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QUANTILE REGRESSION WITH AN ENDOGENOUS MISCLASSIFIED

BINARY REGRESSOR*

CARLOS LAMARCHE�

Abstract: Recent work on the conditional mean model offers the possibility of addressing

misreporting of participation in social programs, which is common and has increased in all

major surveys. However, researchers who employ quantile regression continue to encounter

challenges in terms of estimation and statistical inference. In this work, we propose a simple

two-step estimator for a quantile regression model with endogenous misreporting. The iden-

tification of the model uses a parametric first stage and information related to participation

and misreporting. We show that the estimator is consistent and asymptotically normal.

We also establish that a bootstrap procedure is asymptotically valid for approximating the

distribution of the estimator. Simulation studies show the small sample behavior of the

estimator in comparison with other methods, including a new three-step estimator. Finally,

we illustrate the novel approach using U.S. survey data to estimate the intergenerational

effect of mother’s participation on welfare on daughter’s adult income.

Keywords: Quantile regression; Misclassification; Endogenous Treatments; Survey data.

JEL classification: C21; C25; I32.

1. Introduction

A growing concern in the social sciences is the declining quality of household survey data (Meyer,

Mok, and Sullivan, 2015). It is well documented that survey respondents have become less likely to

answer certain questions, including whether they participate in social programs. Recent theoretical

and methodological research on quantile regression have addressed important generalizations of

the celebrated Koenker and Bassett’s estimator, but research on misclassified data remains sparse

(Koenker, 2017). Practitioners face the limitations of classical parametric models and policy rec-

ommendations could miss important heterogeneity since they can only be based on average effects.

An exception in the literature is the recent work by Ura (2021), who develops identification re-

sults for a quantile model with a misclassified (or misreported) binary variable indicating treatment

status. Misclassified regressors are common when practitioners evaluate the impact of programs

using survey data with high levels of item non-response. For welfare programs, for instance, this

relates to misreporting of whether a person received benefits, duration of social assistance, and

*This draft: March 19, 2023. First version: November 15, 2021. We are grateful to Chris Bollinger, Pierre

Nguimkeu, and Jim Ziliak for comments and useful discussions over the years, as well as seminar participants at the

University of Kentucky, and the 2021 SEA conference. We would like to thank Austin Denteh for making available

his code and Rob Hartley for sharing the data used in Section 5.
�Carlos Lamarche: Department of Economics, University of Kentucky, 223G Gatton College of Business & Eco-

nomics, Lexington, KY 40506. Email: clamarche@uky.edu.
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Figure 1.1. Average monthly participation by year in the US safety net and esti-
mated reporting rates.

amount of dollars received. Using data from Meyer, Mok, and Sullivan (2015, 2009), the left panel

of Figure 1.1 shows the number of households participating in three of the most important welfare

programs in the US. The programs are: Aid to Families with Dependent Children/Temporary As-

sistance for Needy Families (AFDC/TANF), Food Stamps, and the Supplemental Security Income.

The continuous line is obtained from administrative records and the dashed lines are weighted

survey estimates obtained from the Current Population Survey (CPS), the Survey of Income and

Program Participation (SIPP), and the Panel Study of Income Dynamics (PSID), which is used

in Section 5. The right panel of Figure 1.1 shows the reporting rate, which is defined as the ratio

of survey reports and administrative cases. Reporting rates have been declining in the CPS and

PSID since 1980, reaching a level as low as 55% around 2000. Because these programs target low

income households, this evidence illustrates the importance of estimating quantile effects of welfare

program participation while allowing misreporting to be endogenous.

Motivated by the challenges, we investigate the estimation of a quantile regression model when

participation is endogenously misreported. Thus, relative to the work on partial identification of

Ura (2021), we provide conditions for point identification and propose a new quantile regression

estimator. Our estimation procedure adopts the partial observability model recently considered in

Nguimkeu, Denteh, and Tchernis (2019), which requires a parametric first step and two exogenous

measurements related to the observed (possibly endogeneous) binary regressor. In contrast to their



3

paper, the development in the second step is critically different since we estimate heterogeneous

treatment effects by using quantile regression. The estimator is simple to compute and easy to be

implemented in applications when respondents report not participating in a program when in fact

they did participate.

We investigate the asymptotic properties of the proposed estimator and establish three results.

First, we establish the consistency of the estimator. We then derive the asymptotic distribution of

the proposed estimator, and obtain an asymptotic covariance matrix that could be seen as similar

to the ones derived for other two-step quantile regression estimators (e.g., Ma and Koenker, 2006;

Chernozhukov, Fernández-Val, and Kowalski, 2015; Chen, Galvao, and Song, 2021). Inference

based on the asymptotic distribution of the proposed estimator requires estimation of nuisance

parameters and first-order partial derivatives of conditional functions. Because estimation of these

parameters might be difficult, it is useful to have an alternative inference procedure. Therefore, our

last result is to offer a valid framework for inference. We demonstrate the validity of a bootstrap

method to approximate the asymptotic distribution of the quantile estimator.

Our paper is related to research investigating mismeasured continuous regressors in a quantile

regression model. Wei and Carroll (2009) develop a consistent estimator in the presence of covariate

measurement error, and Wang, Stefanski, and Zhu (2012) adapt the classical quantile regression

problem to Gaussian and Laplace measurement error models. He and Liang (2000) investigate esti-

mation of quantile coefficients when errors in the outcome equation and covariates are independent

and their distribution is symmetric, and Schennach (2008) considers a nonparametric measurement

error model employing deconvolution methods. Chesher (2017) investigates the relationship be-

tween quantile regression functions corresponding to error-free and error-contaminated variables

when the variance of the measurement error is small. Firpo, Galvao, and Song (2017) investi-

gate measurement error in quantile regression when researchers have multiple noisy measurements

of latent variables. The literature on estimation of conditional mean models is broader relative

to quantile regression, and it includes Bollinger (1996), Frazis and Loewenstein (2003), Mahajan

(2006), Lewbel (2007), Kreider, Pepper, Gundersen, and Jolliffe (2012), Nguimkeu, Denteh, and

Tchernis (2019), DiTraglia and Garćıa-Jimeno (2019), among others.

This paper is organized as follows. The next section presents the model and the estimator,

and Section 3 presents theoretical results. Section 4 investigates the small sample performance of

the method, showing that the estimator has satisfactory performance under different specifications

considered in the literature. Section 5 illustrates the theory and provides practical guidelines from

an application of the method. Considering data from the PSID, we estimate a quantile intergener-

ational parameter to study how mother’s participation on welfare during her daughter’s childhood

affects daughter’s adult income. A major difficulty of estimating this intergenerational parameter

is the low reporting rates in the PSID (Figure 1.1). Finally, Section 6 concludes. Mathematical

proofs are offered in the Appendix.
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2. Model and Methods

We consider a continuous outcome variable, yi ∈ R, a latent binary regressor d∗i ∈ {0, 1} indi-

cating true participation status, and a p-dimensional vector of exogenous independent variables,

xi. It is assumed that the vector xi includes an intercept. Instead of d∗i , we observe a surrogate

di ∈ {0, 1} for each subject 1 ≤ i ≤ n, where n denotes the number of cross-sectional units. Our

interest is to investigate the effect of d∗i on the conditional distribution of the response variable yi

using the following model:

Qyi(τ |xi, d∗i ) = x′
iβ0(τ) + d∗iα0(τ), (2.1)

where τ ∈ (0, 1) and the function Qyi(τ |xi, d∗i ) is the τ -th quantile of the conditional distribution

of yi given xi and d
∗
i . Because we consider one value of τ throughout the paper, we suppress the

dependence of the parameters α0(τ) and β0(τ) on τ for notational simplicity.

Let θ = (β′, α)′ ∈ Θ ⊆ Rp+1, and let θ0 = (β′
0, α0)

′. The quantile treatment effect, α0, is defined

as,

α0 := Qyi(τ |xi, d∗i = 1)−Qyi(τ |xi, d∗i = 0). (2.2)

If the participation status is known by the researcher, we might estimate θ0 using

θ̂ = (β̂′, α̂)′ = argmin
θ∈Θ

n∑
i=1

ρτ (yi − x′
iβ − d∗iα), (2.3)

where ρτ (u) = u(τ − I(u < 0)) is the quantile regression loss function. The problem with the

estimator defined by (2.3) is that the variable d∗i is not observed in applied practice, as in the

application considered in Section 5.

2.1. Background. Early work by Bollinger (1996) demonstrated that the parameters of a con-

ditional mean model are not point-identified when regressors are mismeasured, which is an issue

that also affects quantile regression. Ura (2021) investigates identification in a quantile regression

model when a binary regressor indicating treatment status is not observed. He adopts the frame-

work developed by Chernozhukov and Hansen (2005, 2006) by considering a vector of instrumental

variables, denoted here by zi. The following result holds for a discrete or continuous vector of

instruments, but for simplicity, we consider the case that zi is a scalar binary variable.

Lemma 1 (Ura, 2021). Let Fi = (yi, zi,x
′
i), π0 = P (di = 0|d∗i = 1,Fi) and π1 = P (di = 1|d∗i =

0,Fi), and assume a monotone positive relationship between d∗i and zi. If Pr(di ̸= d∗i |d∗i = 0,Fi) +

Pr(di ̸= d∗i |d∗i = 1,Fi) < 1, then there exists a κ ∈ [0, 1] such that

α̃0 := Qyi(τ |xi, zi = 1)−Qyi(τ |xi, zi = 0) = κα0.

The result has important implications for empirical practice, as it states that the reduced-form

quantile regression coefficient of yi on zi provides a bound to the structural treatment effect pa-

rameter (2.2). The implication is that the quantile coefficient of regressing the response variable on
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an instrument is biased toward zero. This result can be further investigated by extending Section

3 in Ura (2021) as follows.

Define δ1 =
√
n(β − β0), δ2 =

√
n(α − α0), and δ = (δ′1, δ2)

′. Rewrite the objective function in

(2.3) as,

Vn(δ) =
n∑
i=1

{
ρτ

(
u∗i −

x′
iδ1√
n

− d∗i δ2√
n

)
− ρτ (u

∗
i )

}
, (2.4)

where u∗i := yi − x′
iβ0 − d∗iα0. Using developments in Knight (1998) and Koenker (2005), it is

possible to show that when n is large, letting A ≈ B mean that A is approximately distributed as

B,

Vn(δ) ≈ −δ′Bn +
1

2
δ′Dnδ, (2.5)

where the vector Bn and matrix Dn are defined as,

Bn =
1√
n

n∑
i=1

[
xi

d∗i

]
ψτ (u

∗
i ), Dn =

1

n

n∑
i=1

fi(0|xi, d∗i )

[
xix

′
i d∗ixi

d∗ix
′
i d∗i

]
,

ψτ = τ − I(u < 0) is the quantile regression score function, and fi is the conditional density of the

error u∗i .

