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Abstract 
This paper assesses the local economic impact of pelagic Sargassum seaweed washed ashore 
in tourism-heavy coastal zones in the Mexican State of Quintana Roo. The study relies on a 
carefully designed geographic information systems (GIS) dataset of monthly observations from 
2016 to 2019 for 157 beach segments. The dataset comprises an innovate measure of 
Sargassum seaweed presence, remotely sensed nighttime light intensity as a proxy of economic 
growth, as well as information on key infrastructure, sociodemographic and beach characteristics. 
We apply a fixed-effects regression model that controls for general time trends and unobserved, 
time-invariant differences across observations. We estimate that the presence of Sargassum in a 
beach segment reduces nighttime light intensity by 17.5%, representing an approximate 11.6% 
decrease in gross local product. Considering that impacts of Sargassum on local economic 
activity may be delayed due to reputational effects, our analysis finds that significant lagged 
effects can be detected up until 12 months after Sargassum was detected on the shoreline. These 
effect sizes range between a 5.9 and a 9.9% reduction in gross local product. Various robustness 
checks, including an adjusted measurement of Sargassum and the consideration of potential 
spatial correlation across beach segments, indicate that estimated impacts are consistently 
significant and negative across numerous specifications. For one of most tourism-dependent 
regions in the world, the recurrent influx is one of the most threatening manifestations of climate 
change. Our research is the first to robustly quantify the economic impact of Sargassum, and 
highlights the extent to which economic activity is negatively affected by the accumulation of 
seaweed and how these effects persist over time. The next important step is for both public and 
private sectors to invest in forecasting systems and containment strategies as well as engage in 
cleanup efforts to mitigate severe accumulations, inducing economic resilience in coastal 
communities.  
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1 Introduction 

Latin America and the Caribbean has a wealth of coastal natural capital, including over 64,000 

km of coastline, that hosts a high concentration of urban areas, and is a hotspot of economic activity 

(Maldonado et al., 2020). It is estimated that over 23 million people in the Caribbean and the Americas 

live within 10 meters of the coastline (ibid). Coastal areas are inextricably linked to the Region’s recent 

growth in both GDP and population, as coastal ecosystems support economies and communities with   

important goods and services, such as fisheries, tourism, and raw materials (Schueler, 2017). Mexico 

particularly hosts a high concentration of urban areas along its over 12,000 km of coastline, where 

over 30 million people are estimated to live (CONABIO, 2019). León (2004) in his economic 

assessment of the Mexican coast estimates that approximately 3.7% of Mexico’s GDP comes from 

economic activities that take place on its coast. 

In 2011, pelagic Sargassum began washing ashore along the Caribbean and Gulf of Mexico 

coastlines in unprecedented quantities, covering whole beaches with seaweed and directly affecting 

businesses and local communities reliant on tourism and other economic activity within the region’s 

popular coastal zone. Since then, Sargassum blooms have been a common occurrence on the 

region’s shorelines. 2018 saw the first year-round occurrence of Sargassum in the Caribbean Sea 

(Burrowes et al., 2019). One of the regions hardest hit by these Sargassum blooms is Quintana Roo, 

one of the main engines of the Mexican coastal economy and Mexico’s easternmost state, located in 

the Yucatán Peninsula. Along its 920 kms of coastline, lies the economic center of Cancún, as well as 

the towns of Playa del Carmen and Tulum, the ports of Cozumel and Isla Mujeres, and the Riviera 

Maya district. Their sandy beaches attracted more than 15 million tourists in 2019, generating more 

than USD 16 billion in revenue and capturing over 43% of Mexico’s foreign exchange earnings from 

tourism (Ministry of Tourism of Quintana Roo, 2019). Tourism is Quintana Roo’s most important 

economic activity, accounting for more than one fifth of the state’s GDP as of 2019 (INEGI, 2019). 

2018 saw the first year-round occurrence of Sargassum in the Caribbean Sea (Burrowes et al., 2019), 

and over half a million tons of Sargassum suffocated the coast of Quintana Roo during that period 

(Robledo & Vázquez-Delfín 2019). 

The suspected causes of this algae bloom vary, but a commonly identified trigger is increasingly 

high nutrient loads flushed out to sea from agriculture and poor land-use in both the Amazon and 

Congo River Basins and the Mississippi River. In addition, increased iron and phosphate from Saharan 

dust fall over the mid-Atlantic has also been suggested as a possible cause (Huffard et al, 2014; 

Amaral-Zettler et al., 2016; Smetacek & Zingone, 2013; Johnson et al, 2013). The explosion of 

Sargassum blooms have also been linked to global climate change and warmer oceans, where higher 

than normal temperatures are conducive to algae growth (Louime et al., 2017, Wang et al., 2019). 

Even though the economic impact of Sargassum blooms has been assessed only anecdotally, there 
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is a large literature on the economic impact of climate change and natural resource shocks. Relying 

on methods and data by Deschênes and Greenstone (2007), Fisher et al. (2012) use agricultural 

output and random weather fluctuations information and conclude that predictions for climate-change 

economic impacts are negative in all but one specification. Similarly, using spatial econometric panel 

techniques, Felbermayr et al. (2022) show that weather anomalies reduce local income growth. 

Guerrero Compeán (2013) demonstrates that severe weather conditions lead to sharp declines in 

consumption and welfare outcomes, particularly among the poor. Tol (2020) reviews 27 published 

estimates of the economic impact of climate change and argues that that a global mean temperature 

increase of 2.5 degrees Celsius would make the average person feel as if they had lost 1.3 percent of 

their income and that the relative economic impact of climate change decline as per capita income 

rises. In agreement, Maddison and Rehdanz (2011) indicate that poorer and hotter countries are more 

vulnerable to climate change. Porter et al. (2014) find that climate change reduces agricultural yields 

by up to 50%, while Dell, Jones and Olken (2009) and Hallegatte (2005) provide evidence that climate 

change also affects the growth rate of the economy. 

While anecdotal evidence (Louime et al., 2017; Ramlogan et al., 2017; Schell et al., 2015; Solarin 

et al., 2014) suggests that these unprecedented Sargassum events have led not only to a decline in 

economic revenue, but also to immediate problems for the fishery, transportation and tourism 

industries of coastal economies, not to mention serious ecological impacts, no rigorous analysis has 

yet been undertaken to quantify the causal effect on economic activity. Efforts have so far focused on 

quantifying the frequency and volume of Sargassum influx along the Caribbean coast (e.g. Putman et 

al, 2018; Wang et al, 2019; Wang & Hu, 2017) and identifying the origin and triggers of algae bloom 

(e.g. Gower et al., 2013; Oviatt et al., 2019; Cabanillas-Terán et al., 2019) and its ecosystemic effects 

(van Tussenbroek et al., 2017). To date, evidence on the environmental and economic impacts of 

Sargassum is largely of qualitative nature. For instance, a study by FAO (2017) points to the negative 

effects on inshore fish nurseries, while Gavio and Santos-Martinez (2018) documented the reduced 

chance of turtle hatchlings successfully reaching open ocean. Ramlogan, McConney and Oxenford 

(2017) document impacts of Sargassum abundance on the fishery value chain, including equipment 

damage, disruptions in operations and changes in disposable income and productivity. Sargassum 

blooms have also created a vast raft straddling, slowing down transatlantic navigation significantly 

(UNEP-CEP, 2021). It has also been reported that decomposing Sargassum causes corrosion of 

electrical appliances and equipment along the shoreline (Méndez Tejeda & Rosado Jiménez, 2019).  

However, given the methodological challenges of identifying a counterfactual state in which 

Sargassum would not have been present along the coastline, causal estimation of the seaweed’s 

impact on economic activity has not been carried out to date. Furthermore, even though countries 

have undertaken massive cleaning efforts to combat the negative economic and environmental effects 

of Sargassum, little information is available on the cost-effectiveness of these solutions. The tourism 
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industry is concerned about Sargassum’s negative aesthetic effects on beaches (Burrowes et al., 

2019), in addition to the cost of beach cleaning, sometimes borne directly by hotels and businesses 

along the coast (Rodríguez Martínez et al., 2016). The potential cost of cleaning up the Sargassum 

inundations across the Caribbean has been estimated to exceed $120 million annually (Milledge and 

Harvey, 2016), yet it is difficult to justify the large expenditure of public funds without empirical 

evidence that can support the effectiveness of such investments.  

To fill this research gap, we assess the economic impact of Sargassum on economic activity in 

this region, using novel measurement tools of both Sargassum presence and local economic activity. 

To do so, we compile a comprehensive GIS dataset of over 157 beach sites in Quintana Roo, 

Mexico that contains four years of satellite imagery, from 2016 to 2019, using innovative data 

collection techniques to measure seasonal influx of Sargassum seaweed, and nighttime light intensity 

data as a proxy of economic growth. To estimate a causal effect of Sargassum presence on economic 

activity at the beach level, we use a fixed-effects regression model that controls for general time 

trends and unobserved, time-invariant differences across observations. The methodology further 

allows us to control for spatial and temporal intercorrelation across adjacent beach sites. Our findings 

suggest that the presence of Sargassum has a negative effect on local economic activity. We also find 

these impacts to be long-lasting, as the negative impacts on beach level nighttime light intensity can 

be observed even after a year of Sargassum detection. This is critical knowledge as governments and 

the private sector have become increasingly concerned about the adverse effects of Sargassum on 

tourism-dependent zones as well as the high cost of removal for local authorities and numerous 

environmental problems. Understanding the magnitude of adverse economic consequences of 

Sargassum presence can inform the decision-making of stakeholders in terms of directing funding to 

support Sargassum removal where economic impact might be most severe. 

In the next section, we examine the economic importance of coastal zones and present a general 

characterization of the Mexican Caribbean. We discuss how economic development started in 

Quintana Roo, as well as its transition from a coastal economy based on small-scale fisheries to a 

globally recognized tourist destination and preeminent contributor to the country’s economic growth. 

