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Abstract
The model of adaptive progressive Type-II censoring introduced by Ng et al. (2009)

(referred to as Ng–Kundu–Chan model) is extended to allow switching from a given

initial censoring plan ℛ to any arbitrary given plan 𝒮 of the same length. In this

generalized model, the joint distribution of the failure times and the correspond-

ing likelihood function is derived. It is illustrated that the computation of maximum

likelihood and Bayesian estimates are along the same lines as for standard progres-

sive Type-II censoring. However, the distributional properties of the estimators will

usually be different since the censoring plan actually applied in the (generalized)

Ng–Kundu–Chan model is random. As already mentioned in Cramer and Iliopoulos

(2010), we directly show that the normalized spacings are independent and identi-

cally exponentially distributed. However, it turns out that the spacings themselves are

generally dependent with mixtures of exponential distributions as marginals. These

results are used to study linear estimators. Finally, we propose an algorithm for gener-

ating random numbers in the generalized Ng–Kundu–Chan model and present some

simulation results. The results obtained also provide new findings in the original

Ng–Kundu–Chan model; the corresponding implications are highlighted.
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1 INTRODUCTION

In the last decade, progressively censored life testing has

received great attention in the literature and various modifica-

tions to the standard model of progressive Type-II censoring

have been proposed. In such a life test n items are put simul-

taneously on test. At the time of the first failure, a (prefixed)

number of R1 items is randomly selected and removed from

the experiment. Then, the next (second) failure is observed

where R2 items are withdrawn. This process is continued till

the m-th failure observation where the test is terminated. In

particular, m failure times Xℛ
1∶m∶n, … ,Xℛm∶m∶n out of n life-

times are observed where ℛ = (R1, … ,Rm) denotes the

censoring plan. Obviously, it satisfies the linear equation

n = m +
∑m

i=1
Ri. More details on the model as well as

recent reviews of results and references are provided

by Balakrishnan and Cramer (2014); Balakrishnan and

Cramer (2023). A schematic illustration of the stan-

dard model of progressive Type-II censoring is given in

Figure 1.

In order to increase the flexibility of the censoring scheme,

various modifications have been proposed. A data based

adaption of the censoring plan ℛ has been presented in Ng

et al. (2009), where, given a time threshold T , the origi-

nal censoring plan ℛ is modified once the first failure time

exceeds the threshold. Then, no further removals occur which

means that the experimenter intends to terminate the experi-

ment as soon as possible given the restriction that exactly m
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FIGURE 1 Schematic representation of original Type-II progressive censoring.

FIGURE 2 Schematic representation of the Ng–Kundu–Chan model of adaptive type-II progressive censoring.

measurements are made. Once the m-th failure is observed,

the experiment is terminated. The censoring scheme can

therefore be understood as a compromise between a manda-

tory termination at time T (as in Type-I censoring) and a

desired number of m observations. In the following, this

model will be referred to as the Ng–Kundu–Chan model (of

adaptive progressive Type-II censoring). A schematic illus-

tration of the Ng–Kundu–Chan model is provided in Figure 2.

Ng et al. (2009) presented inferential results for (one-

parameter) exponentially distributed lifetimes. In particu-

lar, they obtained the conditional distribution of the max-

imum likelihood estimate (given D = d) and used this

result to construct conditional confidence intervals for the

scale parameter of the exponential distribution. Further-

more, approximate confidence intervals based on normal

approximations as well as Bayesian credible intervals have

been proposed. Using a conditional distribution construc-

tion, Cramer and Iliopoulos (2010) proposed a very general

account to adaptive progressive Type-II censoring allow-

ing a general study of such models. They pointed out that

their approach includes, for example, standard progressive

Type-II censoring, the Ng–Kundu–Chan model described

above, as well as so-called progressive Type-II censoring

with random removals (see, e.g., Yuen and Tse (1996)).

They found that, for exponentially distributed lifetimes, the

distribution of the maximum likelihood estimator in both

the adaptive and non-adaptive model are the same. There-

fore, inferential results obtained in the non-adaptive model

can be directly applied in the adaptive model (for more

details as well as statistical implications of this property, see

Remark 3.2). An extension including also (adaptive) Type-I

progressive censoring has been developed in Cramer and

Iliopoulos (2015). Yan et al. (2021) proposed a modifica-

tion of the Ng–Kundu–Chan model called improved adaptive
progressive Type-II censoring scheme (see also Dutta and

Kayal (2021)). This model is a Type-I censored version of

the Ng–Kundu–Chan model where the life test is terminated

at a second threshold T∗ > T . Following the wording of

Balakrishnan et al. (2023), this model can be considered as an

hybrid censored version of the original data.

Further adaptive extensions have been proposed in

Bairamov and Parsi (2011) and Kinaci (2013) (see also

Balakrishnan and Cramer (2014, Sec. 6.2.3)). Moreover, it has

to be mentioned that the Ng–Kundu–Chan model has been

studied under the label adaptive Type-II progressive hybrid
censoring (see Balakrishnan et al. (2023), Chapter 13, as well

as references cited therein).

In the present paper, we provide an extension of the

Ng–Kundu–Chan model which allows to switch from the

original censoring planℛ to a new one𝒮 . Thus, let T ∈ R be

a threshold and let ℛ = (R1, … ,Rm) and 𝒮 = (S1, … , Sm)
be progressive censoring plans taken from the set

ℭm,n =
{
(r1, … , rm)|r•m = n − m, rj ∈ {1, … ,m}

}

of all admissible censoring plans of length m, where, for con-

venience, we use the notation r•m =
∑m

j=1
rj. We also write

𝛾j = 𝛾j(ℛ) for short, j ∈ {1, … ,m}, which denotes the num-

ber of units in the experiment just before the j-th failure occurs

when the original censoring planℛ is employed. A schematic

representation of the generalized Ng–Kundu–Chan model is

provided in Figure 3.

Compared to the original Ng–Kundu–Chan model of adap-

tive progressive Type-II censoring (cf. Figure 2), the general-

ization adds further flexibility to the experimental design. The

new censoring plan 𝒮 can be chosen as any arbitrary admis-

sible censoring plan of the same length as ℛ. Choosing 𝒮
as right censoring, that is, 𝒮 = (0, … , 0, n − m), no further

removals occur after the time threshold T until exactly m mea-

surements are made and we get the original Ng–Kundu–Chan

model as a special case.

Furthermore, this flexibility in the choice of 𝒮 enables

the experimenter to design the experiment according to the
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FIGURE 3 Schematic representation of the generalized Ng–Kundu–Chan model with adapted censoring plan ℒd .

given needs where the time threshold T can be considered

as a control parameter. As mentioned above, choosing 𝒮 as

in Type-II right censoring, the experiment will be terminated

as soon as possible with exactly m observed failure times.

This shows that the Ng–Kundu–Chan model is designed to

save time. However, the generalized Ng–Kundu–Chan model

allows for the implementation of other requirements that may

be imposed by management or external conditions. Recall that

a popular argument for progressive Type II censoring is to

use the censored objects for other tests. Therefore, the con-

trol parameter allows modelling of a changing demand for the

available objects after time T .

The constraint of observing exactly m failures causes some

technical difficulties in the construction of the adaptive cen-

soring plan. In particular, the censoring plan 𝒮 may not be

applied in its original form in order to ensure the observation

of m failures. Hence, an adaptation to an admissible censoring

plan will possibly be necessary. A detailed construction of the

adapted censoring plan ℒd along with illustrative examples

will be presented in Section 2.

The outline of the paper and its main contributions are

as follows. In Section 2, we formally introduce the general-

ized Ng–Kundu–Chan model and discuss the aforementioned

construction of the adaptive progressive Type-II censoring

plan. Moreover, we derive the joint distribution of the fail-

ure times, followed by the respective likelihood function in

Section 3. In the spirit of the representation in terms of adap-

tive progressive Type-II censoring in Cramer and Iliopou-

los (2010), we explain that many results of a general kind

can be directly obtained from this general account. However,

as often, a more detailed analysis is possible when focusing

on the generalized Ng–Kundu–Chan model. For this purpose,

we assume (two-parameter) exponential distributed lifetimes

in Section 3.1. In particular, in Sections 3.1.1 and 3.1.2, we

pay attention to the role of (normalized) spacings and derive

their distributions by the density transformation theorem. As

pointed out in Cramer and Iliopoulos (2010), the normal-

ized spacings are independent and identically exponentially

distributed. However, it turns out that this is not true for

the spacings themselves which are seen to be dependent in

general. Furthermore, we show that the marginal distribu-

tions are given by mixtures of exponential distributions. This

result will be used in Section 3.1.3 to study linear estima-

tors based on adaptive progressive Type-II censored order

statistics. In particular, we establish explicit expressions for

the expectation of linear estimators. Note that the normal-

ized spacings can not be used in linear inference since the

normalizing factors are random (and depend on the failure

times)! Furthermore, in Section 3.1.3, we study the exis-

tence of linear unbiased estimators and present conditions

which ensure their existence. Then, in Section 3.2, we illus-

trate how our results can be applied to the Ng–Kundu–Chan

model, particularly with respect to linear inference. Finally,

we provide an algorithm to generate random numbers in

the generalized Ng–Kundu–Chan model and present some

simulation results for exponentially distributed lifetimes in

Section 4.

At this point, it is worth mentioning that the results obtained

in the generalized Ng–Kundu–Chan model also provide new

findings in the original Ng–Kundu–Chan model. This par-

ticularly addresses the results on exact confidence intervals,

the properties of (non-)normalized spacings, as well as the

discussion of (best) linear inference. Note that the role of

spacings and its implications on linear inference, to our

knowledge, have not been discussed in the literature for adap-

tive progressive Type-II censoring so far. The corresponding

implications for the original Ng–Kundu–Chan model are also

highlighted.

2 MODEL DESCRIPTION AND
DISTRIBUTION OF THE DATA

Let ℒD be an adapted censoring plan where, after exceeding

the threshold T , the original censoring plan ℛ is adapted as

follows. Let

D =
m∑

j=1

1(−∞,T]

(
Xℛj∶m∶n

)
(2.1)

be the random variable counting the number or progres-

sively Type-II censored order statistics Xℛj∶m∶n which do

not exceed T . It is well-known that D has the following

properties (see, e.g., Balakrishnan et al., 2023, eq. (7.4)),

i.e. Lemma 2.1 follows from the identity P(D = d) =
P
(
Xℛd∶m∶n ≤ T < Xℛd+1∶m∶n

)
and the fact that the distribution

of
(
Xℛd∶m∶n,X

ℛ
d+1∶m∶n

)
depends only on 𝛾1, … , 𝛾d+1.

Lemma 2.1. Let Fd∶m∶n be the cumulative distri-
bution function (cdf) of Xℛd∶m∶n, 1 ≤ d ≤ m. The
probability mass function of D is given by
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P(D = d) = PT (D = d)

=
⎧
⎪
⎨
⎪
⎩

1 − F1∶m∶n(T), d = 0

Fd∶m∶n(T) − Fd+1∶m∶n(T), d = 1, … ,m − 1

Fm∶m∶n(T), d = m

.

(2.2)

Furthermore, the probabilities P(D = d) depend
only on the first d + 1 parameters 𝛾1, … , 𝛾d+1

which are not affected by the change of the cen-
soring plan.

The observed censoring plan ℒd = (L1,d, … ,Lm,d) given

D = d for some d ∈ {0, … ,m} is defined by

Li,d =
⎧
⎪
⎨
⎪
⎩

Ri, if i ≤ d
𝜚i,d(R•d, Sd+1, … , Si), if d + 1 ≤ i ≤ m − 1

n − m − R•d −
∑m−1

j=d+1
Lj,d, if i = m

,

(2.3)

where 𝜚i,k(R•d, Sd+1, … , Si) denotes for any i ∈
{d + 1, … ,m} a function of R•d =

∑d
j=1

Rj and Sd+1, … , Si
leading to an admissible censoring plan with exactly m mea-

surements. Of course, 𝜚i,d(R•d, Sd+1, … , Si) can be chosen in

many ways depending, for example, on whether the test time

is to be extended, shortened or the number of withdrawals is

to be kept constant. For convenience, let R0 = R•0 = 0.

Note that in (2.3), for any d ∈ {0, … ,m}, conditions on the

withdrawal numbers 𝜚i,d(R•d, Sd+1, … , Si), d+1 ≤ i ≤ m−1,

need to be imposed in order to ensure that the experiment

is not terminated before m observations are made, that is,

in order to ensure that exactly
∑m

i=1
Li,d = n − m items are

withdrawn or censored. In the following, we present a strat-

egy where withdrawals are essentially made according to the

censoring plan 𝒮 .

2.1 Construction of the adaptive censoring plan

By analogy with non-adaptive progressive Type-II censor-

ing, we consider 𝜸d = (𝛾1,d, … , 𝛾m,d), where 𝛾j,d has to be

interpreted as the number of units in the experiment imme-

diately before the j-th failure occurs. In particular, for any

j ∈ {d + 2, … ,m}, we must ensure 𝛾j,d ≥ m − j + 1 in order

to guarantee that exactly m measurements are observed. For

1 ≤ j ≤ d + 1, the condition is satisfied by assumption since

ℛ ∈ ℭm,n is a proper censoring plan. For d + 2 ≤ j ≤ m, we

define

𝜂j,d = n − j + 1 − R•d −
j−1∑

i=d+1

Si. (2.4)

Then, for j = d + 2, we have the condition

𝜂d+2,k = n − d − 1 − R•d − Sd+1 ≥ m − d − 1

⟺ n − m − R•d ≥ Sd+1.

