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Abstract

Before choosing her action to match the state of the world, an agent observes a

stream of messages generated by some unknown binary signal. The agent can either

learn the underlying signal for free and update her belief accordingly or ignore the

observed message and keep her prior belief. After each period the stream stops with

positive probability and the final choice is made.

We show that a Markovian agent with Gilboa-Schmeidler preferences learns and

updates after confirming messages, but she ignores contradicting messages if her

belief is sufficiently strong. Her threshold solely depends on the least precise signal.

The agent has strictly higher anticipatory utility than an agent who uses every

message to update. However, the latter has a higher chance to choose the correct

outcome in the end. In a population of strategic agents, who only differ in their

initial beliefs, polarization is inevitable.
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1 Introduction

In an average minute of December 2023, social media users sent out 360,000 tweets on

X, sent 694,000 reels on Instagram via direct messages, and liked four million Facebook

posts.1 A user of any of these social media platforms cannot read all the articles whose

headlines appear in her feed, but has to choose what headlines to follow up on and what

to ignore. This makes information acquirement on social media fundamentally different

from using print media. While a printed newspaper, even if read from cover to cover, will

provide the reader only with a fixed number of articles, incoming news in social media form

an endless stream. Thus, the information acquirement process in social media requires a

pre-step: before reading and processing an article, the user needs to select what to read

from a huge supply.

It has been well established that this causes people to learn differently: for instance,

they learn less from online than from print sources (Eveland and Dunwoody, 2002; Yang

and Grabe, 2011); but at the same time they are more focused on specific topics se-

lected by themselves rather than the news editors (Kruikemeier, Lecheler, and Boyer,

2017). Empirical studies suggest the main drivers behind information selection be atti-

tude consistency and source credibility. Sülflow, Schäfer, and Winter (2019) investigated

the impact of both and showed that attitude consistency has no impact on the time people

spend looking at a headline in their news feed but increases the probability they follow

up on it and actually read the underlying article. Moreover, they found that the assumed

source credibility has a positive effect on both the time spent with a headline as well as

on the follow-up probability.2

As social media have become increasingly important as a source of news,3 under-

standing the mechanics behind information selection as well as its individual and social

consequences, such as polarization4 and collective decision making, are crucial. This arti-

1See Statista (2024).
2See also Chiang and Knight (2011) for the importance of credibility.
3The share of people in Germany who weekly use social media as a source of news has increased from

18 % in 2013 to 29 % in 2023, having overtaken classical print media in 2019. In the US, this number has
risen from 27 % to 48 % in the same time. The effect is particularly strong in the group of young adults
(Reuters Institute for the Study of Journalism, 2023). According to a study by the Pew Research Center,
a majority across 19 countries agrees that social media is an effective way to raise public awareness
about political or social issues (77 % agree), to change people’s minds (65 %), get elected officials to pay
attention to issues (64 %), and to influence policy decisions in their own country (61 %) (Pew Research
Center, 2022).

4In the above mentioned report by the Pew Research Center, 65 % of the investigated subjects say
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cle provides a dynamic model of strategic information selection that rationalizes observed

behavior and investigates its implications.

We consider a decision maker who has to match an unknown binary state of the world.

Before making her choice, she receives a discrete stream of binary and symmetric messages,

to be thought of as articles on social media that endorse one of the two states, that are

correct with some unknown probability of at least 50%. She has the option to learn this

probability; in the news media example, after obtaining a headline (the message) she may

click on the link, read the article, learn how well the article is researched, and infer the

probability that the message of the headline was correct. If she chooses to ignore the

message, her belief does not change; if she chooses to learn the underlying signal, she has

to perform a Bayesian update. The underlying assumption is that people can easily ignore

a headline they only see briefly, but once they have engaged with it, it cannot be unseen

and will affect their belief. For her belief update she uses her previous belief, the message,

and the signal. That is, we assume that the decision maker is Markovian, meaning that

she does not use the entire history of previous messages and signals.5

In each period the stream of messages stops with some exogenous probability and the

decision maker has to make her choice about the state; otherwise a new signal and a

new message will be drawn. Maximizing her utility thus becomes a dynamic optimization

problem, where with every decision she has to take into account how her belief will develop

in the future. The Markovian structure gives rise to a Bellman equation whose solution

is the decision maker’s anticipatory utility function.6 We show that optimal strategies

exist and describe their general structure. Afterwards, we focus on a decision maker

with max-min preferences (cf. Gilboa and Schmeidler, 1989) and show that any optimal

strategy requires her to ignore messages that oppose her belief whenever her belief is

sufficiently strong. Hence, she exhibits what Stone and Wood (2018) call “non-ego-based

that access to the internet and social media has made people more divided in their political opinions.
Allcott, Braghieri, Eichmeyer, and Gentzkow (2020) showed that regular Facebook users who turned off
the network for a month were less polarized in their attitudes afterwards. See Prior (2013) and Kubin
and von Sikorski (2021) for political reviews on how (social) media drive polarization.

5There are two major reasons for this assumption: On the one hand, people see and read so many
headlines and articles on social media that eventually, they cannot keep track of the entire history of their
messages, signals, and beliefs. On the other hand, it allows us to condition the agent’s behavior only on
her belief and the signal, independent of time and signal history, so that the analysis remains tractable.

6We call this utility anticipatory as it takes into account all possible further paths on which beliefs
might change. This relates to the concept of utility from anticipation, introduced by Loewenstein (1987)
and later investigated, for instance, by Caplin and Leahy (2001) and Kőszegi (2017).
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cognitive dissonance”7: media consumers avoid contradicting information “not because

this threatens their egos, but simply because uncertainty is unsettling”.

Ignoring free information is obviously not optimal in the framework of Blackwell (1951,

1953). However, we show that it is optimal in our setting, rationalizing human behavior in

social media.8 In particular, when comparing our strategic decision maker with a Bayesian

decision maker, who updates his belief after every round, we find that she obtains a strictly

higher anticipatory utility, while her probability to match the true state of the world is

strictly lower.

Surely, this model describes social media only in a very simplified way. For instance,

we assume that the observed messages are independent of the user’s belief, and we ignore

algorithms, echo chambers, as well as the targeted use of fake news by political agents.

Yet, even without all these or any other form of homophily in social media networks9 we

obtain quite extreme polarization results where society only becomes more divided over

time.

The rest of the paper is organized as follows. In Section 2, we present further related

literature. Section 3 develops the model, discusses its assumptions, and derives general

existence and uniqueness results. In Section 4, we derive optimal strategies in the absence

of ambiguity, while Section 5 covers agents with Gilboa-Schmeidler preferences under am-

biguity. In Section 6, we compare our strategic decision maker with one who updates after

every message he observes. Social consequences in terms of polarization and collective

decision making are covered in Section 7. Section 8 provides several ways to extend the

model and Section 9 concludes the paper. Proofs are relegated to the appendix.

2 Further Related Literature

A large class of models in which agents do not fully exploit the available information

focuses on limited cognitive abilities. For instance, the observed tendency to favor and

search for information that reinforces prior beliefs while ignoring opposing information

7The psychological concept of cognitive dissonance has been popularized by Festinger (1957): Uncer-
tainty about what to believe and facing a trade-off between feeling validated and wanting to know the
truth makes people feel uncomfortable.

8Social media are not the only place where information might be ignored: even some reader of this
paper might reject our model and put it aside without letting it affect their belief about human behavior.

9See Aiello et al. (2012) for a statistical analysis of homphily in social media.
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is known as selective exposure.10 Lord, Ross, and Lepper (1979) demonstrate that when

people with strong opinions on controversial issues—in that case, the death penalty in

the USA—are given equally convincing evidence for both positions, they become even

stronger in their opinions. So, different pieces of information favoring contrary states

of the world do not neutralize, but people pick what they want to hear, interpret it as

confirming evidence, and ignore the rest. This confirmation bias11 is not what drives

our results, as our decision maker correctly processes all information that she uses, but

deliberately chooses to ignore some of it. This distinction relates to the psychological

distinction between automatic and controlled processes (Schneider and Shiffrin, 1977).

Among the models of strategic information selection, an important strand of the lit-

erature, following Sims (2003), focuses on rational inattention where agents only obtain

partial information due to cost. (See Maćkowiak, Matějka, and Wiederholt (2023) for a

review.) In contrast, information in our model comes at no cost and may still be rejected.

In many models agents choose ex ante how to gather information, that is, they only

obtain the actual message after their decision. Machina (1989) gives a stylized example

of such behavior based on the Allais Paradox, where non-expected utility maximizers

choose not to obtain information. Carrillo and Mariotti (2000) present a decision maker

with time-inconsistent preferences who decides to acquire only incomplete information

about a future externality. In Suen (2004), agents observe coarsened signals and decide

themselves on a coarsening rule. Similarly, decision makers in Che and Mierendorff (2019)

have access to different biased sources and choose the optimal one.

In contrast, our decision maker first obtains a message and then chooses what to

do with it. This brings our model closer to Chen (2022), who considers agents with

different models at hand who update their beliefs according to the one that best supports

their bias, and to Fryer, Harms, and Jackson (2019) where agents deal with “ambiguous”

signals that can be used in different ways.12 Yet, our model is distinct in several key

features. First, agents can decide to entirely discard and ignore a message. This brings

us closer to Allahverdyan and Galstyan (2014), where an agent does not react to advice

(sent by another agent who wants to persuade the former one) that conflicts with her

prior conviction. Second, a decision maker with Gilboa-Schmeidler preferences will not

10Hart et al. (2009) provide a psychological meta-study on that subject.
11See Nickerson (1998) for a psychological overview as well as Rabin and Schrag (1999).
12Note that their use of “ambiguous” differs from our terminology as we refer to ambiguity as missing

knowledge about probabilities.
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operate under the assumption that the message has been generated by the signal that

fits best, but rather by the signal that provides her with the lowest utility. Third, even if

there is no ambiguity at all, that is, if the signal is known, some of the messages will be

ignored.

The concept of motivated beliefs might serve as a bridge between our model and the

literature on ex-ante information design. According to Epley and Gilovich (2016), agents

do not directly choose their beliefs, but “their motivations guide what information they

consider, resulting in favorable conclusions that seem mandated by the available evidence”.

Even though our agent acts ex post, she follows precisely this approach: if she expects a

more favorable conclusion from learning the signal and interpreting the message, she does

so; otherwise she discards the message entirely.

The good news-bad news effect or optimism bias—experimentally confirmed by Eil

and Rao (2011) and axiomatically characterized by Bracha and Brown (2012)—prescribes

people to respect the strength of a signal when the news is favorable. In Brunnermeier and

Parker (2005), agents choose subjective probabilities such that their current well-being is

maximized, at the cost of possibly taking a wrong decision afterwards. This effect differs

from our model as our states are neutral. However, agents in our setup are happier, the

more convinced they are of any state; being unsure about the true state of the world

makes them uncomfortable.

Signal ambiguity as a reason for information selection has been described by Gentzkow

and Shapiro (2006). The main argument is that a decision maker who does not like what

she reads can conveniently tell herself that the article must be poorly researched and can

be safely ignored. Ambiguity as a driver of polarization has been modeled by Glaeser and

Sunstein (2013). In their model, people believe different parts of the information they

get. In Baliga, Hanany, and Klibanoff (2013), polarization occurs as a result of ambiguity

aversion. This is not the case here: even though we consider extremely ambiguity averse

decision makers, our results about polarization would remain true even if there were no

ambiguity at all.

3 Optimal Information Selection

An agent has to match the correct state of the world from the state space Ω = {0, 1}.
That is, the choice space is C = Ω and her von Neumann-Morgenstern utility function
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v : C × Ω→ {0, 1} is given by v(c, ω) = 1 if c = ω and v(c, ω) = 0 otherwise.

To keep notation simple, we identify any belief Λ ∈ ∆ (Ω) she might entertain with

λ = Λ(1) ∈ [0, 1]. With such a belief her expected utilities from choosing 0 or 1 are

E [v(0, ·)] = 1 · (1− λ) + 0 · λ = 1− λ, and

E [v(1, ·)] = 1 · λ+ 0 · (1− λ) = λ,

respectively. Thus, her indirect expected utility at belief λ is u(λ) := max {λ, 1− λ}.
Prior to her choice the agent obtains information, which is modeled as a discrete

stream of symmetric binary signals, that is, maps ζ : Ω → ∆ (Ω) with ζ (1|1) = ζ (0|0),

and realized messages m ∈ {0, 1}. We assume without loss of generality that ζ (1|1) ≥ 1
2
,

so that any signal ζ can be identified with z = ζ (1|1) ∈
[
1
2
, 1
]
.13

Let Z ⊆
[
1
2
, 1
]

be a compact set of signals. At each period t ∈ N, the signal stream

ends with some (exogenous) probability 1 − p and the agent has to make her decision.

