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Replication: Can Technology Solve the
Principal-Agent Problem? Evidence from

China’s War on Air Pollution

Cloé Garnache∗, Arijit Ghosh†, Garreth Gibney ‡

Abstract

Greenstone et al. examine the effect of the introduction of automatic air pollution
monitoring on the reporting of local air pollution in China. Using 654 regression dis-
continuity designs (RDDs) based on city-level variation in the day that monitoring was
automated, they find an immediate and lasting increase of 35 percent in reported PM10
concentrations post-automation. Moreover, they find that automation’s introduction
increases online searches for face masks and air filters by 200 percent and 28 percent,
respectively, using an RDD. Results are consistent when using an event study design.

First, we were able to computationally replicate the results. Second, we find that re-
sults are robust to more flexible specifications of the weather variables, to re-constructed
weather variables using the same matching procedure as the authors (i.e., closest sta-
tion) and meteorological data with additional weather stations, to alternative con-
struction of the weather variables using an inverse distance weighted approach of the
surrounding weather stations, and to more flexible choices of fixed effects (up to the
city level). Finally, we find limited evidence of discontinuity in objective measures
of ground pollution (i.e., AOD) for a sub-sample using alternative weather variables.
The estimate, however, is economically insignificant. Moreover, no discontinuity is
observed in the full sample. Therefore, we believe this result does not invalidate the
original study’s findings.

JEL codes: D82, O13, P28, Q53, Q55, Q58.
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† RWI-Leibniz Institute for Economic Research, arijit.ghosh@rwi-essen.de, Germany
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1 Introduction

Greenstone et al. examine the introduction of automatic pollution monitoring, which was

a key element of China’s “war on pollution.” Automatic pollution monitoring increases

the costs of pollution reporting manipulation by local government officials. Their analysis

exploits the exact date that automatic monitoring was implemented in 123 cities with 654

monitoring stations to run station-specific regression discontinuity (RD) designs to test for

manipulation. Because the implementation date varies across cities, they also run event-

study designs to investigate medium to long-term tests for manipulation.

The study reports two key findings. First, they find evidence of underreporting of air

pollution concentrations before automation. The RD estimates based on city-level variation

on the exact day that monitoring was automated indicate that reported PM10 concentra-

tions increased by 35 µg/m3 or 35 percent on average, immediately after monitoring was

automated. They also find an increase in the natural logarithm of reported PM10 concen-

trations post-automation of 24 percent to 32 percent when exploiting the variation in the

timing of automation across cities using difference-in-differences (DiD) designs.

The second key finding is that the introduction of automated monitoring led to an increase

in online searches for face masks and air filters by 200 percent and 28 percent, respectively,

using an RDD, and using an event study higher searches for face masks and air filters are

sustained and still evident 7-12 months after automation.

Using the authors data and code, we were able to quantitatively reproduce their key

results (computational reproducibility). Using the authors’ data, we find that results are

quantitatively robust to more flexible specifications of the weather variables (robustness

replicability). Furthermore, we find that results are qualitatively robust to more flexible

choices of fixed effects (up to the city level) in the case of pollution but estimates change

sign in the case of avoidance behavior, both for mask and air filter searches (robustness

replicability). Finally, the authors’ examine potential differences in behavioral responses

between ‘normal’ and ‘data-manipulating’ cities. We find that these results are robust to

alternative, more stringent definitions for ‘data-manipulating’ cities.

Using the same database (NOAA, 2022) as the authors’, we attempted to re-construct the
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original weather variables using the same matching procedure (i.e., closest station). We fail

to replicate the weather variables used in the original study. In spite of this issue, we are

able to quantitatively reproduce the key results using our re-constructed weather variables

(direct replicability). We contacted the original authors to request ’raw weather data’ (i.e.,

with information on weather station co-ordinates) and enquire if additional steps were used

to select weather stations. After discussion with the original authors, the possible reason for

this might be that the stations used were different in our and the original authors’ study

and/or issues with GPS coordinates, which can be inaccurate in China and could have varied

between our data and authors data for the same sites.

Using additional weather stations and implementing an alternative construction of the

weather variables using an inverse distance weighted approach of the surrounding weather

stations, we were also able to quantitatively reproduce the key results (conceptual replica-

bility). However, we find limited evidence of discontinuity, with an increase in the objec-

tive/actual level of ground pollution (i.e., AOD) for a sub-sample (Wave 2 cities). Although,

the estimate is economically insignificant. Moreover, no discontinuity is observed in the full

sample. Therefore, we believe that this result does not invalidate the findings in the original

study. Our data and code are available at DOI 10.17605/OSF.IO/M8HFR.

2 Reproducibility

We run the codes and reproduce the results in Tables 1 and 2. The structure of the table

is the same as in the original study. We find that the point estimates are identical, with

the sign, magnitude and statistical significance all being reproduced. No coding errors were

encountered.

3 Replication

We now turn our attention to our replication. We perform a direct replication of the weather

variables used in the original study. Using same matching procedures as the authors’ (i.e.,

match the pollution monitor with closest weather station) with new meteorological data with
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additional weather monitoring stations. A list of the Chinese weather stations could not be

retrieved using the link provided by authors 1. Therefore, we do not know which stations are

’new’ in our sample. We used a package called ’GSDOR’ in R to download the raw weather

data from the same archive as the authors’ (NOAA, 2022).

We test the robustness of the results to a conceptual replication using the new meteorolog-

ical data to construct an inverse distance weighted algorithm to match pollution monitoring

stations with a distance weighted average (DWA) of surrounding weather stations. Because

air pollution is very sensitive to weather, approximating the local weather prevailing at a

pollution monitoring station can be improved by using a weighted average (based on the

inverse distance) of the weather reported at nearby weather stations, rather than using the

weather at the closest weather station, which may still be very far and possibly inaccurate,

as done in the original paper. However, it is important to note that ’closest matching’ is

widely employed in economics.

We run two other robustness replications by increasing the order of the weather poly-

nomial to allow for non-linearity between weather and pollution and adding more flexible

fixed effects in the difference-in-difference analysis to account for unobservables that may be

correlated with the dependent variables.

The decision to conduct the inverse distance weighted algorithm was taken after reading

the paper but prior to observing the codes/programs, while for the three other robustness

checks and the direct replication, the decision was taken after reading the paper and after

observing the codes/programs.

