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TDSRL: Time Series Dual Self-Supervised
Representation Learning for Anomaly Detection

from Different Perspectives
Yongsheng Dai, Hui Wang, Member, IEEE, Karen Rafferty, Member, IEEE,

Ivor Spence, Member, IEEE, Barry Quinn, Member, IEEE

Abstract—Time series anomaly detection plays a critical role
in various applications, from finance to industrial monitoring.
Effective models need to capture both the inherent charac-
teristics of time series data and the unique patterns associ-
ated with anomalies. While traditional forecasting-based and
reconstruction-based approaches have been successful, they tend
to struggle with complex and evolving anomalies. For instance,
stock market data exhibits complex and ever-changing fluctuation
patterns that defy straightforward modelling. In this paper, we
propose a novel approach called TDSRL (Time Series Dual
Self-Supervised Representation Learning) for robust anomaly
detection. TDSRL leverages synthetic anomaly segments which
are artificially generated to simulate real-world anomalies. The
key innovation lies in dual self-supervised pretext tasks: one task
characterises anomalies in relation to the entire time series, while
the other focuses on local anomaly boundaries. Additionally, we
introduce a data degradation method that operates in both the
time and frequency domains, creating a more natural simulation
of real-world anomalies compared to purely synthetic data.
Consequently, TDSRL is expected to achieve more accurate
predictions of the location and extent of anomalous segments.
Our experiments demonstrate that TDSRL outperforms state-
of-the-art methods, making it a promising avenue for time series
anomaly detection.

Index Terms—Time series anomaly detection, self-supervised
representation learning, contrastive learning, synthetic anomaly

I. INTRODUCTION

W ITH advancements in computational processes and
sensor technology, time series data have become in-

creasingly important in diverse applications such as IoT sys-
tems, clinical diagnosis, traffic analysis, financial supervision
and climate science [1]–[4]. In analysing time series data,
anomalies, or unusual patterns, have attracted significant at-
tention from researchers due to their potential to indicate
exceptional situations or events within a system, often with
implications for safety or stakeholders’ interests. Therefore,
there is a growing demand for accurate time series anomaly
detection.

Modern time series anomaly detection methods need to
learn a representation model that allows effective encoding of
the time series feature and identification of the unique pattern
of anomalies. However, there is a fundamental challenge: the
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scarcity of anomalous data and the imbalance between normal
and anomalous samples [5]. Anomalies are rare and may be
obscured by normal data points, making data labelling difficult
and expensive [6]. To address this challenge, unsupervised
[7] or self-supervised [8] learning strategies have been widely
adopted, as they do not require labelled data for training.

Unsupervised models, while flexible, have a number of
limitations. Firstly, they often encounter subjective and
environment-dependency problems. This is because we usually
need to set various hyper parameters for such models, whose
optimal values must be determined according to subjective
experience and specific application contexts [9]. Secondly, the
evaluation of unsupervised anomaly detection models may be
a challenge for researchers [5]. Thirdly, and most critically,
detecting anomalies from temporal contexts accurately with-
out supervision remains a formidable task [6]. In particular,
anomalies can exhibit unexpected behaviour and be related to
multiple variables, making it difficult for unsupervised models
to identify anomaly patterns based on the distribution of the
data itself.

In contrast, self-supervised learning methods leverage pre-
text tasks to provide supervisory signals during training, lead-
ing to more robust anomaly detection models. However, con-
structing a self-supervised model places additional demands,
including the need to design appropriate pseudo labels and
pretext tasks [9], which can provide invaluable supervisory
signals during the representation learning for unlabelled time
series data, significantly improving model performance.

In this paper, we present a novel approach, the Time Series
Dual Self-Supervised Representation Learning (TDSRL) net-
work, for robust time series anomaly detection. TDSRL lever-
ages dual self-supervised pretext tasks to model anomalies
from both global and local perspectives. One task characterizes
anomalies in relation to the entire time series, while the
other focuses on local anomaly boundaries. Additionally, we
propose a data degradation method that operates in both the
time and frequency domains to generate synthetic anomalies,
enhancing the model’s ability to generalize across different
anomaly types. Our proposed approach is concise and not
dependent on any specific scenario. Thus, it offers a general
paradigm for self-supervised time series representation mod-
elling for anomaly detection tasks.

More specifically, we follow the idea of accomplishing
self-supervised representation modelling based on synthetic
anomalies [10], but we further extend and improve it. We first
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introduce a data degradation method based on both time and
frequency domains for anomaly synthesis, promoting a more
natural simulation of real-world anomalies. The generation of
synthetic anomalies can be achieved by adding a degradation
or perturbation to the original time series. For this process,
paper [10] and most previous work on time series anomaly
detection focused only on the time domain. However, the
frequency domain can provide insight into the behaviour of
time series that cannot be captured solely in the time domain
[1]. We believe that real-world time series anomalies should
have significant changes in both time and frequency domains
compared to normal intervals. We then transferred this concept
to synthetic anomalies which serve as a foundation of creating
pseudo labels and pretext tasks for self-supervised representa-
tion learning.