Lemma 1 suggests we consider replacing d∗i by zi in the quantile regression loss function (2.3).

In this case, after simple algebra, we obtain:

Ṽn(δ) =
n∑
i=1

{
ρτ

(
ũi −

x′
iδ1√
n

− ziδ2√
n

)
− ρτ (ũi)

}
, (2.6)

where ũi = yi − x′
iβ0 − ziα0 = u∗i + (d∗i − zi)α0. As before, it is possible to derive, for sufficiently

large n,

Ṽn(δ) ≈ −δ′B̃n +
1

2
δ′D̃nδ, (2.7)

where

B̃n =
1√
n

n∑
i=1

[
xi

zi

]
ψτ (u

∗
i + (d∗i − zi)α0), D̃n =

1

n

n∑
i=1

fi(0|xi, zi)

[
xix

′
i zixi

zix
′
i zi

]
.

It is immediately apparent that are two key differences between expressions (2.5) and (2.7).

First, D̃n ̸= Dn due to replacing d∗i by zi. Second, and more importantly to explain the result in

Lemma 1, B̃n ̸= Bn when d∗i ̸= zi. Using the definition of the quantile score function, we obtain:

E [ψτ (u
∗
i + (d∗i − zi)α0)|xi, zi] = τ − Pr(u∗i + α0d

∗
i ≤ ziα0|xi, zi).

Assuming that d∗i is weakly increasing in zi, and because u∗i + α0d
∗
i = yi − x′

iβ0, we can write,

Pr(u∗i ≤ 0|xi, d∗i = zi = 0)− Pr(u∗i ≤ α0|xi, d∗i = 0, zi = 1) ≤ 0,
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if α0 ≥ 0. Therefore, E
[
B̃n|xi, zi

]
≤ 0 and the solution of (2.7) is expected to be (given the

approximation) downward biased. Moreover, as n→ ∞, and Ṽn(δ) → Ṽ(δ) and Vn(δ) → V(δ),

E
[
δ̃
]
= E

[
argmin
δ∈∆

{
Ṽ(δ)

}]
≤ E

[
δ̂
]
= E

[
argmin
δ∈∆

{V(δ)}
]
= 0,

if the latent variable is exogenous.

Remark 1. Note that E [ψτ (u
∗
i )|xi, d∗i ] = 0 does not hold if d∗i is endogenous. Note also that d∗i is

assumed to be weakly increasing in zi. It allows for some 1 ≤ i ≤ n but not all subjects to change

d∗i from 1 to 0 when zi changes from 0 to 1. If the sample includes compliers instead of deniers and

α0 < 0, the solution of (2.7) is expected to provide an upper bound for α0.

In the next section, we propose an estimator that does not suffer from this issue. The idea is

to recenter the error term in (2.6) by replacing zi by the conditional expectation E [d∗i |xi, zi]. For

consistency of the estimator, one could require that d∗i −E [d∗i |xi, zi], a Bernoulli re-centered random

variable, is independent of the error term of the model. However, the model presented in the next

section allows for weak forms of dependence as long as the ranks of the variables are not sufficiently

different. Similar conditions are introduced in the literature (Chernozhukov and Hansen, 2005; Ura,

2021) and the conditional expectation can be estimated in scenarios of incomplete data under the

conditions introduced below.

2.2. The model. We now introduce the remaining part of the model. The latent binary variable

is,

d∗i = 1{z′
iϑ+ vi ≥ 0}, (2.8)

where ϑ is a k1-dimensional parameter, zi is a vector of instruments that includes the exogenous

independent variables xi, and vi is an error term. Moreover, we model misreporting behavior by

considering,

mi = 1{w′
iγ + ϵi ≥ 0}, (2.9)

where γ is a k2-dimensional parameter, wi is a vector of variables that are different than zi, and

ϵi is an error term. Therefore, the observed binary variable is modeled by,

di = d∗imi = 1{z′
iϑ+ vi ≥ 0,w′

iγ + ϵi ≥ 0}. (2.10)

The last equation follows the partial observability model introduced by Poirier (1980) and re-

cently adopted by Nguimkeu, Denteh, and Tchernis (2019). We do not observe individual decisions

d∗i and mi but di = 1 implies d∗i = 1 and mi = 1, and di = 0 implies d∗i = 0 and/or mi = 0.

Sufficient variation in zi and wi allows point identification of the effect of interest under different

assumptions, including non Gaussian conditions. The estimation strategy below relies on observing

both zi and wi, and at least one variable in wi or zi has to be continuous.

The model is completed with the following assumptions:
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A1. For each τ ∈ (0, 1), considering the quantile function in (2.1), Pr(yi ≤ Qyi(τ |d∗
i ,xi)|xi, zi) = τ .

Moreover, the indicator variable di ∈ R is generated according to equation (2.10) and the error

terms (vi, ϵi) are independent of zi, wi, and xi and have unit variances.

A2. Let Fv,ϵ(v, ϵ; ρ) denote the joint distribution of v and ϵ with correlation coefficient ρ, and

let Fv(v) denote a marginal distribution. Conditional on (z′
i,w

′
i), Fv,ϵ(v, ϵ; ρ) = Φv,ϵ(v, ϵ; ρ), the

bivariate normal distribution with parameter ρ.

A3. Let Φi(ϑ) := Fv(z
′
iϑ), ui := yi − x′

iβ0 − α0Φi(ϑ), and ξi := d∗i − Φi(ϑ). Assume that u∗i and

ξi are independent, and u∗i |xi, zi and ui|xi, zi are identically distributed.

Assumption A1 is different than Assumption 1 in Nguimkeu, Denteh, and Tchernis (2019) by in-

troducing a quantile conditional moment restriction (Chernozhukov and Hansen, 2005; Ura, 2021).

Assumption A2 is similar to Assumption 3 in Nguimkeu, Denteh, and Tchernis (2019) and it al-

lows a parametric first step. The normality assumption is convenient for the estimation of the

partial observability model, but it is not needed and can be relaxed by considering other absolutely

continuous distributions (e.g., bivariate logistic distributions) or semiparametric models (e.g., Ca-

vanagh and Sherman, 1998). Assumption A3 is similar to the rank similarity condition used for

identification of the IVQR model of Chernozhukov and Hansen (2005). It is weaker than assuming

independence between u∗i and vi, because it allows for weak forms of dependence, as long as there

is no systematic variation making vi to cross the threshold (conditional on z′
iϑ) in equation (2.8).

2.3. Estimation. This section describes the proposed two-step estimator. In what follows, we

extend the results in Nguimkeu, Denteh, and Tchernis (2019) and Ura (2021) for the problem

studied in this paper.

Step 1. Estimate the joint distribution Fv,ϵ(v, ϵ; ρ) corresponding to the variable defined in equation

(2.10) by regression methods for bivariate data, and denote the estimated marginal conditional

distribution of vi as Φi(ϑ̂) := Fv(z
′
iϑ̂).

Step 2. Then θ0 = (β′
0, α0)

′ ∈ Θ ⊆ Rp+1 can be estimated by standard quantile regression:

θ̂ = (β̂′, α̂)′ = argmin
θ∈Θ

1

n

n∑
i=1

ρτ (yi − x′
iβ − αΦi(ϑ̂)), (2.11)

where ρτ (u) = u(τ − I(u < 0)) is the quantile regression loss function. We denote this estimator

the quantile regression estimator for a model with endogenous misclassification (QREM).

In the first step, the variable Φi is estimated using a Gaussian marginal distribution and a

Gaussian copula. These choices are convenient in practice and the first stage could be extended

to include nonparametric alternatives (e.g., Chen, Fan, and Tsyrennikov, 2006; Han and Vytlacil,

2017; Han and Lee, 2019). Cavanagh and Sherman (1998) considered a class of semiparametric

models and a rank estimator for (2.10). Although nonparametric methods are of interest, they

have slow convergence rates and might not be applied to models with bivariate (partially observed)
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binary data. Given these considerations, the first step considers the partial observability model of

Poirier (1980) and Nguimkeu, Denteh, and Tchernis (2019). Let

Pr(di = 1|zi,wi) = Pr(vi ≥ −z′
iϑ, ϵi ≥ −w′

iγ) = Fv,ϵ(z
′
iϑ,w

′
iγ; ρ) = Pi(ϑ,γ, ρ), (2.12)

where ρ denotes the correlation between vi and ϵi. The parameters (ϑ′,γ ′, ρ) of the joint distribution

function can be estimated by maximum likelihood (ML), considering the following log-likelihood

function:

ℓn(ϑ,γ, ρ) =
1

n

n∑
i=1

{di log(Pi(ϑ,γ, ρ)) + (1− di)(1− log(Pi(ϑ,γ, ρ)))} . (2.13)

Under A2, the ML estimator defined as,

{ϑ̂, γ̂, ρ̂} = argmax
ϑ,γ,ρ∈Υ×Γ×K

ℓn(ϑ,γ, ρ), (2.14)

is consistent and asymptotically normal. In the second step, we employ quantile regression using

the estimated marginal Φi(ϑ̂). The optimization problem formulated in (2.11) can accommodate

weights, semiparametric estimation, and a penalty for high-dimensional models (Koenker, 2005).

The solution can be obtained easily by computation methods developed in the R package quantreg.

Naturally, the two-step procedure has advantages and disadvantages when applied to misclas-

sification problems. Although the second step employs standard quantile regression methods, the

asymptotic distribution of the QREM estimator derived in Theorem 2 below is complicated and it

creates challenges for inference. On the other hand, the estimation of the probability of participa-

tion might be subject to misspecification. Motivated by these limitations, we propose a weighted

bootstrap approach in Section 2.4 and an alternative estimator in Section 2.5.