With probability p, the stream continues. In this case a signal zt ∈ Z is generated, in a

potentially unknown way, and afterwards a message mt ∈ {0, 1} realizes according to zt,

that is, Pzt (mt = 0|ω = 0) = Pzt (mt = 1|ω = 1) = zt.
14 The decision maker only observes

mt.

For any signal z the expected probabilities that 0 and 1 realize are

q0z (λ) := λ (1− z) + (1− λ) z and q1z (λ) := λz + (1− λ) (1− z) ,

respectively. Define for each z ∈
[
1
2
, 1
]

two functions gz, g
−1
z : [0, 1]→ [0, 1] by

g−1z (λ) :=
λ (1− z)

λ (1− z) + (1− λ) z
and gz(λ) :=

λz

λz + (1− λ) (1− z)
(1)

for z ∈
[
1
2
, 1
)
, as well as g−11 ≡ 0 and g1 ≡ 1.15 Surely, if the agent knew zt and mt, then

her posterior beliefs in case of a message of 0 or 1 were λt = g−1zt (λt−1) or λt = gzt(λt−1),

13The triple (Ω, ζ (·|0) , ζ (·|1)) is a symmetric binary Blackwell experiment, see Blackwell (1951, 1953).
14The signals (zt)t≥1 can be correlated. Yet, given the signals, the probability measures (Pzt)t≥1 are

independent.
15The latter definitions coincide with (1) for λ ∈ [0, 1) or λ ∈ (0, 1], respectively. The values of g−11 (1)

and g1(0) are irrelevant for the agent’s optimal decision: if she is certain that the true state is 0 (or 1,
respectively) and receives a message stating the opposite, she will consider it impossible that the signal
is perfectly accurate.
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respectively, by Bayes’ rule. For later reference, we collect some basic properties of gz and

g−1z in the following lemma. The proof is straightforward and therefore omitted.

Lemma 3.1. For any z ∈
[
1
2
, 1
)
, the functions g−1z and gz are inverse to each other, and

strictly increasing in λ ∈ [0, 1]. Moreover, for any λ ∈ (0, 1), the map g−1· (λ) is strictly

decreasing, while g·(λ) is strictly increasing in z ∈
[
1
2
, 1
]
. For all z ∈

(
1
2
, 1
]

and λ ∈ (0, 1),

it holds that g−1z (λ) < λ < gz(λ), and gz(1− λ) = 1− g−1z (λ).

3.1 The Stage Decisions

If some message mt is drawn, the agent has two options: she can either discard mt

entirely and stick to her prior λt−1, or she can (without cost) learn zt and update her

belief. Naturally, she cannot update her belief without knowing zt. Additionally, we

assume she cannot discard mt once she has learned zt, reflecting the idea that information

cannot be “unseen” once it has been engaged with. Formally, after having received a

message she has to choose one of two actions : she can ignore (i) the message or she can

learn (l) signal zt, and perform a Bayesian belief update as above.16

We assume that the decision maker is Markovian. That is, her action in any period

only depends on message mt and her belief λt−1. Thus, her set of (pure) Markovian

strategies is S := ({i, l}2)[0,1], where λ 7→ σ (λ) = (σ0 (λ) , σ1 (λ)) means that at belief

λ, she plays σ0 (λ) ∈ {i, l} if m = 0, and σ1 (λ) ∈ {i, l} if m = 1. For instance, the

benchmark case of a Bayesian decision maker, who uses every message, is described by

the strategy ρ with ρ (λ) = (l, l) for all λ ∈ [0, 1].

Any strategy σ together with an initial belief λ and a finite stream of signals (zt)
T
t=1 and

messages (mt)
T
t=1 generates a history, i.e., a finite sequence h = hT (σ) = (zt,mt, λt)

T
t=1,

where λt is the decision maker’s belief at the end of period t, that is, λ0 = λ and for

t = 1, . . . , T

λt =





g−1zt (λt−1) if mt = 0 and σ0 (λt−1) = l,

gzt(λt−1) if mt = 1 and σ1 (λt−1) = l,

λt−1 else.

16Throughout, we distinguish between actions in each period and the choice that must be made once
after the stream of signals has ended.
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For any strategy σ, set of signals Z ⊆
[
1
2
, 1
]
, and belief λ ∈ [0, 1] define

B0
Z,i (λ) = B1

Z,i (λ) := {λ}, B0
Z,l (λ) :=

{
g−1z (λ) : z ∈ Z

}
, B1

Z,l (λ) := {gz (λ) : z ∈ Z} .

These are the sets of possible posterior beliefs if the decision maker ignores her message

or learns the underlying signal upon observing message 0 or 1, respectively.

We assume that at the end of the stream the decision maker chooses optimally for

λT 6= 1
2

and chooses either option with equal probability if λT = 1
2
.

3.2 Aggregators

The decision maker chooses a Markovian strategy such that for each belief λ ∈ [0, 1], her

expected utility is maximized. This expected utility in turn depends on the utility at

potential future beliefs: when a decision maker holds belief λ and receives a message, she

can learn z and perform a belief update to gz(λ) or g−1z (λ). Thus, her utility at λ depends

on her utility at gz(λ) and g−1z (λ) for all possible signals z ∈ Z, as well as her attitude

towards the ambiguity about the signal.

Definition 3.2. Let D ⊆ Rn be a set, let F(D) be the set of functions from D to R, and

let P(D) be the power set of D. An aggregator is a map H : F(D) × P(D) → R that

satisfies the following two conditions:

Consistency. For all x ∈ D, H (U, {x}) = U(x).

Monotonicity. For all B ⊆ D and U, V : D → R with U|B ≥ V|B it holds that H(U,B) ≥
H(V,B). If U|B ≥ V|B + ε for some ε > 0, then H(U,B) > H(V,B). �

An aggregator describes how an agent with payoff function U evaluates sets of objects

B ⊆ D without knowing what element of B is the true one. Consistency requires that if

the agent knows that the set of potential objects only contains x, then she only evaluates

x. Monotonicity requires that if each option in B is evaluated higher according to U than

according to V , then this also holds true under aggregation.

In later sections we will have a closer look on the Gilboa-Schmeidler aggregator. For

any set D of beliefs, expected utility function U : D → R, and B ⊆ D it is defined by

H [U,B] = inf
λ∈B

U(λ). (2)

9



One can easily see that H is both consistent and monotonic.

3.3 Anticipatory Utility

As the decision maker faces a repeated decision problem, her utility at any belief λ depends

on her utility at potential future beliefs. Since she is Markovian, this gives rise to a

functional equation. In order to keep notation simple, we use F = F([0, 1]) and P =

P([0, 1]).

Definition 3.3. Let Z ⊆
[
1
2
, 1
]

be a compact set of signals, and let H : F × P → R be

an aggregator. A function U ∈ F with

U(λ) = (1− p)u(λ) + pH
[
q0· (λ)H

[
U,B0

Z,σ0(λ)
(λ)
]

+ q1· (λ)H
[
U,B1

Z,σ1(λ)
(λ)
]
, Z
]

(3)

for all λ ∈ [0, 1] is called anticipatory utility function (given H, Z, σ, and p). �

The second term on the right-hand side of (3) represents the continuation utility if a

message is received. Two sources of uncertainty are aggregated here: first, ex ante, about

the message that will be received (the distribution of messages depends on the unknown

z), and second, at the interim stage, about z. The latter arises only if she chooses action

l after her message and Z is not a singleton; otherwise, the set Bm
Z,a(λ) collapses to the

singleton {λ}.

Example 3.4. Let Z ⊆
[
1
2
, 1
]

be compact, let H be the Gilboa-Schmeidler aggregator

in (2), and consider the strategy ρ with ρ (λ) = (l, l) for all λ ∈ [0, 1]. In this case any

anticipatory utility function U must satisfy

U (λ) = (1− p)u(λ) + pmin
z∈Z

{
q0z(λ) min

z′∈Z

{
U
(
g−1z′ (λ)

)}
+ q1z(λ) min

z′′∈Z
{U (gz′′(λ))}

}
.

Altogether the decision maker uses three aggregators, and they are used independently of

one another.17 This reflects the idea that a decision maker might have a change of heart

about what constitutes the worst case signal after the message has been observed, and

that she is aware of this. We will consider the alternative approach where she remains

unaware of it in Subsection 5.2. �
17A decision maker might use three different aggregators. We shall not pursue this path here as it will

add nothing to the general discussion in the current section, and the subsequent sections will focus on
Gilboa-Schmeidler decision makers exclusively.
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The anticipatory utility function in (3) depends on the decision maker’s strategy σ. We

first show that under some mild conditions on the aggregator H there is a unique antici-

patory utility function for each σ ∈ S.

Proposition 3.5. Let Z ⊆
[
1
2
, 1
]

be a compact set of signals and let H : F × P → R be

an aggregator. If H satisfies

|H [U,B]−H [V,B]| ≤ ‖U − V ‖∞ (4)

for all B ⊆ D, then for each σ ∈ S there is a unique anticipatory utility function, denoted

by Uσ
Z .18

Throughout the paper we restrict ourselves to aggregators that satisfy (4). Before we

derive any further results, some comments are in order: With our symmetry assumption

we exclude any idiosyncratic preferences over the states that the agent might have. Infor-

mation selection is, hence, not driven by ego-based cognitive dissonance. Neither do we

assume that information is costly or limited. The agent can learn as much as she wants,

but we give her the ability to discard messages if she wishes to.19

Moreover, the anticipatory utility function describes her evaluation of the problem at

every belief. This evaluation takes place before the state of the world is revealed: once

the stream of messages stops, utilities realize according to u, that is, at the time of utility

realization, the state remains unknown. Thus, an agent who has a very firm but incorrect

belief, might still be very happy at the time of her decision and only learn much later

about its dire consequences.20

3.4 The Agent’s Problem

As each (Markovian) strategy σ leads to some anticipatory utility function Uσ
Z , the decision

maker’s optimal utility at prior λ is

U∗Z (λ) = sup
σ∈S

Uσ
Z (λ) . (5)

18Surely, UσZ depends on H and p as well. As this will not play any role in the further analysis, we
drop H and p from the notation.

19Any user of social media will agree that they ignore a large extent of “news” there and will not let
them affect their worldview in any way.

20In this context the ∨-shape of the utility function u reflects the agent’s cognitive dissonance (Festinger,
1957).
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The map U∗Z is well-defined for any aggregator that satisfies Equation (4). If there is a

universal strategy σ∗ such that U∗Z (λ) = Uσ∗
Z (λ) for all λ, we call this strategy optimal

(given H, Z, and p). Our first result is that an optimal strategy σ∗ exists.

Proposition 3.6. Let Z ⊆
[
1
2
, 1
]

be a compact set of signals, let H : F × P → R be an

aggregator that satisfies (4), and let U∗Z be defined as in (5). Then U∗Z = Uσ∗
Z if and only

if σ∗ satisfies

σ∗m (λ) =




l if H

[
U∗Z , B

m
Z,l (λ)

]
> U∗Z (λ)

i if H
[
U∗Z , B

m
Z,l (λ)

]
< U∗Z (λ)

for all λ ∈ [0, 1] and m ∈ {0, 1} . (6)

Before an agent with belief λ who observes message m learns the true z, she faces a set of

possible posteriors, Bm
Z,l(λ). A strategy satisfying (6) prescribes to follow up on m if these

posteriors aggregate to a strictly higher utility than U∗Z (λ), and to ignore the message if

they aggregate to a strictly lower utility than U∗Z (λ). Thus, a decision maker who solves

(5) might not use all messages she receives. In the following two sections we shall find

the set of beliefs where the decision maker ignores either message.

4 Optimal Strategies for ex-ante Known Signals

Following the literature on ambiguous signals, one might be inclined to attribute the

decision maker’s strategic ignorance to the ambiguity she faces. But this is not the case.

In this section we shall analyze the situation of a decision maker who faces a stream of

messages that are all generated by the same known signal z ∈
[
1
2
, 1
]
. In this case, for

any λ, a pair of a message and an action can generate only one single posterior belief b ∈
{g−1z (λ), λ, gz(λ)}, and any aggregator satisfies |H [U, {b}]−H [V, {b}]| = |U(b)− V (b)| ≤
‖U − V ‖∞. Thus, by the same arguments as in Proposition 3.5, U∗{z} is well-defined and,

by consistency, independent of H.21

For z = 1 the problem simplifies and one finds that U∗{1}(λ) = (1 − p)u(λ) + p. In

particular, any optimal strategy requires σ∗ (λ) = (l, l) for all λ ∈ (0, 1). For the other

extreme, z = 1
2
, there is no difference between learning and ignoring as g 1

2
(λ) = g−11

2

(λ) =

λ. In this case every strategy is optimal and we find that U∗{ 1
2
} (λ) = u (λ) for all λ ∈ [0, 1].