For pseudo labels, TDSRL employs a novel generation
strategy based on equal-length segments of time series in a
local domain. These new pseudo labels are positive-negative
sample pairs composed of abnormal segments and adjacent
normal segments. For the pretext task, TDSRL introduces
a contrastive representation learning branch based on above
pseudo labels. In the embedding space produced by TDSRL,
this contrastive branch is aimed to enlarge the differences
between the representation results of anomalous intervals and
those of the segments before and after them. This contributes
to the network having a higher discrimination ability between
anomaly and normal within a local region in the downstream
detection module. As a result, the network becomes more
sensitive to both the start and end of anomalies, making it
possible to detect the occurrence of anomalies in a more
timely manner or even in advance. The overall success rate
of anomaly detection will naturally increase accordingly.

In addition, the pretext task proposed in [10] primarily
focuses on the relationship between anomalous segments and
the entire time series on a global scale. We apply our synthetic
anomalies to above 2 pretext tasks. Eventually, we are able to
build an anomaly detection network with two self-supervised
learning branches, which can simultaneously perform repre-
sentation modelling for time series from both global and local
perspectives.

The main contributions of this paper are threefold:

1) We introduce a data degradation approach based on
both time and frequency domains to generate synthetic
anomaly for self-supervised learning, enabling more nat-
ural simulation of real-world anomalies and enhancing
model generalisation across different anomalies.

2) We propose a novel contrastive pretext task based on
local sub-segments, improving the model’s discrimina-
tion between anomaly and adjacent normal intervals,
resulting in more accurate predictions of the location
and extent of anomalous segments.

3) We introduce a self-supervised time series anomaly
detection network with dual representation learning
branches, capable of characterizing anomalies globally
and enhancing sensitivity to local anomaly boundaries.
When anomalies occur, our network can detect them

more promptly or even in advance.

These contributions advance the state-of-the-art in time
series anomaly detection and offer a promising avenue for
future research in this field.

II. RELATED WORK

A. Approaches for Time Series Anomaly Detection with Deep
Learning Networks

Time series anomaly detection is a focal point in the field
of big data research, with Deep Learning (DL) emerging as
a powerful and popular technology for this task [11], [12]. In
constructing DL anomaly detection networks for time series
data, two main approaches have been explored: Forecasting-
based and Reconstruction-based methods [5].

Forecasting-based approaches aim to learn a predictive
model to fit the given time series data and predict future
values. Anomalies are identified if the difference between the
predicted and original inputs exceed a certain threshold [13].
On the other hand, Reconstruction-based models encode sub-
sequences of normal training data in latent spaces and detect
anomalies by reconstructing sliding windows from test data
and comparing them to actual values, known as reconstruction
error [14], [15].

In real-world scenarios, time series data may change
rapidly or be unknown at any given moment. In such cases,
Reconstruction-based networks may be more effective than
Forecasting-based ones. However, both approaches rely on
the assumption that the unlabelled training set contains no
anomalies, which may not hold true for all anomaly detection
scenarios.

The TDSRL approach, introduced in this paper, addresses
these limitations by leveraging dual self-supervised represen-
tation learning of time series based on synthesized abnormal
segments. This approach fully explores the relationship be-
tween anomaly intervals and other data points, as well as the
unique characteristics of anomalies, without being constrained
by specific scenarios, thus offering good generalizability.

B. Learning Schemes

Training deep learning networks for anomaly detection
involves four learning schemes: supervised, semi-supervised,
unsupervised, and self-supervised, depending on the availabil-
ity of annotations during training.

Supervised methods aim to learn class boundaries based on
all labels in the training set but are not applicable to time series
anomaly detection due to the unknown or improperly labeled
nature of anomalies [6]. Semi-supervised methods train models
based on a context where the dataset consists only of normal
points, detecting deviations from this distribution as anomalies.
However, these methods have limitations, as discussed earlier.

Unsupervised learning is flexible but faces challenges in
accurately detecting anomalies without supervision and may
suffer from subject and environment-dependency and evalua-
tion difficulties [5], [9], [10].

Self-supervised learning, like unsupervised learning, does
not rely on original annotations and tends to have more
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Fig. 1. The overall architecture of the proposed TDSRL. It mainly consists of 2 self-supervised representation learning branches. They have their own Pseudo
Labels (1&2) and Pretext Tasks (1&2) derived from an Anomaly Synthesis module that considers both the time and frequency domains. The red and green lines
represent the two representation learning processes. They jointly improve the performance of the Representation Encoder from a global and local perspective,
which ultimately allows the detection head to detect anomalies in a more sensitive and timely manner.

stable performance. However, it requires designing appropriate
pseudo labels and pretext tasks [16]. In this paper, we create
these components based on synthetic anomaly segments for
our dual self-supervised representation learning.