2.4. Bootstrap Estimation. The weighted bootstrap approach considered in this section is simi-

lar to the one previously employed in Chernozhukov, Fernández-Val, and Kowalski (2015) in cross-

sectional models with control variables. The procedure, which was introduced by Jin, Ying, and

Wei (2001) and further investigated by Ma and Kosorok (2005), suggests perturbing the objective

function using independent draws from a non-negative distribution. It works under fairly general

conditions and it can accommodate discrete regressors.

Let {ωi} be a sequence of weights with mean 1 and variance 1. Using the bootstrap weights, we

obtain the bootstrap estimator as follows:

θ̌ = (β̌′, α̌)′ = argmin
θ∈Θ

1

n

n∑
i=1

ωiρτ (yi − x′
iβ − αΦi(ϑ̌)), (2.15)

where Φi(ϑ̌) denotes the first step estimator of the marginal distribution estimated by the weighted

bootstrap.

The procedure is implemented as follows. First, we draw a sample of weights (ω1, ω2, . . . , ωn).

Using the weights, we estimate the conditional marginal distribution. Second, using the estimated

probability, we obtain θ̌ as in (2.15). We repeat the previous steps B times. Given a bootstrap
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sample {θ̌b}Bb=1, we obtain confidence intervals that are asymptotically valid, as demonstrated in

Theorem 3 below. Let Gj(a/2) and Gj(1− a/2) be the (a/2)-th quantile and (1− a/2)-th quantile

of the bootstrap distribution of
√
n(θ̌j − θ̂j) for j = 1, 2, . . . , p+ 1. We obtain asymptotically valid

100(1− a)% confidence intervals for θ1 = α0 by [α̂− n−1/2G1(1− a/2), α̂− n−1/2G1(a/2)].

Remark 2. Standard choices for the weight distribution are the exponential and multinomial

distributions. We recommend using multinomial weights in practice, because it is convenient for the

parametric first step with dichotomous variables. When ωi is a multinomial weight with probability

n−1, ωi denotes the number of times that cross-sectional unit i is redrawn, and then (2.15) can be

viewed as the cross-sectional pairs bootstrap estimator (Chatterjee and Bose, 2005). We adopt the

recommendation in Section 5.

2.5. A parametrically guided estimator. Following A2, the estimator in (2.11) is obtained after

estimating a Gaussian copula in the first step. The procedure allows for misspecification of the joint

distribution, but it requires the marginal distribution Fv(v) to be correctly specified. This might

be viewed as a stronger condition relative to the ones employed in other quantile regression models.

For instance, in models with endogenous regressors and no misclassification, control functions are

correctly specified for consistent estimation (Ma and Koenker, 2006; Chernozhukov, Fernández-Val,

and Kowalski, 2015).

A number of studies develop approximations to bivariate distributions for binary data using the

bivariate normal distribution. One could consider,

Pi(ϑ,γ, ρ) = Φi(ϑ,γ, ρ)

(
1 +

∑
j

∑
k

Kik

j!k!
E [Hjk(v, ϵ, ρ)]

)
,

where Hjk(v, ϵ, ρ) are bivariate Hermite polynomials and Kik are cumulants (Murphy, 2007). The

function Hjk := ((−1)j+kDj
1D

k
1φ(v, ϵ, ρ))/φ(v, ϵ, ρ), where D1 is an operator for differentiation and

ϕ(v, ϵ, ρ) is the density function of the normal distribution. Another alternative is to consider

parametrically guided methods, which can improve the performance of estimators that employ a

parametric first step (Fan, Wu, and Feng, 2009). Assume that the function Fv is known up to a

small approximation error following the identify: Fv = Φv + rvΦv, where rv = (Fv − Φv)/Φv and

Φv denotes the Gaussian cumulative distribution function. Because the approximation error is a

function of zi, this suggests that we can augment the model by including rv as a control variate.

This strategy requires a small adaptation of the IVQR method proposed in Chernozhukov and

Hansen (2006).

The estimation procedure below uses a third step to produce an estimator of α0 that corresponds

to the smallest distance between Fv and Φv. Define Ci(τ, α,β, η) = ρτ

(
yi − αΦi(ϑ̂)− x′

iβ − ηr̂i

)
,

where r̂i is a nonparametric estimator of Fv(zi) − Φ(z′
iϑ̂), where Φ(z′

iϑ̂) is obtained as in Step 1.
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We first minimize the objective function Ci(τ, α,β, η) for β, η as functions of τ and α,

{β̂3S(τ, α), η̂3S(τ, α)} = argmin
β,η∈B×G

n∑
i=1

Ci(τ, α;β, η). (2.16)

Then we estimate the parameter of interest by finding the value of α which minimizes a globally

convex function defined on η:

α̂3S = argmin
α∈A

{
η̂3S(τ, α)

2
}
. (2.17)

The three-step quantile regression estimator (3SQR) for a model with endogenous misclassification

is defined as θ̂3S = (β̂3S(α̂3S)
′, α̂3S)

′.

Remark 3. A non-parametric estimator of Fv(zi) can be obtained by considering d∗i −Φi(ϑ̂)|di = 1

for 1 ≤ i ≤ n if Pr(di = 1|d∗i = 0,xi) = 0. Naturally, we observe d∗i only if mi = 1, and therefore,

the 3SQR is in principle unfeasible. Because the small approximation error depends on zi, we

implement the estimator considering ri = Fv(zi)−Φ(z′
iϑ̂) = g(µ, zi), which is estimated as a linear

function of the instruments. We evaluate the performance of such estimator in Section 4.

3. Asymptotic Theory

This section investigates the large sample properties of the proposed two-step estimator. First,

we establish consistency and asymptotic normality of the estimator. We then demonstrate the

validity of the bootstrap estimator.

We consider the following assumptions:

A4. For each ϕ > 0,

inf
∥θ∥1=ϕ

E

[∫ x′
i(β−β0)+(α−α0)Φi(ϑ)

0
(Fu(s|xi, zi)− τ) ds

]
= ϵϕ > 0,

where Fu := Fui|xi,zi is the cumulative distribution function of ui = yi−x′
iβ0−α0Φi(ϑ0) conditional

on xi and zi, and Φi(ϑ) := Φ(z′
iϑ).

A5. The vector hi = (x′
i, z

′
i,w

′
i)
′ satisfies max1≤i≤n ∥hi∥ < M <∞ a.s.

A6. Let ψ(di, zi,wi) =: ψ(Li) be an influence function corresponding to (2.13), with E [ψ(Li)] =

0 and E [ψ(Li)ψ(Li)
′] ≤ Kψ < ∞. Then (a) ϑ̂

p−→ ϑ0 and (b) the estimator ϑ̂ admits an

asymptotically linear representation,

√
n(ϑ̂− ϑ0) =

1√
n

n∑
i=1

ψ(zi) + op(1),

where E [ψ(zi)] = 0 and E [ψ(zi)ψ(zi)
′] = Ω, a positive definite matrix.
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The first two conditions are similar to the ones used in the quantile regression literature (e.g.,

Koenker, 2005). Assumption A4 is an identification condition and it is sufficient for consistency.

The condition allows an expansion that guarantees the convexity of the objective function, and

thus, the uniqueness of θ0 as n → ∞. Assumption A5 is common to impose appropriate moment

conditions on the covariates in the first and second stages, and it can be relaxed by imposing

stochastic bounds based on moment conditions. The last condition A6 is used for the expansion of

estimators with sufficiently smooth objective functions (Newey and McFadden, 1994) and quantile

based estimators (Chernozhukov, Fernández-Val, and Kowalski, 2015), although here the first stage

does not require a smoothness condition. The first part of A6 is needed for the consistency of the

estimator of E [d∗i |xi, zi], obtained from (2.13) under Assumption A2. The first stage is similar to the

method employed by Nguimkeu, Denteh, and Tchernis (2019), and therefore, the result below uses

a similar condition. The second part of the condition is similar to Assumption 4 in Chernozhukov,

Fernández-Val, and Kowalski (2015). The condition has to be verified for the estimators employed

in the first stage, and it is satisfied under condition A2.

The following result establishes the consistency of the two-step estimator:

Theorem 1. Under Assumptions A1-A6.a, as n→ ∞, the estimator θ̂ defined in equation (2.11)

is a consistent estimator of θ0.

We consider the following additional conditions, which are similar to A1 and A2 in Ma and

Koenker (2006) and A1 and A5 in Chen, Galvao, and Song (2021):

A7. The conditional cumulative distribution function of the error term ui, Fui|xi,zi , has continuous

derivative fui|xi,zi that is uniformly bounded away from 0 and ∞ at the τ -th conditional quantile,

for 1 ≤ i ≤ n.

A8. Let Xi(ϑ) := (x′
i,Φi(ϑ))

′ and Ẋi(ϑ) := ∂ΦXi(ϑ). There exist positive definite matrices Dj

for j ∈ {0, 1, 2, 3} defined as,

D0 = τ(1− τ) lim
n→∞

1

n

n∑
i=1

Xi(ϑ)Xi(ϑ)
′, D1 = lim

n→∞

1

n

n∑
i=1

fu(0|xi, zi)Xi(ϑ)Xi(ϑ)
′,

D2 = lim
n→∞

1

n

n∑
i=1

fu(0|xi, zi)Xi(ϑ)Ẋi(ϑ)
′θ∇ϑΦi(ϑ), D3 = lim

n→∞
nE
[
(θ̂ − θ̃)(θ̃ − θ0)

′
]
,

where θ̂ is the estimator in (2.11) and θ̃ is an estimator that uses Φi(ϑ) instead of Φi(ϑ̂) in (2.11).

Under these conditions, we obtain the asymptotic distribution of the estimator:

Theorem 2. Under Assumptions A1-A8, as n→ ∞,
√
n(θ̂ − θ0)

d−→ N (0,D−1
1 [D0 +D2ΩD′

2 −D3]D
−1
1 ).

The asymptotic variance of the proposed estimator is given in Theorem 2. Although the lit-

erature on quantile regression offers a variety of inference methods, the complicated form of the
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asymptotic covariance matrix represents a major challenge for carrying out analytical inference.

The asymptotic variance requires estimation of nuisance parameters by non-parametric methods,

which is standard in quantile regression although it can introduce size distortions (He, 2018). In

the case of misclassification, we also need to approximate and estimate partial derivatives of dis-

tribution functions. Motivated by these limitations, we propose a weighted bootstrap procedure in

(2.15) and we establish its validity in Theorem 3.