We then describe the issue of increasing influx of pelagic Sargassum along the Caribbean and Gulf 

of Mexico coastlines, its origin and potential consequences, particularly on the Quintana Roo 

coastline. Its heavy reliance on beach tourism and recurrent Sargassum events make it an appropriate 

study area.  We then proceed to describe the data and our empirical approach to assess the impact 

of Sargassum on economic activity. Next, we discuss our main results and carry out a number of 

robustness checks. Finally, the last section of this paper summarizes our findings and concluding 

remarks.   
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1.1 The economic importance of coastal zones 

The coast is a critical component of most economies, including Mexico and, more specifically, 

Quintana Roo. The state’s coastal zone and resources represent strategic assets, and many of its 

communities vigorously seek private investments in coastal tourism and maritime transport, viewing 

them as offering promising opportunities for the diversification and integration of their economies. 

Coastal communities are rapidly expanding in response to growth in these sectors as well as 

urbanization and the intensification of transportation networks along coastal corridors in the Yucatán 

Peninsula.  

Nearly 1.9 million people live in Quintana Roo (INEGI, 2020). Azuz-Adeath and Rivera (2019) 

estimate that more than 1.4 million (approximately 78%) of the state’s inhabitants live in coastal 

municipalities. Annualized population growth in Quintana Roo’s most populated coastal municipalities 

between 2000 and 2015 was 3.9%, higher than the state’s rate of 3.7%, and substantially above the 

national rate of 1.4% (INEGI 2015). Consequently, as Quintana Roo grows, it is also becoming more 

coastal. The concentration of people in coastal areas is accompanied by a similarly disproportionate 

share of the state’s economic activity, most of which is coastal dependent and requires a site on, or 

close to, the coastline. In fact, Torres and Momsen (2005) assess that almost 90% of the state’s gross 

product is generated in coastal zones.  

The state’s economic base has dramatically evolved over the past forty years. Fishing and other 

primary activities made up 2% of the Quintana Roo’s economy in 1980, and has declined to 0.7% of 

the gross state product in 2019. The role of manufacturing has also shrunk, from 17% of the state’s 

economic output in 1980 to 11% in 2019. During the same period, however, the participation of the 

service sector, which tends to generate more marginal GDP growth, increased from 81% to 88%. In 

particular, tourism alone accounts for roughly half of the state’s economy, which explains the state’s 

accelerated rate of economic growth, from 1.9% in the 1980s to 4.6% in the 2010s. Overall, Quintana 

Roo’s gross product has more than quadrupled in forty years, from 67 billion Mexican pesos of 2013 

in 1980 to 290 billion in 2019 (INEGI, 2021).  Ocean uses and maritime access have been at the heart 

of Quintana Roo’s economic development. Fishing focuses on the capture of species of high 

commercial value, such as lobster, octopus and shrimp. Fisheries provide employment to 

approximately 2,000 fishermen, of which more than 90% are in the small-scale sector (CONAPESCA, 

2012).    

The coast of Quintana Roo also serves as an important node in the flow of goods. The volume of 

cargo handled in the port of Puerto Morelos amounted to over 21,900 metric tons in 2020. Total 

tonnage pre-pandemic levels doubled this volume (APIQROO, 2021), having increased gradually over 

the past 20 years, with indications that port activity in the state is accelerating again in 2021. In addition 

to coastal and deep-sea shipping, Cozumel, Playa del Carmen, Isla Mujeres, Punta Sam and 
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Chetumal are recognized as ports for tourists, accounting for more than 14.3 million passengers in 

2019 (idem). 

Because of its white sand beaches and turquoise blue sea, Quintana Roo is also one of the most 

important tourist destinations in Latin America and the Caribbean. Tourism is central to the Quintana 

Roo economy, with more of the state’s workers employed by the tourist sector than in any other. With 

over 50% of the state’s workforce dedicated to touristic activities and almost 60% of the state’s gross 

product being generated by tourism, Quintana Roo is the most tourism-dependent state of the nation 

(Ministry of Tourism of Mexico, 2020), while Cancún is considered the most tourism-dependent urban 

area in the world (WTTC, 2018). This is the direct result of the Mexican government’s involvement in 

the creation of Cancún as a new tourist resort destination, developing its airport, water systems, 

energy and tourist infrastructure, as well as the revitalization of archeological sites, in what was in the 

1970s one of the poorest and most isolated areas of Mexico. The provision of this infrastructure was 

primarily financed by the Inter-American Development Bank and occurred in the context of Mexico’s 

regional development goal of initiating and overseeing its tourism industry (IDB, 1972; Bennett & 

Sharpe, 1985; Clancy, 2001). 
 

1.2 The surge of Sargassum in the Mexican Caribbean and its impact  

Sargassum belongs to the group of brown algae (Phaeophyceae) that inhabit the oceans of the world. 

The pelagic Sargassum subgroup, that is, the one that floats freely in the ocean, is made up of two 

species: Sargassum natans and Sargassum fluitans, the former being the most abundant in the 

Atlantic Ocean. Sargassum exhibits optimal growth at temperatures between 24° and 30° C, and under 

adequate light, salinity, and temperature conditions, it can duplicate its mass in less than two weeks 

(Hanisak & Samuel, 1987).  

Sargassum naturally reaches all tropical and semi-temperate beaches in the Atlantic Ocean, with 

seasonal variations caused by regional and local atmospheric and oceanographic conditions. The 

natural presence of Sargassum on the coast is a source for shelter, food and nutrients in coastal 

ecosystems, as it provides habitat and direct resources to intertidal organisms, which are essential for 

bird life. Similarly, decomposing Sargassum is incorporated into coastal sediments, providing nutrients 

for dune vegetation, which in turn promotes beach stabilization and prevents coastal erosion (Williams 

& Feagin, 2010).   

Since the summer of 2011, substantially large volumes of Sargassum have recurrently 

washed ashore along the coastlines of the Caribbean, West Africa and northeastern Brazil (Franks 

et al., 2016; Wang et al., 2019). Gower, Young and King (2013) report widespread Sargassum lines 

being captured by color satellite, with numerous beach stranding events across the North 

Atlantic.  Accumulations of Sargassum in the Mexican Caribbean have continued for several years 

now (Chávez et al., 2014). The 2015 Sargassum bloom was massive enough that it became an issue 
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of concern for both the Quintana Roo and national governments, particularly because of its potential 

adverse impact on tourism (Espinosa & Li Ng, 2020). An inter-ministerial commission coordinated 

by the Mexican Ministry of Tourism and Ministry of the Environment led aerial monitoring and 

cleaning efforts along more than 180 kms of coastline in Quintana Roo that year (Government of 

Mexico, 2015).  

  

Figure 1. Volume of Sargassum (in tons), Quintana Roo 

Year Tons collected 
2015 1,400 
2016 1,500 
2017 1,000 
2018 522,226 
2019 85,495 
2020 19,054 
2021 44,943 
2022 29,243 

 
Source: Rodríguez Martínez et al. (2016), Government of Quintana 
Roo (2019), Personal correspondence with the Ministry of the 
Environment of Quintana Roo, and reporting from Ángeles and 
Sánchez (2017). 

 
 

Figure 2. Public interest in Sargassum, by region, measured by web search of the term 

 
Note: The numbers represent the search interest relative to the highest point on the chart for the selected region and 
time. A value of 100 is the peak popularity of the term “sargazo” for Quintana Roo and Mexico and “Sargassum” for 
searches worldwide, whilst a value of 50 means that the term is half as popular. 

Source: Google Trends (2021). 
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In the summer of 2018, Quintana Roo experienced extraordinary accumulations of Sargassum, 

and it remains as of today the year with the largest influx of the algae on record (see Figure 1). 

Public interest in Sargassum reached its peak among Quintana Roo citizens and Mexicans overall 

in the summer seasons of 2018 and 2019 (see Figure 2). Similarly, 2018 was also the first year on 

record with year-round occurrence of Sargassum blooms in the Caribbean Sea (Burrowes et al., 

2019). During the period January-September 2022, approximately 29,000 tons of Sargassum were 

collected from the Quintana Roo shoreline.   

The rest of the paper is organized as follows. Section 2 describes the multiple data sources we 

use to construct our outcome measures and covariates. Section 3 provides the empirical strategy that 

we use to answer two research questions: (i) does Sargassum posit an adverse effect on economic 

activity in coastal zones, and (ii) is this effect immediate or does it rather develop and persist over 

time? The answers to these questions are by no means obvious even if there is anecdotal evidence 

that Sargassum accumulation is linked to a decline in tourism. We propose a fixed-effects panel 

regression approach to estimate the impact of Sargassum on proxy indicators of economic activity. 

As we discuss in detail in this section, the premise of such a model is that we can control for omitted 

variable bias due to unobserved heterogeneity that is constant over time. Section 4 presents our main 

results as well as several robustness checks. Section 5 offers concluding remarks. 

