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Abstract
We extend and improve recent results given by Singh and Watson on using classical
bounds on the union of sets in a chance-constrained optimization problem. Specifically,
we revisit the so-called Dawson and Sankoff bound that provided one of the best
approximations of a chance constraint in the previous analysis. Next, we show that
our work is a generalization of the previous work, and in fact the inequality employed
previously is a very relaxed approximation with assumptions that do not generally
hold. Computational results demonstrate on average over a 43% improvement in the
bounds. As a byproduct, we provide an exact reformulation of the floor function in
optimization models.

Keywords Chance-constrained optimization · Bonferroni inequalities · Union
bounds · Stochastic optimization · Floor function · Linearization

1 Introduction

1.1 Background

In a recent work, Singh and Watson [13] approximate a two-stage joint chance-
constrained optimization model using approximations based on the union of sets.
First, they rewrite a joint chance constraint (JCC) as a union of sets of “failed” scenar-
ios. Then, using classical Bonferroni-styled approximations of the union, they bound
the chance constraint, thereby bounding the optimization model itself. With a maxi-
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328 B. Singh

mization objective, a lower (upper) bound for a union (or, the JCC) provides an upper
(lower) bound for the optimization model. They consider two upper bounds and four
lower bounds for the union; and, find that in a tradeoff between computational effort
and the quality of solution, the so-called Bonferroni union bound and the linearized
version of the Dawson and Sankoff [4] union bound nearly always provide the best
optimization bounds.

Bounding the probability of the union of n events by the use of joint probabilities
of k < n events has been studied since Boole and Bonferroni. For an extensive histor-
ical survey of such inequalities, see, e.g. [9]. The sharpness of linear bounds can be
determined using linear programming [9]. Relatively recent methods to approximate
this probability include cherry trees [3], chordal graphs [5], and aggregation and dis-
aggregation [10]. The hardness of computing these bounds is also studied [12]. For a
survey of bounds, including linear and non-closed form expressions, see [2].

We use the same notation as [13] and reiterate it here for conciseness. Let, x =
(xt )t∈T be the first stage decision; w = (wt )

ω
t∈T ∈ Ω be a set of equally likely

discrete scenario realizations with N = |Ω|, ω = ω1, ω2, . . . , ωN ; y = (yt )ωt∈T be
the second stage decision; At = {ω : xt > yω

t + wω
t } be the set of scenarios we

fail to satisfy at stage t ; and, ε be a small positive number strictly less than 1. Let
uω
t = 1 and vω

t t ′ = 1, t ′ > t denote we fail in scenario ω at time t , and in scenario ω

at both times t and t ′, respectively; i.e., vω
t t ′ = 1 if and only if uω

t = uω
t ′ = 1. Finally,

let S1 = ∑
t∈T P(At ) = ∑

t∈T 1
N

∑
ω∈Ω uω

t and S2 = ∑
t,t ′∈T ,t ′>t P(At ∩ At ′) =

∑
t,t ′∈T ,t ′>t

1
N

∑
ω∈Ω vω

t t ′ .
Further, we use the following two mathematical conventions. First, �·� rounds its

argument down to the nearest integer; i.e., for any x ∈ R, �x� = maxn∈Z {n ≤
x}. Second, frac{x} denotes the fractional part of its argument; i.e., for any x ∈
R, frac{x} = x − �x�.

The following is the generic chance-constrained optimization model of [13]:

max
x,y

∑

t∈T
(Rt xt − E[Bt y

ω
t ]) (1a)

s.t. P(xt ≤ yω
t + wω

t ,∀t ∈ T ) ≥ 1 − ε (1b)

0 ≤ yω
t ≤ Δ,∀t ∈ T , ω ∈ Ω (1c)

xt ≥ 0,∀t ∈ T . (1d)

The JCC in equation (1b) can be rewritten exactly as: P(
⋃

t∈T At ) ≤ ε. The con-
tribution of Singh and Watson is to utilize classical (upper and lower) approximations
of this union within optimization model (1).

1.2 Our contributions

In this work, we investigate these classical bounds further. We seek to tighten the
approximating optimization model by using tightened approximations of the proba-
bility of the union. We also present suitable reformulations of some bounds that were
not investigated in the previous work due to their non-linear structure. In this sense,
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Dawson and Sankoff bounds and chance constraints 329

our work improves on the work initiated by Singh andWatson [13]. The following are
the key contributions of this article:

1. We observe that the Dawson and Sankoff bound, whose linearized version is
claimed by Singh and Watson [13] as the tightest, is in fact a very relaxed bound
with stringent necessary assumptions that are nearly always not satisfied.

