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Abstract
Natural disasters are challenges for good governance. That conclusion follows from recent 
research investigating the effects of natural disasters on one important force hostile to good 
governance: public sector corruption. However, a specific analysis of droughts is so far 
neglected in the still-young relevant strand of the literature. The present paper fills that gap 
by analyzing the short- and long-term influence of droughts on public sector corruption 
within a unified panel estimation approach for 120 countries during the period 1985–2013. 
Relying on a meteorological drought measure, the Standardized Precipitation Index, we 
show that more severe drought exposure is followed by more corruption. The effect holds 
for subsamples of developing and developed countries. The robustness of the results is sup-
ported by a variety of stability tests. Furthermore, we provide initial evidence on the trans-
mission paths of drought-induced corruption, which differ depending on the countries’ 
level of development. Whereas droughts increase corruption risk in developing countries 
by triggering significantly larger aid inflows and less democratic accountability and trans-
parency, corruption in developed countries rises as a consequence of governmental drought 
relief payments.
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1  Introduction

Corruption—“the breaking of a rule by a bureaucrat (or an elected official) for private 
gain” (Banerjee et al. 2012)—requires at least two preconditions: willingness and opportu-
nity. Both preconditions are present in the case of natural disasters. Natural disasters may 
increase victims’ propensity to bribe public officials, as Hunt (2007) shows for Peruvian 
households.1 Furthermore, taxpayer-financed disaster relief payments represent monetary 
windfalls (e.g., Leeson and Sobel 2008) that give groups and individuals opportunities 
to compete for shares of them, most likely resulting in more rent-seeking behavior and 
corruption (Brollo et  al. 2013). In addition, natural disasters typically create emergency 
situations that generate a climate of non-accountability and moral hazard. “Crisis” enables 
bureaucrats and officials to engage in acts of corruption (Klitgaard 1988). Recent empiri-
cal research supplies evidence for the disaster-corruption relationship in the United States 
(Leeson and Sobel 2008), Vietnam (Nguyen 2017) and flood events in Bulgaria (Nikolova 
and Marinov 2017). The international analyses of Yamamura (2014), Escaleras and Reg-
ister (2016), and Rahman et al. (2017) provide additional confirmation of those results for 
many countries.

Droughts are underrepresented in the emerging strand of the relevant literature, although 
evidence exists that related research efforts could be fruitful. Acemoglu et al. (2018) pro-
vide a notable example illustrating how droughts challenge good governance, identifying 
a severe drought at the end of the nineteenth century as the critical juncture resulting in 
the rise of the Sicilian Mafia. Triggering social conflict between the socialist movement 
and landowners, that drought led to long-lasting negative impacts on state capacity in the 
affected region. Viewing corruption as a force antagonistic to good governance, anecdotal 
evidence of misused and distorted drought relief payments exists worldwide. In a histori-
cal survey of public drought policies in northeastern Brazil, Campos (2015) notes that the 
misuse of public resources has accompanied drought relief programs since the late eight-
eenth century. A prominent example of diverted disaster aid took place in 1974 during a 
severe drought in Mali. At that time, enormous sums of drought relief were misappropri-
ated to erect villas for the ruling elite, while nearly 300,000 nomads were left destitute 
(Hope 2016).

An important factor justifying an analysis of the effects of drought on corruption is the 
unique and complex characteristics of such hydrometeorological disasters. In particular, 
droughts differ from other natural disasters, such as floods, tropical cyclones and earth-
quakes, along three primary dimensions.

First, as droughts generally arise as rainfall deficiencies caused by natural climate vari-
ability (Wilhite 2000), they are not confined to specific areas such as floodplains, coastal 
regions, storm tracks or fault zones (Svoboda and Fuchs 2017). Although they typically 
occur in more arid locations (Seager et al. 2007; Dai 2011), they are prevalent throughout 
the world (Carrao et al. 2016). Consequently, droughts usually affect considerably wider 
geographical areas than other hazardous events, meaning that a drought-induced threat of 
corruption could span a broad region.

Second, the effects of drought related to water availability normally accumulate over a con-
siderable time span and may linger for long periods after precipitation returns to normal levels. 
The effects of drought thus contrast starkly with the typically sudden onset and relatively short 

1  The effect depends on entering household fixed effects in the estimation approach (Hunt 2007).
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duration of other hazard types (Wilhite et al. 2014). Therefore, its economic, social and envi-
ronmental impacts, and hence the disaster-related reasons for corruption, typically become 
more salient the longer a drought persists.