Consider the following assumptions:

B1. Let (ω1, ω2, . . . , ωn) be a vector of independent and identically distributed weights from a non-

negative distribution with E [ωi] = 1 and Var[ωi] = 1. The weights are independent of the variables

{(yi, di,x′
i, z

′
i,w

′
i)} for 1 ≤ i ≤ n.

B2. Let op⋆ denote an stochastic order interpreted as conditional on the observed sample. Assume

that ∥ϑ̌−ϑ̂∥ = op⋆(1) and the bootstrap estimator ϑ̌ admits an asymptotically linear representation,

√
n(ϑ̌− ϑ0) =

1√
n

n∑
i=1

ωiψ(zi) + op(1),

where (ω1, ω2, . . . , ωn) satisfies the conditions in B1, E [ψ(zi)] = 0, and E [ψ(zi)ψ(zi)
′] = Ω. Define

Φi(ϑ̌) := Φ(z′
iϑ̌) as the bootstrap estimator for the conditional marginal distribution.

Assumption B1 is standard and it describes the weights used to perturb the objective function.

Exponential weights have been adopted in a variety of models (e.g., Peng and Huang, 2008; Cher-

nozhukov, Fernández-Val, and Kowalski, 2015, among others), but we consider ωi to be multinomial

drawn with probability n−1, as discussed in Remark 2. Assumption B2 is a high level assumption

that requires the consistency and asymptotic normality of the first stage estimator. This is an

important assumption, since in some situations, the consistency of the bootstrap estimator does

not imply the consistency of the bootstrap estimator of second moments (Hahn and Liao, 2021).

Theorem 3. Under the conditions of Theorem 2 and Assumptions B1 and B2, the bootstrap esti-

mator defined in (2.15), as n→ ∞ and conditional on the observed sample,
√
n(θ̌ − θ̂) ⇒ B⋆(τ),

where B⋆(τ) is a Gaussian process with mean zero and covariance matrix D−1
1 [D0 + D2ΩD′

2 −
D3]D

−1
1 as in Theorem 2.

The result of Theorem 3 implies that the weighted bootstrap procedure is consistent as an

estimator of the asymptotic distribution of the two-step estimator (2.11).

4. Simulation Study

This section presents the results of a simulation study designed to evaluate the performance

of the proposed estimator in finite samples. We consider a data generating process that follows



13

τ = 0.50 Quantile τ = 0.75 Quantile
π0 ζv ζϵ QR IV CH EM 3S QR IV CH EM 3S

Bias 0.00 0.00 0.00 0.000 0.100 -0.001 0.002 0.001 0.000 -0.042 -0.001 -0.001 -0.002
RMSE 0.00 0.00 0.00 0.042 0.109 0.074 0.072 0.074 0.047 0.062 0.082 0.079 0.082
Bias 0.25 0.00 0.00 0.033 0.103 -0.056 0.009 0.010 -0.015 -0.040 0.039 0.001 0.002
RMSE 0.25 0.00 0.00 0.057 0.112 0.108 0.074 0.076 0.053 0.062 0.126 0.083 0.085
Bias 0.40 0.00 0.00 0.046 0.098 -0.103 0.000 -0.001 -0.022 -0.043 0.061 -0.001 -0.001
RMSE 0.40 0.00 0.00 0.066 0.107 0.130 0.074 0.076 0.059 0.062 0.151 0.079 0.081
Bias 0.00 0.30 0.00 0.402 0.099 0.000 -0.001 -0.001 0.396 -0.041 -0.001 0.000 0.001
RMSE 0.00 0.30 0.00 0.405 0.109 0.076 0.075 0.077 0.399 0.063 0.083 0.082 0.085
Bias 0.25 0.30 0.00 0.357 0.096 -0.069 -0.005 -0.005 0.297 -0.041 0.032 0.002 0.001
RMSE 0.25 0.30 0.00 0.360 0.105 0.112 0.074 0.076 0.301 0.062 0.119 0.082 0.084
Bias 0.40 0.30 0.00 0.339 0.098 -0.105 -0.005 -0.005 0.255 -0.042 0.061 0.000 0.000
RMSE 0.40 0.30 0.00 0.343 0.106 0.129 0.071 0.073 0.260 0.061 0.145 0.077 0.079
Bias 0.00 0.00 0.20 0.000 0.101 0.003 0.006 0.005 -0.002 -0.041 0.003 0.002 0.003
RMSE 0.00 0.00 0.20 0.043 0.109 0.076 0.073 0.075 0.048 0.061 0.083 0.080 0.082
Bias 0.25 0.00 0.20 0.114 0.097 -0.072 -0.004 -0.004 0.063 -0.045 0.022 -0.007 -0.007
RMSE 0.25 0.00 0.20 0.123 0.106 0.113 0.071 0.072 0.080 0.065 0.110 0.079 0.080
Bias 0.40 0.00 0.20 0.158 0.099 -0.102 0.001 0.001 0.088 -0.043 0.058 0.000 0.000
RMSE 0.40 0.00 0.20 0.166 0.108 0.131 0.072 0.074 0.103 0.062 0.145 0.078 0.080
Bias 0.00 0.30 0.20 0.401 0.098 -0.001 -0.002 -0.002 0.396 -0.041 -0.002 0.000 -0.001
RMSE 0.00 0.30 0.20 0.403 0.106 0.074 0.073 0.074 0.398 0.063 0.082 0.082 0.084
Bias 0.25 0.30 0.20 0.439 0.098 -0.066 -0.003 -0.002 0.379 -0.041 0.029 0.003 0.002
RMSE 0.25 0.30 0.20 0.441 0.107 0.108 0.072 0.073 0.382 0.064 0.112 0.081 0.081
Bias 0.40 0.30 0.20 0.448 0.102 -0.097 0.003 0.003 0.366 -0.040 0.062 0.005 0.004
RMSE 0.40 0.30 0.20 0.451 0.111 0.129 0.076 0.078 0.370 0.062 0.149 0.081 0.084

Table 4.1. Bias and root mean square error (RMSE) of quantile regression es-
timators for α0 when the distribution of errors is Normal. QR denotes quantile
regression, IV denotes QR with instrumental variables, CH denotes the IVQR esti-
mator, EM the proposed two-step estimator, and 3S is the proposed three-step esti-
mator.

closely the designs in Nguimkeu, Denteh, and Tchernis (2019) and Ura (2021). Observations for

the dependent variable yi for i = 1, 2, . . . , n are generated according to the following model:

yi = β0 + β1xi + [exp (Fu(ui)− 0.5)− 1.2] d∗i + ui, (4.1)

where Fu is the cumulative distribution of ui and xi is an i.i.d. random variable distributed as

U [0, 1]. The true value of α0 = exp (τ − 0.5)− 1.2 changes across quantiles as in Ura (2021). When

τ = 0.5, the parameter of interest α0 = −0.2 as in Nguimkeu, Denteh, and Tchernis (2019).

The latent indicator variable is d∗i = 1{ϑ0 + ϑ1zi + vi ≥ 0}, and the misclassification indicator is

mi = 1{γ0+γ1wi+ϵi ≥ c}, where the parameter c is set to control the proportion of false negatives,

that is, observations with d∗i = 1 and di = 0. The instrument zi and additional regressor wi are

i.i.d. random variables distributed as N (0, 1) as in Nguimkeu, Denteh, and Tchernis (2019). The

observed binary regressor variable is generated as follows:

di = d∗i mi = 1{ϑ0 + ϑ1zi + vi ≥ 0, γ0 + γ1wi + ϵi ≥ c}. (4.2)
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τ = 0.50 Quantile τ = 0.75 Quantile
π0 ζv ζϵ QR IV CH EM 3S QR IV CH EM 3S

Bias 0.00 0.00 0.00 0.001 0.099 -0.001 -0.018 -0.017 -0.010 -0.044 -0.001 0.002 0.002
RMSE 0.00 0.00 0.00 0.045 0.109 0.081 0.087 0.089 0.056 0.069 0.100 0.101 0.104
Bias 0.25 0.00 0.00 0.034 0.100 -0.075 -0.020 -0.018 -0.037 -0.044 0.033 0.003 0.003
RMSE 0.25 0.00 0.00 0.059 0.110 0.135 0.090 0.090 0.069 0.071 0.149 0.107 0.107
Bias 0.40 0.00 0.00 0.048 0.100 -0.139 -0.017 -0.015 -0.022 -0.042 0.068 0.005 0.004
RMSE 0.40 0.00 0.00 0.073 0.111 0.194 0.092 0.093 0.066 0.071 0.202 0.108 0.110
Bias 0.00 0.30 0.00 0.457 0.102 0.008 -0.011 -0.009 0.487 -0.041 0.004 0.010 0.009
RMSE 0.00 0.30 0.00 0.459 0.112 0.080 0.087 0.088 0.490 0.070 0.103 0.107 0.109
Bias 0.25 0.30 0.00 0.393 0.098 -0.074 -0.022 -0.019 0.349 -0.041 0.043 0.012 0.011
RMSE 0.25 0.30 0.00 0.396 0.107 0.130 0.088 0.090 0.355 0.070 0.148 0.106 0.109
Bias 0.40 0.30 0.00 0.371 0.097 -0.146 -0.024 -0.021 0.319 -0.045 0.060 0.001 0.000
RMSE 0.40 0.30 0.00 0.375 0.108 0.198 0.092 0.093 0.326 0.074 0.204 0.115 0.117
Bias 0.00 0.00 0.20 -0.001 0.099 -0.005 -0.021 -0.020 -0.011 -0.044 -0.005 -0.001 -0.003
RMSE 0.00 0.00 0.20 0.047 0.109 0.085 0.091 0.094 0.056 0.070 0.108 0.109 0.111
Bias 0.25 0.00 0.20 0.135 0.099 -0.075 -0.021 -0.018 0.082 -0.043 0.036 0.009 0.010
RMSE 0.25 0.00 0.20 0.143 0.109 0.135 0.091 0.093 0.101 0.071 0.149 0.109 0.111
Bias 0.40 0.00 0.20 0.186 0.099 -0.145 -0.020 -0.018 0.132 -0.041 0.069 0.010 0.009
RMSE 0.40 0.00 0.20 0.194 0.110 0.196 0.089 0.090 0.147 0.067 0.188 0.104 0.106
Bias 0.00 0.30 0.20 0.459 0.099 0.002 -0.018 -0.016 0.489 -0.046 -0.004 0.001 0.001
RMSE 0.00 0.30 0.20 0.462 0.109 0.083 0.091 0.092 0.493 0.075 0.106 0.112 0.113
Bias 0.25 0.30 0.20 0.495 0.101 -0.073 -0.020 -0.019 0.468 -0.042 0.034 0.009 0.008
RMSE 0.25 0.30 0.20 0.497 0.110 0.130 0.088 0.089 0.473 0.070 0.147 0.109 0.111
Bias 0.40 0.30 0.20 0.511 0.099 -0.136 -0.020 -0.017 0.481 -0.041 0.066 0.008 0.007
RMSE 0.40 0.30 0.20 0.514 0.109 0.188 0.089 0.091 0.485 0.071 0.189 0.109 0.110

Table 4.2. Bias and root mean square error (RMSE) of quantile regression esti-
mators for α0 when the distribution of errors is t3. QR denotes quantile regression,
IV denotes QR with instrumental variables, CH denotes the IVQR estimator, EM
the proposed two-step estimator, and 3S is the proposed three-step estimator.