2. We utilize a tighter bound than the lower bound of Sathe et al. [11] used in Singh
and Watson [13].

3. We reformulate a resulting mixed-integer non-linear optimization exactly as a
mixed-integer optimization model, including an exact reformulation of the floor
function.

4. We demonstrate a significant improvement in our computational experiments, with
the new inequality dramatically improving the bounds by over 40%.

2 Tightening of union bounds

2.1 Bound by Sathe et al. [11]

The following two bounds on the union of sets, available from Result 1 and Result 3
by Sathe et al. [11] respectively, are used in [13].

P
( ⋃

t∈T
At

) ≥ S1 + 2S2
|T |2 . (2a)

P
( ⋃

t∈T
At

) ≤ S1 − 2
|T | S2. (2b)

Sathe et al. also provide a tightening of the bounds in equation (2); Result 2 and
Result 4 of [11] say that the bounds in (2a) and (2b) can be tightened if 2S2 <

(|T | − 1)S1 and S2 < 0 respectively hold. Clearly the latter condition cannot hold.
Indeed, the upper bound in (2b) is the tightest bound by a linear combination of
S1 and S2; this is proved in [10]. Result 2 of [11] provides the following tightened
approximation of equation (2a):

P
( ⋃

t∈T
At

) ≥ 2
(z − 1)S1 − S2

z(z − 1)
, (3)

where z = 2+� 2S2
S1

�. By the use of linear programming, Prékopa et al. [10] prove that
the bounds in equation (3) and equation (2b) are the tightest lower and upper bounds
using a linear combination of S1 and S2. Further, both Prékopa [10] and Dawson and
Sankoff [4] prove the bound in (3)without requiring the condition mentioned by Sathe
et al [11]; this condition is sufficient to guarantee an improvement but not necessary.

A subtle and important distinction stems from what the previously cited authors
call as “linear” combinations of S1 and S2. Such linear bounds follow a structure of
aS1 + bS2 where a and b are coefficients that can be determined. In previous works
[4,10,11], it is assumed that S1 and S2 can be calculated apriori; thus, z or 2S2

S1
is a
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330 B. Singh

known quantity. Then, equation (3) contains an exponent of one for both S1 and S2;
hence, the bound is referred to as a linear bound. In this sense, the bounds can be said
to be the tightest linear bounds given that z is known; for nonlinear bounds, see, e.g.
[8]. We revisit this distinction in Sect. 2.3.

2.2 Bound by Dawson and Sankoff [4]

Theorem 1.1 of Dawson and Sankoff [4] provides the following lower bound, using
the notation presented above.

P
( ⋃

t∈T
At

) ≥ θ S21
2S2 + (2 − θ)S1

+ (1 − θ)S21
2S2 + (1 − θ)S1

, (4)

where θ = frac{ 2S2S1
}. Substituting θ in terms of z, and using straightforward algebra,

the right hand sides of equation (3) and equation (4) are exactly equivalent. The
minimum of the right hand side of equation (4) occurs at θ = 0; then, the following
bound results:

P
( ⋃

t∈T
At

) ≥ S12

S1 + 2S2
. (5)

This bound is available fromCorollary 1 of [4]. In the computational results of [13],
a piecewise linearization of the bound in equation (5) nearly always achieves the best
upper bounds for the optimization model; this is given by equation (6) of [13] and is
called as the linearized Dawson and Sankoff bound. However, equation (5) is a special
case (i.e., a relaxation) of the general bound in equation (4). Thus, an approximation
of model (1) with equation (5) instead of equation (4) always results in a worse (i.e.,
larger) bound. As we are interested in smaller upper bounds, this reasoning suggests
we can do better with equation (4). Further, for this special case to hold we require
the strong apriori assumption: θ = 0; in other words, 2S2

S1
∈ Z . This clearly does not

hold true in general.
An analogy for this observation is that of solving a mixed-integer program (MIP)

using its linear programming relaxation (LP). The objective function value of the LP
always provides a bound for that of the MIP, but for the LP solution to be valid to the
MIP the restrictive assumption of all its optimal variables being integer is required.