Third, droughts mainly cause non-structural damage, e.g., crop or forest failures. Compared 
with structural damage such as destroyed buildings or communication lines, the negative 
effects of a drought are far more difficult to survey and quantify (Wilhite 2000). Therefore, it 
is much more difficult to monitor their alleviation, creating considerable opportunities for cor-
rupt activities.

Another aspect substantiating the relationship between droughts and corruption is that fact 
that the water sector is prone to corruption to begin with, especially in situations of scarce 
water availability (TPI 2008). Droughts raise the risk of corruption, particularly in the oper-
ation of channel irrigation systems. Irrigation research often informs technical solutions for 
irrigation systems, which are characterized by numerous manipulation possibilities under the 
guise of precise water allocation. However, such manipulation options translate into corrup-
tion opportunities (Rijsberman 2008; Wade 1982) Officials responsible for operating the gates 
may be bribed or request side payments for additional or prolonged opening, especially when 
farmers experience drought-related water shortages (Rijsberman 2008).

For some regions of the world, the threat of drought-induced corruption is expected to 
become more prevalent in the future owing to changing climatic conditions. Although recent 
assessments of projected droughts differ substantially depending on the drought definition 
applied and the projection model, some consensus exists that drought duration and intensity 
tend to increase in southern Africa, central and southern Europe including the Mediterranean 
region, central North America, Central America and Mexico, and northeastern Brazil (Senevi-
ratne et al. 2012).

Against that background, we investigate whether droughts influence public sector corrup-
tion within a unified estimation approach on an unbalanced panel of 120 countries from 1985 
to 2013. To analyze potential long-term consequences, we estimate the cumulative effects of 
droughts on corruption over long time horizons of up to 20 years. In order to avoid an over-
controlling problem (Dell et al. 2014), we estimate a two-way fixed-effects model with het-
eroscedasticity and autocorrelation (HAC)-corrected standard errors. Because droughts often 
extend over large geographic areas, we further correct our estimated standard errors for spatial 
autocorrelation. Our estimation results rely on the Standardized Precipitation Index (SPI), a 
truly exogenous drought index based on precipitation deficiencies. We show that high lev-
els of drought exposure are followed by corresponding increases in public sector corruption. 
The effect holds true for subsamples of both developing and developed countries, although 
the timing and intensity may vary. After conducting a variety of stability tests, we find initial 
evidence for possible transmission paths of drought-induced corruption.

The paper is organized as follows. The second section provides a review of the related lit-
erature. The third section explains the estimation strategy, and Sect. 4 describes the data used 
in our analysis. In Sect. 5, we present our estimation results and test their stability. In addi-
tion, we offer initial evidence on the transmission paths of drought-induced corruption. Lastly, 
Sect. 6 summarizes and concludes the paper.
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2 � Related literature

Empirical research on the effects of natural disasters on corruption started only recently.2 
Given a limited number of existing papers, we present each before drawing conclusions 
that shape the research efforts of the present study.

The seminal paper of Leeson and Sobel (2008) examines the corruption impact of nat-
ural disasters. They study whether relief payments dispersed by the Federal Emergency 
Management Agency (FEMA) following natural disasters from 1990 to 1999 increased 
corruption-related criminal convictions in US states. Their two-way fixed-effects regres-
sions show that an additional $100 relief payment per capita increased average corruption 
at the state level by just over 100% when considering its total effect during the 3 years after 
disbursement.

Nguyen (2017) asks whether natural disasters create “a window of opportunity for cor-
ruption.” He answers that question using survey data from 2002, 2004, 2006 and 2008 on 
27,050 rural Vietnamese households in 2984 communities.3 He finds that while natural 
disasters occurring in the 3 years prior to each survey reduced the incomes of official4 and 
non-official households equally, the same was not true for their expenditures. Whereas 
the consumption spending of non-official households was reduced significantly by natu-
ral disasters, official households exhibited almost no change in spending. That gap could 
not be explained by different coping strategies (e.g., remittances or migration) of the two 
household types; therefore, unreported income pointing to the existence of corruption was 
suspected.