Thus, the number of withdrawn items in step d + 1 can be

maximally chosen as Ld+1,d = (n − m − R•d) ∧ Sd+1. This

construction can be extended by iteration which leads to the

conditions

𝜂j,d = n − j + 1 − R•d −
j−2∑

i=d+1

Li,d − Sj−1 ≥ m − j + 1

⟺ n − m − R•d −
j−2∑

i=d+1

Li,d ≥ Sj−1, (2.5)

for j ∈ {d + 2, … ,m} so that

Lj−1,d =

(

n − m − R•d −
j−2∑

i=d+1

Li,d

)

∧ Sj−1,

j ∈ {d + 2, … ,m}.

where x ∧ y = min{x, y}, x, y ∈ R. Similarly, we use the

notation x ∨ y = max{x, y}. For j = m, everything left is

removed. Consequently, we set

𝛾j,d =

{
𝛾j = n − j + 1 − R•j−1, 1 ≤ j ≤ d + 1

𝜂j,d ∨ (m − j + 1), d + 2 ≤ j ≤ m
. (2.6)

Then, a censoring plan (2.3) where withdrawals are essen-

tially made according to the censoring plan 𝒮 once the

threshold T has been exceeded, is given by

Lj,d = 𝛾j,d − 𝛾j+1,d − 1, 1 ≤ j ≤ m, (2.7)

where 𝛾m+1,d = 0 for convenience. In particular, 𝛾1,d = n and

𝛾m,d = Lm,d + 1.

Note that, given d, once 𝛾j
0
,d = 𝜂j

0
,d∨(m−j0+1) = m−j0+1

for a certain j0 ∈ {d + 2, … ,m}, it follows Lj,d = 0 for all

j ∈ {j0, … ,m} in the sequel so that there is no withdrawal or

censoring anymore, as illustrated in Example 2.4 (see Table 2,

d ∈ {1, 2}).

Remark 2.2. The max operator in (2.6) ensures

that we observe exactly m measurements. If the

censoring plans satisfy the condition

𝛾j = 𝛾j(ℛ) ≤ 𝛾j(𝒮 ), j = 1, … ,m − 1, (2.8)

then the operator can be dropped in (2.6). Condi-

tion 2.8 means that, if we run the life test with the

censoring planℛ, we will have at most the same

number of items in the life test as under 𝒮 at any

censoring time. In this sense, progressive censor-

ing according to the censoring plan ℛ will be

performed earlier than using𝒮 . Moreover, in this

case, the resulting censoring plan is constructed

as a concatenation of the original ones (except for

the last component) as

(R1, … ,Rd, Sd+1, … , Sm−1, n − m − R•d − S•m−1 + S•d)

as desired. In the following, censoring plans satis-

fying this condition for d ∈ {0, … ,m} are called

regular paired.

In general, see for example, Example 2.4, the

effectively applied plan looks like

(R1, … ,Rd, Sd+1, … , Sd′ , S∗d′+1
, 0, … , 0)
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with S∗d′+1
∈ {0, … , Sd′+1 − 1}. Here, d′ + 1 ≥

d+1 denotes the number where not enough items

would be available to ensure m measurements

when continuing with the removals according

to 𝒮 .

Furthermore, we note the following simple but very useful

fact which follows directly from (2.6).

Lemma 2.3. Given d ∈ {0, … ,m}, the first
d censoring numbers of the adaptive censoring
plan ℒd are equal to those of ℛ, that is,

Lj,d = Rj, j = 1, … , d.

Moreover, this implies that 𝛾j,d = 𝛾j, j =
1, … , d + 1.

Furthermore, for j ∈ {d + 2, … ,m},

𝛾j,d = 𝛾j ⇔
j−1∑

i=d+1

Ri =
j−1∑

i=d+1

Si.

Example 2.4. For illustration, consider the two

censoring plans ℛ = (1, 2, 3, 5, 1, 4) and 𝒮 =
(6, 3, 0, 1, 4, 2) with n = 22 and m = 6. For

d ∈ {0, … , 6}, the respective observed cen-

soring plans ℒd are given in Tables 1 and 2.

Note that, in order to illustrate the change in the

censoring plan, neither the threshold T nor the

failure times Xℛ
1∶m∶n, … ,Xℛm∶m∶n need to be spec-

ified; according to Equation (2.1), any relevant

information is already included in the realization

d ∈ {0, … , 6} of the random variable D, that

is, in the observed number of failures before the

threshold T . In Table 1, we start with the censor-

ing plan ℛ and switch to 𝒮 after the threshold

T . In Table 2, we apply the censoring plans in

reversed order. Notice that both censoring plans

are employed as planned in the first situation pre-

sented in Table 1. In the situation of Table 2, the

censoring planℛ can not be completely realized

as designed for d ∈ {1, 2, 3, 4} since not enough

items remain in the experiment after the change

of the censoring plan at time T . This applies to

the cases D = d ∈ {1, 2} in Table 2. Notice

that in these situations no progressive censoring

occurs after Xd+1∶m∶n, which is indicated by zeros

in the adapted censoring plan. Of course, this

comment does not apply to the last withdrawal

time where the experiment is terminated. Further

examples of the second phase’s censoring plans

are presented in Section 4.

Remark 2.5.

(i) In the Ng–Kundu–Chan model introduced

by Ng et al. (2009), we have in (2.3) Sj =
0, 1 ≤ j ≤ m − 1. This choice of the

alternate censoring plan𝒮 emphasises the

idea that the life testing experiment should

be terminated as soon as possible once

the test duration exceeds the prefixed time

threshold T . Then, (2.6) may be written as

𝛾j,d = n− j+1−R•min(d,j−1), 1 ≤ j ≤ m. (In

Ng et al. (2009), the max-operator is erro-

neously written instead of min-operator as

upper limit in the sum in R•min(d,j−1) =∑min(d,j−1)
i=1

Ri). Note that
∑m

i=1
Li,d = n − m

is always satisfied as long as ℛ remains

an admissible censoring plan.

(ii) As mentioned above, adaptive versions

of progressive Type-II censoring have

also been proposed in Bairamov and

Parsi (2011) and Kinaci (2013), see also

Balakrishnan and Cramer (2014, Sec.

6.2.3). In Bairamov and Parsi (2011), an

extension regarding the number of pos-

sible adaptions of the censoring plan is

discussed. According to the notation in

(2.3), m − 1 thresholds 0 ≤ T1 < T2 <

· · · < Tm−1 are considered, where Rj

units are removed from the experiment

when the j-th failure occurs before time Tj

TABLE 1 Adaptive censoring plans with initial plan ℛ and 𝒮 as desired plan after the change time T .

Vector of 𝜸d

Change number Adapted censoring plan Minimum requirement: (6, 5, 4, 3, 2, 1)
d 𝓛d 𝜸1,d 𝜸2,d 𝜸3,d 𝜸4,d 𝜸5,d 𝜸6,d

0 (6, 3, 0, 1, 4, 2) = 𝒮 22 15 11 10 8 3

1 (1, 3, 0, 1, 4, 7) 22 20 16 15 13 8

2 (1, 2, 0, 1, 4, 8) 22 20 17 16 14 9

3 (1, 2, 3, 1, 4, 5) 22 20 17 13 11 6

4 (1, 2, 3, 5, 4, 1) 22 20 17 13 7 2

5 (1, 2, 3, 5, 1, 4) =ℛ 22 20 17 13 7 5

6 (1, 2, 3, 5, 1, 4) =ℛ 22 20 17 13 7 5

Note: The parts of the adapted censoring plans are marked in the respective color of the original censoring plans.
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TABLE 2 Adaptive censoring plans with initial plan 𝒮 and ℛ as desired plan after the change time T .

Vector of 𝜸d

Change number Adapted censoring plan Minimum requirement: (6, 5, 4, 3, 2, 1)
d 𝓛d 𝜸1,d 𝜸2,d 𝜸3,d 𝜸4,d 𝜸5,d 𝜸6,d

0 (1, 2, 3, 5, 1, 4) =ℛ 22 20 17 13 7 5

1 (6, 2, 3, 5, 0, 0) 22 15 12 8 2 1

2 (6, 3, 3, 4, 0, 0) 22 15 11 7 2 1

3 (6, 3, 0, 5, 1, 1) 22 15 11 10 4 2

4 (6, 3, 0, 1, 1, 5) 22 15 11 10 8 6

5 (6, 3, 0, 1, 4, 2) = 𝒮 22 15 11 10 8 3

6 (6, 3, 0, 1, 4, 2) = 𝒮 22 15 11 10 8 3

Note: The parts of the adapted censoring plans are marked in the respective color of the original censoring plans.

and Sj units otherwise, whereby Rj ≤ Sj,

1 ≤ j ≤ m − 1. It is worth noticing

that the restriction Rj ≤ Sj might be quite

counter intuitive to an experimentor’s aim

to reduce the time on test. Also, the model

presented in Bairamov and Parsi (2011)

cannot be considered as a generalization

of the Ng–Kundu–Chan model, having

Sj = 0, 1 ≤ j ≤ m − 1, in the latter. In

the model introduced in the present paper,

it is Tj = T , 1 ≤ j ≤ m − 1, and we

detach ourselves from the assumption that

Rj ≤ Sj.

(iii) Condition (2.8) holds for example when

the inequalities Sj ≤ Rj, 1 ≤ j ≤ m−1, are

satisfied so that exactly m measurements

are guaranteed in the considered life test.

Note that this condition is trivially ful-

filled for any admissible censoring plan

ℛ in the Ng–Kundu–Chan model since

Sj = 0, 1 ≤ j ≤ m − 1.

However, in general, dropping the max-

imum operator in (2.6) may lead to a

violation of condition (2.5), that is,

𝛾j,d < m − j + 1 for some j > d + 1.

Therefore, if sampling were carried out as

intended according to the switch from ℛ
to 𝒮 after time T , there might be too few

units available to ensure a total of m obser-

vations. The experiment would therefore

end before the m-th failure occurs, with

the sample size being at most m. However,

by design, at least one observation (the

minimum of the data) would be assured.

Another extension would be to consider

censoring plans of different lengths and

thus different numbers of intended obser-

vations, that is, ℛ would have the length

m1 and 𝒮 would have the length m2.

Both modifications would lead to models

with a random sample size. Such exten-

sions will be subject of future research.

2.2 Joint distribution

Let XℒD
1∶m∶n, … ,XℒD

m∶m∶n be the adaptive progressively Type-II

censored data with proper censoring plan as in (2.3) (for con-

venience, let XℒD
0∶m∶n = −∞). It is worth noticing that the

censoring plan ℒD is random in general. Moreover, after

exceeding the threshold T , the observation of the subsequent

failure time XℒD
k+1∶m∶n does only depend on R•k of the initially

applied censoring plan ℛ ∈ ℭm,n.

In order to derive the joint cumulative distribution func-

tion of XℒD
1∶m∶n, … ,XℒD

m∶m∶n, for t1, … , tm ∈ R, by similarity

with the derivations in Cramer and Balakrishnan (2013) (see

also Balakrishnan et al. (2023)), we get

P
(

XℒD
j∶m∶n ≤ tj, 1 ≤ j ≤ m

)

=
m∑

k=0

P
(

XℒD
j∶m∶n ≤ tj, 1 ≤ j ≤ m,D = k

)

=
m−1∑

k=0

P
(

Xℒk
j∶m∶n ≤ tj, 1 ≤ j ≤ m,Xℒk

k∶m∶n ≤ T < Xℒk
k+1∶m∶n

)

+ P
(

Xℛj∶m∶n ≤ tj, 1 ≤ j ≤ m,Xℛm∶m∶n ≤ T
)
.

Then,

P
(

Xℛj∶m∶n ≤ tj, 1 ≤ j ≤ m,Xℛm∶m∶n ≤ T
)

= Fℛ
1,… ,m∶m∶n (t1, … , tm−1, tm ∧ T) .

For k ∈ {0, … ,m − 1}, we get

P
(

Xℒk
j∶m∶n ≤ tj, j ∈ {1, … ,m}⧵

{k},Xℒk
k∶m∶n ≤ tk ∧ T ,T < Xℒk

k+1∶m∶n

)

= P
(

Xℒk
j∶m∶n ≤ tj, j ∈ {1, … ,m}⧵

{k},Xℒk
k∶m∶n ≤ tk ∧ T ,T < Xℒk

k+1∶m∶n,T ≤ min
k+1≤j≤m

tj
)
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= 1[T ,∞)

(

min
k+1≤j≤m

tj
)[

P
(

Xℒk
j∶m∶n ≤ tj, j ∈ {1, … ,m}⧵

{k},Xℒk
k∶m∶n ≤ tk ∧ T

)

− P
(

Xℒk
j∶m∶n ≤ tj, j ∈ {1, … ,m}⧵

{k, k + 1},Xℒk
k∶m∶n ≤ tk ∧ T ,Xℒk

k+1∶m∶n ≤ T
)]

= 1[T ,∞)

(

min
k+1≤j≤m

tj
)

[
Fℒk

1,… ,m∶m∶n(t1, … , tk−1, tk ∧ T , tk+1, … , tm)

−Fℒk
1,… ,m∶m∶n(t1, … , tk−1, tk ∧ T ,T , tk+2, … , tm)

]
.