2.3 Summary of observations

In the proceeding sections of this manuscript, we are interested in investigating the
tighter version of the bound in equation (2a)— specifically that given by equation (3)
or equation (4)—as an approximation of the JCC in model (1). We note that in an opti-
mizationmodel such asmodel (1), S1 and S2 are decision variableswhich are obviously
unknown before solving the model. Hence, z is a decision variable as well, and equa-
tion (3) presents a challenging mixed-integer non-linear constraint. In Sect. 3.1 we
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Dawson and Sankoff bounds and chance constraints 331

provide results that assist us in modeling the quantity � 2S2
S1

�, while in Sect. 3.2 we
linearize the constraint (3).

We conclude this section with a summary of the above-mentioned observations, all
of which follow directly from the three cited works [4,10,11].

Remark 1 Constraints (3) and (4) are always exactly equivalent.

Remark 2 Constraint (5) offers a special case of constraint (4) as a relaxation. Thus,
upper bounds using the former are expected to be larger (worse) than the upper bounds
using the latter. The upper bound using constraint (5) is derived by a stringent assump-
tion on S1 and S2.

Remark 3 Constraint (2a) is weaker than constraint (3) or constraint (4). Thus, upper
bounds using the former are expected to be larger (worse) than the upper bounds
using the latter. However, unlike constraint (5), constraint (2a) does not require any
assumptions on S1 and S2.

3 Mathematical reformulations

3.1 Reformulating � 2S2
S1

�

Lemma 1 For any feasible solution to model (1), the condition S1 ≥ 2
|T |−1 S2 holds

true.

Proof See equation (6.2.13) of [9]. 
�
Lemma 2 Let a, b, A, B ∈ Z

+, where a ≤ A, b ≤ B. Then, frac{ ab } is no more than
1 − 1

B .

Proof Clearly, frac{ ab } ∈ {0, 1
b , 2

b , . . . , ... b−1
b }. The maximum of these is b−1

b , which
is at most 1 − 1

B . 
�
Remark 4 In any optimal solution to model (1) with positive coefficients R and B we
always have S1 > 0. To see this, first we note that if S1 = 0 then all of u, v, S2 are zero,
and also P(

⋃
t∈T At ) = 0; see, e.g., [9]. Thus, the objective function value always

improves when at least one of the u variables is one, or S1 > 0. Hence, the ratio S2
S1

is
well-defined.

This background brings us to our main result of this section.

Theorem 1 For model (1), we have

�2S2
S1

� ∈ {0, 1, . . . , |T | − 1}, (6a)

frac{2S2
S1

} ≤ 1 − 1
N |T | . (6b)
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332 B. Singh

Proof From Lemma 1, equation (6a) directly holds. Next, from the definitions of
S1, S2 we observe that Lemma 2 is applicable. Let a ← 2NS2, b ← NS1, A ←
N |T |(|T | − 1), B ← N |T |. Then, equation (6b) holds. 
�

In general, to model a floor function exactly we require a strict inequality because
the feasible region is an open set; see, e.g., [6]. However, as optimization solvers can
only model non-strict inequalities, strict inequalities are approximated with a finite
tolerance; see, e.g., [7]. Having an upper bound on the fractional part of a decision
variable, such as that provided by Theorem 1, allows an exact reformulation. That
being said, if the quantity N |T | is very large the above result can have little practical
relevance as this could potentially cause the model to be (i) poorly scaled, or (ii) the
quantity 1

N |T | could be lower than the feasibility tolerance of the optimization solver.
The following corollary to Theorem 1 summarizes this discussion.

Corollary 1 � 2S2
S1

� ≤ 2S2
S1

≤ � 2S2
S1

� + α holds true for all α ∈ (1 − 1
N |T | , 1).

3.2 Linearizing equation (3): inequality by Dawson and Sankoff [4]

In this section, we linearize the constraint (z2 − z)ε ≥ 2S1z − 2S1 − 2S2 of equa-
tion (3). Unlike the piecewise linear approximation used in [13], or a finite tolerance
approximation of the floor function, here we provide an exact linearization. Consider
the following equations:

( |T |∑

t=1

(t2 + t)κt

)

ε ≥ 2

( |T |∑

t=1

(t + 1)δt

)

− 2(S1 + S2), (7a)

δt ≤ |T |κt , t = 1, . . . , |T | (7b)

δt ≥ S1 − T (1 − κt ), t = 1, . . . , |T | (7c)
|T |∑

t=1

κt = 1, (7d)

|T |∑

t=1

(t + 1)δt ≤ 2(S1 + S2), (7e)

|T |∑

t=1

(t + 1)δt ≥ 2(S1 + S2) − αS1, (7f)

κt ∈ {0, 1}, t = 1, . . . , |T | (7g)

0 ≤ δt ≤ S1 t = 1, . . . , |T |. (7h)

Proposition 1 Equation (7) is an exact reformulation of equation (3) for all α ∈
(1 − 1

N |T | , 1).