C. Contrastive Learning for Time Series
Contrastive learning is a widely used self-supervised learn-

ing strategy. The goal is to learn an encoder that maps
inputs into an embedding space in which similar data samples
(positive) are close to each other while dissimilar (negative)
ones are far apart. It can help the network to distinguish
any instance from the others more sensitively and accurately.
Contrast learning was initially investigated mainly in computer
vision tasks [17]. But it is also increasingly being applied
to various time series problems. For instance, to enhance
model generalization capacity to the target data in time se-
ries segmentation task, Xiao et al. [9] explored unlabelled
target data using contrastive learning to enable the model
to capture its characteristics. When building a time series
pre-training model, Zhang et al. [1] simultaneously mined
time domain information and frequency domain information
based on contrastive learning. Eldele et al. [16] proposed a
representation learning framework for time series classification
task via temporal and contextual contrastive learning. Eldele
et al. [18] employed a dual attention contrastive representation
learning network in time series anomaly detection.

In these previous research works, people modeled the entire
time series sample globally, and contrastive learning was only
applied to two complete long sequences from different sources
or processes. However, in the time series anomaly detection
task, anomalies are sharp changes in data distribution, which
are always rare and only occur in relatively very short seg-
ments. Applying the above methods directly to this task does

not take advantage of contrastive learning to fully explore
the huge differences between abnormal segments and their
adjacent normal segments in the same long-term sequence. As
a result, the network’s sensitivity to the boundaries between
these two types of fragments in the local area will not
be sufficiently trained and improved. This will affect the
network’s ability to detect the occurrence of anomalies in a
timely manner, which is critical for many application scenarios
such as IoT and finance. This is also the main motivation for
us to use contrastive learning to locally model the continuous
sub-segments of the abnormal area in the same time series
sample in the subsequent Pretext Task 2.

III. METHOD

A. Overview
Figure 1 shows the overall structure of our TDSRL. First,

it possesses an anomaly synthesis module. It perturbs the
original time series sub-segments based on both time-domain
and frequency-domain Data Degradation strategies, thereby
synthesizing artificial anomalies that are closer to real anoma-
lies. They provide the foundation for the next step of self-
supervised representation learning. The details of this module
are elaborated in Section 3.2.

Second, Our time series representation model used for
anomaly detection consists of two branches of Annotation-
Free Pretext Tasks. They share the same representation encoder
(the Transformer Body in Figure 1) and utilize their respective
Pseudo Labels and self-supervised learning schemes to train
the network simultaneously. Among them, Pretext Task 1 uses
representation learning of the entire time series to mine the
connection between abnormal and normal points from a global
perspective. Meanwhile, Pretext Task 2 accomplishes self-
supervised training based on contrastive learning, focusing
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more on the local representation learning of abnormal areas. Its
purpose is to further explore the differences and uniqueness of
characteristics between anomaly segments and their adjacent
normal segments.

B. Anomaly Synthesis with Time and Frequency-based Data
Degradation

All time series are composed of both time-domain signals
and frequency-domain signals, and the frequency information
has been playing a key role in classic signal processing
[19]. Thus we believe that real time series anomalies should
exhibit anomalous changes or data degradation in both of
these domains. However, most previous works (such as [10])
only consider adding perturbations to the original data in
the time domain when synthesizing artificial anomalies for
self-supervised training of anomaly detectors. This hinders
the synthetic anomalies from fully reflecting the intrinsic
characteristics of real anomalies.

In our method, we first randomly cut a sub-segment Xs =
X[ta : ta + la] ∈ Rla×d from a training sample X ∈ RT×d

of the original time series, where T is the original sequence
length, d is the number of input variables, la represents the size
of synthetic anomaly window, the starting index ta of Xs is
randomly selected. Subsequently, we apply data degradation
methods based on both time and frequency to Xs, thereby
obtaining multiple types of synthesized abnormal segments
X

′

s. The purpose is to mimic real-world anomalies more
naturally and enhance the generalization ability of our self-
supervised representation model to different anomalies.

For Frequency-based Data Degradation, we start by ex-
tracting the frequency spectrum of Xs using a transform
operator such as Fourier Transformation [20]. Every frequency
component in the frequency spectrum denotes a basis function
of original time series with the corresponding frequency and
amplitude. Here, we can divide the frequency spectrum into
a high-frequency part (High-bank) and a low-frequency part
(Low-bank). They respectively carry different types of infor-
mation in time series. Our Frequency-based Data Degradation
is mainly achieved by perturbing the frequency spectrum in
these two ranges.

Specifically, we adopt the following four data degradation
mechanisms in the frequency domain of segment Xs:

1) Low-bank perturbation: It is achieved by adding or
removing frequency components in the low-frequency
part of the frequency spectrum. When removing, we
randomly select several frequency components and set
their amplitudes to zero. When adding, we randomly
select several positions in the frequency spectrum and
add frequency components with α ·Am. The Am is the
maximum amplitude in the original frequency spectrum
and α is a predefined range.