Therefore, we find the following expression

P
(

XℒD
j∶m∶n ≤ tj, 1 ≤ j ≤ m

)

=
m∑

k=0

P
(

XℒD
j∶m∶n ≤ tj, 1 ≤ j ≤ m,D = k

)

=
m∑

k=0

1[T ,∞)

(

min
k+1≤j≤m

tj
)

Fℒk
1,… ,m∶m∶n(t1, … , tk−1, tk ∧ T , tk+1, … , tm)

−
m−1∑

k=0

1[T ,∞)

(

min
k+1≤j≤m

tj
)

Fℒk
1,… ,m∶m∶n(t1, … , tk−1, tk ∧ T ,T , tk+2, … , tm). (2.9)

Thus, differentiating the cumulative distribution function

w.r.t. t1, … , tm, we get the density function (with t0 =
−∞, tm+1 = ∞)

fℒD
1,… ,m∶m∶n(t1, … , tm) =

m∑

k=0

1(tk ,tk+1
](T)f

ℒk
1,… ,m∶m∶n(t1, … , tm),

t1 < · · · < tm. (2.10)

Obviously, the joint density function in the general-

ized adaptive model with random censoring plan ℒD is

defined step-wise in terms of the joint density functions of

non-adaptive progressively Type II censored order statistics

with deterministic censoring plansℒk, 0 ≤ k ≤ m. The result

can be found for the standard Ng–Kundu–Chan model by Ng

et al. (2009) in Balakrishnan et al. (2023, Remark 13.4). In the

following, we will use the identity (2.10) for the likelihood to

point out that many results in statistical inference in the gen-

eralized Ng–Kundu–Chan can be directly obtained from the

corresponding results under progressive Type-II censoring

(see also comments in Cramer and Iliopoulos (2010)).

3 INFERENCE IN THE GENERALIZED
NG–KUNDU–CHAN MODEL

In the following, we assume that the items under study have

a life time distribution with an absolutely continuous cumu-

lative distribution function F𝜽 with density function f𝜽 that

depends depends on a finite-dimensional parameter 𝜽 ∈ 𝚯.

Given observed failure times x1 < · · · < xm, we get from

(2.10) the likelihood function

(𝜽|x1, … , xm) =
m∑

k=0

1(xk ,xk+1
](T)f

ℒk
1,… ,m∶m∶n;𝜽(x1, … , xm)

= fℒd
1,… ,m∶m∶n;𝜽(x1, … , xm) (3.1)

with d =
∑m

j=1
1(−∞,T](xj) being obtained directly from the

data. Although the censoring plan is random in the adap-

tive model, according to (3.1), the likelihood function in the

adaptive model equals that in the non-adaptive model when

the observed censoring plan is used. Consequently, assuming

that XℒD
1∶m∶n, … ,XℒD

m∶m∶n are based on a cumulative distribu-

tion function F𝜽 with density function f𝜽 with some unknown

finite-dimensional parameter 𝜽 ∈ 𝚯, the likelihood function

(3.1) is given by

(𝜽|x1, … , xm)

=
m∏

j=1

(
𝛾j,d f𝜽(xj) (1 − F𝜽(xj))Lj,d

)

= c(ℒd) ⋅

( m∏

j=1

f𝜽(xj)

)

⋅

( d∏

j=1

(
1 − F𝜽(xj)

)Rj

)

⋅

( m−1∏

j=d+1

(
1 − F𝜽(xj)

)Lj,d

)

(1 − F𝜽(xm))𝛾m,d−1
, (3.2)

where Lj,d is defined as in (2.7) and c(ℒd) =
∏m

j=1
𝛾j,d.

Thus, maximization of (𝜽|x1, … , xm) w.r.t. to 𝜽 in the in

the generalized Ng–Kundu–Chan model yields the same solu-

tion as in the non-adaptive model. Consequently, results on

maximum likelihood inference regarding existence, unique-

ness of maximum likelihood estimates and their explicit

expressions or, respectively, approximation methods can be

directly derived from the non-adaptive model of progres-

sive Type II censored order statistics. For a comprehen-

sive summary, we refer to Balakrishnan and Cramer (2014,

Chapter 12).

Bayesian inference in the generalized Ng–Kundu–Chan

model can be conducted by similarity with progressively

Type-II censored data. A general discussion of Bayesian

inference under progressive Type-II censoring can be found

in Chapter 15 of Balakrishnan and Cramer (2014). Gen-

erally, given the prior distribution with density function

𝜋a(𝜽) and hyperparameters a, the posterior density function

𝜋

∗
a (⋅|x1, … , xm) is given by

𝜋

∗
a (𝜽|x1, … , xm) =

𝜋a(𝜽)(𝜽|x1, … , xm)
∫ (𝝃|x1, … , xm)𝜋a(𝝃) d𝝃

. (3.3)

Clearly, the likelihood function in (3.1) is that of a pro-

gressively Type-II censored sample with the adapted censor-

ing plan. Therefore, all the Bayesian inferential results can

directly be applied to construct Bayesian estimates etc. in

the generalized Ng–Kundu–Chan model. As a matter of fact,

we get the same form of the estimators (like e.g., the pos-

terior mean). But, as for the likelihood estimator, one has

to take into account that the censoring plan is not fixed in
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advance but observed during the life test. Respective results

can be found in, for example, Kundu (2008) (Weibull distri-

bution), Ali Mousa and Al-Sagheer (2006), Wu et al. (2006)

(Rayleigh distribution), Ali Mousa and Jaheen (2002) (Burr

distribution), and Ali Mousa (2001) (Pareto distribution). Fur-

ther references are given in Balakrishnan and Cramer (2014);

Balakrishnan and Cramer (2023).

3.1 Exponential distribution

Let the adaptive progressively Type-II censored order statis-

tics XℒD
1∶m∶n, … ,XℒD

m∶m∶n be based on a two-parameter expo-

nential distribution Exp(𝜇, 𝜗) having cumulative distribution

function

F
𝜇,𝜗
(t) = 1 − exp(−(t − 𝜇)∕𝜗), t > 𝜇,

and density function f
𝜇,𝜗
(t) = 1∕𝜗 exp(−(t − 𝜇)∕𝜗), t > 𝜇,

with distribution parameters 𝜇 ∈ R and 𝜗 > 0. If 𝜇 = 0, then

we write F
𝜗
, f
𝜗

for short.

Then, given observations 𝜇 < x1 < · · · < xm with D = d,

the likelihood function is given by

(𝜇, 𝜗|x1, … , xm) = c(ℒd)𝜗−m

exp

(

−1

𝜗

( m∑

j=1

(Lj,d + 1)(xj − 𝜇)

))

1(𝜇,∞)(x1). (3.4)

By similarity with standard progressive Type-II censoring

(see, e.g., Balakrishnan and Cramer, 2014, Sec. 12.1), it is

maximized by the maximum likelihood estimators (MLEs)

𝜇 = Xℛ
1∶m∶n = XℒD

1∶m∶n and

̂
𝜗2 =

1

m

( m∑

j=2

(Lj,D + 1) (XℒD
j∶m∶n − XℒD

1∶m∶n)

)

. (3.5)

If 𝜇 is supposed known, one gets the maximum likelihood

estimator for 𝜗 as

̂
𝜗1 =

1

m

( m∑

j=1

(Lj,D + 1) XℒD
j∶m∶n

)

= 1

m
TTT, (3.6)

where TTT =
∑m

j=1
(Lj,D + 1) XℒD

j∶m∶n denotes the total time on

test in the generalized Ng–Kundu–Chan model.

Note that D =
∑m

j=1
1(−∞,T](Xℛj∶m∶n) and the effectively

applied censoring plan ℒD in (3.6) and (3.5) are random

so that the MLE is a weighted version of the failure times

with random weights. Note that the form of the MLE equals

that under non-adaptive progressive Type-II censoring when

interpreting the effectively applied censoring plan ℒD as

non-random. However, as pointed out in Cramer and Iliopou-

los (2010), the distribution of the MLE under adaptive pro-

gressive Type-II censoring equals that of the MLE under

non-adaptive censoring. In order to illustrate this result, we

derive the distribution of ̂𝜗i, i = 1, 2, directly by studying

the distribution of the (normalized) spacings under adaptive

progressive Type-II censoring. In particular, the following

representations of the scale MLEs in terms of the spacings

WℒD
j = XℒD

j∶m∶n − XℒD
j−1∶m∶n, 1 ≤ j ≤ m, XℒD

0∶m∶n = 𝜇 (3.7)

are obviously true:

̂
𝜗1 =

1

m

m∑

j=1

𝛾j,DWℒD
j ,

̂
𝜗2 =

1

m

m∑

j=2

𝛾j,DWℒD
j . (3.8)

3.1.1 Normalized spacings

To derive the distribution of the maximum likelihood estima-

tors ̂𝜗i, i = 1, 2, we rewrite (3.6) and (3.5) in terms of normal-

ized spacings of the adaptive progressively Type-II censored

order statistics XℒD
1∶m∶n, … ,XℒD

m∶m∶n. We show subsequently for

exponentially distributed lifetimes that the normalized spac-

ings are independent and identically exponentially distributed

random variables. To prove these properties, we will apply

the density transformation theorem as well as the law of total

probability by conditioning on {D = d}, d ∈ {0, … ,m}.
Thus, let

SℒD
j = 𝛾j,DWℒD

j , 1 ≤ j ≤ m, (3.9)

be the normalized spacing of the sample XℒD
1∶m∶n, … ,XℒD

m∶m∶n,

where XℒD
0∶m∶n = 𝜇. In (3.9), the normalizing factors 𝛾1,D,

… , 𝛾m,D are random turning to fixed values 𝛾1,d, … , 𝛾m,d as

defined in (2.6), once the normalized spacings SℒD
1
, … , SℒD

m
are considered conditionally on the number of observed fail-

ures D = d before time T . The joint probability mass function

of the random normalizing factors is given in Balakrishnan

et al. (2023, Sec. 13.2).

For convenience, define the random vectors

WℒD = (WℒD
1
, … ,WℒD

m )′, SℒD = (SℒD
1
, … , SℒD

m )′, and

XℒD = (XℒD
1∶m∶n, … ,XℒD

m∶m∶n)′ (for a ∈ Rm
, a′ denotes

the transpose of a). Then, given D = d, we can write

Wℒd = A ⋅ (Xℒd − 𝜇e1) and Sℒd = Md ⋅ (Xℒd − 𝜇e1) with

matrices A and Md being defined by

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 … … 0

−1 1 … … 0

0 −1 1 … 0

⋮ ⋱ ⋱ ⋱ ⋮

0 … 0 −1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Md =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛾1,d 0 … … 0

−𝛾2,d 𝛾2,d … … 0

0 −𝛾3,d 𝛾3,d … 0

⋮ ⋱ ⋱ ⋱ ⋮

0 … 0 −𝛾m,d 𝛾m,d

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.10)

respectively, and vector e′
1
= (1, 0, … , 0) ∈ Rm

.

From (2.10) and (3.2) we get

f XℒD |D=d
𝜇,𝜗

(t)

= 1

P
𝜇,𝜗
(D = d)

fℒd
1,… ,m∶m∶n;𝜇,𝜗(t)1(td ,td+1

](T)
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= c(ℒd)
P
𝜇,𝜗
(D = d)

𝜗

−m
exp

(

−1

𝜗

m∑

j=1

(Lj,d + 1) (tj − 𝜇)

)

1(td ,td+1
](T), 𝜇 < t1 < · · · < tm.

By density transformation and proceeding as in Balakrishnan

and Cramer (2014, Sec. 2.3.1), it follows that the conditional

joint density function of SℒD = (SℒD
1
, … , SℒD

m )′ condition-

ally on D = d is given by

f SℒD |D=d
𝜇,𝜗

(t) = 1

P
𝜇,𝜗
(D = d)

𝜗

−m

exp

(

−1

𝜗

m∑

j=1

tj

)

1(𝜈d,d(t),𝜈d,d+1
(t)](T)

= 1

P
𝜇,𝜗
(D = d)

( m∏

j=1

f
𝜗
(tj)

)

1(𝜈d,d(t),𝜈d,d+1
(t)](T),

0 < t1, … , tm, (3.11)

where

𝜈d,j(t) =
(
M−1

d t
)

j =
j∑

i=1

ti∕𝛾i,d, j ∈ {1, … ,m},

𝜈d,0(t) = 0, 𝜈d,m+1(t) = ∞, (3.12)

for d ∈ {0, … ,m}. Notice that

𝜈d,d(t) < 𝜈d,d+1(t), d ∈ {0, … ,m},

as ℛ is assumed to be an admissible censoring plan in ℭm,n
and t1, … , tm > 0. In detail, we have

(i) 𝜈0,0(t) = 0 < 𝜈0,1(t) = t1∕𝛾1,0 with 𝛾1,0 = n − R•0

= n for d = 0;

(ii) 𝜈m,m(t) =
∑m

i=1
ti∕𝛾i,m < 𝜈m+1,m(t) = ∞ with

𝛾i,m = n− i+1−R•i−1 > 0 for any i ∈ {1, … ,m}
for d = m;

(iii) 0 < 𝜈d,d(t) < 𝜈d,d+1(t) = 𝜈d,d(t)+ td+1∕𝛾d+1,d <∞
with 𝛾d+1,d = n − d − R•d = n − d −

∑d
i=1

Ri > 0.