Nikolova and Marinov (2017) concentrate on flooding in 227 Bulgarian municipalities 
caused by several torrential rainfall events from 2004 to 2005. The authors analyze the 
consequences of governmental disaster-related relief payments on local corruption. They 
find that spending “infringements”5 increase sizably in the wake of the flood-related trans-
fers initiated by the central Bulgarian government. To ensure exogeneity of the measure of 
locally distributed funds in their cross-sectional regression approach, the authors instru-
ment total flood-related assistance with a measure of high monthly precipitation.6

Yamamura (2014) conducts the first international study of the impact of natural disasters 
on corruption. Interpreting panel estimates for 84 countries from 1990 to 2010, the author 
finds that the 1- and 2-year lagged number of natural disasters, reported by the Emergency 
Database (EM-DAT), increases the national corruption level significantly, as measured by 
the corruption perception index of the International Country Risk Guide (ICRG). An addi-
tional analysis of floods, storms, earthquakes, volcanic eruptions and landslides delivers 
effects with varying coefficient signs and significance depending on disaster type and level 

3  Nguyen (2017) relies on data from the Vietnam Living Standards Survey (VLSS)—a survey implemented 
at the highest World Bank standards.
4  A household is classified as “official” if at least one household member works for the local government 
(Nguyen 2017).
5  Spending infringements are identified by the Bulgarian National Audit Agency (BNAA) and include (1) 
irregularities in bidding processes, (2) repair payments for undamaged buildings and (3) money paid for 
work not performed.
6  Nikolova and Marinov (2017) define flood events between 2004 and 2005 as months in which the per-
centage change in rainfall, relative to a monthly historical average, equals or exceeds 30%.

2  In a broader sense, research on the consequences of disaster-related corruption shares some similarities 
with the comprehensive literature on the effects of natural resource windfalls (e.g., Brollo et al. 2013) and 
aid payments (e.g., Knack 2001; Djankov et al. 2008) on corruption.



7Public Choice (2021) 189:3–29	

1 3

of economic development. Compared to estimation results for non-OECD [Organisation 
for Economic Co-operation and Development] countries, Yamamura (2014) finds a con-
siderably larger effect of natural disasters on corruption in OECD countries. The effect for 
floods in particular is sizable.

Escaleras and Register (2016) follow a similar approach, diverging from Yamamura 
(2014) by adopting a long-term perspective. Their panel tobit regression on a sample of 
75 countries from 1984 to 2009 reveals that the total number of natural disasters (floods, 
storms and earthquakes reported by EM-DAT) from three prior years (5, 10 or 25 years 
before) raises the level of corruption (ICRG) significantly. That result remains stable when 
the regression is repeated with Transparency International’s (TPI’s) corruption measure 
for the period 1996–2009. Escaleras and Register’s finding of a long-term disaster-related 
increase in corruption is robust in a disaggregated analysis of floods and storms, while the 
effects of earthquakes are insignificant.

Rahman et al. (2017) examine the impact of extreme precipitation events on the level 
of corruption (ICRG) in 130 countries during the period 1984–2009. Overall, they do not 
find a direct effect of their measure of extreme rainfall on corruption. However, when first 
explaining total flood-affected persons (the data were taken from the EM-DAT database) 
by extreme precipitation and then regressing corruption on the number of flood-affected 
individuals, the authors find a strong significant contemporary effect.

Our review of the related literature allows us to draw three conclusions for our own 
research design.

First, while four studies of floods find that they raise the level of corruption (Nikolova 
and Marinov 2017; Yamamura 2014; Escaleras and Register 2016; Rahman et al. 2017), 
somewhat surprisingly the case of droughts has up to now been neglected.

Second, five out of the six reviewed studies analyze only contemporary or short-term 
disaster-related corruption effects. The only exception in that respect is the analysis of 
Escaleras and Register (2016), which covers at least the three-year perspective. While 
focusing on the short term might be appropriate when studying sudden-onset disasters such 
as storms, long-term studies are more appropriate when analyzing the effects of slow-onset 
disasters such as droughts. Moreover, the long-run perspective is more relevant for the 
country’s later development.

Third, the use of truly exogenous measures of natural disaster occurrence and sever-
ity seems to be an important issue.7 Escaleras and Register (2016) explicitly refrain from 
using estimated damage or the total number of affected persons as disaster measures in 
favor of the less endogenous number of disasters. The argument behind doing so is that low 
levels of corruption (Anbarci et  al. 2005) and good institutions of governance (Raschky 
2008; Noy 2009) mitigate or even prevent natural hazards from becoming natural disas-
ters, by reducing the number of deaths, affected persons or economic damage. However, 
the number of disasters reported by EM-DAT may also be at least partly endogenous, as 
the criteria for entering the database rely on the number of deaths, affected persons or an 
announced state of emergency (CRED 2018).8 In addition, by simply counting the number 

7  Similar efforts can be observed in other strands of the disaster literature. For example, see Felbermayr 
and Gröschl (2014) and Berlemann and Wenzel (2018) for economic growth studies, as well as Smirnov 
et al. (2018) for disaster-related consequences for the survival of political leaders.
8  A disaster is entered in EM-DAT if one of the following criteria is fulfilled: (1) ten or more people 
reported killed, (2) 100 or more people reported affected, (3) declaration of a state of emergency or (4) call 
for international assistance (CRED 2018).
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of droughts, information on the severity of the recorded events is neglected. Therefore, 
both Nikolova and Marinov (2017) and Rahman et al. (2017) use truly exogenous precipi-
tation measures to instrument flood consequences.