3.1 Short-run changes in PM10: RD designs

For our analysis, we rely on the same RD and event study specifications comparing the

treated cities (that have adopted automation technology) to untreated cities (that have not

yet adopted). The analysis is at the city/day level for the RDD and at the city/month level

for the event study. See the original study for more details and equations.

1This is the linked provided by the authors in their supplementary material:
https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSODcountryabbv=georegionabbv
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Pict =β1I(t ≥ Autoict) + β2f(t ≥ Autoict)+ (1)

β3I(t ≥ Autoict)× f(t ≥ Autoict) + β4Wict+ αi +montht + ϵict. (2)

Weather conditions, Wict, include temperature, precipitation, relative humidity, and wind

speed.

3.1.1 Re-constructed weather variables.

We investigate whether using a reconstructed weather variable generated from meteorological

data with additional weather stations has an impact on the sign, magnitude, and statistical

significance on the estimates of PM10 and AOD in the RD model. The dependent variables

PM10 and AOD are daily station level measures of concentrations of PM10 and the total

vertical distribution of particles and gases within a grid (10x10km) according to the light

distinction coefficient, respectfully. The AOD measure can be used to objectively infer

ground level pollution. The estimating procedures employed for the RD regression are the

same as those employed by the authors. However, using the same matching procedures (i.e.,

matching the pollution monitoring station with the closest weather station) but with new

meteorological data, we attempt to re-construct the original weather variables (referred to as

’re-constructed weather variable’ here after). We fail to replicate the weather variables used

in the original study. Summary statistics of original and re-constructed weather variables are

reported in Table 1. We note that our re-constructed variable contains more observations

than the original study, approximately over 13,000 more observations. However, if we exclude

additional observations in our re-constructed variables only 1.32, 41.65, 1.9 and less than

0.001 percent of observations of temperature, precipitation, wind speed and relative humidity

are equal, respectfully. We are not certain why we failed to recreate the original weather

data using closest matching. However, the original authors suggest that this could be due to

using different weather stations and/or issues with the accuracy of GPS coordinates.

Our findings are reported in Table 2. Panel a. reports the point estimates from the

original study, and panel b. reports the point estimates using re-constructed weather vari-
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ables. The point estimates for the full sample (columns (1) and (2)) are quantitatively

similar. While the point estimates for sub-samples (columns (3), (4) and (5)) are qualita-

tively similar. We note that point estimates are slightly higher for wave 1 cities (column

(3)), approximately 1.5 percentage points, and also slightly higher for wave 2 (column (4))

and deadline cities (column (5)), including up to 3.8 percentage points for deadlines cities

(column (5)). The sign and the statistical significance are the same for all point estimates.

3.1.2 Weather variables constructed from using inverse distance weights of multiple

weather stations

We investigate whether constructing our weather variables using a distance-weighted average

algorithm to match meteorological data with pollution monitoring stations impacts the sign,

magnitude, and statistical significance of the RD model of PM10 and AOD. The estimating

procedures employed for the RD regression are the same as the authors’. However, we

employ an alternative procedure to match pollution monitors with meteorological data. We

use a distance-weighted average algorithm to match each pollution monitor with all weather

stations on a given day. The distance-weighted average is generated by the equation below:

Wd,p =

n∑
i=1

wi

di

n∑
i=1

1
di

(3)

Our findings using ‘distance weighted average’ (DWA) weather variables are reported in

Table 2, panel c. The point estimates are qualitatively similar for PM10. The point estimates

are lower for all RD models, including weather controls (columns (2)-(5)), including up to

6.1 percentage points for deadline cities (column (5)). On average, our point estimates are

4.4 percentage points lower than the original estimates.

Turning to the AOD model, notably, all point estimates, except for wave 1 cities (column

(3)) are qualitatively similar. The point estimate for wave 1 cities is positive and statistically

significant. This result suggests discontinuity in ground-level pollution, questioning if the

observed increase in PM10 is caused by automation of air pollution monitoring or potentially

a spurious increase in air pollution. Although the increase in AOD level is very small – it
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only increases by 0.076 percentage points. Thus, relative to the change in PM10, the change

in AOD may not be economically significant.

We test the robustness of our DWA findings by modifying our DWA algorithm to only

include weather stations within 500km and 100km of pollution monitors. Although the DWA

algorithm weights assigned to far away stations would be very small, these restrictions ensure

that very far away stations, which likely do not measure the prevailing weather accurately

at a given pollution station, do not have any effect on our DWA weather measure. The idea

is to provide a more accurate measure of weather at a given pollution monitor. Summary

statistics of the alternative DWA weather measures are reported in Table 1. We note large

declines in observations in DWA weather measures under those more stringent restrictions.

Our findings are reported in Table A1. Panel a. reports the findings using DWA algo-

rithm using only stations within 500km of each pollution monitor (referred to as DWA 500

hereafter), and panel b. reports the DWA algorithm using only stations within 100km of

each pollution monitor (referred to as DWA 100 hereafter).

The point estimates for AOD using DWA 500 are qualitatively similar to our initial find-

ings using DWA weather measures, with the exception of column (1). We note a small

increase in the level of statistical significance for wave 1 cities (column (3)) with estimates

now significant at the 10 percent level. The AOD point estimates for DWA 100 are qualita-

tively similar for wave 1 cities (column (3)), relative to our initial DWA findings. We note

that the statistical significance and the magnitude of the estimate for wave 1 cities (column

(3)) increase to a 99 percent level confidence level and by 0.109 percentage points. These

findings suggest a discontinuity in ground-level pollution. However, AOD point estimates

remain economically insignificant and remain statistically insignificant in the authors’ pre-

ferred specification using all cities (column (2)). Turning to the other AOD point estimates,

using DWA 500, we find that point estimates for all cities with no controls (including weather

and fixed effects) are positive and statistically significant at 90 percent confidence level. In

contrast, when using DWA 100 for wave 2 cities (column (4)), estimates are negative and

statistically significant at 95 percent confidence level, while for deadline cities estimates are

positive and statistically significant at 90 percent confidence level (column (5)). This again

suggests discontinuity, but estimates are economically insignificant.
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Turning to the PM10 RD model using more stringent DWA measures, we find that esti-

mates are in general, qualitatively similar. There are significant differences in the magnitude

of the point estimates relative to the original findings. However, it is not clear if this is

driven by data quality (i.e., more accurate measure of weather at pollution stations) or the

sample, as we find significant decreases in the number of observations when we limit distance

to weather stations (see table 1).