2) High-bank perturbation: Similar perturbations intro-
duced in (1) are applied in the high-frequency part of
the frequency spectrum.

3) Mixture-bank perturbation: Perturbations from (1) are
applied in both low and high-frequency parts of the
frequency spectrum.

Fig. 2. An example of Frequency-based Data Degradation for synthetic
anomaly segments generation.

4) Components Scaling: Randomly selecting several exist-
ing frequency components and scaling their values up
or down within a predefined range.

An example of the above data degradation mechanism (3) is
visualised in Figure 2. It can be seen that a small perturbation
in the frequency domain may cause large changes to the
temporal patterns in the time domain.

For Time-based Data Degradation, we adopted the four
mechanisms proposed in [10]: Soft Replacement, Uniform
Replacement, Peak Noise, and Length Adjustment. All of these
mechanisms apply perturbations in the time domain of sub-
segment Xs, that is, directly disturbing the values of the orig-
inal time series. Ultimately, relying on both frequency domain
and time domain data degradation mechanisms, we can obtain
a total of eight types of artificially synthesized anomalies for
subsequent self-supervised representation learning.

Finally, we replace the original segment in X with the 8
types of synthetic anomalies above, thus obtaining the new
degraded samples X

′ ∈ RT×d for subsequent dual self-
supervised learning. Among them, the anomaly segments syn-
thesized through frequency data degradation are converted into
corresponding time-domain sequences before being embedded
into the original time series. The overall process of generating
X

′
is shown in Algorithm 1.

C. Pretext task 1: Global representation learning

To achieve accurate time series anomaly detection, it is
essential to first construct a robust time series representation
encoder (likes the Transformer Body shown in Figure 1),
which is used to encode raw data into high-dimensional
features. The process of detecting anomalies can be viewed
as a downstream task based on these representation results.
Therefore, whether the representation network and its encoder
can effectively extract the intrinsic correlations and character-
istics of the input time series (including abnormal segments)
during the encoding process will have a significant impact on
the accuracy of anomaly detection.

Considering the task context of lacking annotations and the
inherent advantages of self-supervised learning, we will utilize
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Algorithm 1 Generate Degraded Samples: X
′ ∈ RT×d

Input: Original time series samples X ∈ RT×d, predefined

proportion threshold Ψ, the size of synthetic anomaly

window la

1: randomly select a starting index ta in X

2: Xs = X[ta : ta + la] ∈ Rla×d

3: randomly initialize variable ψ ∈ [0, 1]

4: if ψ < Ψ then

5: # Time-based Degradation

6: X
′

s = gTD(Xs)

▷ gTD: randomly apply 1 of the 4 types of

Time-based Data Degradation

7: else

8: # Frequency-based Degradation

9: obtain frequency spectrum

Xf
s = gFT (Xs) ▷ gFT : Fourier Transform

10: Xf ′

s = gFD(Xf
s )

▷ gFD: randomly apply 1 of the 4 types of

Frequency-based Data Degradation

11: X
′

s = gF̂T ▷ gF̂T : Inverse Fourier Transform

12: end if

13: X
′
= X.copy()

14: X
′
[ta : ta + la] = X

′

s

15: return X
′

this learning scheme to train TDSRL. To implement self-
supervised learning, we need to design pseudo labels for the
original unlabeled data and use them to provide supervisory
signals for the pretext task during training. Continuously im-
proving the feature extraction capability of our representation
network TDSRL through self-supervised training in the pretext
task is our primary goal. We use two Pretext Tasks (1&2) in
this work, corresponding to the two representation learning
branches of TDSRL.

For Pretext Task 1, first, we utilize the new degraded
samples X

′ ∈ RT×d to create the binary Pseudo Label
1 Ŷ ∈ {0, 1}N . It represents the anomaly score of each
time point in the sample. The value is 1 at the positions
corresponding to the anomaly intervals, and 0 elsewhere.
Second, we use a Patch-Linear Embedding module and a
Transformer Body to model the entire time series, obtaining
the Global Representation Results HG. Third, the Detection
Head outputs the predicted anomaly scores Y ∈ [0, 1]

N based
on HG. Lastly, we complete the training in Pretext Task 1
by optimizing the below Binary Cross Entropy Loss LB . The
idea of Pretext Task 1 can be traced back to [10].