21This observation serves solely as a sanity check: as there is no ambiguity involved, the decision
maker’s ambiguity attitude should not affect the result.
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Theorem 4.1 proves that even without ambiguity there will be beliefs at which a decision475

maker will ignore contradicting messages. This region, denoted by I(z) = [0,�⇤(z)] [476

[1 � �⇤(z), 1] increases as z decreases.477

Corollary 4.3. Let z, z0 2
�

1
2
, 1
⇤
. Then I(z) ✓ I (z0) if and only if z � z0.478

Proof. It is su�cient to show that �⇤(z)  �⇤ (z0) if and only if z � z0. But this follows479

from the observation that �⇤(z) =
z�1+

p
(1�z)z

2z�1
, which is strictly decreasing on

�
1
2
, 1
⇤
. ⌅480

The relation between z and �⇤(z) is depicted in Figure 2. Note that �⇤(z) > 1� z for all481

z 2
�

1
2
, 1
�
,482

5 Information Selection under Ambiguity483

In this section we shall return to the decision problem when z is not fixed, but stems from484

some compact set Z ✓
�

1
2
, 1
⇤
.28 We first derive the optimal strategy of a decision maker485

with Gilboa-Schmeider preferences. Afterwards we consider an alternative approach in486

28We exclude 1
2 2 Z to avoid some tedious case distinctions.
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Thus,652

Û⇤
Z (�) = T̂Z,�⇤Û⇤

Z (�) > T̂Z,⌧ Û
⌧
Z (�) = Û ⌧

Z (�)653
654

as required. ⌅655

For any non-degenerate belief, the anticipatory utility of a strategic decision maker is656

higher than that of an agent who always mechanically updates her belief. That is, strategic657

ignorance makes people happier, as long as the stream of signals continues.658

6.2 Final Outcome659

We have seen thus far that until the end of the signal stream the strategic decision maker660

is happier than the Bayesian decision maker. We shall now look at what happens when661

there are no new signals and a choice c 2 {0, 1} has to be taken. The question we shall662

answer is: who will make the correct choice with higher probability?663

Throughout the subsection, we will assume that the agents are facing a known signal664

z 2
�

1
2
, 1
�
, i.e., we are in the situation of Section 4. Moreover, the initial belief � is correct,665

that is, Nature draws the true state of the world according to �. The decision maker666

then receives a stream of messages mt, t 2 {1, . . . , T} whose length T is geometrically667

distributed with parameter p.668

Consider the strategy �⇤⇤
z defined by669

�⇤⇤
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8
>>><
>>>:

(l, i) for � 2 [0,�⇤(z)] ,
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(21)670
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By Theorem 4.1, this strategy is optimal. Observe that if T � 1, i.e., if there is at least672

one message, then �1 2 I (z), so that the strategic decision maker will never learn upon673

any contradicting message. Thus, the agent exhibits an extreme primacy e↵ect and will674

have made her choice at latest after the first message. This allows us to easily derive the675

probability that her choice is correct.676

Proposition 6.2. For initial belief � 2 [0, 1], the probability for a correct decision under677
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⌧
Z (�) = Û ⌧
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For any non-degenerate belief, the anticipatory utility of a strategic decision maker is656

higher than that of an agent who always mechanically updates her belief. That is, strategic657

ignorance makes people happier, as long as the stream of signals continues.658

6.2 Final Outcome659

We have seen thus far that until the end of the signal stream the strategic decision maker660

is happier than the Bayesian decision maker. We shall now look at what happens when661

there are no new signals and a choice c 2 {0, 1} has to be taken. The question we shall662

answer is: who will make the correct choice with higher probability?663

Throughout the subsection, we will assume that the agents are facing a known signal664

z 2
�

1
2
, 1
�
, i.e., we are in the situation of Section 4. Moreover, the initial belief � is correct,665

that is, Nature draws the true state of the world according to �. The decision maker666

then receives a stream of messages mt, t 2 {1, . . . , T} whose length T is geometrically667

distributed with parameter p.668

Consider the strategy �⇤⇤
z defined by669
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z (�) =

8
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(l, l) for � 2 (�⇤(z), 1 � �⇤(z)) ,
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(21)670
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By Theorem 4.1, this strategy is optimal. Observe that if T � 1, i.e., if there is at least672

one message, then �1 2 I (z), so that the strategic decision maker will never learn upon673
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have made her choice at latest after the first message. This allows us to easily derive the675

probability that her choice is correct.676

Proposition 6.2. For initial belief � 2 [0, 1], the probability for a correct decision under677
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Û⇤
Z (�) = T̂Z,�⇤Û⇤
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Z (�)653
654

as required. ⌅655

For any non-degenerate belief, the anticipatory utility of a strategic decision maker is656

higher than that of an agent who always mechanically updates her belief. That is, strategic657

ignorance makes people happier, as long as the stream of signals continues.658

6.2 Final Outcome659

We have seen thus far that until the end of the signal stream the strategic decision maker660

is happier than the Bayesian decision maker. We shall now look at what happens when661

there are no new signals and a choice c 2 {0, 1} has to be taken. The question we shall662

answer is: who will make the correct choice with higher probability?663

Throughout the subsection, we will assume that the agents are facing a known signal664

z 2
�

1
2
, 1
�
, i.e., we are in the situation of Section 4. Moreover, the initial belief � is correct,665

that is, Nature draws the true state of the world according to �. The decision maker666

then receives a stream of messages mt, t 2 {1, . . . , T} whose length T is geometrically667

distributed with parameter p.668

Consider the strategy �⇤⇤
z defined by669

�⇤⇤
z (�) =

8
>>><
>>>:

(l, i) for � 2 [0,�⇤(z)] ,

(l, l) for � 2 (�⇤(z), 1 � �⇤(z)) ,

(i, l) for � 2 [1 � �⇤(z), 1] .

(21)670

671

By Theorem 4.1, this strategy is optimal. Observe that if T � 1, i.e., if there is at least672

one message, then �1 2 I (z), so that the strategic decision maker will never learn upon673

any contradicting message. Thus, the agent exhibits an extreme primacy e↵ect and will674

have made her choice at latest after the first message. This allows us to easily derive the675

probability that her choice is correct.676

Proposition 6.2. For initial belief � 2 [0, 1], the probability for a correct decision under677

26

Thus,652

Û⇤
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Z (�) > T̂Z,⌧ Û
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(c) Strictly prefer to learn

Figure 1: Beliefs where the agent prefers to learn or ignore or is indifferent

Thus, we shall focus on z ∈
(
1
2
, 1
)
. For such z let λ∗(z) be the unique positive solution22

of

gz (λ) = 1− λ. (7)

If the decision maker has prior λ∗(z), her updated belief after message 1 will be 1−λ∗(z);

and if she has prior 1− λ∗(z), her updated belief after message 0 will be λ∗(z). Our first

theorem shows that the decision maker will update towards 1 only if she has a belief of

at least λ∗(z) and towards 0 only if she has a belief of at most 1 − λ∗(z). In particular,

her optimal strategy is independent of the continuation probability p.

Theorem 4.1. Let z ∈
(
1
2
, 1
)

and let H : F × P → R be an aggregator. Let U∗{z} be

defined as in (5), and let λ∗(z) as in (7). Then a strategy σ ∈ S is optimal given H and

{z} if and only if

σ0(λ) =




l for 0 < λ < 1− λ∗(z),

i for 1− λ∗(z) < λ < 1,
σ1(λ) =




i for 0 < λ < λ∗(z),

l for λ∗(z) < λ < 1.
(8)

Figure 1 illustrates Theorem 4.1 for a message of 1. If λ < λ∗(z) (Panel 1a), U∗{z} (gz(λ)) <

U∗{z}(λ) so that updating would decrease the agent’s utility, hence any optimal strategy

requires σ1(λ) = i. If λ = λ∗(z) (Panel 1b), she is precisely indifferent between learning

and ignoring, and whenever λ > λ∗(z) (Panel 1c), optimality requires σ1(λ) = l. For later

reference, we collect some properties of U∗{z} which follow from the proof of Theorem 4.1

in the following corollary.

22The properties of λ∗(z) are investigated more thoroughly in Corollary 4.3.
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Figure 2: The graphs of z 7→ λ∗(z) (solid line) and z 7→ 1− z (dashed line)

Corollary 4.2. The function U∗{z} is continuous, satisfies U∗{z} (1− λ) = U∗{z} (λ) for

all λ ∈ [0, 1] as well as U∗{z}(0) = U∗{z}(1) = 1, and is strictly decreasing on [0, λ∗(z)].

Moreover,

U∗{z}(gz(λ)) < U∗{z}
(
g−1z (λ)

)
for λ ∈

(
0, 1

2

)
and

U∗{z}(gz(λ)) > U∗{z}
(
g−1z (λ)

)
for λ ∈

(
1
2
, 1
)
.

Theorem 4.1 shows that even without ambiguity there are beliefs where it is optimal

for a strategic decision maker to ignore contradicting messages. This region, denoted by

I(z) = [0, λ∗(z)] ∪ [1− λ∗(z), 1] increases as z decreases.

Corollary 4.3. Let z, z′ ∈
(
1
2
, 1
]
. Then I(z) ⊆ I (z′) if and only if z ≥ z′.

The relation between z and λ∗(z) is depicted in Figure 2. As can be seen there (and

analytically verified), λ∗(z) > 1− z for all z ∈
(
1
2
, 1
)
.

5 Information Selection under Ambiguity

In this section we shall return to the decision problem when z is not fixed, but stems from

some compact set Z ⊆
(
1
2
, 1
]
.23 We first derive the optimal strategy of a decision maker

23We exclude 1
2 ∈ Z to avoid some tedious case distinctions.
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with Gilboa-Schmeider preferences. Afterwards we consider an alternative approach in

which the decision maker is unaware that she might reassess her view on possible signals

after having received a message.

5.1 Optimal Strategies

Our main finding is that a Gilboa-Schmeidler decision maker who faces a compact set

Z of signals will behave exactly as if she knew that every message were generated by

z = minZ.

Theorem 5.1. Let Z ⊆
(
1
2
, 1
]

be compact and and let H : F × P → R be the Gilboa-

Schmeidler aggregator in (2). Let z = minZ. Then a strategy is optimal given Z if and

only if it is optimal given {z}. In particular, U∗Z = U∗{z}.

A Gilboa-Schmeidler decision maker facing signal set Z is behaviorally indistinguishable

from a decision maker who knows that z is the only possible signal. Moreover, such an

agent always follows up on messages that confirm her prior belief but ignores contradictory

information if her prior is sufficiently strong. The respective threshold λ∗ only depends

on the least precise signal that is deemed possible.

One might be inclined to argue that Theorem 5.1 is not surprising: after all a Gilboa-

Schmeidler decision maker is pessimistic and should, hence, presume the message stem

from the “worst” possible signal. We shall briefly illustrate that this line of thought is

incorrect though as there is a difference between the “worst” and the “least precise” signal.

Example 5.2. Let the signal set be Z =
{

8
10
, 9
10

}
such that U∗Z = U∗{ 8

10
} and λ∗

(
8
10

)
= 1

3
.

Let the agent’s belief be λ = 1
20

and suppose that message 1 realizes. Updating with

respect to signal z = 8
10

leads to an updated belief of g 8
10

(
1
20

)
= 4

23
, while updating with

respect to z = 9
10

would lead to g 9
10

(
2
10

)
= 9

28
. As 0 < 4

23
< 9

28
< 1

3
and U∗{ 8

10
} is strictly

decreasing in this area by Corollary 4.2, the more precise signal would lead to a lower

utility. �

The reason why the constellation in the previous example does not affect our finding in

Theorem 5.1 is that all beliefs where the higher signal would lead to a lower utility lie in

the area I (z) where the strategic decision maker does not update at all.
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5.2 Naive Decision Makers

Recall that at the beginning of any period the decision maker faces two sources of uncer-

tainty: uncertainty about what message she will observe and uncertainty about the signal

that will have generated that message. The definition of the anticipatory utility function

in (3) made the implicit assumption that she evaluates these two sources independently

of one another and that she is aware of this independence at the beginning of the period.

Alternatively, she might be unaware that her preferences could require her to reassess

what constitutes a worst case scenario. The following example illustrates the issue.