3.1.3 More flexible weather polynomial

We investigate whether allowing for a more flexible weather polynomial has an impact on

the sign, magnitude and statistical significance of the RD model of PM10 and AOD. For

this analysis, an observation is a city/day. The dependent variables, PM10 and AOD, are

the daily concentration of PM 10 in a given city and the monthly AOD level at a given

pollution monitor, respectively. Robust standard errors are clustered by city. Our findings

are reported in Table 3. Panel a. reports the estimates from the original study, while Panel

b. reports the estimates for the quadratic polynomial and Panel c. for the cubic polynomial.

The sample includes monitoring stations from all cities (columns (1) and (2)), only from cities

part of wave 1 or wave 2 (column (3) or (4)), and only from cities that adopt automation

at the deadline (column (5)). With the quadratic or cubic weather polynomial, we replicate

both the sign and significance of the PM 10 and AOD estimates. The point estimates are

qualitatively similar. We note that the effect on PM 10 becomes slightly lower when allowing

for more flexible polynomials, including up to 1 percentage point lower for all cities with fixed

effects (column (2)) and up to 3 percentage points lower for deadline cities with fixed effects

(column (5)).

3.2 Medium-Run Changes in Reported PM10: Difference-in-Differences

Estimates

The RD approach provides a test of the effect of automation immediately after its implemen-

tation. The authors complement the RD by examining the effect of automation on PM10 in

the medium-run using Difference-in-Differences models.
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Pict = γτ

+3∑
τ=−4

Autoicτ + βWict + αi +montht + ϵict. (4)

Weather conditions, Wict, include temperature, precipitation, relative humidity, and wind

speed. The fixed effects, αi,montht are the station FEs and the month or year-by-month

FEs.

3.2.1 Re-constructed weather variables.

We investigate whether using a reconstructed weather variable using meteorological data with

additional weather stations has an impact on the sign, magnitude, and statistical significance

of the DiD/Event Study model of PM10 and AOD. The reconstructed weather variable is

same as described in the previous section. We use the same estimating procedures as the au-

thors. Our findings are reported in Table 4. Panel a. reports the estimates from the original

study, while panel b. reports the estimates from using our re-constructed weather variable.

The point estimates are qualitatively similar. The PM10 estimates are somewhat similar to

the original estimates. They can be slightly larger or smaller across time periods, including

1.8 percentage points lower for deadline cities 5-6 months before automation adoption and

3.5 percentage points higher for deadline cities 5-6 months after automation (column (2)).

In the authors’ preferred specification with matching, our estimates are similar but tend to

be both slightly higher or similar to the original estimates (columns (3)-(5)). Four point

estimates change in terms of statistical significance, with two increasing in significance and

two decreasing.

3.2.2 Weather variables constructed from using inverse distance weights of multiple

weather stations

We investigate whether constructing our weather variables using a distance weighted average

algorithm to match meteorological data with pollution monitors impacts the sign, magnitude,

and statistical significance of the DiD/Event Study model of PM10 and AOD. The DWA

variable is the same as described in the previous section. We use the same estimating

procedures as the authors. Our findings are reported in Table 4. Panel a. reports the
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estimates from the original study, while panel c. reports the estimates from using our DWA

weather variable. The point estimates are qualitatively similar. The DWA effect on the

point estimates of PM10 operates in both directions, including 1.2 percentage points lower

for deadline cities 5-6 months before automation and 3.1 percentage points higher for deadline

cities 5-6 months after automation (column (2)). In the authors’ preferred specification with

matching, our point estimates are similar but tend to be both slightly higher or similar to

the original estimates (columns (3)-(5)). Six point estimates change in terms of statistical

significance, with four increasing in significance and two decreasing.

3.2.3 More flexible weather polynomial

We investigate whether allowing for a more flexible weather polynomial has an impact on

the sign, magnitude and statistical significance of the event study model of PM10. For

this analysis, an observation is a city/month. The dependent variable, PM10, is the daily

concentration of PM 10 in a given city. Robust standard errors are clustered by city. Our

findings are reported in Table 5. Panel a. reports the estimates from the original study,

while Panel b. reports the estimates for the quadratic polynomial and Panel c. for the cubic

polynomial. The sample includes monitoring stations from cities that adopt automation

at the deadline (columns (1) and (2)). Treatment monitors are from Wave 1 cities where

automation occurred on January 1, 2013, and control monitors are from Wave 2 cities where

automation never occurred during this two-year period. In addition, in columns (3)-(5)

each monitoring station in the Wave 1 (deadline) cities is matched to its (geographically)

nearest monitoring station in the Wave 2 (deadline) cities with replacements. With the

quadratic or cubic weather polynomial, we replicate both the sign and significance of the

PM 10 estimates. The point estimates are qualitatively similar. We note that the effect on

PM 10 becomes slightly lower when allowing for more flexible polynomials, including up to

1 percentage point lower for deadline cities in the 7-12 months before and after automation

adoption (columns (1) and (2)). In the authors’ preferred specification with matching, our

estimates are quantitatively similar to theirs (columns (3)-(5)).
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3.2.4 More flexible fixed effects

We investigate whether allowing for more flexible city controls, in the form of a city trend or

additional city fixed effects to control for unobservables at the city level that may correlate

with PM 10 has an impact on the sign, magnitude and statistical significance of the event

study model of PM10. For this analysis, an observation is a city/month. The dependent

variable, PM10, is the daily concentration of PM 10 in a given city. Robust standard errors

are clustered by city. Our findings are reported in Table 6. (Table 5, Panel a. reports the

estimates from the original study.) The sample includes monitoring stations from cities that

adopt automation at the deadline (columns (1)-(3)). Treatment monitors are from Wave 1

cities where automation occurred on January 1, 2013, and control monitors are from Wave 2

cities where automation never occurred during this two-year period. In addition, in columns

(4)-(9) each monitoring station in the Wave 1 (deadline) cities is matched to its (geograph-

ically) nearest monitoring station in the Wave 2 (deadline) cities with replacements. We

introduce yearly linear city trends (columns (1), (4), and (7)), city-by-year FEs (columns

(2), (5), and (8)), and city-by-year-by-month FEs (columns (3), (6), and (9)). Fewer esti-

mates are significant in the post period. With the exception of column (9), estimates are

significant only for the 1-2 months post automation. In column (8), estimates are not signif-

icant at the 10% level in the post period, while in column (7) estimates are significant only

at the 10% level and only for the 1-2 months post automation. Some estimates also change

sign (become positive and highly significant) in the 7-12 months before automation adoption

with city trends (columns (1) and (4)). However, overall, the results are qualitatively similar

to the author’s original results.

