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Abstract
In this work, we give a tight estimate of the rate of convergence for the Halpern-
iteration for approximating a fixed point of a nonexpansive mapping in a Hilbert
space. Specifically, using semidefinite programming and duality we prove that the
norm of the residuals is upper bounded by the distance of the initial iterate to the
closest fixed point divided by the number of iterations plus one.

Keywords Halpern-iteration · Fixed point methods · First order methods ·
Semidefinite programming · Performance estimation · Proximal point

1 Introduction

Let H be aHilbert space equippedwith a symmetric inner product 〈., .〉 : H×H → R.
Let T : H → H be a nonexpansive mapping and consider for fixed x0 ∈ H the
Halpern-Iteration

xk+1 := λk x0 + (1 − λk)T (xk) (1)

from [5] with λk := 1
k+2 for approximating a fixed point of T . Let ‖x‖ := √〈x, x〉

denote the induced norm and Fix(T ) := {x ∈ H : x = T (x)} the set of fixed points
of T . It is well known that, if the set Fix(T ) is nonempty, then the sequence {xk}k∈N0

will converge to x∗ ∈ Fix(T ) minimizing the distance to x0; see [17] Theorem 2,
and [18] for generalizations of this remarkable property. As a consequence the norm
of the residuals xk − T (xk) tends to zero, i.e. limk→∞ ‖xk − T (xk)‖ = 0. Our goal
here is to quantify their rate of convergence. A first result of this type was generated
via proof mining in [10] in normed spaces (see also [8] and [9] for further details
on results in more general spaces.). Here, we improve the result for the setting of
Hilbert spaces. Our proof technique is not based on proof mining, but on semidefinite
programming, and is strongly motivated by the recent work of Taylor et al. [15] on
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406 F. Lieder

worst case performance of first order minimization methods. Our methodology and
focus here are, however, slightly different. We present two new proofs below. The
first one is short and uses a parameter choice derived from the technique used in [15].
The second proof based on semidefinite programming is self-contained and adapts the
framework of [15] to fixed point problems. The second approach can also be applied to
other choices of parameters λk and to other fixed point methods. The rates are however
in general not obvious. After themanuscript of this work wasmade public in late 2017,
the author (see section 4.1 and following of [12]) and independently other authors (see
e.g. [2–4,6,16]) have studied similar setups, which may all be categorized as part of
the performance estimation framework. Let us briefly sketch how our setup here and
in [12] may be applied in the context of proximal point algorithms (e.g. the setup of
[2,6]) by defining the nonexpansive operator T := 2J − I , where I is the identity and
J is a firmly nonexpansive operator (e.g. the resolvent operator of a maximal monotone
operator). Because the fixed points of J and T are the same, one may now apply the
Halpern-Iteration (1) to find a fixed point of J . The (tight) convergence rate is then
implied by Theorem 2.1 below.

2 Main result

Theorem 2.1 Let x0 ∈ H be arbitrary but fixed. If T has fixed points, i.e. Fi x(T ) 
= ∅,
then the iterates defined in (1) satisfy

1
2‖xk − T (xk)‖ ≤ ‖x0 − x∗‖

k + 1
∀k ∈ N0 ∀x∗ ∈ Fix(T ) (2)

This bound is tight.

Remark 2.1 Ageneralization of theHalpern-Iteration, the sequential averagingmethod
(SAM), was analyzed in the recent paper [14], where for the first time a rate of
convergence of order O(1/k) could be established for SAM. The rate of convergence
in (2) is even slightly faster than the one established for the more general framework
in [14] (by a factor of 4). More importantly, however, as shown by Example 3.1 below,
the estimate (2) is actually tight, in the sense that for every k ∈ N0 there exists a
Hilbert space H and a nonexpansive operator T with some fixed point x∗ such that
the inequality (2) is not strict.

Estimate (2) refers to the step length λk := 1/(k + 2). The restriction to this choice
is motivated by problem (17) below in the proof based on semidefinite programming;
in numerical tests for small for dimensions k these coefficients provided a better worst-
case complexity than any other choice of coefficients.