Example 5.3. Recall Example 5.2 with Z =
{

8
10
, 9
10

}
. At the prior of λ = 1

20
< 1

3
=

λ∗
(

8
10

)
, the worst that could happen to the decision maker is observing message 1. Thus,

ex ante, she will evaluate her situation under the presumption that z = 8
10

as for this z

the probability of observing message 1 is maximal. Upon observing message 1, however,

the worst case for her is that the message was generated by signal z = 9
10

as seen above.

The strategic decision maker in (3) takes this into account and uses two different values

of z at the two different stages. �

The decision maker we considered so far was aware that she might have a change of heart

along the way, reflected by the use of Bm
Z,σm(λ) (λ) as the set of possible beliefs for the inner

aggregator in (3). A decision maker who is not aware of this will have an anticipatory

utility function that satisfies

Û(λ) = (1− p)u(λ) + pH
[
q0· (λ)H

[
Û , B0

{·},σ0(λ) (λ)
]

+ q1· (λ)H
[
Û , B1

{·},σ1(λ) (λ)
]
, Z
]
.

(9)

We call a decision maker with such an anticipatory utility function naive, as opposed to

sophisticated, which would refer to the decision maker in (3), following a similar distinction

made by O’Donoghue and Rabin (1999) in the context of time-inconsistent preferences.

Showing that Proposition 3.5 carries over to the naive decision maker, i.e., that there

exists a unique naive anticipatory utility function for each σ ∈ S, henceforth denoted by

Ûσ
Z , can be done analogously to the previous analysis and is omitted.

Example 5.4. Recall Example 3.4 with strategy ρ defined by ρ (λ) = (l, l) for all λ ∈
[0, 1]. The anticipatory utility function of a naive Gilboa-Schmeidler decision is the unique

16



solution of

Ûρ
Z (λ) = (1− p)u(λ) + pmin

z∈Z

{
q0z(λ)Ûρ

Z

(
g−1z (λ)

)
+ q1z(λ)Ûρ

Z (gz(λ))
}

for all λ ∈ [0, 1]. �

Since Bm
{z},σm(λ) (λ) is a singleton set for all z ∈ Z and all σ ∈ S, the naive Gilboa-

Schmeidler decision maker in (9) presumes only one expression take its minimum, while

their sophisticated counterpart in (3) expects the minimum over all possible signals

twice—she is being pessimistic “once more”. Hence, it is not surprising that the an-

ticipatory utility of a naive decision maker is higher.24

Lemma 5.5. Let H : F × P → R be the Gilboa-Schmeidler aggregator in (2). For any

compact set Z ⊆
[
1
2
, 1
]

and any σ ∈ S, it holds that Uσ
Z (λ) ≤ Ûσ

Z (λ) for all λ ∈ [0, 1].

For the naive decision maker, the optimal utility at prior λ is

Û∗Z(λ) = sup
σ∈S

Ûσ
Z(λ). (10)

We show that in terms of optimal strategies and optimal anticipatory utilities there is no

difference between a naive and a sophisticated decision maker.

Theorem 5.6. Let Z ⊆
(
1
2
, 1
]

be compact and and let H : F × P → R be the Gilboa-

Schmeidler aggregator in (2). Let z = minZ. Then Û∗Z = U∗Z, and Û∗Z = Ûσ
Z if and only

if σ satisfies (8) for z = z.

While Example 5.3 demonstrates that naive and sophisticated Gilboa-Schmeidler deci-

sion makers might evaluate some situations differently, Theorem 5.6 shows that these

differences have no effect on the agents’ behavior or her anticipatory utility function. In

particular, Û∗Z = U∗Z = U∗{z} = Û∗{z}, so that no matter whether she is sophisticated or

naive, a Gilboa-Schmeidler decision maker will always act and feel as if she knew that z

were the only possible signal.

24We are not the first to highlight this conflict between being happy and overthinking uncertainty. It
has been beautifully illustrated, for instance, in Woody Allen’s “Annie Hall”. But there is also empirical
evidence supporting the other direction: that happy people appear less clever (cf. Barasch, Levine, and
Schweitzer, 2016).
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6 Benchmark Comparison

We have derived the optimal behavior of a decision maker who can strategically ignore

information. We shall call such a decision maker strategic to distinguish her from a

Bayesian decision maker, who mechanically updates his belief after every signal. In this

section, we shall contrast the two with respect to their anticipatory utility as well as their

success probabilities, i.e., the probabilities with which they make the correct choice after

the stream of messages stops.

6.1 Ignorance is a Bliss

Recall that a Bayesian decision maker uses strategy ρ with ρ(λ) = (l, l) for all λ ∈
[0, 1]. He will learn z after every message and update his belief accordingly. Both for

the sophisticated and the naive decision maker there are, by Proposition 3.5, unique

anticipatory utility functions Uρ
Z and Ûρ

Z , respectively. Moreover, U∗Z(λ) ≥ Uρ
Z (λ) and

Û∗Z(λ) ≥ Ûρ
Z (λ) for all λ ∈ [0, 1] by definition. We show that these inequalities are strict

for all λ ∈ (0, 1).

Theorem 6.1. Let Z ⊆
(
1
2
, 1
)

be compact. Then U∗Z (λ) > Uρ
Z (λ) and Û∗Z (λ) > Ûρ

Z (λ)

for all λ ∈ (0, 1).

For any non-degenerate belief, the anticipatory utility of a strategic decision maker is

higher than that of a Bayesian decision maker. That is, strategic ignorance makes people

happier, as long as the stream of signals continues.

6.2 Final Outcome

We shall turn to the probabilities with which the strategic and the Bayesian decision

maker choose correctly at the end of the message stream. Throughout the subsection, we

assume that the agents’ prior belief λ is correct and that they are facing a known signal

z ∈
(
1
2
, 1
)
. The ex-ante probability that a decision maker with initial belief λ and strategy

σ makes the correct choice is denoted by rσz (λ).25

25At this point, we are a bit inaccurate as we do not formally define the concerning probability space.
This space would have to contain the correct state of the world ω, the number of signals T , and for each
T , the sequence of messages (mt)

T
t=1. Defining such a space is not very difficult; however, it requires some

cumbersome notation and does not provide additional insight.
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As the optimal strategy for the strategic decision maker is not unique, we will focus

on σ∗∗z , which is defined by

σ∗∗z (λ) =





(l, i) for λ ∈ [0, λ∗(z)] ,

(l, l) for λ ∈ (λ∗(z), 1− λ∗(z)) ,

(i, l) for λ ∈ [1− λ∗(z), 1] .

(11)

By Theorem 4.1, this strategy is optimal. Observe that if T ≥ 1, i.e., if there is at least

one message, then λ1 ∈ I (z), so that for t ≥ 2 the strategic decision maker will not learn

upon a contradicting message. Thus, the agent exhibits an extreme primacy effect and

her final choice is determined at latest after the first message. This allows us to easily

derive the probability that her choice is correct.

Proposition 6.2. For initial belief λ ∈ [0, 1], the probability for a correct decision under

σ∗∗z is

rσ
∗∗
z
z (λ) =




u(λ) if λ ∈ I(z),

pz + (1− p)u(λ) otherwise.

An immediate consequence of this proposition is that the ex-ante probability of a correct

choice is increasing in z. While it does not change for “extreme” initial beliefs, it strictly

increases for “moderate” beliefs.

Corollary 6.3. Let 1 ≥ z > z′ ≥ 1
2
. Then r

σ∗∗z
z (λ) = r

σ∗∗
z′
z′ (λ) for all λ ∈ I(z) and

r
σ∗∗z
z (λ) > r

σ∗∗
z′
z′ (λ) for all λ ∈ (λ∗(z), 1− λ∗(z)).

Finding the ex-ante probability that a Bayesian decision maker chooses correctly is more

complex, as it does not solely depend on the first message. Its precise formula for each

λ ∈ (0, 1) is derived within the proof of the next theorem.

Theorem 6.4. For any λ ∈ (0, 1) and z ∈
(
1
2
, 1
)

it holds that rρz(λ) > r
σ∗∗z
z (λ).

Theorem 6.4 shows that strategic news selection lowers the decision maker’s long-run wel-

fare as it decreases her probability to choose correctly in the end. This contrasts with

Theorem 6.1 which states that as long as the stream of signals continues, the strategic
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decision maker is happier than the Bayesian decision maker. Thus, while strategic igno-

rance increases instantaneous well-being, it is detrimental in the long run if the initial

belief is correct.

7 Social Outcome

Consider a population N of decision makers with initial beliefs (λi)i∈N who face a stream

of signals drawn from some compact set Z ⊆
(
1
2
, 1
)

and who select their information

according to σ∗∗z as in (11). By Theorems 4.1 and 5.6 it holds that λit ∈ I(z) for all

t ≥ 1 and all i ∈ N . Thus, already after the first signal, polarization is inevitable and

extreme: There will only be “extremists”, who never look at messages contradicting their

worldview. The “political center” (λ∗(z), 1− λ∗(z)) is empty and will stay so forever.

Polarization even increases over time. After the first message, all beliefs will be in

[0, λ∗(z)] (“left-extremists”) or in [1− λ∗(z), 1] (“right-extremists”). Subsequently, the

beliefs of all left-extremists will (for z 6= 1) monotonically decrease and approach 0, while

the beliefs of all right-wing extremists will monotonically increase towards 1. In particular,

for large T , all beliefs will be close to 0 or 1.

The set of decision makers who choose the correct outcome depends on the initial

distribution of priors and Z. Corollaries 4.3 and 6.3 imply that this set increases as z

increases. Hence, more people will make a correct choice if the least precise information

source becomes more precise.

8 Extensions

Two extensions of our model seem straightforward: using aggregators other than Gilboa-

Schmeider, and using a non-binary state space. Neither of them is trivial and general

results about the structure of optimal strategies remain unclear.

8.1 Aggregation of Second Order Beliefs

If the decision maker knows the distribution of signals, she can exploit this additional

information. Modifying Definition 3.2, one can then define an aggregator as a map

H : F(D)×∆(D)→ R that satisfies:
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Consistency. For all x ∈ D and the point measure δx on x it holds that H (U, δx) = U(x).

Monotonicity. For all φ ∈ ∆(D) and U, V : D → R with U|supp(φ) ≥ V|supp(φ) it holds

that H(U, φ) ≥ H(V, φ). If U|supp(φ) ≥ V|supp(φ) + ε for some ε > 0 it holds that

H(U, φ) > H(V, φ).

For instance, an ambiguity neutral decision maker with smooth preferences in the sense

of Klibanoff, Marinacci, and Mukerji (2005) with expected utility function U and second

order belief F ∈ ∆(D) uses the aggregator

H [U, F ] = EF [U ] . (12)

Let F ∈ ∆
([

1
2
, 1
])

be a probability measure over the set of signals and let Fm
λ denote the

probability measure on Z conditional on the prior belief being λ ∈ (0, 1) and the message

being m. That is, for any measurable subset Z ′ ⊆ Z,

Fm
λ (Z ′) =

∫
Z′ q

m
z (λ)F (dz)∫

Z
qmz (λ)F (dz)

.

Moreover, define four maps

ψλ,l : Z → [0, 1], z 7→ g−1z (λ), ψλ,i : Z → [0, 1], z 7→ λ,

ϕλ,l : Z → [0, 1], z 7→ gz(λ), ϕλ,i : Z → [0, 1], z 7→ λ

and push-forward measures G0
F,a(λ) := F 0

λ ◦ ψ−1λ,a and G1
F,a(λ) := F 1

λ ◦ ϕ−1λ,a. Then G0
F,l(λ)

is the probability measure over posterior beliefs given prior λ and observed message 0

before the generated signal is learned. The measure G1
F,l(λ) is defined accordingly for

observed message 1. The anticipatory utility function of a sophisticated decision maker

with aggregator H is then defined by

Uσ
F (λ) = (1− p)u(λ) + pH

[
q0· (λ)H

[
Uσ
F , G

0
F,σ0(λ)

(λ)
]

+ q1· (λ)H
[
Uσ
F , G

1
F,σ1(λ)

(λ)
]
, F
]

and the anticipatory utility function of a naive decision maker is defined by

Ûσ
F (λ) = (1− p)u(λ) + pH

[
q0· (λ)H

[
Ûσ
F , G

0
δ·,σ0(λ)(λ)

]
+ q1· (λ)H

[
Ûσ
F , G

1
δ·,σ1(λ)(λ)

]
, F
]
.