In all variants of the models, ϑ0 = 0.1, β0 = β1 = ϑ1 = 1, γ1 = 2, and γ0 = 0.01.

Let π0 = Pr(di = 0|d∗i = 1) and π1 = Pr(di = 1|d∗i = 0). We set c in (4.2) to generate 0%, 25%,

and 40% of false negatives in Tables 4.1-4.3 with one-sided misreporting. We consider the case of

both π0 > 0 and π1 > 0 in Table 4.4.

The errors in equations (4.1) and (4.2) are i.i.d. random variables distributed from a trivariate

distribution Fu,v,ϵ with mean zero and covariance:

Σ =

 σ2 σζv σζϵ

σζv 1 ρ

σζϵ ρ 1

 =

 1 ζv ζϵ

ζv 1 0.3

ζϵ 0.3 1

 , (4.3)

where σ = 1 and ρ = 0.3 in all variants of the experiments considered in this section. Note that

the case of exogenous misreporting and exogenous participation is obtained by setting ζϵ = ζv = 0.

In this case, the quantile regression (QR) estimator is consistent for α0, and it expected to perform

well in finite samples. To examine the performance of quantile regression estimators in the case of
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τ = 0.50 Quantile τ = 0.75 Quantile
π0 ζv ζϵ QR IV CH EM 3S QR IV CH EM 3S

Bias 0.00 0.00 0.00 -0.001 0.151 -0.003 0.000 0.002 -0.001 -0.061 -0.008 -0.007 -0.012
RMSE 0.00 0.00 0.00 0.083 0.172 0.254 0.255 0.251 0.128 0.137 0.384 0.395 0.382
Bias 0.25 0.00 0.00 0.031 0.157 -0.037 0.033 0.034 -0.014 -0.058 0.041 0.011 0.009
RMSE 0.25 0.00 0.00 0.097 0.177 0.359 0.257 0.257 0.138 0.141 0.511 0.410 0.397
Bias 0.40 0.00 0.00 0.036 0.147 -0.103 0.000 0.001 -0.027 -0.066 0.027 -0.003 -0.006
RMSE 0.40 0.00 0.00 0.103 0.168 0.390 0.261 0.258 0.154 0.139 0.531 0.394 0.384
Bias 0.00 0.30 0.00 1.044 0.151 0.001 -0.005 -0.002 1.431 -0.061 -0.006 -0.005 -0.006
RMSE 0.00 0.30 0.00 1.048 0.172 0.257 0.264 0.262 1.437 0.144 0.372 0.401 0.389
Bias 0.25 0.30 0.00 0.865 0.146 -0.089 -0.013 -0.011 1.084 -0.066 0.024 -0.007 -0.009
RMSE 0.25 0.30 0.00 0.871 0.167 0.358 0.267 0.262 1.094 0.142 0.490 0.403 0.389
Bias 0.40 0.30 0.00 0.803 0.146 -0.117 -0.012 -0.010 0.975 -0.066 0.018 -0.015 -0.014
RMSE 0.40 0.30 0.00 0.810 0.165 0.375 0.253 0.250 0.987 0.135 0.517 0.371 0.363
Bias 0.00 0.00 0.20 0.002 0.152 0.013 0.015 0.017 -0.001 -0.057 0.025 0.024 0.020
RMSE 0.00 0.00 0.20 0.085 0.173 0.261 0.261 0.257 0.132 0.134 0.379 0.390 0.378
Bias 0.25 0.00 0.20 0.273 0.145 -0.097 -0.014 -0.012 0.305 -0.069 -0.011 -0.023 -0.024
RMSE 0.25 0.00 0.20 0.291 0.166 0.348 0.252 0.250 0.335 0.142 0.476 0.383 0.374
Bias 0.40 0.00 0.20 0.373 0.150 -0.109 0.006 0.007 0.430 -0.065 0.024 0.001 -0.001
RMSE 0.40 0.00 0.20 0.387 0.170 0.395 0.252 0.250 0.457 0.139 0.533 0.390 0.384
Bias 0.00 0.30 0.20 1.043 0.145 -0.004 -0.009 -0.007 1.432 -0.064 -0.012 -0.006 -0.008
RMSE 0.00 0.30 0.20 1.047 0.167 0.251 0.258 0.256 1.437 0.144 0.372 0.397 0.386
Bias 0.25 0.30 0.20 1.125 0.147 -0.078 -0.005 -0.003 1.446 -0.062 0.022 -0.001 -0.005
RMSE 0.25 0.30 0.20 1.130 0.167 0.339 0.254 0.249 1.453 0.143 0.477 0.388 0.380
Bias 0.40 0.30 0.20 1.162 0.154 -0.073 0.012 0.013 1.460 -0.060 0.035 0.012 0.008
RMSE 0.40 0.30 0.20 1.168 0.174 0.396 0.268 0.265 1.469 0.139 0.526 0.401 0.392

Table 4.3. Bias and root mean square error (RMSE) of quantile regression esti-
mators for α0 when the distribution of errors is χ2

3. QR denotes quantile regression,
IV denotes QR with instrumental variables, CH denotes the IVQR estimator, EM
the proposed two-step estimator, and 3S is the proposed three-step estimator.

endogenous misreporting and participation, we follow Nguimkeu, Denteh, and Tchernis (2019) and

set ζv = 0.3 and ζϵ = 0.2. Finally, we consider different trivariate distributions. We first consider

joint normality, and then, we report results obtained by assuming that Fu,v,ϵ is t3 (i.e., t-student

distribution with 3 degrees of freedom), and χ2
3 (i.e., χ2 distribution with 3 degrees of freedom)

centered to have zero mean.

Table 4.1 presents bias and root mean square error (RMSE) of the proposed estimators in com-

parison with QR and two IV estimators. Following Lemma 1, we consider QR using 1{zi ≥ 0}
instead of di as a regressor (IV). Moreover, we consider the IV quantile regression estimator pro-

posed by Chernozhukov and Hansen (2006) (CH). The CH estimator uses the observed variable

di as a regressor, but identification relies on the instrumental variable zi. It is important to bear

in mind that the QR, IV, and CH estimators do not allow for endogenous misclassification and

could be biased in finite samples. Lastly, the table shows results obtained by the QREM and 3SQR
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Figure 4.1. Bias and root mean square error (RMSE) for α0 when the marginal
distribution is χ2

3. EM is the two-step estimator and 3S is the three-step estimator.
The sample size is denoted by n.

estimators introduced in Sections 2.3 and 2.5. The bias and RMSE are for the parameter of interest

α0 at τ ∈ {0.5, 0.75}, obtained from 1000 samples of size 5000.

The upper panel of Table 4.1 provides evidence of the biases present in the application of QR

methods under exogenous misclassification and participation. As expected, the QR, IV and CH

estimators are unbiased if the proportion of false negatives is zero (i.e., π0 = 0). The performance

of these estimators deteriorate when π0 > 0, reaching bias that range from 20% to 50% at π0 = 0.4

and τ = 0.5. In the case of endogenous participation and misclassification, the CH estimator offers,

in general, lower bias relative to QR and IV. The proposed estimators have almost zero bias and

the lowest MSE in models with endogenous misclassification. The results across quantiles lead to

similar conclusions.

Tables 4.2 and 4.3 show the bias and RMSE when the error distributions are t3 and χ2
3. We

continue to see that the performance of the QREM and 3SQR estimators are satisfactory and they

offer substantially better MSE performance relative to existing methods. In Table 4.3, the 3SQR

estimator has slightly smaller bias and better MSE performance.
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τ = 0.50 Quantile τ = 0.75 Quantile
π0 ζv ζϵ QR IV CH EM 3S QR IV CH EM 3S

Bias 0.00 0.00 0.00 0.024 0.100 -0.021 -0.020 -0.019 -0.010 -0.044 0.007 0.006 0.007
RMSE 0.00 0.00 0.00 0.048 0.108 0.087 0.085 0.087 0.046 0.064 0.091 0.087 0.091
Bias 0.25 0.00 0.00 0.065 0.098 -0.094 -0.027 -0.027 -0.028 -0.041 0.054 0.012 0.013
RMSE 0.25 0.00 0.00 0.079 0.108 0.128 0.088 0.089 0.053 0.062 0.136 0.089 0.090
Bias 0.40 0.00 0.00 0.087 0.101 -0.116 -0.021 -0.021 -0.036 -0.044 0.080 0.006 0.007
RMSE 0.40 0.00 0.00 0.098 0.110 0.138 0.087 0.088 0.062 0.064 0.174 0.090 0.091
Bias 0.00 0.30 0.00 0.380 0.099 -0.020 -0.022 -0.022 0.350 -0.041 0.007 0.010 0.009
RMSE 0.00 0.30 0.00 0.383 0.108 0.083 0.084 0.085 0.353 0.062 0.090 0.090 0.092
Bias 0.25 0.30 0.00 0.327 0.097 -0.096 -0.031 -0.030 0.232 -0.042 0.042 0.008 0.007
RMSE 0.25 0.30 0.00 0.330 0.106 0.125 0.088 0.087 0.237 0.063 0.133 0.091 0.091
Bias 0.40 0.30 0.00 0.302 0.101 -0.113 -0.022 -0.022 0.173 -0.039 0.087 0.015 0.015
RMSE 0.40 0.30 0.00 0.305 0.110 0.136 0.086 0.086 0.181 0.063 0.176 0.095 0.096
Bias 0.00 0.00 0.20 0.023 0.101 -0.022 -0.018 -0.020 -0.008 -0.042 0.011 0.012 0.011
RMSE 0.00 0.00 0.20 0.048 0.110 0.084 0.082 0.084 0.047 0.062 0.093 0.089 0.092
Bias 0.25 0.00 0.20 0.142 0.101 -0.088 -0.021 -0.021 0.049 -0.043 0.046 0.008 0.009
RMSE 0.25 0.00 0.20 0.149 0.110 0.124 0.088 0.088 0.069 0.064 0.135 0.092 0.093
Bias 0.40 0.00 0.20 0.185 0.100 -0.117 -0.024 -0.023 0.063 -0.043 0.075 0.009 0.009
RMSE 0.40 0.00 0.20 0.191 0.109 0.139 0.089 0.089 0.080 0.064 0.170 0.091 0.093
Bias 0.00 0.30 0.20 0.381 0.099 -0.024 -0.023 -0.024 0.353 -0.041 0.005 0.010 0.008
RMSE 0.00 0.30 0.20 0.383 0.108 0.086 0.084 0.086 0.355 0.062 0.087 0.089 0.091
Bias 0.25 0.30 0.20 0.402 0.098 -0.090 -0.027 -0.026 0.312 -0.041 0.045 0.011 0.011
RMSE 0.25 0.30 0.20 0.405 0.106 0.122 0.085 0.085 0.316 0.062 0.131 0.090 0.093
Bias 0.40 0.30 0.20 0.403 0.098 -0.117 -0.025 -0.025 0.280 -0.040 0.080 0.016 0.016
RMSE 0.40 0.30 0.20 0.405 0.106 0.137 0.084 0.085 0.285 0.063 0.168 0.092 0.094