 

2 Data Description 

2.1 General dataset design 

Since the estimation of the impact of Sargassum on economic activity at the beach level is 

crucially linked to the location of the beaches in question, a logical design of the evaluation 

method is to structure data in a geographic information system (GIS). This structure allows the 

combination of spatial information for relevant beach characteristics with other types of 

information, including nighttime light intensity data. GIS has proven to be a useful tool to conduct 

economic analysis of spatially based problems by incorporating contextual features into the 

evaluation design, thus enabling researchers to combine relevant characteristics based on 

systematic data observations into a single map with multiple geographical layers. In a 

comprehensive review, Avtar et al. (2020) describe the multiple uses GIS and remote sensing 

can have in the context of measuring progress towards the United Nations’ Sustainable 

Development Goals, highlighting that the scientific advances made in developing different spatial, 

spectral, radiometric, and temporal resolutions of geospatial data allow for an ever-increasing 

usage of such data in research and policy making. 
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In this context, a key condition of the spatial analysis is identifying the unit of observation of 

the GIS dataset. Geographically, the study area is restricted to the tourism-heavy coast of 

Quintana Roo state, in the Yucatán Peninsula of Mexico, which represents an approximate 1,000 

km of shoreline between Holbox Island in the Northeast and Chetumal in the South. Since this 

study focuses on the impact of Sargassum in coastal areas and specifically on beach tourism, a 

logical choice for the unit of observation is the individual beach within the study area. Figure 3 

depicts our study area: Quintana Roo State is highlighted in red within the Mexican territory in the 

upper lefthand corner of the map. The municipalities in which it is divided, and its shoreline, are 

represented by a red line in the larger map to the right of the figure. As we are only interested in 

the shoreline, our study focuses exclusively on the coastal municipalities displayed by name in 

the map. 
 

Figure 3: Map of Quintana Roo and its coastal municipalities 

 
 

Since there are no established administrative boundaries separating the shoreline into 

individual beach units, the analysis relies on the division of beaches into so-called “segments” by 

applying the methodology developed by Cruz et al. (2019) for coastal geomorphic segmentation. 

In order to assess coastal anthropization based on local environmental, morphological and 

demographic variables, the authors identified shoreline segments according to the predominant 

type of coastal material, including sand, gravel, cliff, rocky, muddy and artificial infrastructure. 

Boundaries between segments were then established by identifying rivers, lagoon inlets, coastal 

structures or abrupt changes in coastline alignment. For the analysis, we removed any shoreline 
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segments within large and small embayments because Sargassum detection in these 

ecosystems was not reliable. We also removed segments that delineated small, uninhabited 

islands. According to the geomorphological characterization and other criteria, our study area 

contains 157 shoreline segments, with an average length of 4.2 km and a total length of 656 km. 

Figure 4 presents two examples of shoreline segmentation according to Cruz et al. (2019) within 

our study area.   
 

Figure 4. Examples of shoreline segmentation in study area 

    

 

 

 

 

 

 

 

 
 

As depicted in Table 1, 60% of the identified shoreline segments consist of sand, which is in 

line with the touristic nature of Quintana Roo’s sandy beaches. Approximately 30% of segments 

are made of cliff or rocky material, while only a small portion (5%) consist of artificial infrastructure.  

 

Table 1. Descriptive statistics of shoreline segments 

Geomorphic type Number of shoreline 
segments 

Artificial infrastructure 9 
Cliff or rocky 49 
Sand 99 
Total 157 
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Figure 5. GIS dataset design 

Note: Dataset layers are organized by the category of required data (impact indicator or category of control variables). The observational unit varies with 
the type of impact indicator (specifically for the nighttime lights intensity data), but the data is all aggregated to the individual beach segment. 

Dataset Layer Variables
Needed

Observational
Unit Type of Data Data Source Time Period / 

Frequency

Economic growth Nighttime lights intensity 
(mean radiance) 450m pixel Impact Indicator VIIRS Day Night 

Band (DNB)
Oct. 2016 - Dec. 2019

(monthly)

Sargassum Sargassum occurrence Shoreline segment Independent Variable
SENTINEL-2 

Top of Atmosphere 
(TOA) imagery

Oct. 2016 - Dec. 2019
(monthly, with gaps)

Tourism activity

Number and distance of 
hotels, food & beverage, 

recreation & 
entertainment, 

archeological sites

Point location Covariates DENUE
Reguero et al. (2019)

One-time
observation

Coastal exposure

Shoreline length, 
geophysical type, wave 

energy, coastal 
vulnerability

Shoreline segment Covariates Natural Capital 
Project One-time

Demographics and 
infrastructure

Population density
Distance to key 
infrastructure

Population: 500m pixel

Infrastructure: point    
or line location

Covariates World Pop,
Google Earth Engine  Annual (2016-2019),

one-time
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Following this spatial division of the study area into beach segments, a comprehensive data 

collection effort was undertaken to identify and quantify various key attributes, such as beach 

exposure and characteristics of the surrounding infrastructure and demography. This was done 

with the objective of ensuring that a valid counterfactual for beaches with Sargassum can be 

identified, and that impact is estimated with attribution. Following the approach first proposed by 

Corral and Schling (2017), Figure 5 above presents the design of the GIS dataset, which consists 

of five geographical layers that contain the relevant information for the purpose of this spatial and 

temporal analysis. 

Because shoreline segment length is highly variable, ranging from 0.2 km to 40 km long, we 

calculated most of the spatial metrics using a set of regularly spaced points, 50 m apart, along 

the shoreline. These regularly spaced alongshore points were used to calculate metrics, like 

distances to infrastructure, and then values for the points were summarized by segment using an 

appropriate aggregation calculation, such as mean or minimum, depending on the metric. 
 

2.2 Sargassum 

Our main variable of interest is the detection of Sargassum along the Quintana Roo coastline, 

where its presence and accumulation on beaches may adversely affect tourism and overall 

economic activity. Satellite-based detection and monitoring of Sargassum has been successfully 

conducted for at least a decade. Many studies have applied straight-forward remote sensing 

indices, such as the Floating Algae Index (FAI) (Hu, 2009), the Maximum Chlorophyll Index 

(MCAI) (Gower et al., 2006), and the Alternative Floating Algae Index (AFAI) (Wang & Hu, 2016; 

Wang et al., 2019), which take advantage of the higher reflectance of the plants in the near-

infrared region of the spectrum relative to surrounding features, such as water or bare beach 

substrate. Data using these methods to detect and monitor oceanic Sargassum distribution, 

density, and coverage are publicly available. For example, the University of South Florida’s 

Sargassum Watch System (SaWS) produces Sargassum maps across the Caribbean Sea (and 

other regions around the globe) using the Floating Algae Index derived from MODIS, the 

Moderate Resolution Imaging Spectroradiometer satellite (NOAA, 2019), VIIRS, and Landsat 8 

OLI satellite imagery. 
 

 
 

 

https://doi.org/10.1080/01431161003639660
https://optics.marine.usf.edu/projects/SaWS.html
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Table 2. Count of unique Sentinel-2 image dates meeting maximum cloudy                           
pixel percentage threshold by year 

Year 
Unique S-2 
Image Date 

Counts 
2015 2 
2016 6 
2017 18 
2018 40 
2019 41 

All Years 
Combined 107 

 

Despite significant advances in the remote detection and monitoring of floating Sargassum1, most 

of these studies and efforts are focused on near real-time monitoring and forecasting of 

Sargassum in open waters and use coarse scale imagery (500-1000 m for MODIS), albeit with 

frequent revisit times (~1 day). For the purposes of this study, which focuses on historic trends of 

Sargassum, and not in the context of open water but along a geomorphologically diverse 

coastline, it is necessary to rely on higher resolution imagery to map historic Sargassum events 

on beaches and nearshore for individual shoreline segments. Therefore, a novel data processing 

approach was taken to generate a comprehensive dataset of historic Sargassum observations at 

medium frequency and higher spatial resolution. 

Table 3. Count of unique Sentinel-2 image dates meeting maximum  
cloud pixel percentage threshold by month across all years 

Month 
Unique S-2 
Image Date 

Counts 
1 – January 3 
2 – February 12 
3 – March 11 
4 – April 10 
5 – May 10 
6 – June 8 
7 – July 9 
8 – August 8 
9 – September 9 
10 – October 7 
11 – November 9 
12 – December 11 

 
1 See Hu et al. (2015) for a comprehensive review of measurement approaches that have been developed using various 

sensors with different spectral and spatial requirements. 
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We developed a remotely sensed time series of Sargassum distribution along beaches in 

Quintana Roo using satellite imagery from Sentinel-2 MSI for late 2016 through 2019. Sentinel-2 

MSI imagery has a 10-meter pixel size in the visible spectral bands which allows reasonable 

spatial discrimination of the medium and larger nearshore accumulations of Sargassum that occur 

in Quintana Roo. Sentinel-2 has a 5-day revisit time, but due to cloudiness in the region, the 

availability of acceptable imagery is less frequent and on an irregular time step.  

We accessed Level 1C Sentinel-2 imagery from Google Earth Engine (GEE) (Gorelick et 

al., 2017). Because of the dynamic nature of Sargassum occurrence along the shore, it is 

necessary to analyze imagery that covers the full study area per date in order to capture the 

spatiotemporal variability of the seaweed presence and coverage. Our study area is covered by 

six Sentinel-2 tiles (granules). For our analysis, we selected imagery only from dates that have 

less than 30% cloudy pixel percentage for at least five out of the six study region tiles. This 

criterion resulted in a range of time steps between image date and a variable number of images 

per year (Table 3). 

Table 4. Optimized set of spectral bands and indices  
used for classification of nearshore Sargassum 

Spectral Band Description Central 
wavelength Pixel Size 

B2 Blue band 493 nm 10 m 
B5 Red edge band 704 nm 20 m 
B8A Near infrared (NIR) band 865 nm 20 m 
B12 Shortwave infrared band 2190 nm 20 m 
Index Description 
FAI Floating Algae Index 
SEI Seaweed Enhancing Index 
NDVI Normalized Difference Vegetation Index 
NDVI median Annual median NDVI 
NDVI minimum Annual minimum NDVI 
NDVI difference 
from median 

Difference between single date NDVI and annual median 
NDVI 

 
 

Similar to Cuevas et al. (2018), we used a supervised random forest classification 

algorithm (Brieman, 2001) to classify image pixels into Sargassum versus several other land 

cover classes (other vegetation, clouds, unvegetated beach, and buildings). Prior to classification, 

the region to be classified was masked to exclude areas of the image that were definitely not 

Sargassum, including open water, terrestrial areas, and clouds. These preliminary masks are not 

perfect, especially the cloud masking, so some of these features remain in the pre-classified 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/overview
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-swath
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
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imagery, and therefore are included as land cover classes to train the random forest model. The 

non-Sargassum classes are grouped into the “Sargassum absent” class after the random forest 

classification.   