Next, an elementary direct proof of Theorem 2.1 is given.
Direct proof based on a weighted sum
The iteration (1) with λk = 1/(k + 2) implies for 1 ≤ j ≤ k:

x j = 1
j+1 x0 + j

j+1T (x j−1) or T (x j−1) = j+1
j x j − 1

j x0. (3)
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On the convergence rate of the Halpern-iteration 407

By nonexpansiveness the following inequalities hold:

‖T (xk) − x∗‖2 ≤ ‖xk − x∗‖2 for x∗ ∈ Fix(T ) (4)

and

‖T (x j ) − T (x j−1)‖2 ≤ ‖x j − x j−1‖2 for j = 1, . . . , k. (5)

Below we reformulate the following weighted sum of (5):

0 ≥
k∑

j=1

j( j + 1)
(
‖T (x j ) − T (x j−1)‖2 − ‖x j − x j−1‖2

)
. (6)

Using the second relation in (3) the first terms in the summation (6) are

j( j + 1)‖T (x j ) − T (x j−1)‖2

= j( j + 1)‖x j − T (x j ) + 1

j
(x j − x0)‖2

= j( j + 1)‖x j − T (x j )‖2 + 2( j + 1)〈x j − T (x j ), x j − x0〉 + j+1
j ‖x j − x0‖2,

(7)

and using the first relation in (3) it follows for the second terms in (6)

− j( j + 1)‖x j − x j−1‖2
= − j( j + 1)‖ 1

j+1 (x0 − T (x j−1)) + T (x j−1) − x j−1‖2
= − j

j+1‖x0 − T (x j−1)‖2 − 2 j〈x0 − T (x j−1), T (x j−1) − x j−1〉
− j( j + 1)‖T (x j−1) − x j−1‖2. (8)

Observe [using again the second relation in (3)] that the first term in (8)

− j

j + 1
‖x0 − T (x j−1)‖2 = − j

j + 1
‖ j + 1

j
x0 − j + 1

j
x j‖2

= − j + 1

j
‖x0 − x j‖2 (9)

cancels the third term in (7). Summing up the second terms in (8) for j = 1, . . . , k
we shift the summation index,

−
k∑

j=1

2 j〈x0 − T (x j−1), T (x j−1) − x j−1〉=
k−1∑

j=0

2( j+1)〈x j − T (x j ), x0 − T (x j )〉,
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408 F. Lieder

so that summing up the second terms in (7) and in (8) for j = 1, . . . , k results in

2(k + 1)〈xk − T (xk), xk − x0〉

+2
k−1∑

j=1

( j + 1)〈x j − T (x j ), x j − T (x j )〉 + 2‖x0 − T (x0)‖2. (10)

Shifting again the index in the summation of the third terms in (8)

−
k∑

j=1

j( j + 1)‖x j−1 − T (x j−1)‖2 = −
k−1∑

j=0

( j + 1)( j + 2)‖x j − T (x j )‖2

and summing up the first terms in (7) and the third terms in (8) for j = 1, . . . , k gives

k(k + 1)‖xk − T (xk)‖2 − 2
k−1∑

j=1

( j + 1)‖x j − T (x j )‖2 − 2‖x0 − T (x0)‖2 (11)

where the sum in the middle cancels the sum in the middle of (10) and the terms
2‖x0 − T (x0)‖2 cancel as well. The only remaining terms are the first terms in (10)
and (11).

Thus, inserting (9), (10), and (11) in (6) leads to

0 ≥ k(k + 1)‖xk − T (xk)‖2 + 2(k + 1)〈xk − T (xk), xk − x0〉. (12)

Applying the Cauchy–Schwarz inequality to the second term in (12) leads to

1

2
‖xk − T (xk)‖ ≤ 1

k
‖xk − x0‖

which may be interesting in its own right. To prove the theorem, (12) is divided by
k + 1 and then (4) is added:

0 ≥ k‖xk − T (xk)‖2 + 2〈xk − T (xk), xk − x0〉 + ‖T (xk) − x∗‖2 − ‖xk − x∗‖2
= k+1

2 ‖xk − T (xk)‖2 − 2
k+1‖x0 − x∗‖2

+ 2

k + 1
‖x0 − x∗ − k + 1

2
(xk − T (xk))‖2. (13)

To see the last equation, the last two terms in (13) can be combined, and then a
straightforward but tedious multiplication of the terms a := xk −T (xk), b := xk − x0,
c := T (xk) − x∗, a + c = xk − x∗, and a + c − b = x0 − x∗ reveals the identity.