Table 4.4. Bias and root mean square error (RMSE) of quantile regression esti-
mators for α0 when the distribution of errors is Normal and the probability of false
positives is 10%. QR denotes quantile regression, IV denotes QR with instrumental
variables, CH denotes the IVQR estimator, EM the proposed two-step estimator,
and 3S is the proposed three-step estimator.

Figure 4.1 further investigates the difference in performance between QREM and 3SQR. To

illustrate the impact of deviations from Gaussian conditions, we assume that the distribution of

errors is χ2
3. The figure shows the bias (left panel) and RMSE (right panel) of QREM and 3SQR

estimators as the sample size increases from n = 1000 to n = 5000. We present results for α0 at

τ ∈ {0.5, 0.75}. Consistent again with expectations, we observe that when we deviate from joint

normality, the 3SQR estimator offers the best finite sample performance. The differences between

estimators tend to disappear as n increases, and the 3SQR estimator offers significant gains in

terms of MSE when the sample size is n ≤ 2000.

Lastly, we also investigate the performance of the estimators when the proportion of false positives

is different than zero. We use the same data generating process described in equation (4.1) but we

generate the observed binary regressor as follows:

di = d∗i 1{γ0 + γ1wi + ϵi ≥ c}+ (1− d∗i )1{κi < b}, (4.4)
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where b ∈ [0, 1] is a parameter and κi is an i.i.d. random variable distributed as U [0, 1]. Naturally,

b = 0 implies that π1 = 0, while when b > 0, the sample includes 100 × b% of false positives.

Following Nguimkeu, Denteh, and Tchernis (2019), we set b = 0.10. Relative to Table 4.1, the finite

sample performance of the estimators in Table 4.4 deteriorate, although the proposed approaches

continue to perform quite well in comparison with existing methods.

5. An Empirical Application

Identifying the effect of public assistance on different economic outcomes is plagued with chal-

lenges ranging from selection to endogenous misclassification (Kreider, Pepper, Gundersen, and

Jolliffe, 2012; Dahl, Kostøl, and Mogstad, 2014; Hartley, Lamarche, and Ziliak, 2022). In this sec-

tion, we consider data from the Panel Study of Income Dynamics (PSID) to study the effect of Aid

to Families with Dependent Children (AFDC), a major welfare program implemented before 1996.

We apply our quantile regression approach to estimate the effect of welfare participation as a child

on family income as an adult. Our findings are consistent with theory as they show that the estima-

tor that uses instrumental variables provides an upper bound to results obtained by the proposed

estimator. When we address the possibility of endogenous misclassification, maternal participation

in the program has a negative effect across the conditional income distribution of adult daughters.

Our findings reveal that standard approaches underestimate the effect of welfare participation, and

that the intergenerational impact is significantly larger among low-income daughters.

5.1. Data. We use data from the PSID, which is an annual survey often used in intergenerational

studies in the U.S. The sample includes 2038 daughters who were between the ages of 12 and 18

when their mother received cash welfare. These daughters have been followed into adulthood and

the PSID provides information on adult family income and other characteristics. We focus on

linked mother-daughter pairs over PSID survey years from 1968 to 1996, before a major reform

replaced Aid to Families with Dependent Children (AFDC) with a new program. Our analysis is

then restricted to the years before welfare reform. The sample includes families from the nationally

representative Survey Research Center (SRC) subsample and the Survey of Economic Opportunity

(SEO) subsample, which oversamples low-income and minority families.

Family income of the adult daughter is the focus of our investigation. Daughter’s adult income

includes total family taxable income and welfare cash transfers of the head, spouse and other

family members. A daughter is considered an adult at first childbirth or when establishing a new

family unit if she is older than 14 years old. We construct the average of annual income (in 2016

dollars) across the daughter’s adult years from the age of 19 through age 27. We measure maternal

participation during the child’s critical exposure period of 12-18 years of age, and our data reveals

that approximately 30 percent of children grow up under welfare.
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Equations:
Participation Misclassification

AFDC benefit standard, average 1.864
(0.518)

AFDC benefit standard, maximum -1.630
(0.472)

PSID Reporting Rates 3.785
(2.004)

Earnings below 130% FPL 1.268 -0.254
(0.427) (0.893)

Table 5.1. Partial observability probit estimates. Column (1) shows results for the
probability of participation and column (2) shows results for the probability of true
reporting. Standard errors are in parenthesis. FPL denotes federal poverty line.

5.2. Empirical results. We estimate the intergenerational effect of mother’s participation on

AFDC on daughter’s adult income, say α0 as defined in equation (2.2), considering the quantile re-

gression estimator (2.11). We proceed in two steps. We first estimate equation (2.10) considering a

partial observability probit model. Then, we estimate the parameter of interest by quantile regres-

sion considering the predicted probabilities obtained in the first step and a vector of independent

variables xi that includes mother’s education, daughter’s marital status, an indicator variable for

race of the daughter, and the logarithm of mother’s financial income.

Table 5.1 presents the results of the first step. To address the possible endogeneity of welfare par-

ticipation, we use instrumental variables that are constructed following closely Hartley, Lamarche,

and Ziliak (2022). The instruments are based on the state-level AFDC maximum benefit guarantee

in the years when the child is 12-18 years of age. We use the average and maximum values. This

policy is determined by state legislatures and affects the participation decision of the mother via

her welfare status, as opposed to her poverty status and adult daughter poverty status. To address

endogenous misclassification, we use average PSID reporting rates for dollar amount in transfers

and number of cases for AFDC corresponding to the years when the daughter was between 12 and

18 years old. We also include an indicator variable for poverty status. All coefficients have the

expected signs and are statistically significant (with the exception of earnings below the federal

poverty line in the misclassification equation).

Figure 5.1 presents the main results. The figure reports the intergenerational effect of AFDC

participation on daughter’s income estimated by different methods. The horizontal dashed lines

represent results obtained by OLS and the continuous lines with dots show results obtained by

QR. The panel on the left show OLS and QR results considering an indicator variable for reported

participation in AFDC (i.e., di) as a regressor. Following Lemma 1, the panel in the middle uses

the AFDC maximum benefit (i.e., z2,i) as a regressor. The right panel of Figure 5.1 presents results

using the estimator proposed by Nguimkeu, Denteh, and Tchernis (2019) (denoted by 2S) and the

proposed QREM estimator in (2.11). The figures present 95% point-wise confidence intervals. The
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Figure 5.1. The effect of mother’s welfare participation on daughter’s income.
OLS denotes ordinary least squares, QR denotes quantile regression, 2S is a two-
step estimator for the conditional mean model, and EM is the proposed two-step
estimator for a model with endogeneous misclassification.

last panel presents bootstrap confidence intervals (gray area) as well as a confidence interval ob-

tained by estimating the asymptotic variance using kernel methods (dashed lines) without adjusting

for the estimation error in the first step.

The findings presented in Figure 5.1 illustrate the importance of considering mother’s possible

endogenous misreporting. QR results are expected to be small and biased towards zero. On the

other hand, QR with instrumental variables as in Lemma 1 provides an upper bound across τ , and

consistent with expectations, the QREM estimator suggests a smaller intergenerational coefficient

than the estimator that includes an IV as regressor. Welfare participation of the mother during

her daughter’s childhood is associated with a 68% reduction on daughter’s adult income at the 0.1

quantile and a 46% reduction at the 0.9 quantile. These effects are underestimated by 8% to 53%

if the intergenerational parameter α0 is estimated by existing methods.

6. Conclusion and discussion

This paper investigates the estimation of a quantile regression model with a misclassified bi-

nary regressor. We propose a two-step approach and show that the estimator is consistent and
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asymptotically normal. The identification of the model relies on a parametric first stage and the

use of additional measurements including instrumental variables. We also propose a bootstrap

approach and establish the validity of the estimator. Considering data from the PSID, we estimate

a quantile intergenerational parameter to study how mother’s participation on welfare during her

daughter’s childhood affects daughter’s adult income. We find that existing methods underestimate

the intergenerational impact of welfare participation.

A number of recent papers have contributed to a deeper understanding of the challenges of

employing household survey data (e.g., Meyer, Mok, and Sullivan, 2015; Bollinger, Hirsch, Hokayem,

and Ziliak, 2019). While the use of administrative data has been an important tool to assess

issues of item non-response and misreporting, the availability of administrative data among social

scientists is not widespread. Although the paper examines the sensitivity of the proposed estimator

to departures of functional form assumptions, developing more flexible approaches is naturally

critical. To the best of our knowledge, this paper is the first attempt to investigate point estimation

of heterogeneous effects without assuming exogenous or random misreporting. The estimator is

simple to compute, and it provides scientists using survey data the possibility of contributing to

the critical policy debate on the effects of social programs.