Training and testing data for Sargassum and non-Sargassum classes were visually 

interpreted for a single date, (2019-05-07), guided by higher resolution imagery (PlanetScope) 

and presence/absence point locations from Sargassum Monitoring. A variety of spectral bands 

and indices were evaluated to optimize the inputs for the random forest model for nearshore 

Sargassum detection. The final set of bands and indices are shown in Table 4. 

Figure 6 displays a visual representation of how Sargassum was detected and classified 

using the applied approach. Panel (a) shows a sample false color Sentinel-2 image for a date with 

minimal Sargassum (2021-12-03); Panel (b) shows the same region from a date with a large 

Sargassum influx (2021-05-07); and Panel (c) then shows the result of the image classification 

for the second date, with the detected Sargassum pixels highlighted in magenta. The comparison 

of two dates demonstrates the value of including a multitemporal input to the classification (i.e., 

NDVI difference) along with individual bands and indices from the date of interest. Because the 

Sargassum presence is dynamic, a comparison between time periods can highlight the areas with 

Sargassum. 

Figure 6. Visual example of Sargassum detection and classification 

     
      Panel (a)                                      Panel (b)                                    Panel (c) 

http://sargassummonitoring.com/
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The output from the random forest classification was tested with additional validation 

points randomly selected from six image dates across all seasons and representing a range of 

low to high Sargassum abundance. The overall accuracy for Sargassum vs. non-Sargassum 

classification for all dates, as a percentage of correctly classified polygons, ranged from 74% to 

99%. Table 6 shows that the accuracy is generally better for the higher abundance time periods, 

but the slightly lower accuracies in September, November and December are acceptable and may 

be an artifact of the lower number of Sargassum polygons available for validation.  

For the final data, all pixels within 100 meters of the shoreline are classified into one of 

three classes: Sargassum present, Sargassum absent, and no data (cloudy pixels). The pixel 

count for each of the three classes is assigned to the adjacent shoreline segment by date. This 

final data set shows the spatial and temporal variability of Sargassum distribution along beaches 

in Quintana Roo for a period of four years, from October 2016 to December 2019.  

For the purpose of this analysis, Sargassum presence at a beach segment is measured 

as a dummy variable that takes the value 1 if any Sargassum was detected in beach segment 𝑏𝑏 

in month 𝑡𝑡. As a fairly large amount of Sargassum is necessary for it to be detected through 

satellites, we consider the detectable level of Sargassum sufficient to have an impact on local 

economic activity.2   

 
Table 5. Overall Sargassum presence/absence classification  

accuracy for seven image dates in 2019 

Date 
Overall accuracy 

Sargassum presence / absence  
% polygons correct 

2019-02-26 93% 
2019-04-02 90% 
2019-05-07 (training date) 99% 
2019-06-26 92% 
2019-09-14 81% 
2019-11-18 83% 
2019-12-03 74% 
All dates Combined 88% 

 

 
2 It should be noted that beach segments for which Sargassum presence was detected in every observed 

time period are automatically excluded from the analysis (see Section 3) since lack of variation prevents 
the estimation of an effect for such locations. This accounts for a total of 7 beach segments (4% of 
sample). 
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Figure 7 shows the percentage of beach segments in the sample where the presence of 

Sargassum was detected per quarter, as defined in the previous paragraph. It can be observed 

that this indicator follows a similar trend as that reported in Figure 2. Following this trend, it is 

interesting to note that during the first semester of 2018 and the first quarter of 2019, Sargassum 

was detected in more than 80% of beach segments in the sample. 

 

Figure 7. Quarterly trend of Sargassum presence 

 
 

2.3 Nighttime light intensity as a proxy of economic activity 

The principal impact that we assess is the effect of the presence of Sargassum on economic 

activity at the shoreline segment level. For the state of Quintana Roo, the National Institute of 

Statistics and Geography of Mexico (INEGI) provides variables that are traditionally used to 

measure economic activity, such as gross domestic product (GDP), the employment or the 

investment rate, only at the state, or, at best, the municipal level, which is too large a spatial 

aggregation to capture changes in economic activity as a result of Sargassum impacts. Given the 

unavailability of traditional measures of economic activity at sufficiently small beach segments 

necessary for the purpose of this impact evaluation, we rely on remotely sensed nighttime light 

intensity data to approximate economic activity.  

Nighttime light intensity, or luminosity, has been recorded by satellite sensors since the 

1970s. Between 1992 and 2013, the United States Air Force Defense Meteorological Satellite 

Program (DMSP) used so-called Operational Linescan System (OLS) sensors to detect Earth-
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based lights (Henderson et al., 2012). In 2012, the Visible Infrared Imaging Radiometer Suite 

(VIIRS) sensor of the Suomi National Polar-Orbiting Partnership (NPP) satellite started recording 

global observations on light intensity and replaced DMSP-OLS. Among 22 spectral bands, the 

NPP-VIIRS provides the Day/Night Band (DNB) that allows the measurement of nighttime lights 

intensity with a 15 arc second spatial resolution, which translates to a latitude-longitude grid of 

rectangular pixels of approximately 500 m2 size (Ivan et al., 2020). Using this imagery, the Earth 

Observations Group (EOG) at the National Oceanic and Atmospheric Administration (NOAA)’s 

National Centers for Environmental Information (NCEI) makes monthly cloud-free average 

radiance composites available for public use (EOG, 2021).3 We use Google Earth Engine (GEE) 

to obtain the monthly average radiance composite generated by EOG (GEE, 2021). For each grid 

pixel, nighttime light intensity is measured in nanowatts per square centimeter per steradian, or 

nW/(cm2·sr)4 (Cao & Bai, 2014). It should be noted that in comparison to the earlier DMSP-OLS 

sensors, the newer NPP-VIIRS data have the advantage of providing higher resolution imagery 

(compared to the 13 arc second spatial resolution of DMSP-OLS) and higher frequency (with daily 

images available instead of only monthly composites), benefit from the satellites’ on-board 

calibration capabilities that allow consistency in measurements over time, have a higher sensitivity 

to lower light levels, and do not suffer from oversaturation in bright regions, allowing for a more 

precise estimation of socio-economic activity (Jing et al., 2016; Levin et al., 2020). 

Numerous studies (e.g. Elvidge et al., 1997; Sutton and Costanza, 2002; Ghosh et al., 

2010; Henderson et al., 2012; Kyba et al., 2017) have established that there exists a positive, 

linear relationship between a positive economic growth and greater lights usage per person. A 

key advantage over most socio-economic indicators which typically rely on census data or similar 

administrative data, is that light emission can be measured instantaneously, objectively, and 

systematically at considerably high resolution (Cauwels et al., 2014; Levin et al., 2020). 

Considering the dearth of reliable socioeconomic data, particularly in the developing world, 

multiple studies have relied on nighttime light intensity data as a proxy for economic growth to 

carry out empirical analysis at low levels of spatial disaggregation. In a study focusing on intra-

city economic development, Agnew et al. (2008) assess the effect of the U.S. military surge into 

specific neighborhoods of Baghdad in 2007 on levels of violence and consequently the quality of 

life. Storeygard (2013) uses nighttime light intensity to investigate the effect of inter-city transport 

costs on urban economic activity in sub-Saharan Africa. Alesina et al. (2016) employ nighttime 

light intensity data combined with the historical location of ethnolinguistic groups to construct an 

 
3 Elvidge et al. (2017) provide a detailed description of how nighttime lights metric is constructed from VIIRS imagery.  
4 The radiance dynamic range lies between 5 × 10−11 W/cm2·sr1 to 0.02 W/cm2·sr. 
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index of ethnic income inequality in over 150 countries. In a recent study, Corral and Schling 

(2017) employ nighttime light intensity to evaluate the local economic impact of a shoreline 

stabilization program in Barbados, while another study by Corral et al. (2018) relies on nighttime 

light intensity to estimate the economic impact of Peru’s largest hydrocarbon project at the 

department level. 
 

Figure 8. Nighttime light intensity as a measure of economic activity 

 
(i) GDP and nighttime light intensity over time 

 

 
(ii) Plotting GDP vs. nighttime light intensity 

  

While we cannot directly assess the relationship between nighttime light intensity and 

economic activity at the beach segment level, we examine how closely the two measures 

correlate at the smallest possible level of geographic resolution. In our case, this happens to be 
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at the State level, since INEGI provides quarterly data on gross domestic product (GDP) for 

Quintana Roo and all other Mexican states.5 Figure 8 presents a visualization of this relationship.  

Figure 9. Quarterly trend of nighttime light intensity 

 
In Panel (i), we observe the trend of VIIRs radiance and state-level GDP over time, for the 

study period of the second half of 2015 until the second quarter of 2020. As can be seen, there is 

a gradual increase in both economic growth and VIIRs radiance for the state as a whole, 

suggesting that a parallel trend holds for both measures. Panel (ii) illustrates this close 

relationship by plotting GDP against nighttime light intensity, indicating that a clear linear and 

positive relationship holds for the two measures. Quantitatively, this relationship can be confirmed 

by estimating the Pearson’s correlation coefficient, with a robust value of 0.839. Similarly, the R2 

for the linear regression exhibits a value of 0.703, further confirming that nighttime light intensity 

can account for a significant share of variance observed in quarterly economic activity. Lastly, in 

order to determine quantitatively how a change in nighttime light intensity translates to a change 

in GDP, the elasticity is also of interest. Studies carried out by Elvidge et al. (1997), Henderson 

et al. (2012) and others have found that, depending on country context, elasticity of GDP to 

nighttime light intensity tends to lie in the magnitude of 1. As presented in Appendix A, in the case 

of Quintana Roo a simple log-log regression indicates an elasticity of 0.66. Of course, when 

interpreting the results of this study, it will be important to note that the relationship between gross 

 
5 Because the VIIRS Day Night Band (DNB) has higher sensitivity to lower light levels, it is subject to detection of dim 

light sources that are not anthropogenic (Coesfeld et al. 2020) or scattered from other areas (Miguel et. al. 2020).  
The effect of this sensitivity is exacerbated when calculating the sum of lights across large areas with minimal or no 
anthropogenic lighting, such as Quintana Roo. Therefore, a common approach is to set a minimum radiance 
threshold for calculating further metrics from the radiance pixels in order to avoid having many small, but potentially 
spurious values obscure important patterns of economic activity. For our correlation analysis with GDP, we set the 
minimum radiance threshold at 3.0 nW/cm2/sr. 
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local product and nighttime light intensity may differ at the beach level, so that the exact estimation 

of changes in nighttime light intensity will present an approximation of changes in gross local 

product at this level. 