Omitting the last term in (13) one obtains

‖xk − T (xk)‖2 ≤
(

2
k+1

)2 ‖x0 − x∗‖2
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On the convergence rate of the Halpern-iteration 409

which proves the theorem when taking square roots on both sides. ��
The above proof is somewhat unintuitive as the choice of the weights with which

the inequalities (4) and (5) are added in (6) and (13) is far from obvious. In fact we
owe the suggestion of these weights to an extremely helpful anonymous referee, who
extracted it from a more complex construction in [15] which was also the basis for
the initial proof of this paper based on semidefinite programming. We state this proof
next since it offers a generalizable approach for analyzing fixed point iterations; it can
be modified to the KM iteration, for example in the recent thesis [12]—though this
modification is quite technical. The proof based on semidefinite programming also led
to Example 3.1 below showing that the rate of convergence is tight.
Proof based on semidefinite programming Let x∗ ∈ Fix(T ). The Halpern-Iteration
was stated in the form (1) to comply with existing literature. For our proof however,
it is more convenient to consider the shifted sequence x̄1 := x0 and x̄k := xk−1 ∀k ∈
N
=0 := {1, 2, 3, . . . } and to show a shifted statement

1
2‖x̄k − T (x̄k)‖ ≤ ‖x̄1 − x∗‖

k
∀ k ∈ N
=0 (14)

Let us define g(x) := 1
2 (x − T (x)). It is well known that g is firmly nonexpansive.

For sake of completeness the argument is repeated here:

‖g(x) − g(y)‖2 − 〈g(x) − g(y), x − y〉
= ‖g(x) − g(y) − 1

2 (x − y)‖2 − 1
4‖x − y‖2

= 1
4‖T (x) − T (y)‖2 − 1

4‖x − y‖2 ≤ 0 ∀ x, y ∈ H .

Nonexpansiveness and the Cauchy–Schwarz inequality also imply ‖g(x) − g(y)‖ ≤
‖x− y‖∀x, y ∈ H . For k = 1 the statement (14) follows immediately since g(x∗) = 0
and therefore 1

2‖x̄1 − T (x̄1)‖ = ‖g(x̄1)‖ = ‖g(x̄1) − g(x̄∗)‖ ≤ ‖x̄1−x∗‖
1 .

For fixed k ≥ 2 we first consider the differences x̄ j − x̄1 for j ∈ {2, . . . , k}

x̄ j − x̄1 = x j−1 − x̄1
= λ j−2x0 + (1 − λ j−2)T (x j−2) − x̄1

= 1
j x0 +

(
1 − 1

j

)
T (x j−2) − x̄1

=
(
1
j − 1

)
x̄1 +

(
1 − 1

j

)
T (x̄ j−1)

=
(
1
j − 1

)
x̄1 +

(
1 − 1

j

)
(x̄ j−1 − 2g(x̄ j−1))

=
(
1 − 1

j

)
(x̄ j−1 − x̄1) − 2

(
1 − 1

j

)
g(x̄ j−1)

= j−1
j (x̄ j−1 − x̄1) − 2 j−1

j g(x̄ j−1)
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410 F. Lieder

which inductively leads to

x̄ j − x̄1 = −2
j−1∑

l=1

l
j g(x̄l).

Let us shorten the notation slightly and define gi := g(x̄i ), R := ‖x̄1 − x∗‖ ≥ 0, the
vector b = (〈gi , x̄1 − x∗〉)ki=1, the matrices A := (〈gi , g j 〉)ki, j=1 and

L := −2

⎛

⎜⎜⎜⎜⎜⎝

0 1
2

1
3 . . . 1

k
0 0 2

3 . . . 2
k

...
... 0

. . .
...

0 0 0 0 k−1
k

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
∈ R

k×k .