Appendix A. Proof of main results

Remarks on notation and definitions: Throughout the appendix, we define θ = (β′, α)′, but

we suppress the dependency on τ for notational simplicity. The proofs below refer to Knight’s (1998)

identity: ρτ (u− v)− ρτ (u) = −vψτ (u) +
∫ v
0 (I(u ≤ s)− I(u ≤ 0))ds, where ρτ = u(τ − I(u < 0)) is

the quantile regression check function and ψτ (u) = τ − I(u < 0) is the associated score function.

It is convenient to introduce additional notation. Let Φi(ϑ) := Φi(z
′
iϑ), Xi(ϑ) := (x′

i,Φi(ϑ))
′,

and Ẋi(ϑ) := ∂ΦXi(ϑ). Moreover, let Xi(ϑ̂) denote the vector Xi(ϑ) evaluated at the estimated

values. Consider the unfeasible estimator,

θ̃ = argmin
θ∈Θ

{
1

n

n∑
i=1

ρτ (yi − θ′Xi(ϑ0))

}
,

and the feasible version of θ̃ as in (2.11):

θ̂ = argmin
θ∈Θ

{
1

n

n∑
i=1

ρτ (yi − θ′Xi(ϑ̂))

}
.

Proof of Theorem 1. Write θ̂ − θ0 = (θ̂ − θ̃) + (θ̃ − θ0). Consistency is established in two steps.

We first show that θ̃
p−→ θ0, and in the second part of the proof, we demonstrate that θ̂

p−→ θ̃.

Let θ̂ be the minimizer of the normalized objective function

Mn(θ) =
1

n

n∑
i=1

ρτ
(
yi − θ′Xi(ϑ0)

)
=

1

n

n∑
i=1

ρτ
(
ui − (θ − θ0)

′Xi(ϑ0)
)
,
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where ui = yi − θ′
0Xi(ϑ0), and (θ − θ0)

′Xi(ϑ0) = x′
i(β − β0) + Φi(ϑ0)(α − α0). Let ∆n(θ) =

Mn(θ)−Mn(θ0), that is,

∆n(θ) =
1

n

n∑
i=1

{
ρτ
(
ui − (θ − θ0)

′Xi(ϑ0)
)
− ρτ (ui)

}
.

By Knight’s (1998) identity, ∆n(θ) = V(1)
n + V(2)

n , where,

V(1)
n (θ) = − 1

n

n∑
i=1

{
x′
i(β − β0) + Φi(ϑ0)(α− α0)

}
ψτ (ui),

V(2)
n (θ) =

1

n

n∑
i=1

∫ x′
i(β−β0)+Φi(ϑ0)(α−α0)

0
(I(ui ≤ s)− I(ui ≤ 0)) ds,

Note that under Assumptions A1 and A3, E
[
V(1)
n (θ)

]
= 0, because the quantile of ui conditional

on xi and zi is equal to the conditional quantile of u∗i conditional on xi and d
∗
i .

We first show the consistency of θ̃ for θ0. For each ϕ > 0, define the ball B(ϕ) := {θ : ∥θ−θ0∥1 ≤
ϕ} and the boundary ∂B(ϕ) := {θ : ∥θ − θ0∥1 = ϕ}. For each θ ̸∈ B(ϕ), define θ̄ = rθ + (1− r)θ0

where r = ϕ/∥θ − θ0∥1. By construction, r ∈ (0, 1), and θ̄ is in the boundary set of B(ϕ).

By the convexity of Mn(θ),

rMn(θ) + (1− r)Mn(θ0) ≥ Mn(θ̄),

or, r
(
Mn(θ)−Mn(θ0)

)
≥ Mn(θ̄)−Mn(θ0) = E

[
∆n(θ̄)

]
+
(
∆n(θ̄)− E

[
∆n(θ̄)

])
. Under Assumption

A4, we obtain,

E [∆n(θ)] = E

[∫ x′
i(β−β0)+Φi(ϑ)(α−α0)

0
(Fu(s|xi, zi)− τ)ds

]
≥ ϵϕ,

for some ϵϕ > 0. Then,

r(Mn(θ)−Mn(θ0)) = r∆n(θ) ≥ ϵϕ +
(
∆n(θ̄)− E

[
∆n(θ̄)

])
.

By definition of θ̃ as the minimizer of 1
n

∑n
i=1Mn(θ), we obtain the following inclusion relation-

ships:{
∥θ̃ − θ0∥1 > ϕ

}
⊆
{
θ̃ ̸∈ B(ϕ) and Mn(θ̃) ≤ Mn(θ0)

}
⊆
{

sup
θ∈B(ϕ)

∣∣∣∆n(θ)− E [∆n(θ)]
∣∣∣ ≥ ϵϕ

}
.

Using standard arguments (i.e., derivations analogous to those in Theorem 1 in Lamarche and

Parker, 2023), for any ϵ > 0 and constants D > 0 and C > 0,

P

{
sup

θ∈B(ϕ)
|∆n(θ)− E [∆n(θ)] | > ϵ

}
≤ 2C exp{−Dn}.

Therefore, with probability tending to zero, ∥θ̃ − θ0∥1 > ϕ, and thus, θ̃ is consistent for θ0.
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We now demonstrate the consistency of the feasible estimator θ̂ for the unfeasible θ̃. Write the

objective function of θ̂ as follows:

ρτ (yi − θ′Xi(ϑ̂)) = ρτ (yi − x′
iβ − Φi(ϑ̂)α) = ρτ (yi − x′

iβ − Φi(ϑ0)α− (Φi(ϑ̂)− Φi(ϑ0))α).

Using a version of Knight’s identity, |ρτ (u− v)− ρτ (u)| ≤ 3|v|, we write,

1

n

n∑
i=1

∣∣∣ρτ (yi − θ′Xi(ϑ̂))− ρτ (yi − θ′Xi(ϑ0))
∣∣∣ ≤ 3

1

n

n∑
i=1

|(Φi(ϑ̂)− Φi(ϑ0))α|

≤ 3|α| 1
n

n∑
i=1

|Φi(ϑ̂)− Φi(ϑ0)|.

Under Assumptions A2 and A6, expanding Φ(ϑ̂) close enough to ϑ0, we obtain

Φ(ϑ̂) = Φ(ϑ0) + Ψ(ϑ)(ϑ̂− ϑ0) + e(z, γ̂),

where Ψ(ϑ) = ∇ϑΦ(ϑ) = φ(z′ϑ)z′ and e(z, γ̂) = (Ψ(ϑ̄)−Ψ(ϑ0))
′(ϑ̂− ϑ0) for a mean value γ̄.

It follows that

1

n

n∑
i=1

|Φi(ϑ̂)− Φi(ϑ0)| ≤ 1

n

n∑
i=1

(
|Ψi(ϑ)(ϑ̂− ϑ0)|+ |e(zi, γ̂)|

)
≤ ∥ϑ̂− ϑ0∥

1

n

n∑
i=1

∥Ψi(ϑ)∥+
1

n

n∑
i=1

|e(zi, γ̂)|

≤ ∥ϑ̂− ϑ0∥
1

n

n∑
i=1

∥Ψi(ϑ)∥+ ∥ϑ̂− ϑ0∥
1

n

n∑
i=1

∥Ψi(ϑ̄)−Ψi(ϑ0)∥

≤ ∥ϑ̂− ϑ0∥ max
1≤i≤n

∥zi∥+ op(1),

by continuity of Ψi implied by A2. Under A5, it can be established that,

1

n

n∑
i=1

∣∣∣ρτ (yi − θ′Xi(ϑ̂))− ρτ (yi − θ′Xi(ϑ0)))
∣∣∣ ≤M ∥ϑ̂− ϑ0∥+ op(1).

Therefore, as n→ ∞, θ̂ converges in probability to θ̃ under Assumption A6.a.

Combining the two previous results completes the proof. �

The following definitions are used in Lemma 2 and Theorem 2. Consider,

Hn(θ,ϑ) =
1

n

n∑
i=1

Xi(ϑ)ψτ
(
yi − θ′Xi(ϑ)

)
,

Hn(θ,ϑ) = E [Hn(θ,ϑ)] = E
[
Xi(ϑ)(τ − Fu((θ − θ0)

′Xi(ϑ)|xi, zi)
]
,

Kn(θ,ϑ) =
1

n

n∑
i=1

fu(0|xi, zi)Xi(ϑ)Ẋi(ϑ)
′θΨi(ϑ).
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Lemma 2. Under Assumptions A1-A8, if
√
n(θ̃ − θ0) = Op(1) and

√
n(Φi(ϑ̂)− Φi(ϑ0)) = Ψi(ϑ)

√
n(ϑ̂− ϑ0) + op(1),

for Ψi(ϑ) = ∇ϑΦi(ϑ) = φ(z′
iϑ)z

′
i, then

√
nHn(θ̃, ϑ̂) = D1

√
n(θ̃ − θ0) +D2

√
n(ϑ̂− ϑ0).

Proof. The proof follows closely Lemma 2 in Chernozhukov, Fernández-Val, and Kowalski (2015),

although it is significantly simpler because we do not estimate the arguments of an indicator variable

to define subsets of observations.

Let ϑ̄ be on the line connecting ϑ0 and ϑ̂ and θ̄ be on the line connecting θ0 and θ̂. Using the

mean value theorem on the expected value of the quantile score:

E
[
ψτ

(
yi − θ̃′Xi(ϑ̂)

)]
= fu((ϑ̄− ϑ0)

′Xi(ϑ̄)|xi, zi)
[
Xi(ϑ̄)

′(θ̃ − θ0) + Ẋi(ϑ̄)
′θ̄(Φi(ϑ̂)− Φi(ϑ0))

]
,

= fu((ϑ̄− ϑ0)
′Xi(ϑ̄)|xi, zi)

[
Xi(ϑ̄)

′(θ̃ − θ0) + Ẋi(ϑ̄)
′θ̄Ψi(ϑ)(ϑ̂− ϑ0) + op(1)

]
,

where the first equality follows by mean value expansion and the continuity of Xi(ϑ), and the last

expression follows by expanding the marginal CDF Φi under Assumption A2. Using the result in

Theorem 1 and multiplying by
√
n, we obtain,

E
[√

nψτ

(
yi −Xi(ϑ̂)

′θ̃
)]

= fu(0|xi, zi)
[
Xi(ϑ0)

′√n(θ̃ − θ0) + Ẋi(ϑ0)
′θ0Ψi(ϑ)

√
n(ϑ̂− ϑ0)

]
+op(1),

by Assumption A6.a on the consistency of ϑ̂ for ϑ0.