To summarize, the final dataset for nighttime light intensity that will be used to carry out the 

analysis consists of monthly observations for the period between October 2016 and December 

2019, for 157 shoreline segments along the coast of Quintana Roo State in Mexico. Figure 9 

presents quarterly average for nighttime light intensity at the beach segment level. As expected, 

nighttime light intensity exhibits certain seasonality in accordance with the highs and lows of 

tourism activity, which peaks during winter and early spring in Quintana Roo and is generally 

lower during the hot summer months. 
 

2.4 Additional Covariates 

In addition to the main variables of interest, we obtained a number of variables to characterize 

each shoreline segment as presented in Figure 5. The first group of these characteristics consists 

of basic infrastructure and demographic information about the study area, including the location 

of and distance from the beach segment to key infrastructural sites such as major roads, airports 

and ports. The infrastructure data were compiled from a variety of freely available sources 

(including Natural Earth, Humanitarian Data Exchange, and MapCruzin.com) and supplemented 

by information from local experts. In order to link this data to the individual beach segment, we 

measured the distances to these features from each 50m alongshore point and calculated the 

minimum and mean distance by segment. Additionally, we include annual population density 

obtained from WorldPop, which bases its estimates on available census information to project 

annual changes in population and uses geospatial datasets to disaggregate them to counts for 

100m x 100m grid (WorldPop, 2020). In order to accommodate differences between the shoreline 

location and the WorldPop raster, we aggregated the 100m pixels by summing them into 500m 

pixels. Then, we sum all population counts across each shoreline segment for the years 2016-19. 

 The next group compiles information on the beach geomorphology, wave exposure and 

coastal vulnerability of the shoreline segments, a crucial determinant in the context of this study 

given the relevance of beach tourism in the study area and the potential impact that the presence 

of Sargassum may have on it. Beach attributes include the total length of the shoreline segment 

and the geophysical beach type (sand, rock, mud, artificial) (Cruz et al. 2019). Furthermore, 

additional metrics developed by the Natural Capital Project at Stanford University provide a 

measure of wave dynamics that may affect both the inflow of Sargassum and how attractive the 

shoreline is from a recreational perspective. These metrics include relative wave exposure, and 

https://www.naturalearthdata.com/
https://data.humdata.org/
https://mapcruzin.com/
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the coastal exposure index derived from the InVEST Coastal Vulnerability (CV) model (Sharp et 

al. 2020) which has been applied around the world to assess risk from coastal hazards (Arkema 

et al. 2013, Cabral et al. 2017, Silver et al. 2019). Relative wave exposure is calculated from 

historical wind speed, wave height, and wave power; fetch distance (distance to nearest point of 

land); and mean bottom depth in sixteen cardinal directions. A given stretch of shoreline is 

generally exposed to either oceanic waves or locally generated, wind-driven waves. The coastal 

exposure index synthesizes multiple ranked biophysical variables, including geomorphology, 

relief, natural habitats, wave exposure, wind exposure, and surge potential, into a single value 

calculated as the geometric mean of all variable ranks. The ranks range from 1 (very low 

exposure) to 5 (very high exposure).6 

 The last set of covariates characterizes the extent of touristic activities taking place near 

each beach segment. For this purpose, we include information on the number of hotels (with a 

separate measure for the number of five-star hotels) and other lodging facilities, as well as the 

number of food and beverage facilities located within 1 km from the shoreline. This information 

was extracted from the Mexican Institute of Statistics’ National Statistical Directory of Economic 

Units (DENUE), which provides infrastructure data for the period 2010-2020 (INEGI, 2020). 

Information on five-star hotels was obtained from a study by Reguero et al. (2019). We also 

include the mean and minimum distances to the nearest lodging or food and beverage 

establishment from each beach segment aggregated from the 50m regularly spaced alongshore 

points. Furthermore, we include the count within 1 km and distance to nearest recreation and 

entertainment businesses, and archeological sites from the beach segment. The latter is included 

given their prevalence and touristic appeal along the Quintana Roo coast. Based on the 

hypothesis that the availability of lodging and recreational activities affects overall economic and 

touristic activity at the local level, these covariates will be relevant to control for other factors 

determining local economic activity at each beach segment. 

 Table 6 presents the segment-level variables included in our data. To present the variety 

of beach segments in our sample, we group beach segments according to municipality, as the 

second-level administrative division in Mexico, below the state level. According to municipality-

level divisions along the Quintana Roo shoreline, we sorted beach segments according to their 

location in the municipalities with heavy concentration of touristic activities, namely Benito Juárez 

(including Cancún), Solidaridad (including Playa del Carmen), Tulum, and Cozumel. The 

remaining beach segments were assigned either to the category of “small islands”, which included  

 
6 See the user guide for the InVEST CV model (Sharp et al., 2020) for more details on how coastal vulnerability 

indicators are measured. 
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Table 6. Summary statistics by municipality 

  
Benito 
Juárez 

(Cancún) 

Solidaridad 
(Playa del 
Carmen) 

Tulum Cozumel Small 
Islands 

Rest of 
Mainland Total 

Number of beach 
segments 17 50 24 33 13 20 157 

 
Basic infrastructure and demographic information 

Population density (2018) 
     

3.48 1.29 1.01 1.47 3.46 0.55 1.55 
(4.13) (2.55) (1.24) (4.11) (9.01) (1.99) (4.16) 

Mean distance to nearest 
road (km) 

0.96 
(0.96) 

1.17 
(0.47) 

0.76 
(0.74) 

4.99 
(5.30) 

17.46 
(11.65) 

15.62 
(14.46) 

6.96 
(10.80) 

Mean distance to nearest 
airport (km) 

 

13.29 
(5.72) 

28.40 
(6.27) 

56.38 
(17.50) 

13.46 
(7.22) 

16.38 
(13.34) 

47.94 
(43.12) 

31.23 
(27.88) 

Mean distance to nearest 
port (km) 

5.58 
(5.76) 

10.40 
(5.68) 

10.43 
(5.36) 

14.19 
(7.51) 

16.04 
(12.68) 

20.74 
(17.55) 

13.68 
(11.74) 

 

Beach geomorphology, wave exposure and coastal vulnerability 

Segment length (km) 
 
 

3.49 
(4.25) 

1.40 
(1.49) 

6.47 
(10.75) 

3.84 
(4.73) 

8.86 
(8.89) 

14.67 
(20.90) 

6.62 
(12.55) 

Coastal vulnerability 
index: Exposure 

2.77 
(0.34) 

2.07 
(0.31) 

2.45 
(0.31) 

1.97 
(0.42) 

2.89 
(0.62) 

2.70 
(0.32) 

2.33 
(0.50) 

Costal vulnerability index: 
Wave intensity 

22.05 
(9.17) 

7.09 
(7.16) 

21.35 
(7.94) 

17.24 
(14.85) 

20.47 
(14.83) 

31.75 
(6.16) 

17.32 
(13.03) 

 

Touristic activities 
Count of hotels within 
1km 

12.22 
(18.59) 

16.42 
(45.66) 

5.14 
(6.89) 

3.80 
(9.61) 

8.77 
(15.34) 

1.09 
(3.27) 

7.91 
(25.60) 

Count of 5-star hotels 
within 1km 

0.61 
(0.95) 

0.16 
(0.88) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.15 
(0.63) 

0.13 
(0.64) 

Count of lodging within 
1km 

12.44 
(16.67) 

12.16 
(39.46) 

7.79 
(14.52) 

4.59 
(12.21) 

19.27 
(30.13) 

1.48 
(5.26) 

8.56 
(24.87) 

Count of food & beverage 
within 1km 

25.28 
(29.00) 

31.36 
(98.48) 

5.34 
(8.58) 

28.34 
(85.91) 

42.61 
(77.55) 

2.14 
(9.86) 

21.29 
(69.09) 

Count of entertainment & 
recreation within 1km 

4.61 
(6.11) 

3.82 
(9.00) 

1.65 
(1.98) 

5.21 
(14.33) 

2.67 
(6.17) 

0.37 
(1.77) 

2.92 
(8.31) 

Mean distance to nearest 
lodging (km) 

0.49 
(0.46) 

1.29 
(1.19) 

1.44 
(1.50) 

6.61 
(5.97) 

13.32 
(12.09) 

14.67 
(11.59) 

6.64 
(9.44) 

Mean distance to nearest 
food & beverage (km) 

1.08 
(1.11) 

2.61 
(2.36) 

2.70 
(3.65) 

2.88 
(3.58) 

9.60 
(10.07) 

19.08 
(17.05) 

7.17 
(11.57) 

Mean distance to nearest 
entertainmt. & rec. (km)  

1.41 
(1.30) 

1.37 
(1.20) 

5.99 
(10.05) 

5.16 
(3.86) 

15.20 
(13.41) 

28.37 
(20.48) 

10.51 
(15.78) 

Mean distance to nearest 
archaeological site (km) 

10.39 
(10.36) 

10.82 
(6.10) 

10.24 
(8.27) 

9.38 
(4.09) 

41.48 
(22.12) 

52.35 
(21.94) 

23.60 
(23.34) 
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all islands except for Cozumel, and “rest of mainland” for those beach segments located outside 

the municipalities named above. 