In particular, the numbers 𝜈d,d(t), 𝜈d,d+1(t) depend for any

d ∈ {0, … ,m} only on the initial censoring plan ℛ ∈ ℭm,n.

Using the law of total probability, we conclude that

the (unconditional) joint density function of SℒD =
(SℒD

1
, … , SℒD

m )′ is given by

f SℒD

𝜇,𝜗

(t) =
m∑

d=0

P
𝜇,𝜗
(D = d)f SℒD |D=d

𝜇,𝜗

(t)

=
m∏

j=1

f
𝜗
(tj)

m∑

d=0

1(𝜈d,d(t),𝜈d,d+1
(t)](T)

=
m∏

j=1

f
𝜗
(tj), 0 < t1, … , tm. (3.13)

Thus, even though the normalized spacings in (3.9) have ran-

dom normalizing factors depending on the random number

D =
∑m

j=1
1(−∞,T](Xℛj∶m∶n) of failure times before threshold

T , they are independent and identically Exp(𝜗)-distributed.

Here, Exp(𝜗) = Exp(0, 𝜗) denotes the one-parameter expo-

nential distribution with mean 𝜗. Summing up, we get the

following result which extends the analogous one for standard

progressively Type-II censored order statistics (see Balakrish-

nan and Cramer (2014), Theorem 2.3.2). Note that ̂𝜗1 depends

on 𝜇 via the first spacing SℒD
1

= n(X1∶m∶n − 𝜇) so that the

estimator can not be used in case of an unknown location

parameter.

Corollary 3.1. Given Exp(𝜇, 𝜗)-distributed
lifetimes with location parameter 𝜇 and
scale parameter 𝜗, the normalized spacings
SℒD

1
, … , SℒD

m as defined in (3.9) are indepen-
dent and identically Exp(𝜗)-distributed random
variables.

(i) If the location parameter 𝜇 is supposed to
be known, then the MLE ̂

𝜗1 of 𝜗 has a
scaled 𝜒2-distribution with 2m degrees of
freedom, that is,

2m̂𝜗1∕𝜗 ∼ 𝜒2(2m).

(ii) If 𝜇 is unknown, then we have for the MLE
̂
𝜗2 that

2m̂𝜗2∕𝜗 ∼ 𝜒2(2m − 2).
In particular, expectations and variances are

given by E
𝜗
(̂𝜗1) = 𝜗, Var

𝜗
(̂𝜗1) = 𝜗

2∕m and
E
𝜗
(̂𝜗2) = m−1

m
𝜗, Var

𝜗
(̂𝜗2) = m−1

m2
𝜗

2
, respectively,

for 𝜗 > 0.

Proof. By analogy with standard progres-

sive Type-II censoring (see Balakrishnan and

Cramer, 2014, p. 271), the representation in terms

of spacings in (3.8) shows that the MLEs can

be written as a sum of the normalized spacings

in (3.9). Since these spacings are independent

and identically Exp(𝜗)-distributed by (3.13), the

scale MLEs have the given 𝜒
2
-distributions. ▪

Remark 3.2. Based on the distributional results

presented in Corollary 3.1, we discuss proper-

ties of the MLEs in the one- and two parameter

exponential model (cf. (i) to (iv)). Furthermore,

we present inferential results based on these esti-

mators. In particular, this includes exact confi-

dence intervals for the parameter 𝜗 (cf. (v)) as

well as exact confidence regions for (𝜇, 𝜗) in the

two-parameter model.

(i) Note that ̂𝜗1 is an unbiased estimator of

𝜗 and ̂
𝜗2 is an asymptotically unbiased

estimator as m tends to infinity, respec-

tively. Moreover, due to the invariance

property of maximum likelihood estima-

tors, the squared MLE ̂
𝜗

2

i ∕m is the MLE

of the variance Var
𝜗
(̂𝜗i). Ng et al. (2009)

pointed out that ̂𝜗
2

i ∕m is an estimator of the

asymptotic variance.
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(ii) The MLEs 𝜇 and ̂𝜗2 in the two-parameter

model are independent and

𝜇

∗ = 𝜇 − m
(m − 1)n

̂
𝜗2

is an unbiased estimator of 𝜇 since

𝜇 ∼ Exp(𝜇, 𝜗∕n) (see Balakrishnan and

Cramer, 2014, p. 271). Moreover, it follows

that both ̂𝜗1 and (𝜇, ̂𝜗2) are complete suf-

ficient statistics given the respective distri-

butional assumption so that we get directly

the uniformly minimum variance unbiased

estimators of the parameters in the general-

ized Ng–Kundu–Chan model, too. Notice

that the estimators are not linear estimators

in general since the weights 𝛾j,D are random

variables! Thus, the best linear unbiased

estimators can not be obtained from this

result.

(iii) In the one-parameter model (assuming 𝜇 =
0), a linear unbiased estimator of 𝜗 is given

by ̂
𝜗L = nXℒD

1∶m∶n, that is, the first nor-

malized spacing which, by definition, has

a non-random weight. In order to discuss

the problem whether other linear unbiased

estimators exist, we consider properties of

the spacings in Section 3.1.2.

(iv) Using a moment generating function

approach, an explicit expression of the

density function of ̂𝜗1 has been derived in

Lin and Huang (2012). The connection to

the 𝜒
2
-distribution of the maximum like-

lihood estimator as given in Corollary 3.1,

however, is hidden behind the alternating

sum structure presented there.

(v) The above estimators in the generalized

Ng–Kundu–Chan model are based only

on the normalized spacings and, thus,

their distribution equals that in case of

standard progressive Type-II censoring.

Therefore, all the inferential results estab-

lished under progressive Type-II censor-

ing can directly be applied in the gener-

alized Ng–Kundu–Chan model as long as

they are based on these estimators. This

particularly applies to confidence inter-

vals and regions, statistical tests, and so

forth.

For instance, exact statistical intervals

and regions can be directly constructed

from the comments given in (ii) (see Chap-

ter 17 in Balakrishnan and Cramer (2014)).

For the parameter 𝜗, we get confi-

dence intervals based on quantiles of

𝜒

2
-distributions. Denoting by 𝜒

2

𝛽

(k) the

𝛽-quantile of the 𝜒
2(k)-distribution with k

degrees of freedom,

[
2m̂𝜗1

𝜒

2

1−𝛼∕2
(2m)

,

2m̂𝜗1

𝜒

2

𝛼∕2
(2m)

]

,

[
(2m − 2)̂𝜗2

𝜒

2

1−𝛼∕2
(2m − 2)

,

(2m − 2)̂𝜗2

𝜒

2

𝛼∕2
(2m − 2)

]

yield two-sided exact 1 − 𝛼 confidence

intervals for 𝜗. By analogy, one sided con-

fidence intervals are obtained. An exact

confidence for 𝜇 can be directly taken from

Balakrishnan and Cramer (2014, Corollary

17.1.1) Simultaneous confidence regions

for (𝜇, 𝜗) can be constructed using results

of Wu (2010) (see also Balakrishnan

and Cramer (2014, Theorem 17.1.3)).

Of course, computational approaches like

bootstrap can be used to construct confi-

dence intervals.

All the goodness of fit tests prepared for

the exponential distribution under progres-

sive Type-II censoring can be used when

they are based on the normalized spac-

ings. A survey is provided in Döring and

Cramer (2019). For other topics, we refer

to Balakrishnan and Cramer (2014); Bal-

akrishnan and Cramer (2023).

3.1.2 Non-normalized spacings

For the non-normalized spacings WℒD
1
, … ,WℒD

m as defined

in (3.7), the situation becomes different since the normaliz-

ing factors of the normalized spacings SℒD
1
, … , SℒD

m given

in (3.9) are random in general. Even though in Section 3.1.1

the normalized spacings were shown to be independent

and identically exponentially distributed, we will prove that

the non-normalized spacings are generally dependent with

marginal distributions given by mixtures of exponential dis-

tributions. For this purpose, we will again apply the density

transformation theorem and the law of total probability, fol-

lowed by a rather technical proof of Theorem 3.3, which is

moved to the appendix.

First, we get similarly to the case of normalized spacings by

the density transformation formula that the conditional joint

density function of WℒD = (WℒD
1
, … ,WℒD

m )′ conditionally

on D = d is given by

f WℒD |D=d
𝜇,𝜗

(t) = c(ℒd)
P
𝜇,𝜗
(D = d)

𝜗

−m

exp

(

−1

𝜗

m∑

j=1

𝛾j,dtj

)

1(t•d ,t•d+1
](T)

= 1

P
𝜇,𝜗
(D = d)

m∏

j=1

(
𝛾j,df

𝜗
(𝛾j,dtj)

)
1(t•d ,t•d+1

](T),

0 < t1, … , tm, (3.14)
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for d ∈ {0, … ,m}, where by similarity with (3.12)

(
A−1t

)
j =

j∑

i=1

ti = t•j, , j ∈ {1, … ,m},

t•0 = 0, t•m+1 = ∞, (3.15)

so that 0 = t•0 ≤ t•1 ≤ · · · ≤ t•m < t•m+1 = ∞. In particular,

f WℒD |D=d
𝜇,𝜗

(t) = 1

P
𝜇,𝜗
(D = d)

m∏

j=1

(
𝛾j,df

𝜗
(𝛾j,dtj)

)
,

0 < t1, … , tm, t•d < T ≤ t•d+1. (3.16)

Notice that in (3.14) compared to (3.11) the indicator does not

depend on the censoring plans anymore but the exponential

density function does instead, which fundamentally changes

the situation regarding the spacings’ unconditional joint and

marginal density functions.

Applying again the law of total probability, by (3.14)

the (unconditional) joint density function of WℒD =
(WℒD

1
, … ,WℒD

m )′ is given by

f WℒD

𝜇,𝜗

(t) =
m∑

d=0

P
𝜇,𝜗
(D = d)f WℒD |D=d

𝜗

(t)

=
m∑

d=0

1(t•d ,t•d+1
](T)

m∏

j=1

(
𝛾j,df

𝜗
(𝛾j,dtj)

)
,

0 < t1, … , tm. (3.17)

This illustrates that the joint density function of the the

non-normalized spacings is connected to densities of inde-

pendent exponential random variables. However, the spacings

are obviously not independent except when 𝛾j,d = 𝛾j for all

d ∈ {0, … ,m} and j ∈ {1, … ,m}. This holds only when

ℛ = 𝒮 , that is, the censoring plan is not affected by the

threshold T .

The marginal cumulative distribution functions and den-

sity functions are given in Theorem 3.3 where
∑−1

d=0
· · · = 0

is defined. The rather technical proofs are presented in the

appendix.

Theorem 3.3. Let Fd∶m∶n and fd∶m∶n be the
marginal cumulative distribution function and
density function of the d-th progressively type-II
censored order statistics Zℛd∶m∶n based on the
censoring plan ℛ and a standard exponential
distribution.

For k ∈ {1, … ,m}, the marginal density func-
tion and cumulative distribution function of the
k-th spacing are given by

f WℒD
k

𝜇,𝜗

(t) =
k−2∑

d=0

(Fd∶m∶n((T − 𝜇)∕𝜗) − Fd+1∶m∶n((T − 𝜇)∕𝜗))

𝛾k,df
𝜗
(𝛾k,dt) + Fk−1∶m∶n((T − 𝜇)∕𝜗)𝛾kf

𝜗
(𝛾kt), t ≥ 0,

FWℒD
k

𝜇,𝜗

(t) =
k−2∑

d=0

(Fd∶m∶n((T − 𝜇)∕𝜗) − Fd+1∶m∶n((T − 𝜇)∕𝜗))

F
𝜗
(𝛾k,dt) + Fk−1∶m∶n((T − 𝜇)∕𝜗)F𝜗(𝛾kt), t ≥ 0,

that is, the distribution of WℒD
k is a mixture of

possibly different exponential distributions. Fur-
thermore, the 𝓁-th moment of WℒD

k is given by

E(WℒD
k )𝓁

= 𝜗𝓁
(k−2∑

d=0

Fd∶m∶n((T − 𝜇)∕𝜗) − Fd+1∶m∶n((T − 𝜇)∕𝜗)
𝛾

𝓁
k,d

+
Fk−1∶m∶n((T − 𝜇)∕𝜗)

𝛾

𝓁
k

)

.

Remark 3.4.

(i) Plots of the densities of the spacings

WℒD
k , k = 1, … , 6, in the generalized

Ng–Kundu–Chan model are presented in

Figure 4 for the censoring plans ℛ =
(1, 2, 3, 5, 1, 4), 𝒮 = (6, 3, 0, 1, 4, 2) as

considered in Example 2.4. The mean 𝜗 of

the exponential distribution and the time

threshold T are chosen as 𝜗 = 1 and T =
.1, respectively. The densities of the first

spacing, which by definition is the density

of the first failure time itself, are obviously

identical. However, for the other spac-

ings, the difference between the (strictly

decreasing) density function of the spac-

ing WℒD
k , 2 ≤ k ≤ 6, and the density of the

exponential distribution with parameter

1∕𝛾k(ℛ) resp. 1∕𝛾k(𝒮 ) becomes visible,

illustrating that the marginal distribution

of the respective spacing is indeed not

an exponential density. Differences of the

densities with respect to the exponential

densities are shown in Figure 5 for easier

comparison.