LB = − 1

N

N∑
i=1

[
Ŷilog(Yi) + (1− Ŷi)log(1− Yi)

]
, (1)

Compared to conventional Linear Embedding before Trans-
former, a patch-wise linear projector [18] is more helpful for
modeling the continuous temporal context of time series. In
detail, the Patch-Linear module we employed first splices P
neighbouring points along the original channel dimension d
to create a patch. Thus, the input time series X

′ ∈ RT×d

are patched as X
′ ∈ RN×(P×d) = RN×dp , where N is

the number of patches. Then, a linear projection operation is
applied in the patched channel dimension dp, and the shape
of output is zG ∈ RN×dE . Finally, the dependencies among
patches are modeled by Transformer Body to obtain HG. This
representation encoder is stacked by L identical layers, each of
which mainly consists of a multi-headed self-attention (MHA)
module followed by a multi-layer perceptron (MLP) block. We
also adopt pre-norm residual connections in our Transformer
Body, which can produce more stable gradients [16], [21]. In
summary, the representation results are computed as:

z̃l =MHA(LayerNorm(zl−1)) + zl−1, 1 ≤ l ≤ L, (2)

zl =MHA(LayerNorm(z̃l)) + z̃l, 1 ≤ l ≤ L, (3)

where z0 = zG and HG = zL ∈ RN×dE in Pretext Task 1.
Although this Pretext Task 1 can already explore the

connection between anomalous and normal points from a
global perspective through the representation learning of the
entire time series. However, we believe that the representation
learning of local regions of anomalies is equally important,
especially the differences and uniqueness of characteristics
between anomaly and adjacent normal intervals should be
fully explored. Therefore, in the next section, we originally
propose a new pretext task based on the contrastive learning
for adjacent sub-segments.

D. Pretext task 2: Local representation learning

In real-world time series anomaly detection tasks, if a model
can distinguish between anomalous intervals and their adjacent
normal intervals with high accuracy, particularly being sensi-
tive to the boundaries between these two types of intervals,
it would significantly enhance the performance of anomaly
detection. This capability signifies a substantial improvement
of the model’s accuracy in predicting the location and size of
anomalous segments.

To achieve the above objectives, we construct the Pretext
Task 2 based on contrastive learning, focusing on the local
areas of synthetic anomaly. Contrastive learning is a pop-
ular self-supervised learning strategy. It starts by extracting
samples with the same attributes from the original data and
organizing them into positive pairs. Similarly, samples with
the different attributes are organized into negative pairs. The
process of labelling samples as ⟨positive, negative⟩ pairs
provides pseudo labels for self-supervised learning. Following
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TABLE I
TABLE 1: OVERALL RESULTS ON REAL-WORLD MULTIVARIATE DATASETS. THE P, R AND F1 ARE THE PRECISION, RECALL AND F1-SCORE. ALL

RESULTS ARE IN %. THE BEST RESULTS ARE IN BOLD

Method
SMAP SWaT SMD

P R F1 P R F1 P R F1
Deep-SVDD 89.93 56.02 69.04 80.42 84.45 82.39 78.54 79.67 79.10

DAGMM 86.45 56.73 68.51 89.92 57.84 70.40 67.30 49.89 57.30

LSTM 89.41 78.13 83.39 86.15 83.27 84.69 78.55 85.28 81.78

CL-MPPCA 86.13 63.16 72.88 76.78 81.50 79.07 82.36 76.07 79.09

LSTM-VAE 92.20 67.75 78.10 76.00 89.50 82.20 75.76 90.08 82.30

BeatGAN 92.38 55.85 69.61 64.01 87.46 73.92 72.9 84.09 78.10

OmniAnomaly 92.49 81.99 86.92 81.42 84.30 82.83 83.68 86.82 85.22

ITAD 82.42 66.89 73.85 63.13 52.08 57.08 86.22 73.71 79.48

THOC 92.06 89.34 90.68 83.94 86.36 85.13 79.76 90.95 84.99

InterFusion 89.77 88.52 89.14 80.59 85.58 83.01 87.02 85.43 86.22

TS-CP2 87.65 83.18 85.36 81.23 74.10 77.50 87.42 66.25 75.38

SES-AD 89.35 78.73 83.70 90.98 85.53 88.17 34.66 78.49 48.09

TicTok 92.50 95.42 93.94 92.25 84.95 88.45 81.04 88.82 84.75

AnomalyBERT 94.47 88.67 91.48 93.09 90.64 91.85 93.24 74.21 82.64

TDSRL 96.03 97.49 96.75 96.92 93.75 95.31 94.98 87.70 91.20

this, the training goal of the contrastive pretext task is to urge
the feature encoder to generate closer embeddings for positive
pairs and to push the embeddings for negative pairs apart from
each other. This will help downstream tasks to better identify
and differentiate between these two types of samples.

In our task, as shown in the lower half of Figure 1,
we individually segment the anomalous fragments and name
them S2. Simultaneously, we also segment the equally long
normal fragments adjacent to S2 and name them S1 and S3

respectively:

S1 = X
′
[ta − la − 1 : ta − 1],

S2 = X
′
[ta : ta + la],

S3 = X
′
[ta + la + 1 : ta + 2× la + 1],

(4)

Based on the discussion above, we use these three new sam-
ples to construct one positive pair ⟨S1, S3⟩ and two negative
pairs ⟨S1, S2⟩ and ⟨S2, S3⟩. Subsequently, synchronising with
Pretext Task 1 and sharing the same representation encoder
(i.e., Transformer Body), Pretext Task 2 trains our TDSRL
based on contrastive representation learning.