Let bT denote the transpose of b. Note that

(
R2 bT

b A

)
∈ R

(k+1)×(k+1)

is a Gramian matrix formed from x̄1 − x∗, g1, . . . , gk ∈ H and is therefore symmetric
and positive semidefinite. We proceed by expressing the inequalities from firm nonex-
pansiveness in terms of the Gram-Matrix. Since L often is of much lower dimension
than H , this is sometimes referred to as “kernel trick”. Keeping in mind that we can
rewrite the differences x̄ j − x̄1 = −2

∑ j−1
l=1

l
j gl for j ∈ {1, . . . , k}, we arrive at

AL = (〈gi , x̄ j − x̄1〉)ki, j=1.

Let e ∈ R
k denote the vector of all ones. Then

diag(AL)eT − AL = (〈gi , x̄i − x̄ j 〉)ki, j=1,

where diag(.) denotes the diagonal of its matrix argument, holds true. Hence

diag(AL)eT + e diag(AL)T − AL − LT A = (〈gi − g j , x̄i − x̄ j 〉)ki, j=1

and

beT + AL = (〈gi , x̄ j − x∗〉)ki, j=1,

diag(A)eT + e diag(A)T − 2A = (‖gi − g j‖2)ki, j=1.

The firm nonexpansiveness inequalities ‖gi −g j‖2 ≤ 〈gi −g j , x̄i − x̄ j 〉 are equivalent
to the component-wise inequality
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On the convergence rate of the Halpern-iteration 411

diag(A)eT + e diag(A)T − 2A ≤ diag(AL)eT + e diag(AL)T

−AL − LT A. (15)

Note that only k2−k
2 of these componentwise inequalities are non redundant. From

g∗ := g(x∗) = 0 we obtain another k inequalities, i.e. ‖gi‖2 ≤ 〈gi , x̄i − x∗〉, which
translate to

diag(A) ≤ b + diag(AL). (16)

Defining U := I − L , relations (15) and (16) can be shortened slightly to

diag(AU )eT + e diag(AU )T ≤ AU +UT A

and

diag(AU ) ≤ b.

Let ek ∈ R
k denote the k-th unit vector, Sn := {X ∈ R

n×n | X = XT } denote the
space of symmetric matrices and S

n+ := {X ∈ S
n |xT Xx ≥ 0 ∀x ∈ R

n} the convex
cone of positive semidefinite matrices. Consider the chain of inequalities

‖g(x̄k )‖2 = maximize
y0∈R,y1∈Rk ,Y2∈Sk

(Y2)kk |
(
y0 yT1
y1 Y2

)
∈ S

k+1+ , y0 ≤ R2, diag(Y2U ) ≤ y1

| diag(Y2U )eT + e diag(UT Y2)
T ≤ Y2U +UT Y2

| y0 = R2, y1 = b, Y2 = A

≤ maximize
y0∈R,y1∈Rk ,Y2=Y T

2 ∈Sk
(Y2)kk |

(
y0 yT1
y1 Y2

)
∈ S

k+1+ , y0 ≤ R2, diag(Y2U ) ≤ y1

| diag(Y2U )eT + e diag(UT Y2)
T ≤ Y2U +UT Y2

(17)

≤ minimize
ξ∈R+,X∈Sk∩Rk×k+

R2ξ |
(

ξ − 1
2 diag(X)T

− 1
2 diag(X) UF(X) + F(X)UT

)
−

(
0 0
0 eke

T
k

)
∈ S

k+1+ (18)

for

F(X) := Diag(Xe) + 1
2Diag(diag(X)) − X , (19)

where Diag(.) denotes the square diagonal matrix with its vector argument on the diag-
onal. The first equality follows from construction, the first inequality from relaxing,
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412 F. Lieder

and the second inequality from weak conic duality as detailed in Sect. 5. We conclude
the proof by showing feasibility of ξ̂ := 1

k2
> 0 and

X̂ := 1

k2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · 2 0 . . . . . . 0

1 · 2 0 2 · 3 0 . . .
...

0 2 · 3 . . .
. . .

. . .
...

...
. . .

. . .
. . . (k − 2)(k − 1) 0

0 . . . 0 (k − 2)(k − 1) 0 (k − 1)k
0 . . . 0 0 (k − 1)k 2k

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
k×k

for the last optimization problem (18). First note that X̂ = X̂ T is symmetric and
nonnegative. A short computation reveals, that the equality

UF(X̂) + F(X̂)UT = 2eke
T
k

holds true: Define the diagonal matrix D := 1
kDiag([1, . . . , k]T ) ∈ R

k×k , together
with the strict upper triangular matrix

P :=

⎛

⎜⎜⎜⎜⎝

0 1 . . . 1
. . .