It is easy to see that Proposition 3.5 carries over and that the aggregator in (12) satisfies
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its premise. Hence, both the sophisticated and the naive ambiguity neutral decision maker

with smooth preferences have a unique anticipatory utility function which are fixed points

of the functionals T σF , T̂
σ
F : F ([0, 1])→ F ([0, 1]), defined by

T σFU(λ) = (1− p)u(λ) + pH
[
q0· (λ)H

[
U,G0

F,σ0(λ)
(λ)
]

+ q1· (λ)H
[
U,G1

F,σ1(λ)
(λ)
]
, F
]
,

T̂ σFU(λ) = (1− p)u(λ) + pH
[
q0· (λ)H

[
U,G0

δ·,σ0(λ)(λ)
]

+ q1· (λ)H
[
U,G1

δ·,σ1(λ)(λ)
]
, F
]
.

We show that these functionals coincide. This contrasts with Example 5.3 which shows

that such a statement fails to hold in the case of Gilboa-Schmeidler preferences.

Lemma 8.1. Let H be defined as in (12). Then T σFU(λ) = T̂ σFU(λ) for any F ∈
∆
([

1
2
, 1
])

, σ ∈ S, U ∈ F , and λ ∈ [0, 1].

The previous lemma might not be entirely surprising as the sophisticated decision maker

essentially takes an expected value of a conditional expected value, while the naive decision

maker take the expected value only once. In contrast, it might not be true for a decision

maker who is not ambiguity neutral. An immediate consequence is that the anticipatory

utility functions coincide for the sophisticated and the naive decision maker.

Corollary 8.2. Let H be defined as in (12). For all F ∈ ∆
[
1
2
, 1
]

and all σ ∈ S, it holds

that Uσ
F = Ûσ

F .

Hence, in case of ambiguity neutral preferences, we do not have to distinguish between

sophisticated and naive decision makers. The existence of optimal strategies can be de-

rived as in Proposition 3.6, and they are identical for both types of decision makers, so

that U∗F (λ) = supσ∈S U
σ
F (λ) = supσ∈S Û

σ
F (λ) = Û∗F (λ) for all λ. What remains unclear,

however, is whether optimal strategies have a similar threshold structure as those of the

Gilboa-Schmeidler decision maker. In the following example, a numerical analysis suggests

that they might.

Example 8.3. Recall Example 5.2 where Z =
{

8
10
, 9
10

}
and let F be the uniform distribu-

tion on Z. Suppose the decision maker has smooth preferences and is ambiguity neutral.

The anticipatory utility function U∗F is depicted by the solid line in Figure 3. The func-

tion λ 7→ EF 1
λ

[U∗Z (g· (λ))] is depicted by the dotted line. The two functions have a unique

intersection, denoted λ∗(F ). The optimal strategies require that the agent ignores any

1-message for λ < λ∗(F ) and updates after any 1-message for λ > λ∗(F ). Numerically,

we obtain that λ∗(F ) ≈ 0.2823 ∈
(
1
4
, 1
3

)
=
(
λ∗
(

9
10

)
, λ∗
(

8
10

))
. �
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Theorem 4.1 proves that even without ambiguity there will be beliefs at which a decision475

maker will ignore contradicting messages. This region, denoted by I(z) = [0,�⇤(z)] [476

[1 � �⇤(z), 1] increases as z decreases.477

Corollary 4.3. Let z, z0 2
�

1
2
, 1
⇤
. Then I(z) ✓ I (z0) if and only if z � z0.478

Proof. It is su�cient to show that �⇤(z)  �⇤ (z0) if and only if z � z0. But this follows479

from the observation that �⇤(z) =
z�1+

p
(1�z)z

2z�1
, which is strictly decreasing on

�
1
2
, 1
⇤
. ⌅480

The relation between z and �⇤(z) is depicted in Figure 2. Note that �⇤(z) > 1� z for all481

z 2
�

1
2
, 1
�
,482

5 Information Selection under Ambiguity483

In this section we shall return to the decision problem when z is not fixed, but stems from484

some compact set Z ✓
�

1
2
, 1
⇤
.28 We first derive the optimal strategy of a decision maker485

with Gilboa-Schmeider preferences. Afterwards we consider an alternative approach in486

28We exclude 1
2 2 Z to avoid some tedious case distinctions.
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Û⇤
Z (�) = T̂Z,�⇤Û⇤
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Z (�) = Û ⌧

Z (�)653
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as required. ⌅655

For any non-degenerate belief, the anticipatory utility of a strategic decision maker is656

higher than that of an agent who always mechanically updates her belief. That is, strategic657

ignorance makes people happier, as long as the stream of signals continues.658

6.2 Final Outcome659

We have seen thus far that until the end of the signal stream the strategic decision maker660

is happier than the Bayesian decision maker. We shall now look at what happens when661

there are no new signals and a choice c 2 {0, 1} has to be taken. The question we shall662

answer is: who will make the correct choice with higher probability?663

Throughout the subsection, we will assume that the agents are facing a known signal664

z 2
�

1
2
, 1
�
, i.e., we are in the situation of Section 4. Moreover, the initial belief � is correct,665

that is, Nature draws the true state of the world according to �. The decision maker666

then receives a stream of messages mt, t 2 {1, . . . , T} whose length T is geometrically667

distributed with parameter p.668

Consider the strategy �⇤⇤
z defined by669

�⇤⇤
z (�) =

8
>>><
>>>:

(l, i) for � 2 [0,�⇤(z)] ,

(l, l) for � 2 (�⇤(z), 1 � �⇤(z)) ,

(i, l) for � 2 [1 � �⇤(z), 1] .

(21)670

671

By Theorem 4.1, this strategy is optimal. Observe that if T � 1, i.e., if there is at least672

one message, then �1 2 I (z), so that the strategic decision maker will never learn upon673

any contradicting message. Thus, the agent exhibits an extreme primacy e↵ect and will674

have made her choice at latest after the first message. This allows us to easily derive the675

probability that her choice is correct.676

Proposition 6.2. For initial belief � 2 [0, 1], the probability for a correct decision under677
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⌧
Z (�) = Û ⌧
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maker with smooth preferences have a unique anticipatory utility function that is achieved

as a fixed point of the functionals T �
F , T̂ �

F : F ([0, 1]) ! F ([0, 1]), defined by

T �
F U(�) = (1 � p)u(�) + pH

⇥
q0
· (�)H

⇥
U, G0

F,�0(�)(�)
⇤
+ q1

· (�)H
⇥
U, G1

F,�1(�)(�)
⇤
, F

⇤
,

T̂ �
F U(�) = (1 � p)u(�) + pH

⇥
q0
· (�)H

⇥
U, G0

�·,�0(�)(�)
⇤
+ q1

· (�)H
⇥
U, G1

�·,�1(�)(�)
⇤
, F

⇤
.

We show that these functionals coincide. This contrasts with Example 5.3 which shows

that such a statement fails to hold in the case of Gilboa-Schmeidler preferences.

Lemma 8.1. Then for any U 2 F ([0, 1]) and � 2 [0, 1], T �
F U(�) = T̂ �

F U(�).

It directly follows from Lemma 8.1 that in case of ambiguity neutral smooth preferences,

the anticipatory utility functions coincide for the sophisticated and the naive decision

maker.

Corollary 8.2. For each � 2 S, U�
F = Û�

F .

Hence, in case of ambiguity neutral preferences, we do not have to distinguish between

sophisticated and naive decision makers. Thus, the optimal anticipatory utilities for

the naive and the sophisticated decision maker coincide, i.e., U⇤
F (�) = sup�2S U�

F (�) =

sup�2S Û�
F (�) = Û⇤

F (�) for all �. Analogously to Proposition 3.5, one can show that

an optimal strategy exists. In general, it is not clear whether optimal strategies have a

threshold structure. In the following example, a numerical analysis suggests that they do.

Example 8.3. Recall Example 5.2 where Z =
�

8
10

, 9
10

 
and let F be the uniform distribu-

tion on Z. Suppose the decision maker has smooth preferences and is ambiguity neutral.

The anticipatory utility function U⇤
F is depicted by the solid line in Figure 3. The function

EF [U⇤
Z (gz (�))] is depicted by the dotted line. The two functions have a unique intersec-

tion, denoted �⇤(F ). The optimal strategies require that the agent ignores any 1-message

for � < �⇤(F ) and updates after any 1-message for � > �⇤(F ). Numerically, we obtain

that �⇤(F ) ⇡ 0.2803 2
�

1
4
, 1

3

�
=
�
�⇤
�

9
10

�
,�⇤

�
8
10

��
. ⇤

8.2 More than Two States

The model can be generalized to more than two symmetric states, a message space that

coincides with the state space, and a set of symmetric signals that generate with proba-

bility z � 1
n

a correct message and with probability 1�z
n�1

each other message. While the
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Figure 3: Anticipatory utility function for ambiguity neutral smooth preferences.

8.2 More than Two States

The model can be generalized to more than two symmetric states, a message space that

coincides with the state space, and a set of symmetric signals that generate with proba-

bility z ≥ 1
n

a correct message and with probability 1−z
n−1 each other message. While the

existence of optimal strategies can be proven as before, it remains unclear whether they

will have the same threshold structure, as the proof of Theorem 4.1, in particular part

2b, does not generalize to more than two states.

9 Conclusion

This paper investigates the behavior of a decision maker who receives a stream of messages

of known or unknown quality about the true state of the world. At each time period, she

faces the decision whether to learn how the message has been generated and update her

belief accordingly, or to discard the message and stick to her previous conviction. This

“free disposal of information” is inspired by the way users selectively read news articles

posted on social media platforms. If there is no ambiguity and under the assumption

that the decision maker is Markovian, she will discard contradictory messages if her belief

is sufficiently strong. This remains true under ambiguity if she has Gilboa-Schmeidler

preferences, where the respective belief threshold depends solely on the worst possible

signal.

When comparing her behavior to a decision maker who updates after each message,
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we find that she is happier as long as new signals keep coming. However, the possibility

to ignore signals leads to a higher probability of the wrong decision in the end. Moreover,

on the macroscopic level, such behavior will lead to polarization.

The model neglects some crucial features of modern social media by assuming that

messages are generated independently of the agent’s prior belief. Yet, extending the

models by algorithms, echo chambers, or and targeted news that support the decision

maker’s belief more often than not, will even intensify its already quite extreme results.

Our analysis has normative consequences on the individual as well as on the social

level. For the single agent who wants to make a well-founded decision, it pays off to

leave the own comfort zone and also have a look at information that challenges one’s

prior conviction, even if this decreases the own welfare in the short run. A social planner

that wants to have well-informed citizens who decide wisely and also listen to people

with different opinions should ensure that the minimal possible signal precision—i.e., the

quality of the “worst media outlet”—is as high as possible.
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A Proofs

Proof of Proposition 3.5. For any strategy σ define the operator T σZ : F ([0, 1])→ F ([0, 1])

by

T σZU(λ) = (1− p)u(λ) + pH
[
q0· (λ)H

[
U,B0

Z,σ0(λ)
(λ)
]

+ q1· (λ)H
[
U,B1

Z,σ1(λ)
(λ)
]
, Z
]

(13)
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for all λ ∈ [0, 1]. Then T σZ is a contraction since

‖T σZU − T σZV ‖∞ = p sup
λ∈[0,1]

∣∣H
[
q0· (λ)H

[
U,B0

Z,σ0(λ)
(λ)
]

+ q1· (λ)H
[
U,B1

Z,σ1(λ)
(λ)
]
, Z
]

−H
[
q0· (λ)H

[
V,B0

Z,σ0(λ)
(λ)
]

+ q1· (λ)H
[
V,B1

Z,σ1(λ)
(λ)
]
, Z
]∣∣

≤ p sup
λ∈[0,1]

∥∥q0· (λ)H
[
U,B0

Z,σ0(λ)
(λ)
]

+
(
1− q0· (λ)

)
H
[
U,B1

Z,σ1(λ)
(λ)
]

−q0· (λ)H
[
V,B0

Z,σ0(λ)
(λ)
]
−
(
1− q0· (λ)

)
H
[
V,B1

Z,σ1(λ)
(λ)
]∥∥
∞,Z

= p sup
λ∈[0,1]

sup
z∈Z

∣∣q0z (λ)
(
H
[
U,B0

Z,σ0(λ)
(λ)
]
−H

[
V,B0

Z,σ0(λ)
(λ)
])

+
(
1− q0z (λ)

) (
H
[
U,B1

Z,σ1(λ)
(λ)
]
−H

[
V,B1

Z,σ1(λ)
(λ)
])∣∣

≤ p sup
λ∈[0,1]

sup
z∈Z

(
q0z (λ) ‖U − V ‖∞ +

(
1− q0z (λ)

)
‖U − V ‖∞

)

= p ‖U − V ‖∞ .

