S ∶=
∑

i∈J 𝜉i and assume that 0 < 𝜎

2 ∶= var(S) < ∞. Then, with 𝜉(A) as in (4.18), we have for the Wasserstein
distance, dW, defined in (1.6), that

dW((S), (0, 𝜎2)) ≤ 2
𝜎

3

∑

i∈J

{
E
|||
(
𝜉i𝜉(Ai) − E(𝜉i𝜉(Ai))

)
𝜉(Bi)

||| +
1
2

E ||𝜉i(𝜉(Ai))2||
}
.
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Proof of Theorem 2.1. First, for Z∗(t) = Xa(t + k)Xb(t) −
n

n−k
𝛾 we have that

√
n
(
𝛾̂ab(k) − 𝛾

)
=
√

n

(
1
n

n−k∑

t=1

Xa(t + k)Xb(t) − 𝛾

)
= 1√

n

n−k∑

t=1

Z∗(t). (4.19)

Recall that we use the convention to distinguish notation related to the m-dependent approximation with the tilde
symbol (e.g. ̃Da,t,

̃Z(t), ̃Qt). For ̃Z(t) = Ya(t + k)Yb(t) − E[Ya(t + k)Yb(t)], the triangle inequality and (4.19) yield

dW

(


(√
n
(
𝛾̂ab(k) − 𝛾

))
, (0, 𝜎2)

)
= dW

(


(
1√
n

n−k∑

t=1

Z∗(t)

)
, (0, 𝜎2)

)
≤ D1 + D2 + D3,

where

D1 ∶= dW

(


(
1√
n

n−k∑

t=1

Z∗(t)

)
,

(
1√
n

n−k∑

t=1

̃Z(t)

))
, (4.20)

D2 ∶= dW

(


(
1√
n

n−k∑

t=1

̃Z(t)

)
,

(
0, ̃Σab(k)

)
)
, (4.21)

D3 ∶= dW

(


(
0, ̃Σab(k)

)
,

(
0, 𝜎2

))
, (4.22)

where ̃Σab(k) is as in (2.8). We now proceed to find upper bounds for (4.20), (4.21) and (4.22).
Bound for (4.20): With h ∈ , since ||h||Lip ≤ 1, then

||||||
E

[
h

(
1√
n

n−k∑

t=1

Z∗(t)

)
− h

(
1√
n

n−k∑

t=1

̃Z(t)

)]||||||
≤

1√
n

n−k∑

t=1

E ||Z∗(t) − ̃Z(t)||

≤
1√
n

n−k∑

t=1

E ||Xa(t + k)Xb(t) − Ya(t + k)Yb(t)||

+ 1√
n

n−k∑

t=1

||||
n

n − k
𝛾 − E[Ya(t + k)Yb(t)]

||||
. (4.23)

Next, we bound (4.23) ≤ 1√
n

∑n−k
t=1

̃Kt, by a telescoping sum argument, made precise by Lemma F.1 with 𝛼 = 1,

p = 2, X1 ∶= Xa(t + k), X2 ∶= Xb(t), Y1 ∶= Ya(t + k), and Y2 ∶= Yb(t). Therefore, we have

(4.20) ≤ 1√
n

n−k∑

t=1

̃Kt +
1√
n

n−k∑

t=1

||||
n

n − k
𝛾 − E[Ya(t + k)Yb(t)]

||||
. (4.24)

Bound for (4.21): Here we use Stein’s method. Let S ∶= 1√
n

∑n−k
t=1
̃Z(t) and note that E( ̃Z(t)) = 0 and var(S) =

̃Σab(t). Lemma 4.2 then yields that

(4.21) ≤ 2
(
̃Σab(k)

)3∕2

n−k∑

t=1

̃Qt. (4.25)

J. Time Ser. Anal. 45: 361–375 (2024) © 2023 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12716 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



374 A. ANASTASIOU AND T. KLEY

Bound for (4.22): Using the results in pages 69 and 70 of Nourdin and Peccati (2012), it is straightforward to
conclude that

(4.22) ≤
√

2
√
𝜋Σab(k)

||Σab(k) − ̃Σab(k)|| . (4.26)

Combining (4.24), (4.25) and (4.26), yields the result of Theorem 2.1 as in (2.10). ◾

5. DISCUSSION

In this article, we have obtained upper bounds on the Wasserstein distance between the true distribution of
the estimator of the autocovariance and cross-covariance functions and their limiting Gaussian distribution for
non-stationary and stationary data. Compared with existing results in the literature for general linear statistics and
apart from the machinery employed (partly based on Stein’s method) and the proof methodology followed, the
results presented in this article are novel in three main aspects. First, the results of the article are applicable to
non-stationary data sequences; see Theorem 2.1. Second, our focus is not only on rates of convergence, but the
derived bounds are fully explicit in terms of the sample size, the lag and the constants depending on the time
series model. This allows us to compute the bound in examples. Third, the assumptions that we have used are
non-restrictive, and they are partly based on an m-dependence approximation of the original time series, which is
convenient to work with in applications. In contrast, existing results are focused on rather more restrictive struc-
tures that are often probabilistic in nature and difficult to verify in practice, such as the case of strong and𝜑-mixing
conditions or the discrete time martingales setting.
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