In detail, first, all these three time series segments are
also projected into embedded features zLi ∈ RNL×dE with a
Patch-Linear Embedding module, where i = {1, 2, 3}. Second,
in order to align with the required shape of representation
encoder, a Length Supplement module extends the the features
zLi ∈ RNL×dE to zLi ∈ RN×dE by the interpolation operation.
Third, the shared Transformer Body utilizes zLi to calculate
the Local Representation Results HL

i ∈ RN×dE of these three
sub-segments. Finally, we use Dpos = d(HL

1 , H
L
3 ), Dneg1 =

d(HL
1 , H

L
2 ), Dneg2 = d(HL

2 , H
L
3 ) to denote the cosine

distances of the representation results of ⟨positive, negative⟩
pairs, and input them into the contrastive loss function LC to
complete the training in Pretext Task 2. Inspired by the triplet
loss [19], we design our Cosine Contrast Loss LC as follows:

LC =
∑
Dneg

(Dpos −Dneg + δ),

Dneg ∈ {Dneg1, Dneg2} ,
(5)

where δ is a predefined constant margin to ensure negative
samples remain sufficiently distant with each other [22].

By continuously optimising the total loss Ltotal below, the
training of Pretext Task 1 and Pretext Task 2 are performed
simultaneously. Their main goal is to jointly learn a powerful
representation encoder for time series anomaly detection.

Ltotal = LB + LC (6)

E. Inference

The model’s inference process will only apply Pretext Task
1, which can use the Detection Head to predict the anomaly
score for each time point in the test set. An anomaly threshold
will be set, and time points with anomaly scores exceeding this
threshold are identified as anomalies. The specific value of the
anomaly threshold is determined by validation set.

Although the inference process does not use Pretext Task 2,
during the self-supervised dual-branch training above, Pretext
Task 2 has further improved the ability of our representation
encoder to clearly distinguish anomalous points from other
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massive normal points in the input time series. The distin-
guishability of the representation results of the anomalous
intervals and their adjacent normal intervals has also been
further improved, which will greatly benefit the performance
of the downstream anomaly detection head.

IV. EXPERIMENTS

A. Benchmark Datasets

We adopt the following three widely-used benchmarks from
real-world applications to evaluate TDSRL:

• Soil Moisture Active Passive (SMAP) dataset [23]]: is a
dataset of soil samples and telemetry information used
by the Mars rover. It is provided by NASA and contains
25 variables.

• Secure Water Treatment (SWaT) dataset [24]: is collected
from a real-world water treatment plant with 7 days of
normal and 4 days of abnormal operation. It is a 51-
dimension sensor-based dataset.

• Server Machine Dataset (SMD) [25]: is a five-week
long dataset. It is collected from the machines in a
compute cluster, stacking accessed traces of their resource
utilizations with 38 dimensions.

All of them are large multivariate time series datasets
containing hundreds of thousands of timestamps. Each dataset
consists of an unlabeled training set and a labeled test set.

B. Baselines and Evaluation Criteria

We compare our network with these 14 baselines proposed
in recent years for comprehensive evaluations: Deep-SVDD
(2018) [26], DAGMM (2018) [27], LSTM (2018) [28], LSTM-
VAE (2018) [29], CL-MPPCA (2019) [30], BeatGAN (2019)
[31], OmniAnomaly (2019) [32], ITAD (2020) [33], THOC
(2020) [34], InterFusion (2021) [35], TS-CP2 (2021) [36],
SES-AD (2022) [37], TicTok (2023) [38], AnomalyBERT
(2023) [10].

In terms of evaluation criteria, Precision, Recall and F1-
score are widely used to evaluate the performance of time
series anomaly detection. They can be formulated as follows:

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

F1− score =
2× Precision×Recall

Precision+Recall
). (9)

where the TP, FP, and FN respectively denote the number
of positive samples (abnormal points) that are successfully
predicted as positive, negative samples (normal points) that
are incorrectly predicted as positive, and positive samples
(abnormal points) that are incorrectly predicted as negative.

At the same time, an evaluation technique known as Point
Adjustment (PA) [39] has become popular in this task over
the last few years, and we also employ it in our work.
Specifically, if any observation in the ground truth abnormal
segment is correctly detected, all observations in the segment
are considered to be correctly detected.

TABLE II
THE RESULTS OF ABLATION STUDIES. THE 2 COMPONENTS ARE THE

FREQUENCY-BASED DEGRADATION IN SYNTHETIC ANOMALIES
GENERATION AND THE CONTRASTIVE LEARNING BRANCH (I.E., PRETEXT

TASK 2), RESPECTIVELY.