. . .
...

. . . 1
0

⎞

⎟⎟⎟⎟⎠
∈ R

k×k (20)

and the bidiagonal matrix

B :=

⎛

⎜⎜⎜⎜⎝

0 1

1
. . .

. . .

. . .
. . . 1
1 0

⎞

⎟⎟⎟⎟⎠
∈ S

k .

The matrices U , X̂ and F(X̂) can now be expressed as

U = I + 2DPD−1, X̂ = DBD + 2

k
eke

T
k and

F(X̂) = 2D2 − eke
T
k − DBD.

(21)

Combining the equalities (21), Dek = ek and D−1ek = ek , yields

UF(X̂) = 2D2 − eke
T
k − DBD + 4DPD − 2DPeke

T
k − 2DPBD

= D(2I − eke
T
k − B + 4P − 2Peke

T
k − 2PB)D

(22)

123



On the convergence rate of the Halpern-iteration 413

and using (22) we compute

UF(X̂) + F(X̂)UT − 2eke
T
k

= D(4I − 2eke
T
k − 2B + 4P − 2Peke

T
k − 2PB + 4PT − 2eke

T
k PT − 2BPT − 2eke

T
k )D

= D(4I + 4P + 4PT
︸ ︷︷ ︸

=4eeT

−4eke
T
k − 2 Pek︸︷︷︸

e−ek

eTk − 2ek e
T
k PT

︸ ︷︷ ︸
eT −eTk

−2B − 2PB − 2BPT )D

= D(4eeT −2eeTk − 2eke
T − 2B − 2PB − 2BPT

︸ ︷︷ ︸
=−4eeT

)D

= 0,

which implies UF(X̂) + F(X̂)UT = 2ekeTk as we claimed above. Consequently

(
ξ̂ − 1

2diag(X̂)T

− 1
2diag(X̂) UF(X̂) + F(X̂)UT

)
−

(
0 0
0 ekeTk

)
=

(
1
k2

− 1
k e

T
k

− 1
k ek ekeTk

)
� 0

is positive semidefinite and as a result, ξ̂ and X̂ is feasible for (18). Hence

‖g(x̄k)‖2 ≤ R2ξ̂ = ‖x̄1 − x∗‖2
k2

,

which yields the desired result after taking the square root. ��
Remark 2.2 The matrix X̂ in the above proof carrying the weights j( j + 1) used in
(6) were obtained by solving (18) with YALMIP [11] in combination with the SDP
solver Sedumi [13] for small values of k. In order to provide a theoretical proof that the
points ξ̂ and X̂ above are not only feasible but actually optimal for (18) and to prove
tightness of the derived bound, we refer to Example 3.1 below, which was derived
from a, numerically obtained, low-rank optimal solution of (17). More precisely, after
numerically determining the optimal value of (18) a linear equation was added to (18)
requiring that (Y2)kk equals this value, and then the trace of Y2,2 was minimized with
the intention to find the optimal solution with minimum rank. This optimal solution
was then used to derive Example 3.1 below proving the tightness of (2). In fact for
any optimal solution of the SDP relaxation (17), there exists at least one Lipschitz
continuous operator T̃k : R

d → R
d for appropriately chosen d with some fixed

point x∗ such that the inequality in (18) is tight: This follows from appropriately
labeling the columns of the symmetric square root of such an optimal solution and
a Lipschitz extension argument. Specifically the Kirszbraun-Theorem [7] allows a
Lipschitz extension of an operator that is Lipschitz on a discrete set to the entire
space. For further details we refer to Section 4.2 of [12].