3.3 Behavioral Responses

The original study defines a city as a data-manipulating one if its RD estimate is positive

and statistically significant at the 5 percent level.
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3.3.1 Re-constructed weather variables.

We investigate whether using a reconstructed weather variable generated from meteorological

data with additional weather station has an impact on the sign, magnitude and statistical

significance of the RD model of face mask and air filter searches. Our findings are reported

in Table 7. Panel a reports the estimates from the original study, while panel b. reports

the estimates using our re-constructed weather variable. We find that the point estimates

are strikingly similar, with the sign, magnitude and statistical significance being remarkably

similar.

3.3.2 Weather variables constructed from using inverse distance weights of multiple

weather stations

We investigate whether constructing our weather variables using a distance weighted average

algorithm to match meteorological data with pollution monitors impacts the sign, magnitude,

and statistical significance of the RD model of face mask and air filter searches. Our findings

are reported in Table 7. Panel a reports the estimates from the original study, while panel

c. reports the estimates using our DWA weather variable. We find that the point estimates

are strikingly similar, with the sign, magnitude and statistical significance being remarkably

similar.

3.3.3 More flexible weather polynomial for the RD design

We investigate whether allowing for a more flexible weather polynomial has an impact on

the sign, magnitude and statistical significance of the RD model of face mask and air filter

searches. For this analysis, an observation is a city/month. The dependent variables are the

monthly number of face mask and air filter searches (in level or in log +1) in a given city.

Robust standard errors are clustered by city. Our findings are reported in Table 8. Panel

a. reports the estimates from the original study, while Panel b. reports the estimates for

the quadratic polynomial and Panel c. for the cubic polynomial. The sample includes all

cities (columns (1) and (2)), only normal cities (column (3)), and only manipulating cities,

defined as those with RD estimates positive and statistically significant at 5 percent level,
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(column (5)). With the quadratic or cubic weather polynomial, we replicate both the sign

and significance of the face mask and air filter searches estimates. The point estimates are

quantitatively similar.

3.3.4 Alternative definition of normal or manipulating cities

We investigate whether allowing for different definitions of “normal” or “manipulating” cities

has an impact on the sign, magnitude and statistical significance of the RD model of face

mask and air filter searches. A more stringent definition of manipulating cities leads to a

smaller (larger) sample for the manipulating (normal) cities, which may reduce the occurrence

of false positives but also reduce statistical power. For this analysis, an observation is a

city/month. The dependent variables are the monthly number of face mask and air filter

searches (in level or in log +1) in a given city. Robust standard errors are clustered by city.

Our findings are reported in Table 8, Panel d. When redefining manipulating (normal) cities

as those for which the RD estimate is (not) statistically significant at the 1 percent level –

instead of 5 percent level, we observe that the estimates become smaller and lose significance

for the manipulating cities (column (2)), while they increase in magnitude and somewhat

in significance for the normal cities (column (1)). When redefining manipulating (normal)

cities as those for which the RD estimate is greater (lower) than 2 standard deviation, the

estimates are qualitatively similar to those of the authors, although slightly higher (columns

(3)-(4)).

3.3.5 More flexible weather polynomial for the event study design

We investigate whether allowing for a more flexible weather polynomial has an impact on

the sign, magnitude and statistical significance of the event study model of face mask and air

filter searches. For this analysis, an observation is a city/month. The dependent variables

are the monthly number of face mask and air filter searches (in level) in a given city. Robust

standard errors are clustered by city. Our findings are reported in Table 9. Panel a. reports

the estimates from the original study, while Panel b. reports the estimates for the quadratic

polynomial (columns (1) and (3)) and cubic polynomial (columns (2) and (4)). The sample

includes all cities (columns (1) and (2)), only normal cities (column (3)), and only manip-
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ulating cities, defined as those with RD estimates positive and statistically significant at 5

percent level, (column (5)). With the quadratic or cubic weather polynomial, we replicate

both the sign and significance of the face mask and air filter searches estimates of columns

(2) and (4) in Panel a. (Note that columns (1) and (3) of Panel a. do not include any weather

controls.) with linear weather controls. The point estimates are quantitatively similar.

3.3.6 More flexible fixed effects

In Table 10, we report the estimates when allowing for more flexible fixed effects. (Table 9,

Panel a. reports the estimates from the original study.) In column (1), with yearly city trend,

weather controls, and month fixed effects, point estimates for mask searches are similar to

those in the original study (column (1) in Table 9, Panel a; with year-month fixed effects).

However, by including city-year FE in column (2), we note a smaller increase in online

searches for masks 1 to 2 and 3 to 4 months after policy implementation. Additionally, there

is a decrease, 5 to 6 months after the policy implementation. Turning now to filter searches

(columns (3)-(4)), we note some important differences with the original study. Specifically,

the estimates are positive and statistically significant before the policy implementation and

tend to become negative in the post-period. Using within city and year variation, the evidence

is less clear that the introduction of automatic air pollution monitoring in the reporting of

local air pollution in China caused the change in avoidance behaviours, in particular, for air

filter searchers.
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4 Conclusion

We are able to quantitatively reproduce the key results using the authors’ data and code

(computational reproducibility). Using the authors’ data, we find the results are quantita-

tively robust to more flexible specifications of the weather variables (robustness replicability).

Furthermore, the results are qualitatively robust to more flexible choices of fixed effects (up

to the city level) in the case of pollution but estimates change sign in the case of avoid-

ance behavior, both for mask and air filter searches (robustness replicability). Finally, the

authors’ examine if there are difference in behavioral responses between ’normal’ and ’data-

manipulating’ cities. We find that these results are robust to alternative definitions for

’normal’ and ’data-manipulating’ cities.