Note that the densities of the spacings

are strictly decreasing on (0,∞). Further-

more, it follows that they are log-convex

(see An, 1998, Proposition 3) and com-

pletely monotone as a mixture of expo-

nentials (see Bernstein, 1929, Feller 1971,

p. 439). Since the density function of a

spacing is decreasing, we conclude from

Bagnoli and Bergstrom (2005, Corollary

1) that the cumulative distribution func-

tion of a spacing is log-concave.

(ii) Furthermore, we get stochastic ordering

of the spacings if ℛ and 𝒮 are regu-

larly paired as introduced in Remark 2.2.

According to (2.6), 𝛾j,d = 𝛾j, 1 ≤ j ≤ d+1,

and
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FIGURE 4 Plots of the densities of the (non-normalized) spacings WℒD
1
, … ,WℒD

6
, in the generalized Ng–Kundu–Chan model for the censoring plans

ℛ = (1, 2, 3, 5, 1, 4), 𝒮 = (6, 3, 0, 1, 4, 2), threshold T = .1 and distribution parameter 𝜗 = 1 (solid lines). For comparison the exponential densities with

parameters 1∕𝛾k(ℛ) (dotted lines) and 1∕𝛾k(𝒮 ) (dashed lines), respectively, are also depicted.

𝛾j,d = n − j + 1 − R•d −
j−1∑

i=d+1

Si = 𝛾j

+
j−1∑

i=d+1

(Ri − Si), d + 2 ≤ j ≤ m.

Therefore, for all d ∈ {0, … ,m − 2} and

j ∈ {d + 2, … ,m}, we get

𝛾j,d ≥ 𝛾j ⟺
j−1∑

i=d+1

(Ri − Si) ≥ 0.

This condition is equivalent to Si ≤ Ri,

1 ≤ i ≤ m− 1. From Theorem 3.3, we get

for t ≥ 0 in this case

FWℒD
k

𝜇,𝜗

(t) ≥
k−2∑

d=0

(Fd∶m∶n((T − 𝜇)∕𝜗)

−Fd+1∶m∶n((T − 𝜇)∕𝜗)F𝜗(𝛾kt))
+ Fk−1∶m∶n((T − 𝜇)∕𝜗)F𝜗(𝛾kt)

= F
𝜗
(𝛾kt).

Hence, the k-th spacing WℒD
k

is stochastically larger than an

Exp(𝜗∕𝛾k)-distribution, k ∈ {1, … ,m}.
Of course, for k = 1, it equals an

Exp(𝜗∕n)-distribution.

(iii) Some plots of the means (i.e., for 𝓁 =
1) of the spacings (divided by 𝜗) as a

function of 𝜗 are presented in Figure 6,

illustrating that the means are not linear in

the parameter 𝜗.

Remark 3.5. In order find a computable expres-

sion for the density function, we use the following

well-known representations which hold in case

of the standard exponential distribution (see Bal-

akrishnan and Cramer (2014), eqs. 2.19 and 2.20;

1 ≤ r ≤ m):

Fr∶m∶n(t) = 1 −

( r∏

i=1

𝛾i

) r∑

j=1

aj,r
e−𝛾j t

𝛾j
,

fr∶m∶n(t) =

( r∏

i=1

𝛾i

) r∑

j=1

aj,re−𝛾jt
, t > 0, (3.18)
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FIGURE 5 Plots of the differences of the densities of the spacings WℒD
k , k = 1, … , 6, in the generalized Ng–Kundu–Chan model for the censoring plans

ℛ = (1, 2, 3, 5, 1, 4), 𝒮 = (6, 3, 0, 1, 4, 2), threshold T = .1 and distribution parameter 𝜗 = 1 with respect to the exponential densities with parameters

1∕𝛾k(ℛ) (dotted lines) and 1∕𝛾k(𝒮 ) (dashed lines), respectively.

with aj,r =
∏r

i=1,i≠j(𝛾i − 𝛾j)−1
, j = 1, … , r.

Moreover, as pointed out in Balakrishnan and

Cramer (2014), for d ∈ {1, … ,m − 1}, the

following identity holds in case of standard expo-

nentially distributed lifetimes

Fd∶m∶n(x) − Fd+1∶m∶n(x) =
1

𝛾d+1

fd+1∶m∶n(x), x ≥ 0.

3.1.3 Application to linear inference

In the next theorem, we present results on unbiased estimators

of the parameter 𝜗 in the generalized Ng–Kundu–Chan model

assuming Exp(𝜗)-distributed lifetimes. Notice that nWℒD
1

=

nXℛ
1∶m∶n is always a linear unbiased estimator of 𝜗 so that the

existence of a linear unbiased estimator is guaranteed.

Theorem 3.6. Given k ∈ {1, … ,m} and cen-
soring plans ℛ and 𝒮 , the expectation of WℒD

k
is a linear function in the parameter 𝜗 > 0 if an
only if 𝛾j(𝒮 ) = 𝛾j(ℛ), j ∈ {1, … , k}. In this
case, EWℒD

k = 𝜗

𝛾k
, 𝜗 > 0.

In general, the expectation of a linear estimator
̂L = a′WℒD is linear in the parameter 𝜗 > 0 only
if the equation

Λa∗ = 0 (3.19)

holds where a∗ = (a2, … , am)′ and

Λ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

𝛾
2

− 1

𝛾
2,0

1

𝛾
3

− 1

𝛾
3,0

1

𝛾k
− 1

𝛾k,0
… 1

𝛾m
− 1

𝛾m,0

0
1

𝛾
3

− 1

𝛾
3,1

1

𝛾k
− 1

𝛾k,1
… 1

𝛾m
− 1

𝛾m,1

⋮ ⋮

0 0 … 0
1

𝛾k
− 1

𝛾k,k−2

1

𝛾m
− 1

𝛾m,k−2

⋮ ⋱ ⋮

⋮ 0
1

𝛾m−1

− 1

𝛾m−1,m−3

1

𝛾m
− 1

𝛾m,m−3

0 0 … … … … 0
1

𝛾m
− 1

𝛾m,m−2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.20)
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FIGURE 6 Plots of the means of the (non-normalized) spacings WℒD
1
, … ,WℒD

6
, divided by 𝜗, in the generalized Ng–Kundu–Chan model with threshold

T = .1 as a function of 𝜗 for (A) on the left the censoring plans ℛ = (1, 2, 3, 5, 1, 4), 𝒮 = (6, 3, 0, 1, 4, 2) and (B) on the right for equal censoring plans

ℛ = 𝒮 = (1, 2, 3, 5, 1, 4).

If a ∈ Rm satisfies (3.19), then the linear
estimator ̂L is unbiased for 𝜗 if

a1 = 𝛾1 − 𝛾1

m∑

j=2

aj

𝛾j,0
, (3.21)

where 𝛾1 = 𝛾1(ℛ) = 𝛾1(𝒮 ) = n and 𝛾j,0 = 𝛾j(𝒮 ),
j = 2, … ,m.

Proof. From Theorem 3.3, we find that the

expectation of a linear estimator of progres-

sively Type-II censored order statistics in

the generalized Ng–Kundu–Chan model, that

is, of

̂L =
m∑

j=1

bjX
ℒD
j∶m∶n = b′XℒD = b′A−1WℒD = a′WℒD (3.22)

with A as in (3.10) and a′ = b′A−1
, is given

by ÊL = a′EWℒD . Therefore, it is sufficient

to study the linear estimators in terms of WℒD .

Since WℒD
1

= Xℛ
1∶m∶n, the case k = 1 can

be excluded from the discussion so that we can

assume k ≥ 2 subsequently. First, we con-

sider the expectation of a single spacing WℒD
k ,

k ∈ {2, … ,m}.

Clearly, we get from Theorem 3.3

EWℒD
k = 𝜗

(k−2∑

d=0

Fd∶m∶n(T∕𝜗) − Fd+1∶m∶n(T∕𝜗)
𝛾k,d

+
Fk−1∶m∶n(T∕𝜗)

𝛾k

)

= 𝜗 ck(𝜗), say.

Therefore, EWℒD
k is a linear function of 𝜗 if and

only if the term in the brackets denoted by ck(𝜗)
is constant w.r.t. 𝜗, that is,

ck(𝜗) ≡ ck =
k−2∑

d=0

Fd∶m∶n(T∕𝜗) − Fd+1∶m∶n(T∕𝜗)
𝛾k,d

+
Fk−1∶m∶n(T∕𝜗)

𝛾k
(3.23)

= 1

𝛾k,0
+

k−2∑

d=1

Fd∶m∶n(T∕𝜗)
(

1

𝛾k,d
− 1

𝛾k,d−1

)

+ Fk−1∶m∶n(T∕𝜗)
(

1

𝛾k
− 1

𝛾k,k−2

)

, (3.23)

where
∑k−2

d=1
· · · = 0 when k = 2. Notice

that F1∶m∶n, … ,Fk−1∶m∶n are linearly indepen-

dent functions since 𝛾1 > · · · > 𝛾m and

span{1, g
𝛾

1
, … , g

𝛾k−1
} = span{1,F1∶m∶n, … ,Fk−1∶m∶n}
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with g𝓁(t) = e−𝓁t
, t ≥ 0; see, e.g., (3.18).

Thus, ck(𝜗) is constant w.r.t. 𝜗 if and only if the

coefficients in (3.23) are zero for d ≥ 1, that is,

1

𝛾k,d
− 1

𝛾k,d−1

= 0, d = 1, … , k − 2, (when k ≥ 3)

1

𝛾k
− 1

𝛾k,k−2

= 0. (3.25)

This obviously holds iff

𝛾k,0 = · · · = 𝛾k,k−2 = 𝛾k.

Furthermore, by construction of the censoring

plans, we know that 𝛾k(𝒮 ) = 𝛾k,0 and 𝛾k = 𝛾k(ℛ)
and we conclude from Lemma 2.3 that 𝛾j(𝒮 ) =
𝛾j(ℛ), j ∈ {1, … , k}. Therefore, we obtain that

EWℒD
k = ck𝜗 ∀ 𝜗 > 0

⇔ 𝛾j(𝒮 ) = 𝛾j(ℛ), j ∈ {1, … , k}. (3.26)

In this case, ck = 1∕𝛾k so that 𝛾kWℒD
k is an

unbiased estimator of 𝜗. In other words, due to

n = 𝛾1(𝒮 ) = 𝛾1(ℛ), condition (3.26) is gener-

ally satisfied for WℒD
1

= XℒD
1∶m∶n. For WℒD

2
, we

need that R1 = S1. For WℒD
3

, the condition can

be written as R1 + R2 = S1 + S2, and so forth.

For a general linear estimator, the situation is

somewhat more involved compared to the situ-

ation assumed in (3.25), since eliminations of

non-linear terms may be possible. For a linear

estimator ̂L as in (3.22), we get the expectation

ÊL = a′EWℒD = 𝜗a′Δ𝜂(𝜗)

with the lower triangular

matrix Δ ∈ Rm×m
, that is,

Δ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

𝛾
1

0 0 … … 0

1

𝛾
2,0

1

𝛾
2

− 1

𝛾
2,0

0 … … 0

1

𝛾
3,0

1

𝛾
3,1

− 1

𝛾
3,0

1

𝛾
3

− 1

𝛾
3,1

0 … … 0

⋮ ⋮
1

𝛾k,0

1

𝛾k,1
− 1

𝛾k,0

1

𝛾k,2
− 1

𝛾k,1
… 1

𝛾k,k−2

− 1

𝛾k,k−3

1

𝛾k
− 1

𝛾k,k−2

0 0

⋮ ⋱ ⋮
1

𝛾m,0

1

𝛾m,1
− 1

𝛾m,0

1

𝛾m,2
− 1

𝛾m,1
… … … … 1

𝛾m,m−2

− 1

𝛾m,m−3

1

𝛾m
− 1

𝛾m,m−2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.27)

and 𝜂(𝜗)′ = (1,F1∶m∶n(T∕𝜗), … ,Fm−1∶m∶n(T∕𝜗)).
From the linear independence of

F1∶m∶n, … ,Fm−1∶m∶n, we get the linear equations

a1

𝛾1

+
m∑

j=2

aj

𝛾j,0
= 1, a′∗Δ∗ = 0 (3.28)

which have to be satisfied in order to get a linear

unbiased estimator. Here, Δ∗ is constructed from

Δ by deleting the first column and first row; and

it is a′∗ = (a2, … , am). Therefore, a linear unbi-

ased estimator of 𝜗 must satisfy the condition in

(3.28). Clearly, this implies (3.21). The rank of

Δ∗ depends on the censoring plansℛ and𝒮 . For

instance, for j ∈ {1, … ,m − 1}, the j-th column

of Δ∗ is zero iff Rj = Sj. To be more precisely,

we have

rank Δ∗ = m − 1 −
m∑

j=2

1{𝛾j}(𝛾j,j−2). (3.29)

In order to proceed, we transpose Δ∗.
Then, a∗ must be an element of the

kernel of Δ′∗, which has dimension
∑m

j=2
1{𝛾j}(𝛾j,j−2). That is, we get the equation

Δ′∗a∗ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

𝛾
2

− 1

𝛾
2,0

1

𝛾
3,1

− 1

𝛾
3,0

1

𝛾k,1
− 1

𝛾k,0
… 1

𝛾m,1
− 1

𝛾m,0

0
1

𝛾
3

− 1

𝛾
3,1

1

𝛾k,2
− 1

𝛾k,1
… 1

𝛾m,2
− 1

𝛾m,1

⋮ ⋮

0 0 … 0
1

𝛾k
− 1

𝛾k,k−2

1

𝛾m,k−1

− 1

𝛾m,k−2

⋮ ⋱ ⋮

⋮ 0
1

𝛾m−1

− 1

𝛾m−1,m−3

1

𝛾m,m−2

− 1

𝛾m,m−3

0 0 … … … … 0
1

𝛾m
− 1

𝛾m,m−2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

a2

⋮

am

⎞
⎟
⎟
⎟
⎠

= 0.
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Now, multiplying the equation Δ′∗a∗ = 0 from

the left by the regular matrix B =
⎛
⎜
⎜
⎜
⎝

1 1 … 1

0 1 … 1

⋮ ⋱ ⋮
0 … 0 1

⎞
⎟
⎟
⎟
⎠

,

we get Λ = BΔ′∗ with Λ as in (3.20) and the

equivalent equation given in (3.19). ▪

Remark 3.7.