Proof From Theorem 1, z ∈ {2, 3, . . . , |T | + 1}. We introduce |T | binary variables,
κt , to indicate z takes the value t + 1 for t = 1, 2, . . . , |T |.
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Dawson and Sankoff bounds and chance constraints 333

We observe from equation (7d) and (7g) that exactly one of the κ variables is one;
i.e., κ is a so-called SOS1 variable, see, e.g. [1]. Then, z and z2 − z can be represented
by the quantities

∑|T |
t=1(t + 1)κt and

∑|T |
t=1(t

2 + t)κt , respectively. Next, we note that
S1 ≤ |T |. From constraints (7b)-(7d) and (7g)-(7h) we observe that if κt∗ = 1 then
δt∗ = S1 and δt = 0, t �= t∗. Thus, the quantity

∑|T |
t=1(t + 1)δt correctly models

S1z. From Corollary 1, we have z ≤ 2 + 2S2
S1

≤ z + α,∀α ∈ (1 − 1
N |T | , 1). This is

ensured by constraints (7e)-(7f). Then constraint (7a) correctly captures (z2 − z)ε ≥
2S1z − 2(S1 + S2). 
�

In the Electronic Supplementary Material, we present the complete reformulation
of model (1) approximated by equation (3).

4 Computational experiments

In this section, we compare the reduction of the upper bounds for model (1), with
the new inequalities proposed in Sect. 3 as opposed to inequalities (2a) and (5) used
by Singh and Watson [13]. To validate the new inequality, we use the same system
as [13], with two exceptions. First, we re-run all computations on a newer version of
GAMS—30.1 as opposed to the originally used 24.8.5 since the newer version contains
Gurobi 9.0.0 with significantly improved features [7]. Second, to strictly compare the
improvement of the new inequality with the original ones, we do not use the so-called
mixing set of Remark 2 of Singh and Watson [13], and neither do we use a piecewise
linearization. Thus, we re-compute the optimal objective function values for both of
these inequalities, as well as the true optimal objective function (i.e., using an exact
representation of the JCC). We do this for all the eight tables reported in Singh and
Watson [13], with a maximum time limit of 2100 seconds for each instance. Further
details on the data, representation and modeling are available in [13].

In Tables 1a and 1b, we summarize our two sets of computational results using the
ARMA and Gaussian sampling methods of [13]. The bottom halves of both the tables
have samples containing half the mean and variances as the top halves; see, [13] for
details. Here, the constraints “Original 1” and “Original 2” refer to inequalities (2a)
and (5) used by Singh andWatson, while constraint “New” refers to inequality (3) with
the exact reformulation of Sect. 3.2. The “MIP gap” column denotes the percentage
optimality gap reported by GAMS/Gurobi while solving the optimization model with
the respective constraint. The “Gap” column denotes the optimality gap between the
true objective function value and the objective function value of the approximating
model. In the same spirit as Singh and Watson, we use a conservative estimate of the
Gap1; thus, our results are worst-case estimates. The “Improvement” column denotes
the percentage reduction in the (conservative) upper bounds of the New inequality
from the Original inequalities. We recall two facts presented above: (i) inequalities (3)

1 TheGap is defined as follows:
Bound−z∗LB

Bound ,where “Bound” is themaximumpossible value of the objective
function value of the relevant approximation and z∗LB is the lower bound on the true optimal value reported
by Gurobi. For the numbers above the dashed lines in the two tables the true model is solved to optimality;
but for the numbers below the dashed lines in the two tables the true model could not be solved to optimality.
See [13] for details.
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Table 1 Comparison of
computational results for the two
sampling methods for
inequality (2a) (“Original 1”),
inequality (5) (“Original 2”),
and inequality (3) (“New”). The
instances in the bottom halves of
the table have half the mean and
variance of the instances in the
top half. See Sect. 4 for details