To link beach segments to municipalities, we used geospatial data on Mexican subnational 

administrative boundaries obtained from the INEGI. It should be noted that these municipality-

level groupings vary in number of segments, as well as in their characteristics. For example, 

beach segments assigned to the “rest of mainland” category are considerably longer than those 

in Solidaridad. However, beach segments in Solidaridad have on average almost 16 times more 

hotels within a 1 km radius than those in the rest of the mainland. Another striking difference 

comes in terms of population density in 2018, as beach segments like those in Benito Juárez are 

very densely populated, while those in the rest of the mainland are not. This, of course, will have 

an impact on the perceived nighttime light intensity, and therefore it is important to control for it. 
 

3 Empirical Approach 
3.1 Basic model 

Since we expect the presence of Sargassum to vary over time and in a manner that is not uniform 

across all beach segments, we propose to use a fixed-effects panel regression approach to 

estimate the impact of Sargassum on nighttime light intensity. It is worth mentioning that, as 

reviewed in Section 1, the presence of Sargassum has a cyclical component in the Quintana Roo 

area. However, the influx of Sargassum at a specific beach and at a certain moment in time, 

should be unrelated to economic activity or nighttime light intensity, since it depends entirely on 

geomorphological characteristics of the segment as well as offshore wave dynamics that are not 

correlated with local economic activity. Therefore, for a given beach segment in a given time 

period, exposure to Sargassum should be considered exogenous. 

The proposed fixed effect method permits controlling for time-invariant, unobserved 

heterogeneity across beach segments (Stock and Watson, 2011). The regression should 

therefore take the following form: 

𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏 = 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏 + 𝒙𝒙𝑏𝑏𝑏𝑏′ 𝜷𝜷 + 𝛾𝛾𝑡𝑡 + 𝛿𝛿𝑚𝑚 + 𝜀𝜀𝑏𝑏𝑏𝑏  (1) 

where 𝒚𝒚𝒃𝒃𝒃𝒃 represents nighttime light intensity in beach in month 𝑡𝑡 and beach segment 𝑏𝑏 located 

in municipality 𝑚𝑚, 𝑺𝑺𝑺𝑺𝑺𝑺𝒈𝒈𝒃𝒃𝒃𝒃 represents a dummy variable that takes on the value 1 if Sargassum is 

detected in beach segment 𝑏𝑏  during month 𝑡𝑡 , and 𝒙𝒙𝒃𝒃𝒃𝒃′  is a vector of beach segment-level 

covariates. The segment-level controls include the following covariates that were described in 

Section 2: beach length, coastal vulnerability, wave intensity, population density, number of hotels 

within a 1 km radius and number of 5 stars hotel within a 1 km radius, as well as the distance in 
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kilometers to the nearest archeological site, port, airport, road, entertainment center and lodging. 

Parameter 𝜸𝜸𝒕𝒕 reflects monthly time fixed effects and parameter 𝜹𝜹𝒎𝒎 reflects municipality-level fixed 

effects. Vector 𝜷𝜷 and coefficient 𝜶𝜶 are the parameters to be estimated. 𝜺𝜺𝒃𝒃𝒃𝒃 is the error term. 

Coefficient 𝛼𝛼 should then be a bias-free estimate of the effect of Sargassum presence on 

nighttime light intensity at the beach segment level. It should be noted that for panel data, it is 

possible that regression errors are correlated over time within an entity, which would, similarly to 

heteroscedasticity, affect the estimation of standard errors. In order to account for the potential of 

autocorrelation among regression errors, we employ municipality-level clustered standard errors, 

which allow for heteroskedasticity and autocorrelation within an entity (in our case, the 

municipality), but not across entities (Moulton, 1986). 
 

3.2 Reputation effects 

Our hypothesis posits that Sargassum has an adverse effect on economic activity in beach 

segments where it washes ashore. However, it is possible that this negative effect is not 

immediate but rather develops over time as the reputation of the attractiveness of a beach 

segment is affected negatively by Sargassum. For instance, tourists may not react to the presence 

of Sargassum by immediately leaving the beach: Even if Sargassum accumulation on the 

shoreline may affect their enjoyment of the beach, because they may not be able to swim in the 

ocean, or are bothered by the smell of the drying algae, it may be difficult for tourists to leave their 

vacation spot once they are already there, since they would face cancellation and other 

opportunity costs for departing early from their vacation. Even if tourists have not yet arrived in 

the area, it may be difficult for them to change their holiday plans on short notice, especially if 

plane tickets or hotel rooms have already been booked. It also unlikely that tourists may hear 

about the presence of Sargassum in advance within a few weeks prior to arrival. Thus, impacts 

of Sargassum presence on local economic activity may not be as sizeable in the immediate time 

period following the influx.   

 A negative reputation effect is therefore more likely to occur several months after 

Sargassum was washed ashore on a beach. This may be because news may circulate about 

significant Sargassum presence in the area (see Figure 2), disincentivizing tourists that are still 

deciding on a vacation spot, or because tourists had a negative experience with Sargassum on 

their last trip and are unlikely to return to the same spot in the following holiday season. To capture 

this possible reputation effect, we propose a model that incorporates time lags on the effects of 

Sargassum, as described by the following model: 
 

𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏 = ∑ 𝛼𝛼𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏−𝑖𝑖𝑇𝑇
𝑖𝑖=0 + 𝒙𝒙𝑏𝑏𝑏𝑏′ 𝜷𝜷 + 𝛾𝛾𝑡𝑡 + 𝛿𝛿𝑚𝑚 + 𝜀𝜀𝑏𝑏𝑏𝑏  (2) 



 

27 
 

In this specification, we include multiple time lags, 𝑖𝑖 = 0, … ,𝑇𝑇, for Sargassum presence at a beach 

segment 𝑏𝑏, ranging from 0 to 12 months. As a result, the updated model includes 𝑇𝑇 + 1 number 

of 𝜶𝜶𝒊𝒊 parameters (𝜶𝜶𝟎𝟎,𝜶𝜶𝟏𝟏,𝜶𝜶𝟐𝟐, … ,𝜶𝜶𝑻𝑻,) to be estimated, where 𝜶𝜶𝒊𝒊 measures the effect of Sargassum 

presence on nighttime light intensity in beach segment b in month 𝑡𝑡, 𝑖𝑖 months after Sargassum 

was detected. All other variables remain the same as in specification (1).  

 

3.3 Spatial correlation 

Another potential dynamic at play in the relationship between Sargassum and nighttime light 

intensity concerns potential spatial correlation. To understand how this could occur, we must first 

consider that the nature of our data is quite unique, as beach segments are defined as line 

segments of a continuous line that follows the Quintana Roo shoreline. 7  Thus, we can 

conceptualize space in our data as linear. As beach segments are contiguous, the linear nature 

of the data implies that each beach segment has a maximum of two neighboring beach 

segments.8 If we were to put beach segments on a line, we could number these beach segments 

𝑏𝑏 = 1, … ,𝐵𝐵. To formalize this concept, we will refer to the neighbors of beach segment 𝑏𝑏 as beach 

segments 𝑏𝑏 − 1 and 𝑏𝑏 + 1. 

Spatial correlation in our analysis might come through different channels. The first, and 

perhaps most important, is that nighttime light intensity in beach segments 𝑏𝑏 might be influenced 

by nighttime light intensity in its neighboring beach segments. As explained in Section 2, nighttime 

light intensity was assigned to beach segments by proximity, making it possible that some light 

radiance pixels assigned to construct the nighttime light intensity for beach segment 𝑏𝑏 + 1 might 

have also been used to construct nighttime light intensity for beach segment 𝑏𝑏. 

Secondly, spatial correlation between neighboring beach segments may occur through the 

effects of Sargassum. As Sargassum washes ashore beach segment 𝑏𝑏, it is possible for tourists 

to crowd out from the area and move to a neighboring beach segment that is less affected by the 

algae. Alternatively, if Sargassum washes ashore one beach segment, it may also be more likely 

to be present in the neighboring segments if wave currents and geomorphology favor the arrival 

of the seaweed along the extended shoreline. Either way, through this channel local economic 

activity in neighboring beach segments 𝑏𝑏 − 1 and/or 𝑏𝑏 + 1 may be affected when Sargassum 

washes ashore segment 𝑏𝑏.  

 
7 The only exception to this definition concerns some islands (the island of Cozumel being the largest), for which beach 

segments are still individual line segments as part of a larger continuous shoreline, with the exception that they do 
not form part of the mainland’s shoreline. 