(i) Theorem 3.6 shows that, except for

nWℒD
1

, the single spacings usually do not

lead to an unbiased estimator of 𝜗. In fact,

this only holds for the k-th spacing WℒD
k

when the censoring plans ℛ and 𝒮 are

identical up to censoring number k − 1.

For a general linear estimator, this con-

dition may not hold as there may be

cancellation effects. Therefore, the con-

dition for a linear unbiased estimator

becomes somewhat more complicated,

and the respective single spacings may

be involved even though they may not

be unbiased themselves. An example is

provided in Example 3.8.

(ii) Note that the condition in Equation (3.21)

can be written as

m∑

j=1

aj

𝛾j(𝒮 )
= 1.

Moreover, due to condition (3.21), we

conclude that an unbiased estimator of

𝜗 exists provided that a linear estimator

with mean linear in 𝜗 exists.

(iii) Clearly, we have in (3.19) either am = 0

or 𝛾m = 𝛾m,m−2. If am = 0, then we

can delete the last column of the matrix

and get a reduced equation involving only

a2, … , am−1. If am ≠ 0, then 𝛾m = 𝛾m,m−2

must hold which, by Lemma 2.3, means

that Rm−1 = Sm−1.

(iv) Suppose that the censoring plans are reg-

ular paired according to Remark 2.2.

Then, for d ∈ {0, … , k − 2} and k ∈
{2, … ,m}, we find the identity

1

𝛾k
− 1

𝛾k,d
= 1

𝛾k𝛾k,d
(𝛾k,d − 𝛾k)

= 1

𝛾k𝛾k,d

k−1∑

i=d+1

(Ri − Si)

=
𝛿k,d

𝛾k𝛾k,d
, say,

with 𝛿k,d =
∑k−1

i=d+1
(Ri − Si) measuring

the differences between the censoring

plans ℛ and 𝒮 once the threshold has

been exceeded. Therefore, we have the

representation

Λa∗ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛿
2,0

𝛾
2
𝛾

2,0

𝛿
3,0

𝛾
3
𝛾

3,0

𝛿k,0

𝛾k𝛾k,0
… 𝛿m,0

𝛾m𝛾m,0

0
𝛿

3,1

𝛾
3
𝛾

3,1

𝛿k,1

𝛾k𝛾k,1
… 𝛿m,1

𝛾m𝛾m,1

⋮ ⋮

0 0 … 0
𝛿k,k−2

𝛾k𝛾k,k−2

𝛿m,k−2

𝛾m𝛾m,k−2

⋮ ⋱ ⋮

⋮ 0
𝛿m−1,m−3

𝛾m−1
𝛾m−1,m−3

𝛿m,m−3

𝛾m𝛾m,m−3

0 0 … … … … 0
𝛿m,m−2

𝛾m𝛾m,m−2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

a∗ = 0,

where the matrix components are func-

tions of the differences
∑k−1

i=d+1
(Ri − Si)

and the diagonal elements Λi,i are equal

to a positive factor times Ri − Si, i ∈
{1, … ,m − 1}. Hence, these differences

determine the rank of Λ, that is,

rank Λ = m − 1 −
m−1∑

j=1

1{Sj}(Rj). (3.30)

This leads to a simplified version of

(3.29) and the dimension of the kernel is

given by
∑m−1

j=1
1{Sj}(Rj).

Furthermore, the above representation

can be used to calculate coefficients a

leading to an unbiased estimator. For

illustration, we sketch the first steps. If

am ≠ 0 holds for the linear estimator

then, as mentioned above, we must have

Rm−1 = Sm−1 or 𝛿m,m−2 = 0 in order to

get unbiasedness. Then, row m − 2 of Λ
yields the equation

𝛿m−1,m−3

𝛾m−1𝛾m−1,m−3

am−1 +
𝛿m,m−3

𝛾m𝛾m,m−3

am = 0

⟺ Rm−2 − Sm−2

𝛾m−1𝛾m−1,m−3

am−1

+ Rm−2 − Sm−2

𝛾m𝛾m,m−3

am = 0
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Thus, we have two cases. First, Rm−2 =
Sm−2, that is, there is no restriction on

am−1, am, or, secondly, for Rm−2 ≠ Sm−2,

am−1 = −
𝛾m−1𝛾m−1,m−3

𝛾m𝛾m,m−3

am.

Thus, we can freely choose the variables

aj for those j with Rj = Sj. The oth-

ers are then determined by the respective

equations.

Example 3.8.

(i) For m = 2, Λ = 1

𝛾
2

− 1

𝛾
2,0

∈ R. Thus, we

find that either a2 = 0 or 𝛾2 = 𝛾2,0 must

hold. If a2 = 0 then ̂L = a1WℒD
1

must hold.

If a2 ≠ 0 then R1 = S1, which means that

the censoring plansℛ and𝒮 are identical.

Therefore, for R1 ≠ S1, ̂L = nWℒD
1

is the

unique linear unbiased estimator whereas,

for R1 = S1, any linear estimator satis-

fying Equation (3.21) is a linear unbiased

estimator. However, in this case, we are in

the model of standard progressive Type-II

censoring.

(ii) Let m = 3. Now, for regularly paired

censoring plans, we have

Λ =
⎛
⎜
⎜
⎜
⎝

𝛿2,0

𝛾2𝛾2,0

𝛿3,0

𝛾3𝛾3,0

0
𝛿3,1

𝛾3𝛾3,1

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

R
1
−S

1

𝛾
2
𝛾

2,0

R
1
+R

2
−S

1
−S

2

𝛾
3
𝛾

3,0

0
R

2
−S

2

𝛾
3
𝛾

3,1

⎞
⎟
⎟
⎠

∈ R
2×2
.

Now, with ℛ = (1, 2, 1) and 𝒮 = (0, 2, 2),
we have 𝜸(ℛ) = (7, 5, 2), 𝜸(𝒮 ) = (7, 6, 3)
and

Λ =

(
1

5⋅6
1

2⋅3

0 0

)

=

(
1

30

1

6

0 0

)

so that a solution of Λa∗ = 0 is given by

a′∗ = (a2, a3) = (−30, 6). Then, it is easy

to see that the weights of

̂L = 28WℒD
1

− 30WℒD
2

+ 6WℒD
3

satisfy (3.19) and (3.21) so that ̂L is a

linear unbiased estimator of 𝜗 although

EWℒD
2

and EWℒD
3

are not linear in 𝜗

(see Figure 7). This illustrates that the

non-linear parts of these expectations can-

cel out.

Using the result in Theorem 3.6, we can find the best lin-

ear unbiased estimator in the generalized Ng–Kundu–Chan

model under certain restrictions on the censoring plans.

FIGURE 7 Plots of the means of the spacings WℒD
k , k = 1, 2, 3, and ̂L

divided by 𝜗 in Example 3.8 with threshold T = .1 as a function of 𝜗 for

censoring plans ℛ = (1, 2, 1), 𝒮 = (0, 2, 2).

Theorem 3.9. Given regular paired censoring
plans ℛ and 𝒮 with

Rj = Sj, j ∈ {1, … , k0}, Rj ≠ Sj, j ∈ {k0 + 1, … ,m − 1},

for some k0 ∈ {0, … ,m − 1}, where
{1, … , k0} = ∅ if k0 = 0, the best lin-
ear unbiased estimator of the parameter 𝜗 >

0 in the generalized Ng–Kundu–Chan model is
given by

̂
𝜗L =

1

k0 + 1

k
0
+1∑

j=1

𝛾jW
ℒD
j

= 1

k0 + 1

( k
0∑

j=1

(Rj + 1)XℒD
j + 𝛾k

0
+1XℒD

k
0
+1

)

.

Furthermore,

Var(̂𝜗L) =
𝜗

2

k0 + 1
,

k0 + 1

𝜗

̂
𝜗L ∼ 𝜒2(2(k0 + 1)).

Proof. According to Theorem 3.6 and

Remark 3.7, a linear unbiased estimator must

only be based on the spacings WℒD
1
, … ,WℒD

k
0
+1

.

However, due to the assumption, these spacings

coincide with progressively Type-II cen-

sored order statistics based on the parameters

𝛾1, … , 𝛾k
0
+1. Hence, the corresponding best

linear unbiased estimator can be directly taken

from this model (see, e.g., Balakrishnan and

Cramer, 2014, p. 253). ▪

Example 3.10.

(i) Given the censoring plans in Example 2.4,

we get that k0 = 0. Hence, the best linear

unbiased estimator of 𝜗 is given by ̂
𝜗L =

𝛾1XℒD
1

. In fact, ̂𝜗L is the only linear unbi-

ased estimator of 𝜗 given these censoring

plans.

(ii) For the censoring plans given in Table 3,

we have k0 = 2 so that the best linear
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TABLE 3 Adaptive censoring plans with initial plan ℛ and 𝒮 as desired plan after the change time T .

Vector of 𝜸d

Change number Adapted censoring plan Minimum requirement: (6, 5, 4, 3, 2, 1)
d 𝓛d 𝜸1,d 𝜸2,d 𝜸3,d 𝜸4,d 𝜸5,d 𝜸6,d

0 (1, 2, 0, 0, 0, 13) = 𝒮 22 20 17 16 15 14

1 (1, 2, 0, 0, 0, 13) = 𝒮 22 20 17 16 15 14

2 (1, 2, 0, 0, 0, 13) = 𝒮 22 20 17 16 15 14

3 (1, 2, 3, 0, 0, 10) 22 20 17 13 12 11

4 (1, 2, 3, 5, 0, 5) 22 20 17 13 7 6

5 (1, 2, 3, 5, 1, 4) =ℛ 22 20 17 13 7 5

6 (1, 2, 3, 5, 1, 4) =ℛ 22 20 17 13 7 5

Note: The parts of the adapted censoring plans are marked in the respective color of the original censoring plans.

unbiased estimator is given by

̂
𝜗L =

1

3

3∑

j=1

𝛾jW
ℒD
j

= 1

3

(
(R1 + 1)XℒD

1
+ (R2 + 1)XℒD

2
+ 𝛾3XℒD

3

)
.

3.1.4 Bayesian inference

For exponentially distributed life times, the prior

𝜋
𝜆,𝛽
(𝜗) = 𝜆

𝛽

Γ(𝛽)
𝜗

−(𝛽−1)
e
−𝜆∕𝜗

, 𝜗 > 0,

with hyper-parameters 𝛽 > 0 and 𝜆 > 0 can be used to obtain

explicit Bayesian estimates. Then, from the likelihood func-

tion (3.4) and (3.3), the posterior density function 𝜋
∗
𝜆,𝛽

(⋅|data)
of 𝜗 is obtained as

𝜋

∗
𝜆,𝛽

(𝜗|data) = (TTT + 𝜆)m+𝛽

Γ(m + 𝛽)
𝜗

−(m+𝛽−1)
e
−(TTT+𝜆)∕𝜗

, 𝜗 > 0,

(3.31)

where the total time on test TTT is defined in (3.6). The

Bayesian estimator of 𝜗 under the squared-error loss function

is simply obtained as the posterior mean (which is immediate

from (3.31))

̂
𝜗B =

TTT + 𝜆
m + 𝛽 − 1

. (3.32)

Note that it exists for any 𝛽, 𝜆 > 0.

3.2 Application to Ng–Kundu–Chan model

Given a censoring plan ℛ ∈ ℭm,n, the Ng-Kundu-Chan

model is included in the presented model by choosing 𝒮 =
𝒪m = (0, … , 0, n − m), that is, right censoring is applied as

second plan. In fact, this reflects the strategy that the exper-

iment should be terminated as fast as possible after passing

the threshold T . From (2.4) and (2.6), we get

𝛾j,d =

{
n − j + 1 − R•j−1, 1 ≤ j ≤ d + 1

n − j + 1 − R•d, d + 2 ≤ j ≤ m
.