3 Tightness and choice of step lengths

Example 3.1 Weconsider the following one-dimensional real examplewith fixed point
x∗ = 0 and starting point x0 
= 0. Let k ∈ N be given. A nonexpansive mapping

123



414 F. Lieder

proving tightness of (2) can then be set up as follows: Let T : R → R be defined
via

T (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

x + 2R
k+1 if x ≤ − R

k+1

−x if − R
k+1 < x < R

k+1

x − 2R
k+1 if R

k+1 ≤ x

(23)

for some fixed k ∈ N and R := ‖x0 − x∗‖2 with x0 ∈ R and x∗ := 0. Note that T
satisfies T (x∗) = 0 = x∗ and is 1-Lipschitz continuous, i.e. nonexpansive, because it is
piece-wise linear, continuous and the derivative is bounded in norm by one (|T ′| ≤ 1)
whenever it exists. We will now show that applying the Halpern-Iteration results in an
equality in (2) for the k-th iterate, i.e.

‖ 1
2 (xk − T (xk))‖2 = ‖x0−x∗‖2

k+1

is satisfied. This means that the bound (2) can not be improved without making further
assumptions, as the operator above would otherwise pose a counterexample. For the
first k iterates of the Halpern-Iteration (1) we can obtain

x j = x0
(
1 − j

k+1

)

︸ ︷︷ ︸
≥ 1
k+1

for j ∈ 0, . . . , k

inductively: for x0 = 0 = x∗ there is nothing to prove. The case 0 < x0 = ‖x0 −
x∗‖2 = R follows by using the definition of T and considering for j ∈ {0, . . . , k − 1}
the iterates

x j+1 = x0
j+2 +

(
1 − 1

j+2

)
T ( x j︸︷︷︸

≥ x0
k+1= R

k+1

)

= x0
j+2 +

(
1 − 1

j+2

) (
x j − 2R

k+1

)

= x0
j+2 +

(
1 − 1

j+2

) (
x0

(
1 − j

k+1

)
− 2x0

k+1

)

= x0
(

1
j+2 +

(
1 − 1

j+2

) (
1 − j

k+1 − 2
k+1

))

= x0
(

1
j+2 + 1 − j+2

k+1 − 1
j+2 + 1

k+1

)

= x0
(
1 − j+1

k+1

)

︸ ︷︷ ︸
≥ 1
k+1

,

which imply, that

‖ 1
2 (xk − T (xk))‖2 = ‖ 1

2

(
x0

(
1 − k

k+1

)
−

(
x0

(
1 − k

k+1

)
− 2R

k+1

))
‖2
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= R
k+1 = ‖x0−x∗‖2

k+1

holds true. The case x0 < 0 follows from the operators point symmetry, i.e. T (−x) =
−T (x). This completes the proof of tightness. ��

While Example 3.1 shows that the bound (2) is best possible for the Halpern-
Iteration with λk = 1/(k + 2) , the rate of convergence could be improved for this
example, if the values λk were chosen appropriately less than 1/(k + 2). Let us illus-
trate next that this is not true in general, i.e. that choosing smaller values of λk does not
always provide faster convergence. Let H be aHilbert spacewith a countable orthonor-
mal Schauder basis {e j } j∈N and T be the linear operator defined by T (e j ) = e j+1 for
j ∈ N. Hence the unique fixed point is x∗ = 0. When choosing x0 = e1, then for any
choice of step lengths λ j ∈ [0, 1], the k-th iterate always lies in the convex hull of
e1, . . . , ek+1, and the choice of λ j minimizing the error ‖xk − x∗‖ is precisely the step
length λ j = 1/( j +2) for all 1 ≤ j ≤ k. This step length leads to a slightly faster rate
of convergence than (2) for this example, namely 1

2‖xk − T (xk)‖ ≤ ‖x0−x∗‖√
2(k+1)

. While

this step length does not minimize the residual 1
2‖xk − T (xk)‖ it shows that smaller

values of λ j such as λ j := ρ/( j + 2) for all j with ρ ∈ [0, 1) lead to larger residuals.
On the other hand larger values λ j > 1/( j + 2) for all j lead to larger residuals for
Example 3.1.

4 Conclusions

We have derived a new and tight complexity bound for the Halpern-Iteration with
coefficients chosen as λk = 1

k+2 . The proof based on semidefinite programming can
in principle be adapted for other choices of parameters and fixed point iterations, again
leading to tight complexity bounds. For example, for the Krasnoselski–Mann (KM)
iteration (see e.g. [1])

xk+1 := (1 − t)xk + t T (xk)

with some constant stepsize t ∈ [ 12 , 1] a proof can be found in [12] (Theorem 4.9),
where

L := −2

⎛

⎜⎜⎜⎜⎜⎝

0 t t . . . t
0 0 t . . . t
...