Components
P R F1Frequency

Degradation
Contrastive

Branch

# # 93.09 90.64 91.85

# ! 95.08 93.04 94.05

! # 93.84 90.98 92.39

! ! 96.91 93.75 95.31

C. Implementation Details

We summarize all the default hyper-parameters as follows
in our implementation. Our TDSRL network contains six
Transformer encoder layers. The dimension of the hidden state
is 512, and the number of attention heads is 6. The window
length las for the synthetic anomaly segment S2 and the
proportion of Time-based Degradation are respectively set to
80 and 50% by default, but we will investigate the effect of
different values of them on the network in the subsequent
Parameter Sensitivity study. Besides, all the experiments are
implemented in PyTorch [26] with one NVIDIA A100 32GB
GPU. Adam [27] with default parameter is applied for op-
timization. We set the initial learning rate to 10−4 and the
batch size to 16. We also employ the early-stop mechanism
during training. Most of the other hyper-parameters are set
with reference to [10].

D. Main Results

We first evaluate our TDSRL with fourteen competitive
baselines on three real-world multivariate datasets as shown
in Table 1. It can be seen that our proposed TDSRL achieves
the consistent state-of-theart on all benchmarks. The results in
Table 1 are a convincing demonstration of the powerful ability
of our approach for time series anomaly detection.

It is worth noting the improvement between AnomalyBERT
[10] and our approach. We achieve our self-supervised repre-
sentation modeling based on synthetic anomalous segments.
This idea is come from AnomalyBERT and we also construct
our network based on the code provided by it. However, the
experiment results show our TDSRL is better that Anoma-
lyBERT, which demonstrates the effectiveness of the new
components or methods we applied on it. More experiments
will follow to further verify their contributions.

E. Model Analysis

Ablation Studies
Table 2 shows the ablation study of the Frequency-based

Degradation for synthetic anomalies generation and the
contrastive learning branch (i.e., Pretext task 2) for self-
supervised representation modeling. We use SwaT dataset to
compare TDSRL with its different variants and conduct the



8

Fig. 3. The anomalous samples in test set and the predicted anomaly scores
output from models. The areas marked in orange represent the ground true
anomaly segments in test set. Our TDSPL has higher sensitivity to anomaly
boundaries and can detect the occurrence of anomalies earlier.

experiments in the same setting. The results show that our
TDSRL is the best and further demonstrate the effect of each
part. In particular, there is an obvious drop in performance
when we eliminate the Pretext task 2. It confirms the great
value of this contrastive learning branch for improving
anomaly detection accuracy.

Anomaly Detection Visualization
We investigate how TDSRL works by visualizing the

anomalous time series samples in test set and the predicted
anomaly scores output from the models in Figure 3. We
make a comparison with AnomalyBERT [10] using the
samples in SWaT and SWAP. It can be seen that the anomaly
score produced by TDSRL not only maintains a higher level
throughout the anomaly interval, but also has higher values
at the beginning and end of the anomaly. On the one hand,
these results show the stronger detection ability of TDSRL
for various real-world time series anomalies. On the other
hand, they verify that our methods can enhance the model’s
sensitivity to the boundaries between normal and anomalous

intervals, thus identifying the occurrence of anomalies more
promptly. It’s quite significant in many application scenarios.
For example, the timely detection of mechanical failures
in IoT systems [40] and financial anomalies in transaction
markets [41] (or even detecting before they occur) will be
very helpful in averting major threats to the safety of people
and property [42].

The comparison between anomaly and adjacent normal
segments in embedding space

In order to further demonstrate the contribution of our
proposed contrastive pretext task, we use the t-SNE algorithm
[43] to visualize the high-dimensional features of different
segments output by the representation encoder (i.e., the
Transformer Body in TDSRL) before and after adding Pretext
task 2. Specifically, we randomly select several abnormal
segments and their adjacent equal-length normal segments
from the validation set to form multiple (S1, S2, S3) triples
as shown in Figure 1. Then their representation results
from Transformer Body are visualized into two-dimensional
space by t-SNE, where each point represents a latent feature
and the distance represents their similarity. As shown in
Figure 4, our contrastive representation learning can better
separate anomalies from adjacent normal intervals in the
embedding space. This will help the network to better
discriminate between these three locally adjacent segments in
the downstream detection module, resulting in more accurate
predictions of the location and extent of anomalous segments.