Using the same database (NOAA, 2022) as the authors, we attempted to re-construct the

original weather variables using the same matching procedure (i.e., closest station). We

fail to replicate the weather variables used in the original study. Despite this, we are able

to quantitatively reproduce the key results using our re-constructed weather variables (di-

rect replicability). The authors suggested that this could be due to using different weather

stations and/or issues with the accuracy of GPS coordinates. Moreover, using additional

weather stations and implementing an alternative construction of the weather variables us-

ing an inverse distance weighted approach of the surrounding weather stations. We were also

able to quantitatively reproduce the key results (conceptual replicability). We find limited

evidence of discontinuity, with an increase in the objective/actual level of ground pollution

(i.e., AOD) for a sub-sample (Wave 2 cities) – however, the estimate is economically insignif-

icant. Moreover, no discontinuity is observed in the full sample. Therefore, we believe that

this result does not invalidate the findings in the original study.
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Tables

Table 1 Summary Statistics of Weather Variables

(1) (2) (3) (4)
VARIABLES Observations Mean (SD) Min Max

Temperature
Original 1,420,074 15.2(10.99) -29.54 37.41
Nearest Weather Station 1,433,568 13.06(12.09) -43.9 40.4
Distance Weighted Average 1,433,568 12.64(9.28) -15.22 31.03

Within 500km 890,212 13.35(11.27) -43.9 40.40
Within 100km 109,490 12.77(12.74) -34.5 36.9

Rain
Original 1,420,074 3.4(10.5) 0 290
Nearest Weather Station 1,433,568 2.72(9.52) 0 455.42
Distance Weighted Average 1,433,568 2.63(2.25) 0 93.36

Within 500km 890,212 2.73(8.4) 0 440.9
Within 100km 109,490 2.56(9.24) 0 440.9

Wind Speed
Original 1,420,074 2.59(1.40) 0 25.14
Nearest Weather Station 1,433,568 2.46(1.43) 0 25.2
Distance Weighted Average 1,433,568 2.52(0.35) 0.85 6.2

Within 500km 890,212 2.44(1.27) 0 22.1
Within 100km 109,490 2.66(1.48) 0 22.1

Relative Humidity
Original 1,420,074 65.48(18.91) 4.98 110.72
Nearest Weather Station 1,433,568 61.94(20.49) 2.3 25.2
Distance Weighted Average 1,433,568 61.88(6.95) 25 91.69

Within 500km 890,212 62.67(17.45) 0 100
Within 100km 109,490 60.28(19.35) 0 100
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Table 2 (Referring to Table 1 in the original paper) Automating Air Quality Monitoring System
and Reported PM10: Direct and Conceptual Replication

(1) (2) (3) (4) (5)
Panel A. RD estimates

Panel a. Original - Linear weather variables
RD in PM10 (daily) 34.7*** 34.9*** 27.5*** 64.7*** 57.1***

(10.7) (5.8) (9.8) (9.9) (8.6)
RD in AOD 0.065 -0.005 0.026 -0.030 -0.003

(0.044) (0.021) (0.031) (0.029) (0.025)

Obs.(Daily) 91470 232326 81950 68456 86042
Bandwidth (Days) 109 263 140 234 184
Obs.(Monthly) 5057 5851 3173 2316 4894
Bandwidth (Months) 6 7 7 6 10

Panel b. Conceptual Replication - Nearest Weather Station
RD in PM10 (daily) 34.8*** 34.7*** 29.1*** 67.4*** 60.9***

(10.7) (5.8) (9.4) (10.8) (7.9)
RD in AOD 0.065 0.003 0.047 -0.028 0.027

(0.044) (0.023) (0.035) (0.030) (0.031)

Obs.(Daily) 91474 227739 84891 57412 89997
Bandwidth (Days) 109 258 145 202 191
Obs.(Monthly) 5057 5851 4075 1932 3802
Bandwidth (Months) 6 7 9 5 8
Panel c. Robustness Replication - Distance Weighted Average (DWA)

RD in PM10 (daily) 34.8*** 30.9*** 25.6*** 59.0*** 51.0***
(10.7) (6.1) (9.1) (10.0) (7.8)

RD in AOD 0.065 0.022 0.076** -0.042 0.043
(0.044) (0.023) (0.038) (0.027) (0.029)

Obs.(Daily) 91474 182274 100043 69206 97073
Bandwidth (Days) 109 209 171 236 204
Obs.(Monthly) 5057 6626 3594 2678 4385
Bandwidth (Months) 6 8 8 7 9

Sample All All Wave 1 Wave 2 Deadline
Station FE Y Y Y Y
Month FE Y Y Y Y
Weather Controls Y Y Y Y

Note: * p<0.10, ** p<0.05, *** p<0.01.
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Table 3 (Referring to Table 1 in the original paper) Automating Air Quality Monitoring System
and Reported PM10: More flexible weather polynomials

(1) (2) (3) (4) (5)
Panel A. RD estimates

Panel a. Original - Linear weather variables
RD in PM10 (daily) 34.7*** 34.9*** 27.5*** 64.7*** 57.1***

(10.7) (5.8) (9.8) (9.9) (8.6)
RD in AOD 0.065 -0.005 0.026 -0.030 -0.003

(0.044) (0.021) (0.031) (0.029) (0.025)

Obs.(Daily) 91470 232326 81950 68456 86042
Bandwidth (Days) 109 263 140 234 184
Obs.(Monthly) 5057 5851 3173 2316 4894
Bandwidth (Months) 6 7 7 6 10

Panel b. Quadratic weather variables
RD in PM10 (daily) 34.2*** 26.2*** 61.5*** 54.5***

(6.0) (9.7) (9.7) (8.5)
RD in AOD -0.004 0.031 -0.033 -0.005

(0.021) (0.031) (0.028) (0.026)

Obs.(Daily) 211764 82524 71696 87773
Bandwidth (Days) 241 141 244 187
Obs.(Monthly) 5851 3594 2316 4385
Bandwidth (Months) 7 8 6 9

Panel c. Cubic weather variables
RD in PM10 (daily) 33.7*** 25.9*** 61.3*** 54.0***

(6.2) (9.7) (9.8) (8.5)
RD in AOD -0.002 0.027 -0.029 -0.001

(0.020) (0.030) (0.028) (0.026)

Obs.(Daily) 195154 83064 72245 87192
Bandwidth (Days) 223 142 246 186
Obs.(Monthly) 6626 4075 2316 4385
Bandwidth (Months) 8 9 6 9

Sample All All Wave 1 Wave 2 Deadline
Station FE Y Y Y Y
Month FE Y Y Y Y
Weather Controls Y Y Y Y

Note: * p<0.10, ** p<0.05, *** p<0.01.
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Table 4 (Referring to Table 1 in the original paper) Automating Air Quality Monitoring
System and Reported PM10: Direct and Conceptual Replication

(1) (2) (3) (4) (5)
PM10 PM10 PM10 PM10 log(PM10)

Panel a. Original - Linear weather variables
treat m712 before2 -8.5* -17.2** -10.7 -10.8 -0.13*