3 � Estimation approach

In order to study whether and how droughts affect corruption, we apply a two-step estima-
tion approach. In the first step, we examine whether droughts have an impact on corrup-
tion. In the second step, we focus on uncovering the likely transmission channels.

3.1 � Impact of droughts on corruption

In the first step, we focus on the general effect of droughts on corruption. Earlier papers 
examining the corruption effects of natural disasters (Yamamura 2014; Escaleras and Reg-
ister 2016) refer to the literature studying the causes and determinants of corruption (Treis-
man 2000; Pellegrini and Gerlagh 2008). Typically, those studies explain the level of cor-
ruption with a set of standard control variables and add the number of natural disasters to 
the estimation equation. However, one might argue that the occurrence of natural disas-
ters should primarily affect changes in the corruption level.9 As an example, Knack (2001) 
employs the change in the corruption index as the dependent variable to assess the impact 
of foreign aid on corruption. That approach has two implications. First, invariant or slowly 
evolving determinants of corruption, e.g., roots of the existing legal system, colonial herit-
age, ethnic fractionalization or religious traditions (Treisman 2000; La Porta et al. 1999), 
are unlikely to be statistically significant (Knack 2001). Second, using the change in cor-
ruption as the dependent variable allows for a standard fixed-effects estimation, since the 
censored characteristic of the left-hand variable no longer is a concern. We follow that 
approach and employ the annual change in ICRG’s corruption index as dependent variable 
in our study.

Another important aspect of the estimation approach is the choice of independent vari-
ables. The estimation controls should be chosen in order to avoid the well documented 
“over-controlling problem”10 (Dell et  al. 2014), which arises when endogenous control 
variables are included in the estimation equation. For example, when employing growth 
in GDP per capita or population as controls in our regression approach (see, e.g., Knack 
2001), both might be endogenous to droughts (Berlemann and Wenzel 2016). The inclusion 
of those variables in the estimation equation likely will lead to downward-biased or insig-
nificant coefficients on the drought variable, because at least part of the drought’s effects 
on corruption are already captured by the coefficients on GDP per capita or population 
growth. Additional control variables likewise may be endogenous to disaster effects (e.g., 
democracy; see Rahman et  al. 2017). In order to capture the true net effect of drought-
induced corruption, the most reliable approach is to conduct a two-way fixed-effects panel 
estimation excluding possibly endogenous time-variant controls in our baseline analysis. 

10  Dell et  al. (2014) discuss the over-controlling problem in depth as it pertains to the climate-economy 
literature.

9  North (1990) includes natural disasters alongside wars, revolutions and conquests among the “sources of 
discontinuous institutional change.”
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However, following the proposal of Auffhammer et al. (2013), we enter annual standard-
ized temperature anomalies (STA)11 as an explanatory variable accounting for pure tem-
perature effects on corruption in the estimation equation. In stability tests, we add further 
standard control variables.

As discussed earlier, the estimation approach should allow for an evaluation of the long-
term effects of droughts. Therefore, we simultaneously include several lags of the drought 
measure in the estimation equation. Cumulating the estimated contemporaneous and 
lagged effects of a drought over the time horizon of interest allows us to measure the full 
impact a drought has on corruption.

Summing up, our estimation equation for the first step of our analysis reads

with � being country fixed effects, � being time fixed effects, D being the drought meas-
ure and T  being the temperature variable. The maximal number of years that drought (and 
temperature) can influence future corruption is denoted by L . We calculate the cumulative 
effect of a drought on the change in corruption as

The corresponding standard error for the cumulative coefficient is computed as

where w is a weighting vector.12 We calculate the variance–covariance matrix ( VAR ) cor-
recting for HAC13 (Newey and West 1987) as well as spatial correlation of the residual 
values14 (Conley 1999).

Yamamura (2014) and Escaleras and Register (2016) evaluate the corruption effects of 
natural disasters for both developing and developed countries and obtain differing results 
for those country groups. Yamamura (2014) finds the effects of natural disasters on cor-
ruption to be considerably larger in OECD countries than in non-OECD countries, while 
Escaleras and Register (2016) detect larger effects in their sample of developing coun-
tries. To study whether the relationship between droughts and the change in corruption 
depends on the level of economic development, we construct subsamples according to the 
World Development Indicators (WDI) income classifications.15 Low-, lower-middle- and 

(1)Ci,t − Ci,t−1 = �i + �t +

L
∑

l=0

(�l ⋅ Di,t−l) +

L
∑

l=0

(�l ⋅ Ti,t−l) + �i,t,

(2)�cum,L =

L
∑

l=0

�l.