Thus, as F ([0, 1]) is a complete metric space, T σZ has a unique fixed point by Banach’s

fixed point theorem, and this fixed point satisfies (3). �

Proof of Proposition 3.6. Let σ∗ satisfy (6). By definition it holds that U∗Z ≥ Uσ∗
Z , so

we show that Uσ∗
Z ≥ U∗Z . By the monotonicity of H it holds that T σ

∗
Z U ≥ T σ

∗
Z V for all

U, V ∈ F ([0, 1]) with U ≥ V . Thus, since σ∗ satisfies (6), and since U∗Z ≥ Uσ
Z for every

σ ∈ S,

T σ
∗

Z U∗Z ≥ T σZU
∗
Z ≥ T σZU

σ
Z = Uσ

Z .

Hence, T σ
∗

Z U∗Z(λ) ≥ supσ∈S U
σ
Z(λ) = U∗Z (λ) for all λ ∈ [0, 1]. Iterated use of the mono-

tonicity of T σ
∗

Z reveals that
(
T σ
∗

Z

)n
U∗Z ≥ U∗Z for all n ∈ N. Thus, Uσ∗

Z = limn→∞
(
T σ
∗

Z

)n
U∗Z ≥

U∗Z , as claimed.

For the other direction let σ, σ∗ ∈ S be such that σ∗ satisfies Equation (6) for all

λ ∈ [0, 1] and σ does not. By means of contradiction assume that Uσ
Z = U∗Z . Then U∗Z is

a fixed point of T σZ so that T σZU
∗
Z (λ) = U∗Z (λ). Moreover, by the first part of the proof,

T σ
∗

Z U∗Z (λ) = U∗Z (λ). Thus,

T σ
∗

Z U∗Z (λ) = T σZU
∗
Z (λ) for all λ ∈ [0, 1] . (14)
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However, there are δ > 0 and, without loss of generality, λ ≥ 1
2

such thatH
[
U∗Z , B

1
Z,l (λ)

]
−

U∗Z (λ) = δ and σ1(λ) = i. For all z ∈ Z it holds that

(
q0z (λ)H

[
U∗Z , B

0
Z,σ∗0(λ)

(λ)
]

+ q1z (λ)H
[
U∗Z , B

1
Z,σ∗1(λ)

(λ)
])

−
(
q0z (λ)H

[
U∗Z , B

0
Z,σ0(λ)

(λ)
]

+ q1z (λ)H
[
U∗Z , B

1
Z,σ1(λ)

(λ)
])

≥ q1minZ(λ)δ > 0,

so that T σ
∗

Z U∗Z (λ) > T σZU
∗
Z (λ) in contradiction to (14). �

Proof of Theorem 4.1. In order to keep notation simple, let λ∗ = λ∗(z). One can easily

verify that for all λ > λ∗ it holds that u(gz(λ)) − u(λ) > 0. We need the following two

lemmas for the proof. The first is straightforward and the proof is omitted.

Lemma A.1. Let x, y, x′, and y′ be positive real numbers with x′ ≥ x and y′ ≥ y, as well

as x ≥ y or x′ ≥ y′. Moreover, let α, β ∈ (0, 1) with α ≥ β. Then

αx′ + (1− α)y′ ≥ βx+ (1− β)y. (15)

If at least one of the inequalities is strict, then (15) is strict as well.

Lemma A.2. Let C∗z be the set of all continuous functions on [0, 1] that satisfy

U(λ) = U(1− λ) for all λ ∈ [0, 1], (16)

U(0) = U(1) = 1, (17)

U(λ′)− U(λ) ≥ (1− p)(λ′ − λ) for all 1− λ∗ < λ < λ′ ≤ 1, (18)

U(gz(λ))− U(λ) ≥ (1− p) [u(gz(λ))− u(λ)] for all λ ∈ [λ∗, 1). (19)

Then C∗z is a nonempty and closed (with respect to the supremum norm) subset of F ([0, 1]),

and T σ{z}U ∈ C∗z for all U ∈ C∗z and all strategies σ that satisfy (8).

Proof. It is clear that u ∈ C∗z and that all the properties are preserved under uniform

convergence, such that C∗z is nonempty and closed. Let U ∈ C∗z . To keep notation simple

let T = T σ
∗
{z}. Verifying that TU satisfies (16) and (17) is straightforward. Continuity of

TU at λ 6= λ∗, 1− λ∗ is clear. Continuity at λ∗ and 1− λ∗ follows from the properties of

gz and g−1z in Lemma 3.1 in combination with (7) and (16).
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Let U ∈ C∗z . We show that TU satisfies (18), so let 1 − λ∗ ≤ λ < λ′ ≤ 1. Then,

by (18), it holds that U(λ′) > U(λ) and, by the strict monotonicity of gz, we have

U (gz(λ
′)) > U (gz(λ)) as well as U (gz(λ

′)) > U(λ′). Hence, we can apply Lemma A.1

with α = q1z(λ
′), β = q1z(λ), x′ = U (gz (λ′)), y′ = U(λ′), x = U (gz (λ)), and y = U(λ)

and get

q1z(λ
′)U (gz (λ′)) + q0z(λ

′)U (λ′) > q1z(λ)U (gz (λ)) + q0z(λ)U (λ)

where we also used 1− q0z(·) = q1z(·). Together with the definition of σ we have

(TU)(λ′)− (TU)(λ) = (1− p)[u(λ′)− u(λ)]

+ p
[
q1z(λ

′)U (gz (λ′)) + q0z(λ
′)U (λ′)− q1z(λ)U (gz (λ))− q0z(λ)U (λ)

]

> (1− p)[u(λ′)− u(λ)]

= (1− p)(λ′ − λ)

as claimed.

We show that T preserves (19). For all λ ∈ [0, 1] define

(T̃U)(λ) :=





q0z(λ)U (g−1z (λ)) + q1z(λ)U (λ) , λ ∈ [0, λ∗] ,

q0(λ)U (g−1z (λ)) + q1z(λ)U (gz(λ)) , λ ∈ (λ∗, 1− λ∗) ,
q0z(λ)U (λ) + q1z(λ)U (gz(λ)) , λ ∈ [1− λ∗, 1] ,

and observe that (TU)(λ) = (1− p)u(λ) + p(T̃U)(λ). Thus,

(TU) (gz(λ))− (TU)(λ) = (1− p) [u(gz(λ))− u(λ)] + p
[
(T̃U) (gz(λ))− (T̃U)(λ)

]

for all λ. Hence, in order to prove (19), it is sufficient to show that (T̃U) (gz(λ)) ≥ (T̃U)(λ)

for all λ ∈ [λ∗, 1).

1. First, let λ ∈ [1− λ∗, 1). Then, since z > 1
2
, it holds that gz(λ) ∈ (1− λ∗, 1], so that

(T̃U) (gz(λ)) = q1z (g(λ))U (gz(gz(λ))) + q0z (gz(λ))U (gz(λ))

≥ q1z(λ)U (gz(λ)) + q0z(λ)U (λ)

= (T̃U) (λ)
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where the inequality follows from (15), using that U (gz(gz(λ))) ≥ U (gz(λ)) ≥ U(λ)

by the monotonicity of U on [1− λ∗, 1], and q1z (gz(λ)) ≥ q1z(λ) by the monotonicity

of q1z .

2. Second, let λ ∈ (λ∗, 1− λ∗). Then, g−1z (λ) ∈ [0, λ∗) and gz(λ) ∈ (1− λ∗, 1]. As U is

strictly monotone in these areas, U (gz(λ)) is increasing, and U (g−1z (λ)) is decreasing

in λ.

By Lemma 3.1, it holds that gz
(
1
2

)
= 1 − g−1z

(
1
2

)
, so that by the symmetry of U ,

U
(
gz
(
1
2

))
= U

(
1− g−1z

(
1
2

))
= U

(
g−1z

(
1
2

))
. Consequently,

U(gz(λ)) > U
(
g−1z (λ)

)
for λ ∈

(
1
2
, 1− λ∗

)
and

U(gz(λ)) < U
(
g−1z (λ)

)
for λ ∈

(
λ∗, 1

2

)
.

(20)

(a) Suppose first that λ ∈
[
1
2
, 1− λ∗

)
. Then U (gz (gz(λ))) ≥ U (gz(λ)) ≥ U (g−1z (λ))

and therefore

(T̃U) (gz(λ)) = q1z (gz(λ))U (gz (gz(λ))) + q0z (gz(λ))U (gz(λ))

≥ U (gz(λ))

≥ q1z(λ)U (gz(λ)) + q0z (λ)U
(
g−1z (λ)

)

= (T̃U) (λ) .

(b) Finally, let λ ∈
(
λ∗, 1

2

)
. Since

U (gz (gz(λ
∗))) = U (gz (1− λ∗)) = U

(
1− g−1z (λ∗)

)
= U

(
g−1z (λ∗)

)
,

the monotonicity of U on [0, λ∗) and (1− λ∗, 1] together with (20) imply that

U (gz (gz(λ))) ≥ U
(
g−1z (λ)

)
≥ U (gz(λ)) .

Thus, using that q1 (gz(λ)) > 0 and q1z(λ) = q0z(1− λ) > q0z (gz(λ)) for λ > λ∗,

we obtain

(T̃U) (gz(λ)) = q1z (gz(λ))U (gz (gz(λ))) + q0z (gz(λ))U (gz(λ))

= q1z (gz(λ))U (gz (gz(λ))) +
(
q1z(λ) + q0z (gz(λ))− q1z(λ)

)
U (gz(λ))
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≥ q1z (gz(λ))U
(
g−1z (λ)

)
+ q1z(λ)U (gz(λ))

+
(
q0z (gz(λ))− q1z(λ)

)
U
(
g−1z (λ)

)

= q1z (λ)U(gz(λ)) +
(
1− q1z (λ)

)
U
(
g−1z (λ)

)

= (T̃U) (λ)

as required. �

Let U ∈ C∗z . By (19) it holds that

U (gz(λ)) > U(λ) for all λ ∈ (λ∗, 1). (21)

Let λ ∈ (1− λ∗, 1). Then g−1z (λ) ∈ (λ∗, 1), so that we find with (21)

U(λ) = U
(
gz
(
g−1z (λ)

))
> U

(
g−1z (λ)

)
for all λ ∈ (1− λ∗, 1). (22)

Moreover, using the symmetry of U in (16), we obtain by (19), or similar arguments as

above

U
(
g−1z (λ)

)
> U(λ) for all λ ∈ (0, 1− λ∗), (23)

U(λ) > U (gz(λ)) for all λ ∈ (0, λ∗). (24)

Consider now the functional operator Sz : F ([0, 1])→ F ([0, 1]) that is defined by

(SzU) (λ) = (1− p)u(λ) + p
(
q0z(λ) max

(
U(λ), U

(
g−1z (λ)

))
+ q1z(λ) max (U(λ), U (gz(λ)))

)

for all U ∈ F ([0, 1]) and all λ ∈ [0, 1]. One can easily check that Sz is a contraction on

F ([0, 1]), so Sz has a unique fixed point, denoted by Ũ . Let σ̃ be a fixed but arbitrary

strategy that satisfies (8). By Equations (21)–(24) we have for all U ∈ C∗z that SzU =

T σ̃{z}U ∈ C∗z , which implies Ũ ∈ C∗z . Moreover U∗{z} = T σ
∗
{z}U

∗
{z} = SzU

∗
{z} for any σ∗ that

satisfies (6), so that U∗{z} = Ũ ∈ C∗z . This implies that a strategy σ satisfies (8) if and only

if it satisfies (6), that is, if and only if it is optimal. �

Proof of Corollary 4.3. It is sufficient to show that λ∗(z) ≤ λ∗ (z′) if and only if z ≥ z′.

But this follows from the observation that λ∗(z) =
z−1+
√

(1−z)z
2z−1 , which is strictly decreasing
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on
(
1
2
, 1
]
. �

Proof of Theorem 5.1. If Z = {1}, there is nothing to show. Hence, let Z 6= {1}, so that

z < 1. Let σ∗ be some optimal strategy given Z, and let σ be some optimal strategy given

{z}. It is sufficient to show the following four (in-)equalities, as they imply the claim:

Uσ
{z} (λ) = U∗{z} (λ) ≥ Uσ∗

{z} (λ) ≥ U∗Z (λ) ≥ Uσ
Z (λ) = Uσ

{z} (λ) . (25)

The first equality follows from Theorem 4.1 and the first inequality by the definition of

U∗{z}. For the second inequality note that H [U,Z] ≤ H [U, {z}] for every U ∈ F ([0, 1])

by (2). Hence, T σ
∗

Z U(λ) ≤ T σ
∗
{z}U (λ) for all U ∈ F ([0, 1]) by the monotonicity of H,

so that
(
T σ
∗

Z

)n
U(λ) ≤

(
T σ
∗
{z}
)n
U (λ) for all n ∈ N. Thus, U∗Z (λ) = limn

(
T σ
∗

Z

)n
U(λ) ≤

limn

(
T σ
∗
{z}
)n
U (λ) = Uσ∗

{z} (λ). The third inequality is satisfied by the definition of U∗Z in

(5).