(4.7) (6.7) (7.7) (9.7) (0.07)
treat m56 before2 6.8 -19.2** 10.5 -2.2 0.02

(6.0) (9.3) (8.5) (12.1) (0.11)
treat m34 before2 -6.4 -12.0* -2.8 -5.2 -0.03

(5.6) (6.9) (7.3) (9.2) (0.09)
treat m12 after2 60.3*** 31.4*** 66.5*** 45.6*** 0.24***

(11.0) (11.1) (14.3) (16.3) (0.09)
treat m34 after2 45.0*** 33.6*** 47.2*** 32.5** 0.32**

(7.8) (8.8) (10.7) (14.2) (0.12)
treat m56 after2 28.1*** 22.2*** 33.4*** 29.0** 0.29**

(6.7) (8.0) (9.7) (13.7) (0.12)
treat m712 after2 40.0*** 9.8 42.9*** 15.8 0.24*

(6.1) (8.8) (7.7) (14.0) (0.15)
Constant 72.3*** 84.6*** 61.5*** 68.9*** 4.19***

(11.6) (11.4) (15.5) (15.5) (0.14)
Observations 176,426 176,426 186,499 186,499 186,469

Panel b. Nearest Weather Station
treat m712 before2 -7.9 -18.9*** -10.3 -12.0 -0.14*

(4.8) (6.3) (8.0) (9.1) (0.07)
treat m56 before2 8.3 -21.0** 9.2 -4.3 -0.00

(5.7) (7.9) (7.5) (9.4) (0.08)
treat m34 before2 -6.3 -14.4** -3.8 -7.7 -0.06

(5.6) (6.3) (6.6) (7.7) (0.08)
treat m12 after2 64.1*** 32.9*** 69.4*** 46.0*** 0.25***

(10.8) (11.1) (14.6) (16.5) (0.09)
treat m34 after2 44.9*** 31.5*** 46.4*** 31.7** 0.32**

(7.6) (8.5) (10.9) (14.3) (0.13)
treat m56 after2 26.3*** 18.7** 30.7*** 25.8** 0.26**

(6.6) (7.7) (9.2) (12.0) (0.11)
treat m712 after2 41.2*** 5.9 44.2*** 10.4 0.19

(5.7) (7.3) (7.3) (11.5) (0.13)
Constant 81.9*** 95.3*** 80.4*** 88.6*** 4.28***

(6.9) (7.4) (7.4) (8.5) (0.07)
Observations 176,428 176,428 186,533 186,533 186,503

Panel c. DWA Weather Variables
treat m712 before2 -11.6** -18.4*** -12.3 -11.5 -0.13*

(4.8) (6.4) (7.8) (9.2) (0.07)
treat m56 before2 1.9 -20.4** 4.9 -3.6 0.01

(5.6) (8.0) (7.3) (9.6) (0.08)
treat m34 before2 -11.9** -13.6** -8.1 -7.5 -0.05

(5.5) (6.2) (6.6) (7.9) (0.08)
treat m12 after2 56.3*** 32.3*** 62.6*** 45.3*** 0.24***

(10.4) (11.1) (14.1) (16.5) (0.09)
treat m34 after2 40.0*** 31.6*** 43.3*** 32.8** 0.33**

(7.6) (8.5) (10.9) (14.6) (0.13)
treat m56 after2 27.9*** 19.1** 34.0*** 27.1** 0.28**

(6.8) (7.8) (9.5) (12.7) (0.11)
treat m712 after2 38.5*** 7.0 42.3*** 11.7 0.21

(5.9) (7.4) (7.6) (12.3) (0.14)
Constant 129.5*** 127.3*** 118.4*** 115.6*** 4.58***

(16.9) (17.1) (22.0) (20.3) (0.21)
Observations 176,428 176,428 186,533 186,533 186,503
Sample Deadline Deadline +Matching +Matching +Matching
Weather Controls Y Y Y Y Y
Station FE Y Y Y Y Y
Month FE Y Y
Year-Month FE Y Y Y

Note: * p<0.10, ** p<0.05, *** p<0.01.
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Table 5 (Referring to Table 1 in the original paper) Automating Air Quality Monitoring System
and Reported PM10: More flexible weather polynomials

(1) (2) (3) (4) (5)
PM10 PM10 PM10 PM10 log(PM10)

Panel B. Event-study estimates
Panel a. Original - Linear weather variables

treat m712 before2 -8.5* -17.2** -10.7 -10.8 -0.13*
(4.7) (6.7) (7.7) (9.7) (0.07)

treat m56 before2 6.8 -19.2** 10.5 -2.2 0.02
(6.0) (9.3) (8.5) (12.1) (0.11)

treat m34 before2 -6.4 -12.0* -2.8 -5.2 -0.03
(5.6) (6.9) (7.3) (9.2) (0.09)

treat m12 after2 60.3*** 31.4*** 66.5*** 45.6*** 0.24***
(11.0) (11.1) (14.3) (16.3) (0.09)

treat m34 after2 45.0*** 33.6*** 47.2*** 32.5** 0.32**
(7.8) (8.8) (10.7) (14.2) (0.12)

treat m56 after2 28.1*** 22.2*** 33.4*** 29.0** 0.29**
(6.7) (8.0) (9.7) (13.7) (0.12)

treat m712 after2 40.0*** 9.8 42.9*** 15.8 0.24*
(6.1) (8.8) (7.7) (14.0) (0.15)

R-squared 0.3 0.4 0.3 0.3 0.38
Panel b. Quadratic weather variables

treat m712 before2 -8.7* -18.0** -9.9 -10.4 -0.13*
(4.5) (6.8) (7.5) (9.4) (0.07)

treat m56 before2 6.0 -20.2** 9.8 -3.3 0.00
(5.8) (9.3) (7.8) (11.5) (0.10)

treat m34 before2 -6.8 -13.3* -3.2 -5.4 -0.04
(5.5) (6.8) (6.9) (8.6) (0.09)

treat m12 after2 59.8*** 32.8*** 65.2*** 45.4*** 0.24***
(11.0) (11.1) (14.5) (16.3) (0.09)

treat m34 after2 43.9*** 32.4*** 47.8*** 33.5** 0.33***
(8.2) (9.0) (11.1) (14.3) (0.12)

treat m56 after2 27.0*** 21.0** 32.7*** 29.1** 0.29**
(7.0) (8.2) (9.8) (13.0) (0.11)

treat m712 after2 39.0*** 10.9 41.8*** 16.1 0.25*
(6.1) (8.7) (7.5) (12.8) (0.14)