The above mentioned estimators can thus be applied in this

model with obvious adaptions of the censoring plan.

For instance, the likelihood function simplifies to

(𝜽|x1, … , xm) = c(ℒd) ⋅

( m∏

j=1

f𝜽(xj)

)

⋅

( d∏

j=1

(
1 − F𝜽(xj)

)Rj

)

⋅ (1 − F𝜽(xm))n−m−R•d
,

with normalizing constant c(ℒd) =
∏m

j=1
𝛾j,d =

∏m
j=1
(n −

j + 1 − R•min(d,j−1)) . It is worth to note that no conditional

inference by conditioning on the number of observed failures

D = d is needed for the above result, as was indicated in Ng

et al. (2009). Note that, for example, both the maximum like-

lihood estimator in (3.6) and the Bayesian estimator in (3.32)

have the same form but with appropriately adapted total time

on test statistic TTT (which depends on the censoring plans).

In the Ng–Kundu–Chan model, it is given by

TTT =
D∑

j=1

(Rj + 1) Xj∶m∶n +
m−1∑

j=D+1

XℒD
j∶m∶n

+ (n − m + 1 − R•D)X
ℒD
m∶m∶n.

Regarding linear estimation, note first that censoring plansℛ
and𝒪m are always regularly paired in the sense of Remark 2.2.

The rank condition in (3.30) on Λ simplifies to

rank Λ = m − 1 −
m−1∑

j=1

1{0}(Rj) =
m−1∑

j=1

1[1,∞)(Rj), (3.33)

that is, the rank is given by the number of positive censoring

numbers Rj, j ∈ {1, … ,m − 1}.
In particular, assuming Rj > 0 for every j ∈ {1, … ,m},

we get rank Λ = m − 1 and the kernel {0}. Therefore, ̂𝜗L =
nWℒD

1
is the only unbiased linear estimator of 𝜗 and, thus,

trivially the best one. Of course, the condition can be slightly

extended as stated in Theorem 3.9 meaning that the initial part

of the censoring planℛ consists of zeros until component k0.

The density functions of the spacings do not exhibit a par-

ticularly simpler structure so that the formulas remain the

same except for inserting particular 𝛾’s. Note that, accord-

ing to Remark 2.5, we have 𝛾j,d ≥ 𝛾j in the Ng–Kundu–Chan

model. Hence, the spacings are always stochastically larger
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than an exponential distribution. Some plots of the cumula-

tive distribution functions are given in Figure 8. The ordering

of the cumulative distribution function is illustrated by these

plots. The difference between the distribution function of

the spacing and the exponential one becomes larger for an

increasing number of the spacing.

4 ILLUSTRATIVE EXAMPLES AND
SIMULATIONS

In this section, we first provide an algorithm to generate ran-

dom numbers in the generalized Ng–Kundu–Chan model and,

second, we present selected simulation results.

4.1 Simulation algorithm

The generation of non-adaptive progressively Type-II

censored order statistics was introduced in Balakrishnan

and Sandhu (1995), who proposed a popular generation

algorithm in the case of underlying independent and identi-

cally distributed random variables. Different approaches to

simulate progressively Type-II censored order statistics are

summarized and discussed in Balakrishnan and

Cramer (2014, Chapter 8). We follow one of these proce-

dures in the following that is based on independent standard

exponential random variables Z1, … Zm. That is, we propose

a procedure to generate a sample from XℒD
1∶m∶n, … ,XℒD

m∶m∶n

as follows, with F being the underlying distribution function

having quantile function F←
.

Procedure 4.1. Generation of adapted progres-

sively Type-II censored data (from cdf F)

Input: Censoring plans ℛ,𝒮 ∈ ℭm,n;

threshold T ∈ R.

Output: Adaptive progressively Type-II cen-

sored order statistics Xℒd
r∶m∶n, r =

1, … ,m, and applied censoring plan

ℒd.

FIGURE 8 Plots of the cumulative distribution functions of the spacings WℒD
k , k = 1, … , 6, in the (generalized) Ng–Kundu–Chan model for the censoring

schemes ℛ = (1, 2, 3, 5, 1, 4), 𝒮 = (0, 0, 0, 0, 0, 16), threshold T = .1 and distribution parameter 𝜗 = 1 (solid lines), compared to the cumulative distribution

function of the Exp(1∕𝛾k(ℛ))-distribution (dotted lines).
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1© Generate m independent Exp(1)-
distributed random variables Z1, … Zm;

2© Let Yℛ
0
∶= 0. For k = 1, … ,m:

(a) calculate Yℛk = Zk∕𝛾k,

where 𝛾k = 𝛾k(ℛ) is

obtained from initial censoring

plan ℛ;

(b) calculate Zℛk∶m∶n = Yℛk +
Zℛk−1∶m∶n;

3© Determine d =
∑m

r=1
1(−∞,−ln(1−F(T))

(Zℛr∶m∶n);
4© If d ∈ {m − 1,m}, then

(a) save Zℛ
1∶m∶n, … ,Zℛm∶m∶n

as Zℒd
1∶m∶n, … ,Zℒd

m∶m∶n and

continue with step 6©;

(b) else, that is, d ∈
{0, … ,m − 2}, save Zℛ

1∶m∶n,

… ,Zℛd+1∶m∶n as Zℒd
1∶m∶n, … ,

Zℒd
d+1∶m∶n and continue with

step 5©;

5© Let Yℒd
d+1

∶= Zℛd+1∶m∶n. For k = d +
2, … ,m:

(a) determine 𝛾k(ℒd) = 𝛾k,d
according to Procedure 4.2;

FIGURE 9 Plots of the densities of the spacings WℒD
k , k = 1, … , 6, in the generalized Ng–Kundu–Chan model for the censoring plans ℛ = (1, 2, 3, 5, 1, 4),

𝒮 = (6, 3, 0, 1, 4, 2), threshold T = .1 and distribution parameter 𝜗 = 1 (solid lines) compared to the results of 1,000,000 simulations as well as to the

exponential densities with parameters 1∕𝛾k(ℛ) (dotted line) and 1∕𝛾k(𝒮 ) (dashed line), respectively. Note the different scales of the vertical axis.
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(b) calculate Yℒd
k = Zk∕𝛾k,d;

(c) calculate Zℒd
k∶m∶n = Yℒd

k +
Zℒd

k−1∶m∶n;

6© Let Xℒd
r∶m∶n = F←(1 − exp(−Zℒd

r∶m∶n)), r =
1, … ,m.

Note that step 6© can be omitted if the underlying distribu-

tion is standard exponential. The same holds in the case of an

Exp(𝜗)-baseline distribution if in step 1©, instead of indepen-

dent Exp(1)-, independent Exp(𝜗)-distributed random vari-

ables are generated.

Procedure 4.2 (Sub-procedure to determine

𝛾k(ℒd) = 𝛾k,d, k = d + 2, … ,m, in step 5© of

Procedure 4.1).

Input: Censoring plans ℛ,𝒮 ∈ ℭm,n; num-

ber d ∈ {0, … ,m − 2}
Output: 𝛾k(ℒd) = 𝛾k,d, k = d + 2, … ,m.

1© If d = 0, then let 𝛾k(ℒd) = 𝛾k(𝒮 ), k =
2, … ,m, where 𝛾k(𝒮 ) is obtained from

censoring plan 𝒮 and stop the procedure;

else, that is, d ∈ {1, … ,m − 2}, continue

with step 2©;

FIGURE 10 Plots of the densities of the spacings WℒD
k , k = 1, … , 6, in the generalized Ng–Kundu–Chan model for the censoring plans

ℛ = (1, 2, 3, 5, 1, 4), 𝒮 = (1, 2, 0, 0, 0, 13), threshold T = .1 and distribution parameter 𝜗 = 1 (solid lines) compared to the results of 1,000,000 simulations as

well as to the exponential densities with parameters 1∕𝛾k(ℛ) (dotted line) and 1∕𝛾k(𝒮 ) (dashed line), respectively. Note the different scales of the vertical

axis.
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TABLE 4 Adaptive censoring plans with initial plan ℛ and 𝒮 as desired plan after the change time T .

Vector of 𝜸d

Change number Adapted censoring plan Minimum requirement: (6, 5, 4, 3, 2, 1)
d 𝓛d 𝜸1,d 𝜸2,d 𝜸3,d 𝜸4,d 𝜸5,d 𝜸6,d

0 (0, 0, 0, 0, 0, 16) = 𝒮 22 21 20 19 18 17

1 (16, 0, 0, 0, 0, 0) =ℛ 22 5 4 3 2 1

2 (16, 0, 0, 0, 0, 0) =ℛ 22 5 4 3 2 1

3 (16, 0, 0, 0, 0, 0) =ℛ 22 5 4 3 2 1

4 (16, 0, 0, 0, 0, 0) =ℛ 22 5 4 3 2 1

5 (16, 0, 0, 0, 0, 0) =ℛ 22 5 4 3 2 1

6 (16, 0, 0, 0, 0, 0) =ℛ 22 5 4 3 2 1

Note: The parts of the adapted censoring plans are marked in the respective color of the original censoring plans.

2© Determine 𝛾k(ℒd) = 𝜂k,d ∨ (m − k + 1),
k = d + 2, … ,m, with 𝜂k,d = n − k +
1−R•d−

∑k−1

i=d+1
Si according to Equations

(2.6) and (2.4).

4.2 Simulation results and illustrative examples

In that what follows, we present simulation results for selected

illustrative cases.

Example 4.3. We first take up Example 2.4 and

consider the censoring plansℛ = (1, 2, 3, 5, 1, 4)
and 𝒮 = (6, 3, 0, 1, 4, 2) with n = 22 and

m = 6. The corresponding censoring plans ℒd
and gamma schemes 𝜸d for any d ∈ {0, … , 6}
are given in Table 1. While 𝛾1,d, that is, the

number of items in the experiment immediately

before the first failure occurs, does not depend

on d, the number 𝛾k,d of items in the experiment

immediately before the k-th failure does for any

k ∈ {2, … , 6}. This can be easily seen from

Table 1.

In Figure 9, we plot the densities of the spac-

ings WℒD
k , k = 1, … , 6, for the censoring plans

ℛ and 𝒮 , threshold T = .1, and distribution

parameter 𝜗 = 1 (see also Figure 4) against

the results of 1,000,000 simulations according to

Procedure 4.1. It can be seen that the simula-

tions results for each spacing WℒD
k correspond

well to the marginal density function f WℒD
k

𝜇,𝜗

given

in Theorem 3.3, the latter being plotted as solid

line.

For each spacing WℒD
k also the exponential

density curves with parameters 1∕𝛾k(ℛ) (dot-

ted line) resp. 1∕𝛾k(𝒮 ) (dashed line) are shown

for comparison. As the first spacing WℒD
1

is

exponentially distributed with parameter 1∕n (cf.

proof of Theorem 3.3), the density curves do not

differ for the first spacing since n = 𝛾1(ℛ) =
𝛾1(𝒮 ). For other spacings, the marginal density

functions (solid lines) are initially quite similar to

the densities of the exponential distribution with

parameter 1∕𝛾k(ℛ). However, the plots show

that the marginal densities and the exponential

densities can differ significantly for both expo-

nential distributions with parameters 1∕𝛾k(𝒮 )
(dashed lines) and 1∕𝛾k(ℛ) (dotted lines); see

also Figure 5.

Example 4.4. Compared to Example 4.3,

we keep the first censoring plan ℛ =
(1, 2, 3, 5, 1, 4) and change the second one to

𝒮 = (1, 2, 0, 0, 0, 13). Thus, as can been seen

from Table 3, the applied adapted censoring

plan ℒd remains stable for d ∈ {0, 1, 2} and

differs for change numbers d afterwards. Cor-

respondingly, the number of items 𝛾k,d in the

experiment immediately before the k-th failure

does not depend on d for k ∈ {1, 2, 3}. In con-

trast, the numbers 𝛾k,d differ depending on d for

any k ∈ {4, 5, 6} (see table columns referring to

𝛾4,d to 𝛾6,d).

In Figure 10, we plot again the densities of

the spacings WℒD
k , k = 1, … , 6, for the censor-

ing plan ℛ and the modified plan 𝒮 , threshold

T = .1 and distribution parameter 𝜗 = 1 against

the results of 1,000,000 simulations as well as

the exponential density curves with parameter

1∕𝛾k(ℛ) (dotted lines) and 1∕𝛾k(𝒮 ) (dashed

lines). Then, the density curves do not differ for

the first, second and third spacing. However, for

higher spacings the density curves become quite

different. In this example, the density function of

the 5th resp. 6th spacing differ significantly from

the exponential density with parameters 1∕𝛾5(ℛ)
resp. 1∕𝛾6(ℛ) (dotted lines). By contrast, the

deviation from the density function of the expo-

nential function with parameters 1∕𝛾5(𝒮 ) resp.