8 Some beach segments at the edge of the Quintana Roo territory or on small islands might only have 1 neighbor. 



 

28 
 

Assuming spatial correlation between immediate beach segments only, we implement the 

following spatial autoregressive (SAR) model with time lags: 
 

𝑦𝑦𝑏𝑏𝑏𝑏 = ∑ 𝛼𝛼𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏−𝑖𝑖𝑇𝑇
𝑖𝑖=0 + ∑ 𝜏𝜏1,𝑖𝑖𝑦𝑦𝑏𝑏+1,𝑡𝑡−𝑖𝑖

𝑇𝑇
𝑖𝑖=0 + ∑ 𝜏𝜏2,𝑖𝑖𝑦𝑦𝑏𝑏−1,𝑡𝑡−𝑖𝑖

𝑇𝑇
𝑖𝑖=0 + ∑ 𝜌𝜌1,𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏+1,𝑡𝑡−𝑖𝑖

𝑇𝑇
𝑖𝑖=0 +

∑ 𝜌𝜌2,𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏−1,𝑡𝑡−𝑖𝑖
𝑇𝑇
𝑖𝑖=0 + 𝒙𝒙𝑏𝑏𝑏𝑏′ 𝜷𝜷 + 𝛾𝛾𝑡𝑡 + 𝛿𝛿𝑚𝑚 + 𝜀𝜀𝑏𝑏𝑏𝑏 (3) 

 

where 𝑦𝑦𝑏𝑏+1,𝑡𝑡−𝑖𝑖 and 𝑦𝑦𝑏𝑏−1,𝑡𝑡−𝑖𝑖 represent nighttime light intensity for month 𝑡𝑡 − 𝑖𝑖 in neighboring beach 

segments 𝑏𝑏 + 1 and 𝑏𝑏 − 1, respectively; 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏+1,𝑡𝑡−𝑖𝑖  and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏−1,𝑡𝑡−𝑖𝑖  are dummy variables that 

take the value of 1 if Sargassum is detected for month 𝑡𝑡 − 𝑖𝑖 in beach segments 𝑏𝑏 + 1 and 𝑏𝑏 − 1. 

The parameters to be estimated are 𝜶𝜶𝟏𝟏,𝒊𝒊,𝜷𝜷, 𝝉𝝉𝟏𝟏,𝒊𝒊 , 𝝉𝝉𝟐𝟐,𝒊𝒊 , 𝝆𝝆𝟏𝟏,𝒊𝒊 , 𝝆𝝆𝟐𝟐,𝒊𝒊 ; and 𝜺𝜺𝒃𝒃𝒃𝒃  is the error term. To 

examine the channel of spatial correlation through nighttime light intensity, we first assume that 

𝝆𝝆𝟏𝟏,𝒊𝒊 = 𝟎𝟎, 𝝆𝝆𝟐𝟐,𝒊𝒊 = 𝟎𝟎, for a specification we will denominate SAR-1. Then, to allow for both channels 

of spatial correlation, we include all parameters in a specification we will refer to as SAR-2. All 

estimations included clustered standard errors at a municipality level. 

It is important to note that there exist other potential channels of spatial correlation that our 

model does not take into consideration. For example, it is possible that a beach segment is not 

only affected by the immediate neighbor, but also by the neighbor(s) next to it. This could be the 

case for one, two or even more neighboring beach segments. It is also possible that neighboring 

beach segments are correlated not through the presence of Sargassum or nighttime light 

intensity, but through other observed and unobserved variables. However, we do not believe 

these are relevant concerns in this context, for two reasons. First, the basic specification of the 

model already accounts for municipality-level fixed effects that control for time-invariant 

characteristics across beach segments located within the same municipality. By doing so, we 

indirectly control for some potential spatial correlation that might arrive from geopolitical divisions. 

Second, because the presence of Sargassum at a given time and in a specific beach segment is 

considered exogenous, the estimation should be unbiased, regardless of other sources of spatial 

correlation within the model. 

 
4 Results 

4.1 Main Results 

Table 7 presents the effects of Sargassum detection on nighttime light intensity at the beach 

segment level. Following equation (1), three different specifications were used in our estimations. 

First, we implement a basic model in which we only controlled for time-fixed effects (Column 1), 

which assumes no municipality fixed-effects and no segment-level controls. Second, to account 

for time-invariant differences between municipalities and to control for beach segment specific 
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characteristics, we introduce municipality-level fixed effects and segment-level controls 

(Column 2). Third, we include municipality-level clustered standard errors (Column 3). 
 

Table 7. Effects on nighttime light intensity with no lag  

Variables 
Nighttime light intensity 

(1) (2) (3) 
Sargassum detected in the same month (t=0)    -1.852***    -0.813***  -0.813** 
  (0.213) (0.130) (0.241) 
Time fixed effects Yes Yes Yes 
Segment-level controls   Yes Yes 
Municipality-level fixed effects   Yes Yes 
Municipality-level clustered standard errors     Yes 
Number of observations 5,371 5,371 5,371 
Adjusted R2 0.261 0.745 0.745 

 
 

 

Results show that having detectable Sargassum in a beach segment significantly reduces 

nighttime light intensity, by 1.85 nW/(cm2·sr) for the simplest model, and by 0.81 nW/(cm2·sr) 

when controlling for segment-level covariates and municipality-level fixed-effects. These results 

remain equally significant when adding municipality-level cluster standard errors. Considering an 

average level of 4.63 nW/(cm2·sr) among beaches in the dataset, this implies an average 

reduction of 17.5% of local economic activity. Using the estimated elasticity of 0.66 between state-

level nighttime light intensity and gross local product, this suggests an approximate decrease of 

monthly economic growth of 11.6% for the more rigorous specifications. 

 

4.2 Reputation Effects 
 

To account for reputation effects of Sargassum on economic activity, we include monthly 

time lags in our estimation. Results including a one-month lag are presented in Table 8. Once 

again, column 1 shows results when controlling for time fixed effects only, column 2 includes 

municipality-level fixed effects and segment-level controls, and column 3 adds municipality-level 

clustered standard errors. Results again show significant negative effects of Sargassum detected 

in all models. It is worth noting that effects after a month of exposure to the shock are larger than 

those at the month of nighttime light intensity measurement, for all models.  
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Table 8. Effects on nighttime light intensity with 1 month lag 
  

Variables 
Nighttime light intensity 

(1) (2) (3) 
Sargassum detected in the same month (t=0)    -1.314***    -0.676***  -0.676** 
  (0.244) (0.142) (0.216) 
Sargassum detected 1 month prior (t=1)    -1.432***    -0.680*** -0.680* 
  (0.248) (0.142) (0.322) 
Time fixed effects Yes Yes Yes 
Segment-level controls   Yes Yes 
Municipality-level fixed effects   Yes Yes 
Municipality-level clustered standard errors     Yes 
Number of observations 4,800 4,800 4,800 
Adjusted R2 0.266 0.751 0.751 

 

To test if reputational effects persist in the medium- and long term, we estimate the same 

model with a 3-, 6- and 12 month-lags, respectively. Table 9 reports these results for our most 

rigorous model, which includes time fixed-effects, municipality-level fixed effects, beach segment 

controls, and clustered standard errors. Results for an estimation only considering 3-months lags 

are reported in Columns 1. Columns 2 and 3 report results for estimations including a 6-months 

lag and a 12-months lag, respectively. 

Results for the effect of Sargassum detection on nighttime light intensity continue to be 

negative and largely statistically significant for all models and lags; and vary between 0.42 and 

0.73 nW/(cm2·sr) in magnitude. This roughly translates into a 5.9-9.9% reduction in monthly 

economic activity using the elasticity approximation. Interestingly, the more lags we add, the 

smaller our effects for the initial periods get. For our last model that included a 12-month lag, our 

effects for month of Sargassum presence (t=0) appear insignificant and small, although still 

negative. Over time, these effects continue to grow larger and size and become statistically 

significant.  
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Table 9. Effects on nighttime light intensity with 3-, 6- and 12-month lags 

Variables  

Nighttime light intensity 
(1) (2) (3) 

Sargassum detected in the same month (t=0)    -0.631***   -0.444** -0.030 
  (0.151) (0.134) (0.112) 

Sargassum detected 1 month prior (t=1) -0.549 -0.484* -0.191 
  (0.298) (0.248) (0.228) 

Sargassum detected 2 months prior (t=2) -0.546* -0.415 -0.279 
  (0.275) (0.220) (0.211) 

Sargassum detected 3 months prior (t=3)  -0.520** -0.346 -0.257 
  (0.214) (0.183) (0.167) 

Sargassum detected 4 months prior (t=4) 
 

 -0.520** -0.420* 
  

 
(0.166) (0.182) 

Sargassum detected 5 months prior (t=5) 
 

 -0.588**  -0.595** 
  

 
(0.188) (0.191) 

Sargassum detected 6 months prior (t=6) 
 

 -0.734***  -0.626** 
  

 
(0.179) (0.218) 

Sargassum detected 7 months prior (t=7) 
  

 -0.403** 
  

  
(0.137) 

Sargassum detected 8 months prior (t=8) 
  

 -0.456** 
  

  
(0.144) 

Sargassum detected 9 months prior (t=9) 
  

  -0.684*** 
  

  
(0.185) 

Sargassum detected 10 months prior (t=10) 
  

-0.448 
  

  
(0.243) 

Sargassum detected 11 months prior (t=11) 
  

 -0.624** 
  

  
(0.240) 

Sargassum detected 12 months prior (t=12) 
  

 -0.670** 
  

  
(0.283) 

Time fixed effects Yes Yes Yes 
Segment-level controls Yes Yes Yes 
Municipality-level fixed effects Yes Yes Yes 
Municipality-level clustered standard errors Yes Yes Yes 
Number of observations 4,200 3,600 2,700 
Adjusted R2 0.755 0.761 0.770 

 

In order to visually examine the dynamics of the reputation effects, Figures 10 and 11 

present graphs with the results in columns 2 and 3 of Table 3. The x-axis shows the months since 

the Sargassum shock occurred, while the y-axis displays the size of the effect on nighttime light 

intensity. Thus, the blue line shows the size of the effect for each lag, and the grey area presents 
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the 95% confidence interval (CI) around the estimated coefficient. Effects are considered to be 

significant when no area of the 95% CI coincides with the x-axis, here depicted as a red line. As 

can be observed, the effects of Sargassum detection appear to grow over time. In Figure 10, the 

negative trend grows larger over time during the first 5 months after Sargassum was detected, 

and the effect then stabilizes for months 6 to 12. The effect sizes appear to range between 0 and 

-1 nW/(cm2·sr) for both regressions. 
 