R-squared 0.4 0.4 0.3 0.4 0.40
Panel c. Cubic weather variables

treat m712 before2 -9.1** -18.3*** -10.3 -10.7 -0.13*
(4.5) (6.9) (7.6) (9.4) (0.07)

treat m56 before2 5.3 -20.4** 9.6 -3.2 0.00
(5.7) (9.3) (7.8) (11.5) (0.10)

treat m34 before2 -7.0 -13.1* -3.3 -5.4 -0.04
(5.4) (6.7) (6.9) (8.6) (0.09)

treat m12 after2 59.4*** 32.6*** 64.8*** 45.5*** 0.24**
(11.2) (11.0) (14.6) (16.3) (0.09)

treat m34 after2 43.5*** 32.0*** 47.3*** 33.0** 0.32***
(8.4) (9.3) (11.2) (14.3) (0.12)

treat m56 after2 26.9*** 20.9** 32.5*** 29.5** 0.29**
(7.1) (8.2) (9.8) (13.2) (0.11)

treat m712 after2 38.9*** 11.5 41.8*** 16.7 0.26*
(6.1) (8.5) (7.4) (12.8) (0.14)

R-squared 0.4 0.4 0.3 0.4 0.41
Observations 176,426 176,426 186,499 186,499 186,469
Sample Deadline Deadline +Matching +Matching +Matching
Weather Controls Y Y Y Y Y
Station FE Y Y Y Y Y
Month FE Y Y
Year-Month FE Y Y Y

Note: * p<0.10, ** p<0.05, *** p<0.01.
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Table 7 (Referring to Table 2 in the original paper) Automating Air Quality Monitoring System
and Avoidance Behaviors: Direct and Conceptual Replication

(1) (2) (3) (4)
Panel A. RD estimates

Panel a. Original - Linear weather variables
RD in face mask searches 10.10*** 11.03*** 6.46*** 18.77***
(preautomation mean = 0.62) (1.58) (1.66) (2.03) (2.63)
RD in air filter searches 7.36** 8.73*** 5.16** 16.30***
(preautomation mean = 35.5) (3.60) (1.86) (2.50) (2.39)
RD in log (face mask searches + 1) 1.06*** 1.15*** 0.90*** 1.72***
(preautomation mean = 0.16) (0.17) (0.17) (0.21) (0.25)
RD in log (air filter searches + 1) 0.18* 0.16*** 0.12** 0.25***
(preautomation mean = 3.30) (0.10) (0.04) (0.05) (0.06)

Panel b. Nearest Weather Station
RD in face mask searches 10.22*** 11.21*** 6.66*** 18.90***

(1.57) (1.64) (2.00) (2.59)
RD in air filter searches 7.52** 8.83*** 5.24** 16.07***

(3.63) (1.85) (2.48) (2.28)
RD in log (face mask searches + 1) 1.07*** 1.16*** 0.91*** 1.77***

(0.17) (0.17) (0.20) (0.24)
RD in log (air filter searches + 1) 0.18* 0.16*** 0.12** 0.25***

(0.10) (0.04) (0.05) (0.06)
Panel c. Distance Weighted Average Weather Variables

RD in face mask searches 10.22*** 10.87*** 6.31*** 18.30***
(1.57) (1.67) (1.99) (2.75)

RD in air filter searches 7.52** 8.12*** 4.47* 14.80***
(3.63) (1.82) (2.41) (2.24)

RD in log (face mask searches + 1) 1.07*** 1.04*** 0.80*** 1.65***
(0.17) (0.17) (0.20) (0.24)

RD in log (air filter searches + 1) 0.18* 0.14*** 0.09** 0.23***
(0.10) (0.04) (0.04) (0.05)

Sample All All Normal Manipulate
City FE Y Y Y
Month FE Y Y Y
Weather Controls Y Y Y

Note: * p<0.10, ** p<0.05, *** p<0.01.
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Table 8 (Referring to Table 2 in the original paper) Automating Air Quality Monitoring System
and Avoidance Behaviors: More flexible weather polynomials and alternative definition for normal
and manipulating cities

(1) (2) (3) (4)
Panel A. RD estimates

Panel a. Original - Linear weather variables
RD in face mask searches 10.10*** 11.03*** 6.46*** 18.77***
(preautomation mean = 0.62) (1.58) (1.66) (2.03) (2.63)
RD in air filter searches 7.36** 8.73*** 5.16** 16.30***
(preautomation mean = 35.5) (3.60) (1.86) (2.50) (2.39)
RD in log (face mask searches + 1) 1.06*** 1.15*** 0.90*** 1.72***
(preautomation mean = 0.16) (0.17) (0.17) (0.21) (0.25)
RD in log (air filter searches + 1) 0.18* 0.16*** 0.12** 0.25***
(preautomation mean = 3.30) (0.10) (0.04) (0.05) (0.06)

Panel b. Quadratic weather variables
RD in face mask searches 7.93*** 10.98*** 6.28*** 18.91***

(1.22) (1.67) (2.04) (2.63)
RD in air filter searches 6.94* 8.72*** 5.17** 16.30***

(3.55) (1.86) (2.51) (2.41)
RD in log (face mask searches + 1) 1.26*** 1.15*** 0.90*** 1.73***

(0.15) (0.18) (0.21) (0.25)
RD in log (air filter searches + 1) 0.20** 0.16*** 0.12** 0.25***

(0.09) (0.04) (0.05) (0.06)
Panel c. Cubic weather variables

RD in face mask searches 7.93*** 10.98*** 6.29*** 18.92***
(1.22) (1.67) (2.04) (2.63)

RD in air filter searches 6.94* 8.64*** 5.19** 16.20***
(3.55) (1.85) (2.50) (2.43)

RD in log (face mask searches + 1) 1.26*** 1.16*** 0.91*** 1.73***
(0.15) (0.17) (0.21) (0.25)

RD in log (air filter searches + 1) 0.20** 0.16*** 0.12** 0.24***
(0.09) (0.04) (0.05) (0.06)

Sample All All Normal Manipulate
City FE Y Y Y
Month FE Y Y Y
Weather Controls Y Y Y

Panel d. Different cutoff for normal and manipulating cities
RD in face mask searches 12.24*** 0.27 9.50*** 32.70***

(1.83) (1.72) (1.67) (6.89)
RD in air filter searches 9.17*** 4.65* 7.64*** 23.90***