... 0
. . .

...

0 0 0 0 t
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
∈ R

k×k

is used to to define inequalities of the form (15). However, while in practice
the KM-Iteration with constant stepsize may often perform much better than the
Halpern-Iteration, its worst-case complexity is an order of magnitude worse—and
the convergence analysis based on semidefinite programming is considerably longer.
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5 Appendix, a technical duality result

While the duality used in (17) and (18) is thewell knownweak conic duality, the format
of the problems (17) and (18) is quite intricate. Here, the explicit derivation of the dual
problem therefore is derived in detail: Define the Euclidean spaceE := R×S

k ×S
k+1

and the closed convex coneK := R+ × (Sk ∩R
k×k+ )×S

k+1+ . We denote the trace inner
product A · B := trace(AB) for all symmetric matrices A, B. ThenK is self-dual with
respect to the canonical inner product 〈X ,Y 〉E := xT1 y1 + X2 · Y2 + X3 · Y3, which
we define for any

⎛

⎝
x1
X2
X3

⎞

⎠ ,

⎛

⎝
y1
Y2
Y3

⎞

⎠ ∈ E.

We proceed by restating problems (17) and (18) in standard form and exploit (weak)
conic duality. In fact, by adding slack variables S ∈ K, we can write (17) equivalently
as a conic optimization problem in dual standard form

maximize
Y∈Sn+1, S∈E

{B̃ · Y | A∗(Y ) + S = C̃, S ∈ K} (24)

for

C̃ :=
⎛

⎝
R2

0
0

⎞

⎠ ∈ E,

B̃ =
(
0 0
0 ekeTk

)
∈ S

k+1 (25)
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and the linear operator A∗ : Sn+1 → E

A∗
((

y0 yT1
y1 Y2

))

:=

⎛

⎜⎜⎝

y0
diag(Y2U )eT + e diag(UT Y2)

T − (Y2U +UT Y2) + Diag(diag(Y2U ) − y1)

−
(
y0 yT1
y1 Y2

)

⎞

⎟⎟⎠ . (26)

The constraint A∗(Y ) + S = C̃, S ∈ K is a direct translation of the constraints
in (17) except for the diagonal entries. Here it is used that the term diag(Y2U )eT +
e diag(UTY2)T −(Y2U +UTY2) has an all zero diagonal, which is why we can “place
” the constraints diag(Y2U ) − y1 ≤ 0 on the diagonal.

Recall that the optimal value of the conic optimization problem (24) in dual standard
form is upper boundedby the optimal value of the conic optimization in primal standard
form

minimize
X∈E {〈C̃, X̃〉E | A(X̃) = B̃, X̃ ∈ E, X̃ ∈ K} (27)

where the linear operators A∗ : Sn+1 → E and A : E → S
n+1 are adjoint, i.e. A is

the unique operator that satisfies

〈A∗(Y ), X̃〉E = Y · A(X̃) (28)

for all Y ∈ S
n+1, X̃ ∈ E. The ”Y2-part” of the adjoint of the second component of

A∗ can be obtained from

(diag(Y2U )eT + e diag(UTY2)
T − (Y2U +UTY2) + Diag(diag(Y2U ))) · X1

= Y2 · (U (Diag(X1e) + 1
2Diag(diag(X1)) − X1︸ ︷︷ ︸
=F(X1)

)

+ (Diag(X1e) + 1
2Diag(diag(X1)) − X1︸ ︷︷ ︸
=F(X1)

)UT )

(29)

leading to the full description of A

A(

⎛

⎝
ξ

X1
X2

⎞

⎠) =
(

ξ − 1
2diag(X1)

T

− 1
2diag(X1) UF(X1) + F(X1)UT

)
− X2 (30)

where, as before F(X) = Diag(Xe) + 1
2Diag(diag(X)) − X . This shows that we can

rewrite (27) in the claimed form (18) by eliminating the (semidefinite) variable X2.
This establishes the inequality in (17) and (18). ��
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