N ε Constraint MIP gap Gap Improvement

(a) ARMA sampling

250 0.01 Original 1 8.2% 31.4% 30.2%

Original 2 0.0% 60.1% 59.5%

New 0.4% 1.6%

0.03 Original 1 12.3% 40.4% 38.3%

Original 2 0.0% 60.9% 59.5%

New 1.6% 3.5%

500 0.01 Original 1 13.7% 33.4% 32.0%

Original 2 0.0% 60.4% 59.6%

New 1.0% 2.1%

0.03 Original 1 22.0% 41.8% 39.3%

Original 2 0.0% 61.0% 59.3%

New 2.7% 4.1%

250 0.01 Original 1 15.9% 49.3% 47.7%

Original 2 0.0% 77.6% 76.9%

New 1.8% 3.0%

0.03 Original 1 25.7% 58.3% 54.9%

Original 2 0.0% 77.5% 75.6%

New 5.3% 7.6%

500 0.01 Original 1 22.3% 51.3% 49.6%

Original 2 0.0% 77.5% 76.7%

New 2.4% 3.4%

0.03 Original 1 40.5% 62.0% 58.1%

Original 2 0.0% 77.5% 75.2%

New 6.9% 9.3%

(b) Gaussian sampling

250 0.01 Original 1 7.9% 29.8% 28.4%

Original 2 0.0% 58.1% 57.2%

New 0.7% 1.9%

0.03 Original 1 11.1% 38.7% 36.2%

Original 2 0.0% 59.1% 57.4%

New 1.7% 4.0%

500 0.01 Original 1 29.0% 37.4% 36.0%

Original 2 0.0% 57.6% 56.7%

New 1.1% 2.3%

0.03 Original 1 19.8% 40.0% 36.9%

Original 2 0.0% 58.8% 56.6%

New 2.5% 4.9%

250 0.01 Original 1 15.5% 47.5% 45.9%

Original 2 0.0% 76.4% 75.7%

New 1.6% 3.0%
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Table 1 continued N ε Constraint MIP gap Gap Improvement

0.03 Original 1 26.0% 57.0% 53.3%

Original 2 0.0% 76.4% 74.4%

New 5.3% 8.0%

500 0.01 Original 1 20.1% 49.4% 47.6%

Original 2 0.0% 76.1% 75.2%

New 2.2% 3.5%

0.03 Original 1 39.1% 60.0% 56.1%

Original 2 0.0% 76.1% 73.8%

New 9.7% 8.8%

and (4) are exactly the same, and (ii) the linearization in Sect. 3.2 is exact. Thus,
the empirical quantification of the improvement in bounds results strictly from two
sources: (i) a tightened approximation of the JCC, and (ii) a better reformulation of
the mathematical model of the approximating constraint.

In the 32 instances of Table 1, the New inequality results in an average MIP gap of
only 2.9% as opposed to 20.6% of the Original 1 inequality. This significantly lower
MIP gap suggests the new formulation is muchmore efficient to solve for aMIP solver
than the original formulation. The Gap from the optimal in the New inequality is on
average 4.4% — a dramatic reduction from the 44.7% average Gap in the Original 1
inequality. Since our Gap estimate is the worst-case estimate, in reality these gaps
could be even smaller. The upper bounds of the approximating model with the New
inequality improve on average by 43.2% from the Original 1 inequality.

In contrast, theOriginal 2 inequality could always be solved in under 30 seconds to a
MIPgap of 0%.This shows the effectiveness ofGurobi 9.0.0 for quadratic optimization
models. However, the bounds obtained from it are even farther off than the Original 1
inequality; the average Gap from the optimal in the Original 2 inequality is 68.2%.
The upper bounds of the approximating model with the New inequality improve on
average by 66.8% from the Original 2 inequality.

We end this section with a discussion on the size of the approximating problems.
Representing S1 and S2 requires N |T | and N |T ||T−1|

2 variables, respectively. The
constraint matrix given by equation (7) requires O(|T |) number of constraints and
variables. Further, we note that the optimization models corresponding to the New,
Original 1 and Original 2 inequalities change only in the representation of the JCC.
Thus, if N � |T |, as in [13], the ballpark size of problem remains the same for all
three inequalities. For N = 250, our optimizationmodels have an order of 81K contin-
uous variables, 6K binary variables, and 213K constraints; these values approximately
double when N doubles to 500.

5 Conclusions

In this work, we extended and improved upon the previous work of Singh and Watson
by utilizing an improved version of the Dawson and Sankoff union bound. We showed
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how the previously used version of this bound is a restrictive special case whose apriori
assumptions might not hold true. We provided linear reformulations of non-linear
combinations of S1 and S2, as well as an exact reformulation of the floor function.

Our computational results show significant promise; thus, there seems scope in
this direction of work. Future work could examine developing a better upper bound
on � 2S2

S1
�, as well as on frac{ 2S2S1

}. The former would reduce the number of binary
variables in the resulting mathematical model. Future research could also examine
quantifying the analytical gap between the approximations.
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