For the last equality it is sufficient to show that Uσ
{z} is a fixed point of T σZ . So, without

loss of generality let λ ≤ 1
2
, and recall that Uσ

{z} ∈ C∗z . By Theorem 4.1, σ is optimal for

Uσ
{z} in the sense of Equation (6). Thus,

H
[
Uσ
{z}, B

0
Z,σ0(λ)

(λ)
]

= Uσ
{z}
(
g−1z (λ)

)
and

H
[
Uσ
{z}, B

1
Z,σ1(λ)

(λ)
]

= max
{
Uσ
{z} (gz (λ)) , Uσ

{z} (λ)
}

by the monotonicity properties of Uσ
{z} in Corollary 4.2. Thus, again by Corollary 4.2,

H
[
Uσ
{z}, B

0
Z,σ0(λ)

]
= Uσ

{z}
(
g−1z (λ)

)
≥ max

{
Uσ
{z} (gz (λ)) , Uσ

{z} (λ)
}

= H
[
Uσ
{z}, B

1
Z,σ1(λ)

]
.

As q0· (λ) is weakly increasing in z (recall that λ ≤ 1
2
) this means that

H
[
q0· (λ)H

[
Uσ
{z}, B

0
Z,σ0(λ)

(λ)
]

+ q1· (λ)H
[
Uσ
{z}, B

1
Z,σ1(λ)

(λ)
]
, Z
]

= q0z (λ)H
[
Uσ
{z}, B

0
Z,σ0(λ)

(λ)
]

+ q1z (λ)H
[
Uσ
{z}, B

1
Z,σ1(λ)

(λ)
]

= H
[
q0· (λ)H

[
Uσ
{z}, B

0
Z,σ0(λ)

(λ)
]

+ q1· (λ)H
[
Uσ
{z}, B

1
Z,σ1(λ)

(λ)
]
, {z}

]
.

Hence, it holds that

T σZU
σ
{z} (λ) = T σ{z}U

σ
{z} (λ) = Uσ

{z} (λ) .
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Thus, Uσ
{z} is a fixed point of T σZ as claimed. �

Proof of Lemma 5.5. Let T σZ be as defined in (13). Analogously, let T̂ σZ : F ([0, 1]) →
F ([0, 1]) be defined by

T̂ σZU(λ) = (1− p)u(λ) + pH
[
q0· (λ)H

[
U,B0

{·},σ0(λ) (λ)
]

+ q1· (λ)H
[
U,B1

{·},σ1(λ) (λ)
]
, Z
]

for all λ ∈ [0, 1]. For all z ∈ Z and any function U ∈ F ([0, 1]),

H
[
U,B0

Z,σ0(λ)
(λ)
]
≤ H

[
U,B0

{z},σ0(λ) (λ)
]

and H
[
U,B1

Z,σ1(λ)
(λ)
]
≤ H

[
U,B1

{z},σ1(λ) (λ)
]
.

By the monotonicity of H, T σZU (λ) ≤ T̂ σZU(λ) for any function U and all λ ∈ [0, 1]. Thus,

as in the proof of Theorem 5.1, Uσ
Z (λ) = limn

(
T σZ
)n
U(λ) ≤ limn

(
T̂ σZ
)n
U(λ) = Ûσ

Z (λ). �

Proof of Theorem 5.6. If Z = {1}, there is nothing left to show, so let Z 6= {1}, so that

z < 1. Suppose first that σ satisfies (8). In order to show that U∗Z = Û∗Z = Ûσ
Z it is

sufficient to show that

Û∗Z (λ) ≤ Ûσ
{z}(λ) = Uσ

{z}(λ) = Uσ
Z(λ) ≤ Ûσ

Z(λ) ≤ Û∗Z (λ) (26)

for all λ ∈ [0, 1]. As z ∈ Z, H is the Gilboa-Schmeidler aggregator, and σ is optimal

given {z}, one can use the same arguments as in the proofs of Theorem 5.1 and Lemma

5.5 to show that Ûσ′
Z (λ) ≤ Ûσ′

{z} (λ) ≤ Ûσ
{z} (λ) for all σ′ ∈ S. Taking the supremum over

all σ′ ∈ S yields the first inequality.

For the singleton set {z}, there is no difference between sophisticated and naive deci-

sion makers, as (3) and (9) coincide in this case. Hence, we arrive at the first equality.

The second equality holds by Theorem 5.1, and the second inequality by Lemma 5.5.

The last inequality directly follows from the definition of Û∗Z in (10).

It is left to show that Û∗Z > Ûσ′
Z for any σ′ ∈ S that does not satisfy (8). Assume that

there is σ′ ∈ S with Û∗Z = Ûσ′
Z that does not satisfy (8). Then Ûσ′

Z (λ) = Û∗Z(λ) = U∗{z}(λ) >

Uσ′
{z}(λ) = Ûσ′

{z}(λ) ≥ Ûσ′
Z (λ), where the first equality follows from the assumption, the

second one from (26), the strict inequality from Theorem 4.1, the third equality holds as

for the singleton {z} Equations (3) and (9) coincide, and the weak inequality follows from

the same arguments as above. But the overall inequality is impossible. �
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Proof of Theorem 6.1. As Uρ
Z (λ) ≤ Ûρ

Z (λ) by Lemma 5.5 and U∗Z (λ) = Û∗Z (λ) by Theo-

rem 5.6, it suffices to show that Ûρ
Z (λ) < Û∗Z (λ). So, let σ∗ be an optimal strategy given

Z.

We first prove the claim for λ ∈ (0, λ∗ (z))∪ (1− λ∗ (z) , 1). Without loss of generality

let λ ∈ (0, λ∗ (z)). Then

H
[
q0· (λ)H

[
Û∗Z , B

0
{·},ρ0(λ) (λ)

]
+ q1· (λ)H

[
Û∗Z , B

1
{·},ρ1(λ) (λ)

]
, Z
]

= min
z∈Z

(
q0z (λ) Û∗Z

(
g−1z (λ)

)
+ q1z (λ) Û∗Z (gz (λ))

)

≤ q0z (λ) Û∗Z
(
g−1z (λ)

)
+ q1z (λ) Û∗Z (gz (λ))

< q0z (λ) Û∗Z
(
g−1z (λ)

)
+ q1z (λ) Û∗Z (λ)

= H
[
q0· (λ)H

[
Û∗Z , B

0
{·},σ∗0(λ) (λ)

]
+ q1· (λ)H

[
Û∗Z , B

1
{·},σ∗1(λ) (λ)

]
, Z
]
.

Thus,

Ûρ
Z (λ) = T̂ ρZÛ

ρ
Z (λ) ≤ T̂ ρZÛ

∗
Z (λ) < T̂ σ

∗
Z Û∗Z (λ) = Û∗Z (λ) ,

where we used the calculation above in the first and the monotonicity of T̂ ρZ in the second

inequality.

Suppose next that λ ∈ [λ∗(z), 1− λ∗(z)]. Then g−1z (λ) ∈ (0, λ∗(z)] and gz (λ) ∈
[1− λ∗(z), 1) and at least one of them lies in the respective open interval. By the definition

of Û∗Z it holds that Û∗Z
(
g−1z (λ)

)
≥ Ûρ

Z

(
g−1z (λ)

)
and Û∗Z (gz (λ)) ≥ Ûρ

Z (gz (λ)), and, by the

first part of the proof, at least one of these inequalities is strict. Hence,

H
[
q0· (λ)H

[
Ûρ
Z , B

0
{·},ρ0(λ) (λ)

]
+ q1· (λ)H

[
Ûρ
Z , B

1
{·},ρ1(λ) (λ)

]
, Z
]

= min
z∈Z

(
q0z (λ) Ûρ

Z

(
g−1z (λ)

)
+ q1z (λ) Ûρ

Z (gz (λ))
)

≤ q0z (λ) Ûρ
Z

(
g−1z (λ)

)
+ q1z (λ) Ûρ

Z (gz (λ))

< q0z (λ) Û∗Z
(
g−1z (λ)

)
+ q1z (λ) Û∗Z (gz (λ))

= H
[
q0· (λ)H

[
Û∗Z , B

0
{·},σ∗0(λ) (λ)

]
+ q1· (λ)H

[
Û∗Z , B

1
{·},σ∗1(λ) (λ)

]
, Z
]
.

Thus,

Ûρ
Z (λ) = T̂Z,ρÛ

ρ
Z (λ) < T̂ σ

∗
Z Û∗Z (λ) = Û∗Z (λ)
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as required. �

Proof of Proposition 6.2. The first part is clear as a strategic decision maker with λ ∈ I(z)

will not update her belief at all and choose the option that is optimal given her (correct)

prior.

If λ /∈ I(z), with probability 1−p she will obtain no message at all and follow her prior,

and with probability p she will obtain a message and update her belief. Since necessarily

λ1 ∈ I(z), she will make a correct choice if and only if the message was correct, which

happens with probability z and is independent of p. �

Proof of Corollary 6.3. For λ ∈ I(z) and λ ∈ (λ∗(z′), 1− λ∗(z′)) the claim follows im-

mediately from Proposition 6.2. Without loss of generality let λ ∈ (λ∗(z), λ∗(z′)). Since

λ > λ∗(z) ≥ 1− z, we have

rσ
∗∗
z
z (λ) = pz + (1− p)(1− λ) > 1− λ = r

σ∗∗
z′
z′ (λ)

as required. �

Proof of Theorem 6.4. We assume without loss of generality that λ ≤ 1
2
. For any ` ∈ N

denote by g`z the `-fold application of gz, and by g−`z the `-fold application of g−1z . For

any history hT (ρ) = (mt, z, λt)
T
t=0 let M1 = |{t : mt = 1}| denote the number of generated

1-messages, and M0 = T −M1 the number of generated 0-messages. Since gz and g−1z
commute, we have that λT = gM

1−M0

z (λ).

Let G` =
(
g−`z
(
1
2

)
, g
−(`−1)
z

(
1
2

)]
and observe that a Bayesian decision maker with prior

λ ∈ G` who faces history hT (ρ) will have final belief λT > 1
2

if and only if M1 −M0 ≥ l,

and he will have final belief λT = 1
2

if and only if λ = g
−(`−1)
z

(
1
2

)
and M1 −M0 = l − 1.

For any T ∈ N0 and κ ∈ Z denote by Z [T, κ] the probability that at least κ correct

messages have been observed, conditional on T messages having been generated alto-

gether, that is,

W [T, κ] =





0 if κ > T,
∑T

k=κ

(
T
k

)
zk(1− z)T−k if 0 ≤ κ ≤ T,

1 if κ < 0.

36



The probability that the number of correct messages exceeds the number of incorrect

messages by at least `, conditional on T messages being generated, is W
[
T,
⌊
T+`+1

2

⌋]
.

Similarly, the probability that the number of incorrect messages does not exceed the

number of correct messages by (strictly) more than ` − 1, conditional on T messages

being generated, is W
[
T,
⌊
T−`
2

⌋
+ 1
]
. Hence,

R`
z(λ) = λ

∞∑

T=0

(1− p)pTW
[
T,
⌊
T+`+1

2

⌋]
+ (1− λ)

∞∑

T=0

(1− p)pTW
[
T,
⌊
T−`
2

⌋
+ 1
]

denotes the ex-ante probability that either the state is 1 and the number of 1-messages

exceeds the number of 0-messages by at least ` or the state is 0 and the number of 1-

messages does not exceed the number of 0-messages by more than `− 1. If λ ∈ int
(
G`
)
,

this is exactly the ex-ante probability that the Bayesian decision maker will make a

correct choice. We therefore define ` (λ) to be the unique integer with λ ∈ G` and define

Rz (λ) = R
`(λ)
z (λ). If λ ∈ int

(
G`
)

for some ` ∈ N, then rρz (λ) = Rz (λ).