Figure 10: Effects of Sargassum detected on nighttime light intensity, 6-month lag 

 
 

Figure 11: Effects of Sargassum detected on nighttime light intensity, 12-month lag 
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4.3 Robustness checks 

Sargassum shock 

As described in Section 2, there must be a considerably large amount of Sargassum in the beach 

segment for it to be detected by satellite imagery. Thus, it should not be too surprising that we 

observe effects of Sargassum detection on economic activity. Nevertheless, our remote 

measurement of Sargassum does not allow us to determine the exact volume of Sargassum 

washed ashore, so we cannot say with certainty that the detectable volume represents an unusual 

volume of algae at a given beach segment. One may argue that what would cause a drop in local 

economic activity as a result of less touristic activity and limitations to fishing and other shoreline 

activities, would be a Sargassum shock, meaning an unexpectedly large influx of Sargassum in 

a given month. Therefore, we consider a second measurement of Sargassum presence that 

captures the notion of such a shock, defined as a 1.5 standard deviation (SD) from the mean 

levels of Sargassum detected in each beach segment during the 4 years available in the dataset. 

We used the 1.5 SD threshold because it allowed us to exclude levels of Sargassum that could 

be considered “normal” for certain beach segments during the evaluated period. Although we 

could have used a stricter threshold, the 1.5 SD threshold already left us with only 9% of all month-

beach segment combinations experiencing shocks. By design, the 1.5 SD threshold allows for 

most (98%) beach segments to experience a shock at least once. 
 
 

Figure 12. Quarterly trend of Sargassum shocks 
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Figure 12 presents quarterly trends on the proportion of beach segments that experienced 

Sargassum shocks. As can be seen, the proportion of beach segments reporting such a shock is 

considerably smaller than the proportion of segments where Sargassum was detected (see Figure 

6). However, the trend seems to be similar, and we find similar peaks in the first semester of 2018 

and first quarter of 2019.  

Table 10 reports results of the estimation with no lags (Model 1) when using the stricter 
definition of Sargassum shock. As can be observed in Column 1, we find an effect of 
0.76 nW/(cm2·sr) when controlling for time fixed effects only. When adding municipality-level fixed 
effects and beach segment controls in Column 2, a smaller but still significant effect of a decrease 
in 0.32 nW/(cm2·sr) is found. However, this result becomes insignificant when adding clustered 
standard errors. 
 

Table 10. Effects of a Sargassum shock on nighttime light intensity  

Variables  Nighttime light intensity 
(1) (2) (3) 

Sargassum shock (1.5 SD) in same month    -0.759*** -0.317* -0.317 
  (0.278) (0.187) (0.213) 

Time fixed effects Yes Yes Yes 
Segment-level controls   Yes Yes 
Municipality-level fixed effects   Yes Yes 
Municipality-level clustered standard errors     Yes 
Number of observations 5,620 5,620 5,620 
Adjusted R2 0.254 0.739 0.739 

 

 

Figures 12 and 13 show results for the most complete specification (including time fixed 

effects, municipality-level fixed effects, segment-level controls and municipality-level clustered 

standard errors) when including a 6-month lags and a 12-month lags, respectively. As can be 

observed in Figure 12, all effects are consistently negative, and we observe a significant negative 

effect in the 6th month after the shock occurred. In Figure 14 we also observe consistently negative 

effects, some of which are statistically significant beginning at month 6. On average, effect sizes 

range again between 0 and -1, though they appear slightly smaller than was found for general 

Sargassum presence.  

 

 

 

  

 

 



 

35 
 

 

Figure 13. Effects of Sargassum shock on nighttime light intensity, 6-month lag 

 

 
 

Figure 14. Effects of Sargassum shock on nighttime light intensity, 12-month lag 

 
 

These results suggest that Sargassum has a negative effect on local economic activity, 

whether it be a detectable amount or a specific shock that exceeds average volume by 1.5 

standard deviations. Since the initial definition of Sargassum presence seems to have more 

consistently negative and significant effects on nighttime light intensity, it would seem that a 

detectable amount of Sargassum is sufficient to drive away tourists and other economic activity, 

and it is not only the outlier events that cause economic harm. 
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Spatial correlation 

Considering the potential for spatial correlation among neighboring beach segments, we repeat 

the analysis using Model (3). First, we analyze the effect of spatial correlation through a 

relationship between nighttime light intensity across neighboring beach segments, as described 

in model SAR-1. Figures 15 and 16 present the results of this estimation with 6- and 12-month 

time lags respectively. As observed in the main specification, estimated effects are consistently 

negative and become larger and size as well as increasingly statistically significant as time since 

Sargassum detection increases. Estimated effects by 12 months after Sargassum presence was 

detected lies at approximately 0.5 nW/(cm2·sr), which is equal to a 7% decrease in local economic 

activity when applying the estimated state-level GDP-nighttime light intensity elasticity. 
 

 
Figure 15. Effects of Sargassum detected on nighttime light intensity  

with spatial correlation, 6-month lag (SAR-1) 
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Figure 16. Effects of Sargassum on nighttime light intensity 
with spatial correlation, 12-months lag (SAR-1) 

 

 

Figures 17 and 18 present results for our model SAR-2 which allows spatial correlation 
among neighboring beach segments to occur both through nighttime light intensity and 
Sargassum. The results under this model are again consistent with what we observed for previous 
models, with effect sizes being consistently negative and statistically significant. In this case, 
statistical significance is more consistently observed across all time lags, though effect sizes 
remain similar. In summary, controlling for spatial correlation highlights the robustness of 
estimated effects of Sargassum on nighttime light intensity. 

 

Figure 17. Effects of Sargassum on nighttime light intensity 
with spatial correlation, 6-month lag (SAR-2) 
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Figure 18. Effects of Sargassum on nighttime light intensity with 
Spatial correlation, 12-month lag (SAR-2) 

 
 

5 Conclusions 
Latin America and the Caribbean has a wealth of coastal natural capital, and coastal areas are 

inextricably linked to the region’s recent growth in both GDP and population, as coastal 

ecosystems support economies and communities with important goods and services, such as 

fisheries, tourism, and raw materials (Schueler, 2017). 

For more than a decade, pelagic Sargassum has repeatedly washed ashore along the 

Caribbean and Gulf of Mexico coastlines in unprecedented quantities, covering whole beaches 

with seaweed and directly affecting businesses and local communities reliant on tourism and other 

economic activity within the region’s popular coastal zone. The identified causes of these 

Sargassum blooms are increasingly high nutrient loads flushed out to sea from agriculture and 

poor land-use in both the Amazon and Congo River Basins and the Mississippi River, as well as 

rising ocean temperatures due to the effects of climate change (Huffard et al, 2014; Amaral-Zettler 

et al., 2016; Smetacek & Zingone, 2013; Johnson et al, 2013). While anecdotal evidence suggests 

that these unprecedented Sargassum events have led not only to a decline in economic revenue, 

but also to coastal erosion and economic losses in the traditional fishing industry, no rigorous 

analysis has yet been undertaken to quantify the causal effect on economic activity.  

In this study, we attempt to fill this gap in empirical evidence by developing a unique dataset 

of 157 beach segments along the tourism-heavy shoreline of Quintana Roo State in Mexico that 

relies on a carefully designed geographic information systems (GIS) dataset, comprising 



 

39 
 

extensive panel data on key infrastructure and beach characteristics, with four years (2016-2019) 

of monthly observations for influx of Sargassum seaweed, as well as remotely-sensed nighttime 

light intensity data as a proxy of economic growth. A novel time series of Sargassum distribution 

along beaches was created applying a machine learning algorithm to satellite imagery, and 

validation processes confirmed that the indicator is highly accurate in detecting Sargassum along 

the shoreline.  

Applying a fixed-effects regression model that controls for general time trends and 

unobserved, time-invariant differences across observations, we estimate that the presence of 

Sargassum in a beach segment reduces nighttime light intensity by 17.5%, representing an 

approximate 11.6% decrease in gross local product. Taking into account that impacts of 

Sargassum on local economic activity may be delayed due to medium- and long-term reputational 

effects, our analysis finds that significant lagged effects can be detected up until 12 months after 

Sargassum was detected on the shoreline, with effect sizes ranging between a 5.9 and a 9.9% 

reduction in gross local product. Various robustness checks, including an adjusted measurement 

of Sargassum and the consideration of potential spatial correlation across beach segments, 

indicate that estimated impacts are consistently significant and negative across numerous 

specifications. Overall, we can conclude that Sargassum is a relevant concern that significantly 

affects local economies that rely on tourism. Therefore, it seems important not only to find ways 

to respond to the unwanted presence of Sargassum, but also to address the main factors 

contributing to the increasing growth of algae blooms, such as high nutrient loads that are caused 

by unsustainable agricultural practices. 

This analysis is unable to establish with empirical evidence the theoretical channels of impact 

through the tourism and fishery industry, amongst other potential causal pathways. As we 

highlight, nighttime light intensity can only serve as a proxy measure for local economic activity 

and does not allow us to tease out whether reduced radiance is caused by a decrease in hotel 

occupancy or restaurant visits, for instance. Future research in this vein should provide a deeper 

understanding of how tourists react to the presence of Sargassum algae along the beach stretch 

where they planned to spend their vacation, and how it affects the present and future travel 

choices. This would allow policy makers to better assess the potential economic consequences 

of massive Sargassum inflow and determine what would constitute a reasonable cost of 

Sargassum cleanup to offset potential economic losses.  
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Appendix 

A. Additional Tables and Figures 
 

Table AI. Elasticity of GDP with regards to nighttime light intensity a 

  Log of Quintana Roo GDP 
Log of nighttime light intensity 0.66  *** 
  (0.126)   

Constant -0.54   
  (1.020)   
Observations    20 
a Difference unequal to zero if p-value significant at the 99 (***), 95 (**),  
  or 90 (*) confidence level. Standard errors reported in parentheses. 
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