Multiplying the last expression by Xi(ϑ0) gives the desired result. �

Proof of Theorem 2. By the computational property of the quantile regression estimator, ∥Hn(θ̂, ϑ̂)∥ =

Op(n
−1). To see this,∥∥∥∥∥ 1n
n∑
i=1

Xi(ϑ̂)ψτ (yi − θ̂′Xi(ϑ̂))

∥∥∥∥∥ =

∥∥∥∥∥ 1n
n∑
i=1

Xi(ϑ̂)I(yi = θ̂′Xi(ϑ̂))

∥∥∥∥∥
≤

∥∥∥∥∥ 1n
n∑
i=1

max
1≤i≤n

{Xi(ϑ̂)}I(yi = θ̂′Xi(ϑ̂))

∥∥∥∥∥
≤

∣∣∣∣∣
n∑
i=1

I(yi = θ̂′Xi(ϑ̂))

∣∣∣∣∣ 1n max
1≤i≤n

∥∥∥Xi(ϑ̂)
∥∥∥ =

p

n
max
1≤i≤n

∥∥∥Xi(ϑ̂)
∥∥∥ .

It follows that,

op(1) =
√
nHn(θ̂, ϑ̂) =

√
n
(
Hn(θ̂, ϑ̂)−Hn(θ̂, ϑ̂) +Hn(θ̂, ϑ̂)

)
=

√
n(Hn(θ0,ϑ0)−Hn(θ0,ϑ0) + op(1)) +

√
nHn(θ̂, ϑ̂)

=
√
n(Hn(θ0,ϑ0) + op(1)) +D1

√
n(θ̂ − θ0) + (Kn(θ0,ϑ0)

√
n(ϑ̂− ϑ0) + op(1)),
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where the last equality follows by Lemma 2. By the invertibility of D1 implied by Assumption A8,

we solve for
√
n(θ̂ − θ0) and obtain the Bahadur representation of the two-step estimator:

√
n(θ̂ − θ0) = −D−1

1

√
nHn(θ0,ϑ0)−D−1

1 Kn(θ0,ϑ0)
√
n(ϑ̂− ϑ0) + op(1). (A.1)

It is clear that the first term corresponds to the Bahadur representation of the quantile regression

estimator for known ϑ0. Thus, the first term is
√
n(θ̃ − θ0) + op(1), and then, it must be the case

that the second term is
√
n(θ̂ − θ̃) + op(1), because

√
n(θ̂ − θ0) =

√
n(θ̃ − θ0) +

√
n(θ̂ − θ̃).

The Bahadur representation (A.1) is similar to the Bahadur representation of other two-step quan-

tile regression estimator (see, e.g., Theorem 2 in Ma and Koenker, 2006).

Considering the first term in equation (A.1), we obtain the following result based on the Bahadur

representation of the estimator θ̃:

D−1
1

√
nHn(θ0,ϑ0) = D−1

1

1√
n

n∑
i=1

Xi(ϑ0)ψτ (yi − θ′
0Xi(ϑ0)) + op(1)

d−→ N (0,D−1
1 D0D

−1
1 ).

Considering the second term in equation (A.1), by an application of the CLT,

D−1
1 Kn(θ0,ϑ0)

√
n(ϑ̂− ϑ0) = D−1

1

1

n

n∑
i=1

Xi(ϑ)fu(0|xi, zi)Ẋi(ϑ0)
′θ0Ψi(ϑ0)

√
n(ϑ̂− ϑ0) + op(1)

d−→ N (0,D−1
1 D2ΩD′

2D
−1
1 ).

The proof is completed after combining the results on the limiting distributions of
√
n(θ̂ − θ̃)

and
√
n(θ̃ − θ0), and recognizing that the two terms in (A.1) are not independent. �

Proof of Theorem 3. The proof is organized in three steps. We begin verifying conditions for sto-

chastic equicontinuity to apply the arguments of Theorem 2 in Chernozhukov, Fernández-Val, and

Kowalski (2015). Second, we obtain the Bahadur representation of the bootstrap estimator θ̌. Fi-

nally, we employ the multiplier CLT to obtain the desired result. In this proof, we let P⋆{·} = P{·|S}
denote the probability calculated conditional on the observed sample S and the stochastic orders

Op⋆(·) and op⋆(·) are interpreted conditional on the sample S.

Recall that ψτ (u) = τ − I(u ≤ 0) and note that I(yi − θ′Xi(ϑ) < 0) belongs to the type I class

of functions of Andrews (1994). The function{
1

n

n∑
i=1

ψτ (yi − θ′Xi(ϑ))Xi(ϑ)|θ,ϑ ∈ Θ× Γ

}
,

is a Donsker class and a Glivenko-Cantelli class. By Theorem 2.9.2 in van der Vaart and Wellner

(1996), it can be verified that the product of a random variable ωi and the previous function,{
1

n

n∑
i=1

ωiψτ (yi − θ′Xi(ϑ))Xi(ϑ)|θ,ϑ ∈ Θ× Γ

}
,
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also belong to the Donsker class. Then, the conditions of Lemma 1 (a and b) in Chernozhukov,

Fernández-Val, and Kowalski (2015) are satisfied under Assumptions B1 and B2. By Lemma 2 and

Step 1 in Theorem 2 in Chernozhukov, Fernández-Val, and Kowalski (2015),
√
n(θ̌ − θ0) = Op(1),

unconditional on the data.

Note that ωi denotes the number of times unit i is redrawn from the original sample. Thus, the

asymptotic distribution of (
√
n(β̂−β0)

′,
√
n(α̂−α0))

′ is approximated by (
√
n(β̌− β̂)′,

√
n(α̌− α̂))′

where

θ̌ =
(
β̌′, α̌

)′
= argmin

θ∈Θ

{
1

n

n∑
i=1

ωiρτ
(
yi − x′

iβ − αΦi(ϑ̌)
)}

,

= argmin
θ∈Θ

{
1

n

n∑
i=1

ωiρτ

(
ûi − x′

i(β − β̂)− Φi(ϑ̌)(α− α̂)
)
− ρτ (ûi)

}
,

where ûi = yi − x′
iβ̂ − α̂Φi(ϑ̌). Since ωi is a multinomial weight with probability 1/n, it is

straightforward to calculate that the expected value of the objective function with respect to the

bootstrap weights conditional on S is minimized at θ̂ = (β̂, α̂).

Similarly to the proof of Theorem 2,∥∥∥∥∥ 1n
n∑
i=1

ωiXi(ϑ̌)ψτ (yi − θ̌′Xi(ϑ̌))

∥∥∥∥∥ =

∥∥∥∥∥ 1n
n∑
i=1

ωiXi(ϑ̌)I(yi = θ̌′Xi(ϑ̌))

∥∥∥∥∥
≤

∥∥∥∥∥ 1n
n∑
i=1

max
1≤i≤n

{ωi} max
1≤i≤n

{Xi(ϑ̌)}I(yi = θ̌′Xi(ϑ̌))

∥∥∥∥∥
≤

∣∣∣∣∣
n∑
i=1

I(yi = θ̌′Xi(ϑ̌))

∣∣∣∣∣ 1n max
1≤i≤n

{ωi} max
1≤i≤n

∥∥Xi(ϑ̌)
∥∥

=
p

n
max
1≤i≤n

{ωi} max
1≤i≤n

∥∥Xi(ϑ̌)
∥∥ .

Therefore,

op(1) =
√
nHn(θ̌, ϑ̌) =

√
n
(
Hn(θ̌, ϑ̌)−Hn(θ̌, ϑ̌) +Hn(θ̌, ϑ̌)

)
=

√
n(Hn(θ0,ϑ0)−Hn(θ0,ϑ0) + op(1)) +

√
nHn(θ̌, ϑ̌)

=
√
n(Hn(θ0,ϑ0) + op(1)) +D1

√
n(θ̌ − θ0) + (Kn(θ0,ϑ0)

√
n(ϑ̌− ϑ0) + op(1)),

where the last equality follows by Lemma 2. We solve for
√
n(θ̌ − θ0) to obtain the Bahadur

representation of the bootstrap estimator:

√
n(θ̌ − θ0) =−D−1

1

1√
n

n∑
i=1

ωiXi(ϑ0)ψτ (yi −Xi(ϑ)
′θ0)

−D−1
1

1√
n

n∑
i=1

ωiXi(ϑ0)fu(0|xi, zi)Ẋi(ϑ0)
′θ0Ψi(ϑ0)

√
n(ϑ̌− ϑ0) + op(1).
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We now obtain the Bahadur representation of the bootstrap estimator conditional on the data.

Noting that
√
n(θ̌ − θ̂) =

√
n(θ̌ − θ0)−

√
n(θ̂ − θ0), using the result in Theorem 2, we obtain,

√
n(θ̌ − θ̂) =−D−1

1

1√
n

n∑
i=1

(ωi − 1)Xi(ϑ0)ψτ (yi −Xi(ϑ0)
′θ0)−

−D−1
1

1√
n

n∑
i=1

ωifu(0|xi, zi)Ẋi(ϑ0)
′θΨi(ϑ0)

√
n((ϑ̂+ op⋆(1))− ϑ0)

+D−1
1

1√
n

n∑
i=1

fu(0|xi, zi)Ẋi(ϑ0)
′θ0Ψi(ϑ0)

√
n(ϑ̂− ϑ0) + op(1)

=−D−1
1

1√
n

n∑
i=1

(ωi − 1)Xi(ϑ0)
[
ψτ (yi −Xi(ϑ0)

′θ0)+

fu(0|xi, zi)Ẋi(ϑ0)
′θ0Ψi(ϑ0)

√
n(ϑ̂− ϑ0)

]
+ op(1) + op⋆(1),

where the first equality holds by Assumption B2.

By the Conditional Multiplier CLT as in Lemma 2.9.5 in van der Vaart and Wellner (1996), we

have that conditional on the data,

√
n(θ̌ − θ̂)

d−→ N (0,D−1
1 [D0 +D2ΩD′

2 −D3]D
−1
1 ).

The last statement means that, for each t ∈ Rp+1,

P⋆
{√

n(θ̌ − θ̂) ≤ t
}
− P

{√
n(θ̂ − θ0) ≤ t

}
→ 0.

�
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