The map Rz :
[
0, 1

2

]
→ [0, 1] is continuous in the interior of G` for all ` ∈ N. We prove

that R`
z

(
g−`z
(
1
2

))
= R`+1

z

(
g−`z
(
1
2

))
for all ` ∈ N as this implies that Rz is continuous

everywhere. To this end, we first show that

g−`z
(
1
2

)
z` =

(
1− g−`z

(
1
2

))
(1− z)` for all ` ∈ N0. (27)

Indeed, this is surely true for ` = 0. Suppose (27) is true for some ` ∈ N0. Then

g−(`+1)
z

(
1
2

)
z`+1 =

g−`z
(
1
2

)
z`(1− z)z

g−`z
(
1
2

)
(1− z) +

(
1− g−`z

(
1
2

))
z

=

(
1− g−`z

(
1
2

))
(1− z)`(1− z)z

g−`z
(
1
2

)
(1− z) +

(
1− g−`z

(
1
2

))
z

=

(
1− g−`z

(
1
2

)
(1− z)

g−`z
(
1
2

)
(1− z) +

(
1− g−`z

(
1
2

))
z

)
(1− z)`+1

=
(
1− g−(`+1)

z

(
1
2

))
(1− z)`+1,
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as required. Next observe that

W
[
T,
⌊
T+`+2

2

⌋]
−W

[
T,
⌊
T+`+1

2

⌋]
=





0 if T − ` is odd,

−
(
T
T−`
2

)
z
T−`
2 (1− z)

T+`
2 if T − ` is even,

and

W
[
T,
⌊
T−`−1

2

⌋
+ 1
]
−W

[
T,
⌊
T−`
2

⌋
+ 1
]

=





0 if T − ` is odd,
(
T
T+`
2

)
z
T+`
2 (1− z)

T−`
2 if T − ` is even.

Since
(
T
T+`
2

)
=
(
T
T−`
2

)
, this implies

R`+1
z

(
g−`z
(
1
2

))
−R`

z

(
g−`z
(
1
2

))

=
∞∑

T=0

(1− p)pT1{T+` even}
(
T
T+`
2

)
z
T−`
2 (1− z)

T−`
2 ·

(
−g−`z

(
1
2

)
z` + (1− g−`z

(
1
2

)
)(1− z)`

)

= 0

by (27). Hence, Rz is continuous.
Recall that rρz (λ) = Rz(λ) for all λ ∈

(
0, 1

2

]
with λ 6= g−`z

(
1
2

)
for all ` ∈ N0. We next

show that this is also true if λ = g−`z
(
1
2

)
for some ` ∈ N0. To this end note that if the state

is 1 and the decision maker observes exactly ` more correct than incorrect messages, he
will choose either action with equal probability, and the same is true if the state is 0 and
he observes exactly ` more incorrect than correct messages. Thus, the ex-ante probability
of a correct choice is

g−`z
(
1
2

)
[ ∞∑

T=0

(1− p)pT
(
W
[
T,
⌊
T+`
2

⌋
+ 1
]

+ 1
21{T+` even}

(
T
T+`
2

)
z

T+`
2 (1− z)T−`

2

)]

+
(
1− g−`z

(
1
2

))
[ ∞∑

T=0

(1− p)pT
(
W
[
T,
⌊
T−`
2

⌋
+ 1
]

+ 1
21{T−` even}

(
T
T−`
2

)
z

T−`
2 (1− z)T+`

2

)]

= g−`z
(
1
2

)
[ ∞∑

T=0

(1− p)pT
(
W
[
T,
⌊
T+`+1

2

⌋]
− 1

21{T+` even}

(
T
T+`
2

)
z

T+`
2 (1− z)T−`

2

)]

+
(
1− g−`z

(
1
2

))
[ ∞∑

T=0

(1− p)pT
(
W
[
T,
⌊
T−`
2

⌋
+ 1
]

+ 1
21{T−` even}

(
T
T−`
2

)
z

T−`
2 (1− z)T+`

2

)]

=R`z
(
g−`z

(
1
2

))
+ 1

2

∞∑

T=0

(1− p)pT1{T+` even}

(
T
T+`
2

)
z

T−`
2 (1− z)T−`

2

(
−g−`z

(
1
2

)
z` +

(
1− g−`z

(
1
2

))
(1− z)`

)
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=R`z
(
g−`z

(
1
2

))

by (27). Hence, rρz (λ) = Rz (λ) for all λ ∈
(
0, 1

2

]
.

We next show that rρz (λ) > r
σ∗∗z
z (λ) for λ > λ∗(z). Since λ > λ∗(z) > 1− z = g−1z

(
1
2

)

it holds that ` (λ) = 1. Define for all T ∈ N0

fTz (λ) = λW
[
T,
⌊
T+2
2

⌋]
+ (1− λ)W

[
T,
⌊
T+1
2

⌋]
(28)

and note that rρz (λ) = Rz(λ) = R1
z (λ) =

∑∞
T=0(1 − p)pTfTz (λ). It is straightforward

that f 0
z (λ) = 1 − λ, f 1

z (λ) = z, and f 2
z (λ) = 2(1 − λ)(1 − z)z + z2 ≥ z. We show that

fT+1
z (λ) ≥ fTz (λ) > z for all T ≥ 3. To this end, observe first that

fTZ (λ) =




W
[
T, T+1

2

]
if T is odd,

W
[
T, T

2

]
− λ
(
T
T
2

)
z
T
2 (1− z)

T
2 if T is even.

Next, one finds that for all 1 ≤ κ ≤ T

(1− z)W [T, κ] + zW [T, κ− 1] =
T∑

k=κ

(
T

k

)
zk(1− z)T−k+1 +

T∑

k=κ−1

(
T

k

)
zk+1(1− z)T−k

=
T∑

k=κ

(
T

k

)
zk(1− z)T−k+1 +

T+1∑

k=κ

(
T

k − 1

)
zk(1− z)T−k+1

=
T∑

k=κ

(
T + 1

k

)
zk(1− z)T−k+1 +

(
T

T

)
zT+1

= W [T + 1, κ] .

Suppose first that T is even. Then

fT+1
z (λ) = W

[
T + 1, T+2

2

]

= (1− z)W
[
T, T+2

2

]
+ zW

[
T, T

2

]

= (1− z)

(
W
[
T, T

2

]
−
(
T
T
2

)
z
T
2 (1− z)

T
2

)
+ zW

[
T, T

2

]

= W
[
T, T

2

]
− (1− z)

(
T
T
2

)
z
T
2 (1− z)

T
2
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> W
[
T, T

2

]
− λ
(
T
T
2

)
z
T
2 (1− z)

T
2

= fTz (λ)

where the inequality follows from λ > 1− z. Thus, f 3
z (λ) > f 2

z (λ) = z.

Suppose next that T is odd. In this case

fT+1
z (λ) = W

[
T + 1, T+1

2

]
− λ
(
T + 1
T+1
2

)
z
T+1
2 (1− z)

T+1
2

= (1− z)W
[
T, T+1

2

]
+ zW

[
T, T−1

2

]
− λ
(
T + 1
T+1
2

)
z
T+1
2 (1− z)

T+1
2

= (1− z)W
[
T, T+1

2

]
+ z

(
W
[
T, T+1

2

]
+

(
T
T−1
2

)
z
T−1
2 (1− z)

T+1
2

)

− λ
(
T + 1
T+1
2

)
z
T+1
2 (1− z)

T+1
2

= W
[
T, T+1

2

]
+

(
T
T+1
2

)
z
T+1
2 (1− z)

T+1
2 − 2λ

(
T
T+1
2

)
z
T+1
2 (1− z)

T+1
2

= fTz (λ) + (1− 2λ)

(
T
T+1
2

)
z
T+1
2 (1− z)

T+1
2

≥ fTz (λ),

since λ ≤ 1
2
. Thus,

rρz(λ) =
∞∑

T=0

(1− p)pTfTz (λ) = (1− p)(1− λ) +
∞∑

T=1

(1− p)pTfTz (λ)

> (1− p)(1− λ) + pz = rσ
∗∗
z
z (λ),

which completes the proof for λ ∈
(
λ∗(z), 1

2

]
.

Let λ ≤ λ∗(z). We can rewrite R`
z (λ) as

R`z(λ) =

∞∑

T=0

(1− p)pTW
[
T,
⌊
T−`
2

⌋
+ 1
]
− λ

∞∑

T=0

(1− p)pT
(
W
[
T,
⌊
T−`
2

⌋
+ 1
]
−W

[
T,
⌈
T+`
2

⌉])
.

Since W [T, κ] is decreasing in κ and uniformly bounded for all T ∈ N and κ ∈ Z, this

shows that each R`
z is an affine linear and decreasing function in λ. Moreover, the absolute

value of the slope grows in `, that is, the larger `, the steeper R`
z. As R`

z

(
g−`z
(
1
2

))
=

40



R`+1
z

(
g−`z
(
1
2

))
, it follows that R`

z(λ) ≥ R`+1
z (λ) if and only if λ ≥ g−`z

(
1
2

)
. Thus, Rz(λ) =

R
`(λ)
z (λ) = max`≥1R`

z(λ). In particular R
`(λ)
z (λ) ≥ R

`(λ)+1
z (λ) > R

`(λ)+2
z (λ) ≥ R

`(λ)+n
z (λ)

for all n ≥ 2. As W [T, κ] is uniformly bounded for all T ∈ N and κ ∈ Z

lim
`→∞

R`
z(λ) =

∞∑

T=0

(1− p)pT lim
`→∞

W
[
T,
⌊
T−`
2

⌋
+ 1
]

− λ
∞∑

T=0

(1− p)pT
(

lim
`→∞

W
[
T,
⌊
T−`
2

⌋
+ 1
]
− lim

`→∞
W
[
T,
⌈
T+`
2

⌉])

= 1− λ.

Hence, R
`(λ)+n
z (λ) converges monotonically to 1−λ for n→∞, so that rρz(λ) = R

`(λ)
z (λ) >

1− λ = r
σ∗∗z
z (λ) as claimed. �

Proof of Lemma 8.1. Using the definitions, we observe that

H
[
q0· (λ)H

[
U,G0

F,σ0(λ)
(λ)
]

+ q1· (λ)H
[
U,G1

F,σ1(λ)
(λ)
]
, F
]

=

∫

Z

q0z(λ)

(∫

[0,1]

U (λ′)G0
F,σ0(λ)

(λ) (dλ′)

)
+ q1z(λ)

(∫

[0,1]

U (λ′)G1
F,σ1(λ)

(λ) (dλ′)

)
F (dz)

=

∫

Z

q0z(λ)

(∫

Z

U
(
ψλ,σ0(λ)(z

′)
)
F 0
λ (dz′)

)
+ q1z(λ)

(∫

Z

U
(
ϕλ,σ1(λ)(z

′)
)
F 1
λ (dz′)

)
F (dz)

=

∫

Z

q0z(λ)

(∫

Z

U
(
ψλ,σ0(λ)(z

′)
) q0z′(λ)∫

Z
q0z′′(λ)F (dz′′)

F (dz′)

)

+ q1z(λ)

(∫

Z

U
(
ϕλ,σ1(λ)(z

′)
) q1z′(λ)∫

Z
q1z′′(λ)F (dz′′)

F (dz′)

)
F (dz)

=

∫

Z

q0z(λ)

(∫
Z
U
(
ψλ,σ0(λ)(z

′)
)
q0z′(λ)F (dz′)∫

Z
q0z′′(λ)F (dz′′)

)
F (dz)

+

∫

Z

q1z(λ)

(∫
Z
U
(
ϕλ,σ1(λ)(z

′)
)
q1z′(λ)F (dz′)∫

Z
q1z′′(λ)F (dz′′)

)
F (dz)

=

(∫

Z

q0z(λ)F (dz)

)(∫
Z
U
(
ψλ,σ0(λ)(z

′)
)
q0z′(λ)F (dz′)∫

Z
q0z′′(λ)F (dz′′)

)

+

(∫

Z

q1z(λ)F (dz)

)(∫
Z
U
(
ϕλ,σ1(λ)(z

′)
)
q1z′(λ)F (dz′)∫

Z
q1z′′(λ)F (dz′′)

)

=

∫

Z

U
(
ψλ,σ0(λ)(z

′)
)
q0z′(λ)F (dz′) +

∫

Z

U
(
ϕλ,σ1(λ)(z

′)
)
q1z′(λ)F (dz′)
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=

∫

Z

q0z(λ)U
(
ψλ,σ0(λ)(z)

)
+ q1z(λ)U

(
ϕλ,σ1(λ)(z)

)
F (dz)

=

∫

Z

q0z(λ)

(∫

[0,1]

U (λ′)G0
δz ,σ0(λ)

(λ) (dλ′)

)
+ q1z(λ)

(∫

[0,1]

U (λ′)G1
δz ,σ1(λ)

(λ) (dλ′)

)
F (dz)

= H
[
q0· (λ)H

[
U,G0

δ·,σ0(λ)(λ)
]

+ q1· (λ)H
[
U,G1

δ·,σ1(λ)(λ)
]
, F
]
.

This is clearly equivalent to the claim. �
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