1∕𝛾6(𝒮 ) (dashed lines) is not so pronounced. The

latter is due to the fact that censoring according
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FIGURE 11 Plots of the densities of the spacings WℒD
k , k = 1, … , 6, in the generalized Ng–Kundu–Chan model for the censoring plans

ℛ = (16, 0, 0, 0, 0, 0),𝒮 = (0, 0, 0, 0, 0, 16), threshold T = .1 and distribution parameter 𝜗 = 1 (solid lines) compared to the results of 1,000,000 simulations as

well as to the exponential densities with parameters 1∕𝛾k(ℛ) (dotted line) and 1∕𝛾k(𝒮 ) (dashed line), respectively. Note the different scales of the vertical axis.

to plan 𝒮 takes place not only for d = 0 but also

for d = 1, 2.

Example 4.5. In this last example, we consider

two opposite one-step censoring plans ℛ =
(16, 0, 0, 0, 0, 0) and 𝒮 = (0, 0, 0, 0, 0, 16),
that is first-step censoring (see Balakrishnan

et al. (2008); Park and Ng (2012)) and right cen-

soring. Obviously, see Table 4, the first applied

censoring plan ℛ = (16, 0, 0, 0, 0, 0) is main-

tained regardless of d except for the case d = 0,

that is, except for the case that no failure has

been observed before the predefined threshold

T . Thus, the number of units in the experiment

immediately before the k-th failure 𝛾k,d already

differs significantly from 𝛾1,d for k = 2 and

decreases steadily by one afterwards for k =
3, … , 6.

In Figure 11 it is thus seen that for any spac-

ing WℒD
k , k ∈ {2, … , 6}, the marginal den-

sity curves (solid lines) differ significantly from

both exponential density curves with parameters

1∕𝛾k(ℛ) (dotted line) and 1∕𝛾k(𝒮 ) (dashed line),

respectively.

5 CONCLUSION

In the present paper, we have extended the model of adaptive

Type-II progressive censoring introduced by Ng et al. (2009)
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by allowing to switch from a given initial censoring plan to

any new plan of the same length once a failure time exceeds

a given threshold. We have described this so-called gener-

alized Ng–Kundu–Chan model in detail, paying particular

attention to the construction of the adaptive censoring plan,

which depends on the observed number of observations that

do not exceed the prefixed threshold, in order to ensure that

the desired number of measurements is made. Taking into

account that the censoring plan is generally random, it has

been shown that the joint distribution of the adaptive progres-

sively Type-II censored order statistics is defined stepwise

based on the joint density functions of standard progressively

Type-II censored order statistics with non-random censor-

ing plans. Since the number of observations not exceeding

the threshold is obtained directly from the sample, we have

discussed that likelihood based inference such as the com-

putation of maximum likelihood (and Bayesian) estimates is

along the same lines as for non-adaptive progressive Type-II

censoring.

Assuming exponentially distributed failure times, we have

further discussed the distributional properties of maximum

likelihood estimators. It was found that the normalized
spacings are independent and identically exponentially dis-

tributed, as for standard progressive Type-II censored order

statistics. This result holds even though the normalized spac-

ings in the generalized Ng-Kundu-Chan model have normal-

izing factors that depend on the random number D of failure

times before the threshold and are thus themselves random.

However, the situation is different for non-normalized spac-

ings. It turned out that spacings themselves are generally not

independent and have marginal distributions that are mixtures

of exponentials. This result has been used to discuss linear

inference in the generalized Ng-Kundu-Chan-Model. While

the first normalized spacing is always a linear estimator for

the exponential rate parameter, it was proved that other single

spacings do not generally lead to an unbiased estimator. How-

ever, we have derived conditions which ensure the existence

of an unbiased estimator when higher spacings are involved,

even though they themselves are biased. This is due to can-

cellation effects of non-linear parts in the expectation of a

single spacing. We have also discussed restrictions on the

censoring plans that enable us to find a best linear unbiased

estimator in the generalized Ng-Kundu-Chan model. Apply-

ing our findings to the standard Ng-Kundu-Chan model, we

find, for example, that assuming that censoring after the first

observed failure time is foreseen according to the initial cen-

soring plan, the first normalized spacing is the only and hence

the best linear unbiased estimator of the exponential rate

parameter.

Our findings have been illustrated by several examples

throughout the paper. Finally, we have also presented an

algorithm to generate random failure times in the general-

ized Ng-Kundu-Chan model along with selected illustrative

simulation results.

Adaptive versions of progressive censoring has been

considered in the literature before. To our best knowl-

edge, modifications of adaptive progressive Type-II cen-

sored models that would lead to non-deterministic sample

size have not been considered so far. In the generalized

Ng-Kundu-Chan-model, for example, it would be of inter-

est in experimental design to consider the initial and sec-

ond censoring plan as possibly being of different lengths.

Similarly, the intended sampling according to the switch

from the first to the second censoring plan once the thresh-

old has been exceeded, without adapting the censoring plan

as described in detail in the present paper, would lead

to a random sample size that is at most the length of

the the initial censoring plan. Such extensions of the gen-

eralized Ng-Kundu-Chan model are subject of our future

research.
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APPENDIX

Proof of Theorem 3.3. In order to derive

the marginal density functions, we use sim-

ilar arguments to those applied in Cramer

and Balakrishnan (2013). First, from the den-

sity property of f WℒD |D=d
𝜗

we get from (3.16)

and Lemma 2.3 for arbitrary T > 0 and

0 ≤ d ≤ m − 1

∫𝒲 (m)
d (T)

m∏

j=1

(
𝛾j,df

𝜗
(𝛾j,dtj)

)
dtm

=
∫𝒲 (d+1)

d (T)

d+1∏

j=1

(
𝛾jf𝜗(𝛾jtj)

)
dtd+1

= P(D = d) = PT (D = d), (A1)

where 𝒲 (m)
d (T) = {x = (x1, … , xm) ∈

R
m
>0
|x•d < T ≤ x•d+1}, 𝒲 (d+1)

d (T) = {x =
(x1, … , xd+1) ∈ R

d+1

>0
|x•d < T ≤ x•d+1} and

PT (D = d) as in (2.2). Notice that the variables

td+2, … , tm are not involved in the condition so

that the respective part of the integral leads to the

factor one. For d = m, we get

∫𝒲 (m)
m (T)

m∏

j=1

(
𝛾j,mf

𝜗
(𝛾j,mtj)

)
dtm

=
∫

1(0,T](t•m)
m∏

j=1

(
𝛾jf𝜗(𝛾jtj)

)
dtm

= P(D = m) = PT (D = m), say. (A2)

First, notice that WℒD
1

= Xℛ
1∶m∶n, which

means that WℒD
1

∼ Exp(𝜗∕n). For

k ∈ {2, … ,m} fixed, we have to con-

sider various subcases. Depending on

d ∈ {0, … ,m}, we have to evaluate the integrals
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f WℒD
k |D=d

𝜗

(tk) =
1

P(D = d) ∫𝒲 (m−1)
d,k (T ,tk)

m∏

j=1

(
𝛾j,df

𝜗
(𝛾j,dtj)

)
dtm … dtk+1dtk−1 … dt1, tk > 0, (A3)

for k ∈ {1, … ,m} and d ∈ {0, … ,m − 1} with

𝒲 (m−1)
d,k (T , t) =

⎧
⎪
⎨
⎪
⎩

{
x̃k ∈ R

m−1

>0
|x•d < T ≤ x•d+1

}
1© d ≤ k − 2

{
x̃k ∈ R

m−1

>0
|x•d < T ≤ x•d + t

}
2© d = k − 1

{
x̃k ∈ R

m−1

>0
|
∑d

j=1,j≠k xj + t < T ≤
∑d+1

j=1,j≠k xj + t
}

3© d ≥ k
. (A4)

and, for d = m,

𝒲 (m−1)
m,k (T , t) =

⎧
⎪
⎨
⎪
⎩

{
x̃k ∈ R

m−1

>0
|
∑d

j=1,j≠k xj + t < T
}

4© k ≤ m − 1

{
x̃ ∈ R

m−1

>0
|x•m−1 + t < T

}
5© k = m

. (A5)

Hereby the notation x̃k ∈ Rm−1
means that the k-th component xk of the vector x ∈ Rm

is omitted, that is, x̃k =
(x1, … , xk−1, xk+1, … , xm) ∈ Rm−1

.

Taking into account the cases 1© – 5©, the integration in (A3) can be written as

f WℒD
k |D=d

𝜗

(t) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

𝛾k,df
𝜗

(𝛾k,dt)
PT (D=d)

∫𝒲 (d+1)
d (T)

∏d+1

j=1

(
𝛾j,df

𝜗
(𝛾j,dtj)

)
dtd+1 … dt1, d ≤ k − 2

𝛾k,df
𝜗

(𝛾k,dt)
PT (D=d)

∫ 1(T−t,T)(t•k−1)
∏k−1

j=1

(
𝛾j,df

𝜗
(𝛾j,dtj)

)
dtk−1 … dt1, d = k − 1

𝛾k,df
𝜗

(𝛾k,dt)
PT (D=d)

∫𝒲 (d)
d−1
(T−t)

∏d+1

j=1,j≠k
(
𝛾j,df

𝜗
(𝛾j,dtj)

)
dtd+1 … dtk+1dtk−1 … dt1, k ≤ d ≤ m − 1

𝛾k,mf
𝜗

(𝛾k,mt)
PT (D=m)

∫ 1(0,T−t](t(k)•m−1
)
∏m

j=1,j≠k
(
𝛾j,mf

𝜗
(𝛾j,mtj)

)
dtm … dtk+1dtk−1 … dt1, k < d = m

𝛾m,mf
𝜗

(𝛾m,mt)
PT (D=m)

∫ 1(0,T−t](t•m−1)
∏m−1

j=1

(
𝛾j,df

𝜗
(𝛾j,mtj)

)
dtm−1 … dt1, k = d = m

where t(k)•m−1
=
∑m

j=1,j≠ktj. In case 1©, we get from (A1) that the integral equals PT (D = d) so that

f WℒD
k |D=d

𝜗

(t) = 𝛾k,df
𝜗
(𝛾k,dt), t > 0.

In case 3©, the integral equals the probability PT−t(Dk,d = d − 1) = F(k)d−1∶d∶n(T − t) − F(k)d∶d∶n(T − t) where the parameters are

given by (cf. Lemma 2.3)

(𝛾1,d, … , 𝛾k−1,d, 𝛾k+1,d, … , 𝛾d+1,d) = (𝛾1, … , 𝛾k−1, 𝛾k+1, … , 𝛾d+1).

Obviously, it is zero for T < t. The same holds for case 4©. Here we get PT−t(Dk,m = m − 1) = F(k)m−1∶m−1∶n(T − t). In case 5©,

the probability is given by PT−t(Dm = m − 1) = Fm−1∶m−1∶n(T − t). In case 2©, we have d = k − 1 so that we can write

∫
1(T−t,T)(t•k−1)

k−1∏

j=1

(
𝛾j,k−1f

𝜗
(𝛾j,k−1tj)

)
dtk−1 … dt1

using properties of the indicator function and Lemma 2.3 for j ≤ k − 1

=
∫

1(0,T](t•k−1)
k−1∏

j=1

(
𝛾jf𝜗(𝛾jtj)

)
dtk−1 … dt1

−
∫

1(0,T−t](t•k−1)
k−1∏

j=1

(
𝛾jf𝜗(𝛾jtj)

)
dtk−1 … dt1

= P(Xk−1∶m∶n ≤ T) − P(Xk−1∶m∶n ≤ T − t) = Fk−1∶m∶n(T) − Fk−1∶m∶n(T − t)

Summing up, we get for 0 ≤ t ≤ T and 1 ≤ k ≤ m−1 with the definition F0∶m∶n(T) ≡ 1 and Fk−1∶m∶n(T−t) = F(k)k−1∶k∶n(T−t) that

f WℒD
k

𝜗

(t) =
k−2∑

d=0

(Fd∶m∶n(T) − Fd+1∶m∶n(T))𝛾k,df
𝜗
(𝛾k,dt)

+ (Fk−1∶m∶n(T) − Fk−1∶m∶n(T − t))𝛾kf
𝜗
(𝛾kt)
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+
m−1∑

d=k
(F(k)d−1∶d∶n(T − t) − F(k)d∶d∶n(T − t))𝛾k,df

𝜗
(𝛾k,dt) + F(k)m−1∶m−1∶n(T − t)𝛾k,mf

𝜗
(𝛾k,mt)

=
k−2∑

d=0

(Fd∶m∶n(T) − Fd+1∶m∶n(T))𝛾k,df
𝜗
(𝛾k,dt) + Fk−1∶m−1∶n(T)𝛾kf

𝜗
(𝛾kt),

using that 𝛾k,d = 𝛾k, d = k, … ,m (see Lemma 2.1). For k = m, we find

f WℒD
m

𝜗

(t) =
m−2∑

d=0

(Fd∶m∶n(T) − Fd+1∶m∶n(T))𝛾m,df
𝜗
(𝛾m,dt) + Fm−1∶m−1∶n(T)𝛾mf

𝜗
(𝛾mt)),

For T < t, we get by analogy

f WℒD
k

𝜗

(t) =
k−2∑

d=0

(Fd∶m∶n(T) − Fd+1∶m∶n(T))𝛾k,df
𝜗
(𝛾k,dt) + Fk−1∶m∶n(T)𝛾kf

𝜗
(𝛾kt).

This yields the mixture representation of the density function. The expressions for cumulative distribution function and moments

follows directly from properties of the mixture.

▪
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