Parameter Sensitivity We also investigate the parameter
sensitivity of our TDSRL. Figure 5(a) displays the perfor-
mance under different proportion threshold Ψ. As shown in
Algorithm 1, It is equal to the probability of using Time-based
Degradation in the Anomaly Synthesis module. Meanwhile,
the proportion of Frequency-based Degradation is equal to
1−Ψ. The model performs best when the value of Ψ is near
0.5. This indicates that these two data degradation mechanisms
used for anomaly synthesis are of similar importance. Figure
5(b) shows the performance under different anomaly window
size la, which represents the length of synthetic abnormal
segments X

′

s. The F1-Scores remain stable over a wide range.
demonstrating that TDSRL is robust with different anomaly
window sizes. Figure 5(c) and Figure 5(d) are used to study

Normal   
Anomaly 
Normal   

S1
S2
S3

Normal   
Anomaly 
Normal   

S1
S2
S3

Fig. 4. The visualization of latent features by t-SNE. The three different
colours represent the anomaly segments and the adjacent normal segments
before and after them. (w/o Contrast) represents the TDSRL variant without
the contrastive learning branch.
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(a) (b) (c) (d)
Fig. 5. The study of Parameter Sensitivity for main hyper-parameters in TDSRL. (a) Sensitivity to the proportion between time and frequency based degradation
in synthetic anomalies. (b) Sensitivity to the anomaly window size la. (c) Sensitivity to the attention head number of Transformer Body. (d) Sensitivity to
the encoder layer number of Transformer Body.

the network performance with different numbers of attention
heads or encoder layers in the shared Transformer Body of
TDSRL, since the performance of many deep neural networks
is affected by them. It can be seen that for some datasets,
TDSRL tends to achieve the best performance with a smaller
number of attention heads and encoder layers than the original
setting in the baseline model [10].

V. CONCLUSION

In this paper, we propose TDSRL to achieve anomaly
detection through dual self-supervised representation learning
of time series based on synthetic anomaly segments.The
experiments on three representative real-world datasets demon-
strates the excellent performance of TDSRL and validate the
effectiveness of each proposed components. First, we propose
a data degradation approach based not only on time but also
on frequency to generate synthetic anomaly for self-supervised
learning in this task. It allows more natural mimicking of
real-world anomalies and enhance the model’s generalization
ability across different anomalies. Second, we desire a novel
contrastive pretext task based on locally contiguous sub-
segments. It improve model’s discrimination ability between
anomaly and adjacent normal intervals, resulting in more
accurate predictions of the location and extent of anomalous
segments. Third, our dual representation learning scheme can
not only characterize the relationship between anomalies and
the entire time series globally, but also enhance the model’s
sensitivity to the boundaries between normal and anomalous
intervals locally. As a result, our TDSRL can detect the
occurrence of anomalies in a more timely manner or even
in advance.
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APPENDIX

Here we present in detail the feedforward process of rep-
resentation learning corresponding to the two branches in our
TDSRL (i.e., Pretext Task 1 and 2), as shown in Algorithm 2
and 3. At the same time, we also demonstrate the complete
logic of dual self-supervised training process for TDSRL, as
shown in Algorithm 4.

Algorithm 2 Representation Learning Branch 1: B1
RL()

Input: Degraded time series samples X
′ ∈ RT×d

1: Globle Linear Embedding zG = gGl (X
′
)

▷ gGl : Globle Patch-Linear module

2: Global representation result HG = grep(z
G)

▷ grep: Transformer-Representation encoder

3: predicted anomaly scores Y = gdet(H
G)

▷ gdet: Detection Head

4: return Y

Algorithm 3 Representation Learning Branch 2: B2
RL()

Input: Degraded time series samples X
′ ∈ RT×d, the index

of synthetic anomaly segment [ta, ta + la]

1: anomaly segment S2 = X
′
[ta : ta + la]

2: adjacent segment ahead S1 = X
′
[ta − la − 1 : ta − 1]

3: adjacent segment at the back

S3 = X
′
[ta + la + 1 : ta + 2× la + 1]

4: for all Si ∈ S1, S2, S3 do

5: Local Linear Embedding zLi = gLl (Si)

▷ gLl : Local Patch-Linear module

6: Upsample zLi ∈ RNL×dE to zLi ∈ RN×dE by interpo-

lation

7: Local representation result HL
i = grep(z

L
i )

▷ grep: Transformer-Representation encoder

8: end for

9: return HL
1 ,HL

2 ,HL
3

Algorithm 4 Dual Self-supervised Training For TDSRL

Input: Degraded time series samples X
′ ∈ RT×d,

Pseudo Labels 1: Ŷ ∈ {0, 1}N , Pseudo Labels 2:

⟨positive, negative⟩ pairs

1: repeat

2: # Pretext Task 1

3: Y = B1
RL(X

′
)

4: LB = − 1
N

∑N
i=1

[
Ŷilog(Yi) + (1− Ŷi)log(1− Yi)

]
5: # Pretext Task 2

6:
{
HL

1 , H
L
2 , H

L
3

}
= B2

RL(X
′
)

7: Dpos = d(HL
1 , H

L
3 )

8: Dneg1 = d(HL
1 , H

L
2 )

9: Dneg2 = d(HL
2 , H

L
3 )

10: calculate contrastive loss according to Pseudo Labels 2

LC =
∑

Dneg(Dpos−Dneg + δ),

Dneg ∈ {Dneg1, Dneg2}

11: # synchronous training

12: minimize the total loss

Ltotal = LB + LC

13: until Ltotal is less than the threshold or does not decrease

for multiple consecutive steps
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