(2.01) (2.45) (1.90) (4.93)
RD in log (face mask searches + 1) 1.29*** -0.36 1.04*** 2.97***

(0.19) (0.37) (0.18) (0.40)
RD in log (air filter searches + 1) 0.18*** -0.08 0.13*** 0.53***

(0.04) (0.10) (0.04) (0.12)

Sample Normal 1% Manipulate 1% Normal 2*SD Manipulate 2*SD
City FE Y Y Y Y
Month FE Y Y Y Y
Weather Controls Y Y Y Y

Note: * p<0.10, ** p<0.05, *** p<0.01.
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Table 9 (Referring to Table 2 in the original paper) Automating Air Quality Monitoring System
and Avoidance Behaviors: More flexible weather polynomials

(1) (2) (3) (4)
Panel B. DiD estimates

Mask searches Mask searches Filter searches Filter searches
Panel a. Original - Linear weather variables

treat m712 before2 -0 -0.0471 -0.152 -0.136
(0.0) (0.615) (0.908) (0.917)

treat m56 before2 -0 0.121 0.622 0.861
(0.0) (0.539) (0.593) (0.485)

treat m34 before2 -0 0.166 0.910 1.160
(0.0) (0.143) (0.419) (0.317)

treat m12 after2 18.60 18.52*** 2.870 2.803
( (3.80e-09) (0.135) (0.138)

treat m34 after2 17.39 17.31*** 6.111*** 6.097***
(5.97e-08) (0.00103) (0.00100)

treat m56 after2 5.425 5.370*** 2.477 2.580
(1.56e-05) (0.136) (0.119)

treat m712 after2 14.45 14.62*** 6.000*** 6.216***
(1.56e-08) (0.000820) (0.000647)

Observations 51,901 51,900 51,170 51,169
R-squared 0.32 0.32 0.53 0.53
City FE Y Y Y Y
Year-Month FE Y Y Y Y
Weather Controls Y Y

Panel b. Quadratic or Cubic weather variables
treat m712 before2 -0.04 -0.05 -0.17 -0.19

(0.10) (0.12) (1.29) (1.29)
treat m56 before2 0.15 0.10 0.81 0.78

(0.25) (0.27) (1.16) (1.16)
treat m34 before2 0.31 0.28 0.92 0.88

(0.19) (0.22) (1.12) (1.13)
treat m12 after2 18.45*** 18.42*** 2.94 2.93

(2.75) (2.75) (1.86) (1.85)
treat m34 after2 17.35*** 17.37*** 6.07*** 6.05***

(2.86) (2.87) (1.73) (1.72)
treat m56 after2 5.42*** 5.39*** 2.52 2.45

(1.18) (1.19) (1.58) (1.57)
treat m712 after2 14.64*** 14.63*** 6.15*** 6.12***

(2.30) (2.30) (1.69) (1.69)

Observations 51,900 51,900 51,169 51,169
R-squared 0.32 0.32 0.53 0.53
City FE Y Y Y Y
Year-Month FE Y Y Y Y
Quadratic Weather Controls Y Y
Cubic Weather Controls Y Y
Sample Deadline Deadline Deadline Deadline

Note: * p<0.10, ** p<0.05, *** p<0.01.
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Table 10 (Referring to Table 2 in the original paper) Automating Air Quality Monitoring System
and Avoidance Behaviors: More flexible trends and fixed effects

(1) (2) (3) (4)
Panel B. DiD estimates

Mask searches Mask searches Filter searches Filter searches
Different FEs and trend

treat m712 before2 0.51 6.73*** 24.10*** 7.55***
(0.39) (1.12) (2.67) (1.26)

treat m56 before2 7.79*** 13.27*** 17.83*** 12.26***
(1.66) (2.01) (1.51) (1.44)

treat m34 before2 2.84*** 8.13*** 10.87*** 8.10***
(1.02) (1.23) (1.28) (1.22)

treat m12 after2 22.33*** 6.69*** 5.54*** -0.24
(2.83) (1.05) (1.68) (1.16)

treat m34 after2 18.37*** 2.68** 1.41 -1.30
(3.03) (1.21) (1.70) (1.17)

treat m56 after2 5.01*** -10.79*** -10.25*** -9.99***
(1.59) (1.39) (1.67) (1.06)

treat m712 after2 17.10*** -10.97***
(2.79) (2.55)

Constant -4.89*** 0.92 14.30*** 34.43***
(0.82) (0.99) (3.23) (1.10)

Sample Deadline Deadline Deadline Deadline
Month FE Y Y Y Y
Yearly city trend Y Y
City-Year FE Y Y
Weather Controls Y Y Y Y
Observations 51,900 51,900 51,169 51,169
R-squared 0.35 0.37 0.49 0.53

Note: * p<0.10, ** p<0.05, *** p<0.01.
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Appendix

This section reports auxiliary results.

Table A1 (Referring to Table 1 in the original paper) Automating Air Quality Monitoring System
and Reported PM10: Distance weighted average Variables with distance limits

(1) (2) (3) (4) (5)
Panel A. RD estimates

Panel a. DWA - Limited to weather stations within 500km.
RD in PM10 (daily) 37.1*** 29.7*** 31.6*** 74.2*** 57.7***

(11.7) (4.9) (9.2) (10.6) (8.1)
RD in AOD 0.101* 0.012 0.072* -0.058 0.034

(0.052) (0.026) (0.040) (0.036) (0.033)

Obs.(Daily) 69556 206568 62906 26447 59773
Bandwidth (Days) 133 366 174 160 189
Obs.(Monthly) 3133 4099 2234 1432 2243
Bandwidth (Months) 6 8 8 6 7

Panel b. DWA - Limited to weather stations within 100km
RD in PM10 (daily) 52.6*** 49.3*** 47.1*** 36.9 47.8***

(14.8) (8.0) (9.2) (23.0) (8.1)
RD in AOD 0.117 0.032 0.185*** -0.110** 0.119*

(0.104) (0.057) (0.067) (0.054) (0.065)

Obs.(Daily) 12296 15008 6692 10580 17919
Bandwidth (Days) 197 234 167 398 350
Obs.(Monthly) 712 643 326 283 405
Bandwidth (Months) 10 9 9 8 8

Sample All All Wave 1 Wave 2 Deadline
Station FE Y Y Y Y
Month FE Y Y Y Y
Weather Controls Y Y Y Y

Note: * p<0.10, ** p<0.05, *** p<0.01.
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