(3)SEcum,Spatial−HAC =

√

∑

(wT × VARSpatial−HAC(�) ⋅ w),

11  The STA is calculated as the deviation in the annual average temperature from its long-term mean 
divided by its long-term standard deviation. Temperature data in degrees Celsius also are available in the 
CRU CY 3.22 data set.
12  We use equal weights.
13  Standard errors are corrected for autocorrelation up to 10 years.
14  We apply an adapted version of the Conley procedure, proposed by Fetzer (2015), correcting spatial cor-
relations up to a distance of 1000 km from the center of a country. Data on longitudes and latitudes of coun-
tries’ centers are taken from the Central Intelligence Agency’s World Factbook (CIA 2015).
15  The countries are grouped by their World Bank classification in the first year they appear in the World 
Bank data set. If classification changes occur within the first 3 years, the predominant classification in those 
years is used.
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upper-middle-income countries are pooled together to the first subsample of 92 developing 
countries, while high-income countries comprise the second subsample of 28 developed 
countries. We then estimate the empirical model described earlier for these subsamples.

Subsequently, we conduct a variety of stability tests to investigate the robustness of our 
findings. Details on the tests are presented in Sect. 5.

3.2 � Transmission channels

The second step of our estimation strategy aims at revealing possible transmission chan-
nels. To this end, we derive a macroeconomically testable transmission hypothesis from 
Klitgaard’s (1988) corruption formula

Droughts likely influence the first two determinants of corruption risk: monopoly and 
discretion. In particular, they may increase aid inflows or encourage the local government 
to finance disaster relief payments (Shughart 2011). Public officials are actively involved in 
the targeting and distribution of such funds, which is often characterized by monopolistic 
supply structures and discretionary power of individuals (Ewins et al. 2006). Furthermore, 
accountability and transparency of public agencies may be reduced owing to a drought, as 
governments are likely to become more autocratic in the aftermath of disasters (Rahman 
et al. 2017), and a concurrent atmosphere of disorder may arise. Those considerations lead 
to the following transmission hypotheses.

3.2.1 � Transmission hypothesis

Droughts have an effect on four factors which determine the degree of corruption: they 
increase aid inflows and government spending, and they lower democratic accountability 
and create an atmosphere of disorder.

We test the hypothesis for each transmission factor ( TF),16 applying the two-way fixed-
effects estimation approach we adopted already in step 1 of our empirical analysis

We then calculate the cumulative effect of a drought on the specific transmission factor 
as

Each step of our baseline estimation strategy is conducted with the same data sample to 
ensure consistent and comparable results.

(4)Degree of Corruption = Monopoly + Discretion − Accountability

(5)TFi,t − TFi,t−1 = �i + �t +

L
∑

l=0

(�l ⋅ Di,t−l) +

L
∑

l=0

(�l ⋅ Ti,t−l) + �i,t.

(6)�cum,L =

L
∑

l=0

�l.

16  Because transmission through “received aid” is not characterized by time persistence like the level of 
corruption or the level of democratic accountability, as an exception to Eq. 5, we enter the level instead of 
the difference in received aid as the dependent variable.
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4 � Data

In the following, we explain the data we employed in our empirical analysis. Basically, we 
need data on droughts, corruption indicators and additionally macroeconomic data.

4.1 � Drought data

In order to rely on a truly exogenous measure characterizing the occurrence and severity 
of droughts, we utilize an index based on meteorological data. In general, drought indices 
are quantitative measures describing droughts by assimilating information on precipitation 
(or, if appropriate, other variables) into a single numerical value (Zargar et al. 2011). For 
our study, an index with global coverage and international comparability is required. Both 
items are fulfilled by the SPI, developed by McKee et al. (1993). First, the computation of 
the SPI is based solely on globally available precipitation information from several rainfall 
data sets. We base our study on monthly area-weighted17 country means of precipitation. 
The data are available for the period 1901–2013 from one of the world’s most prominent 
sources, the CRU CY 3.22 data set published by the Climate Research Unit of the Univer-
sity of East Anglia (Harris and Jones 2014).18 Second, the calculation of the SPI ensures 
comparability across different locations and climate zones, as it transforms the distribution 
of each precipitation record into a standard normal distribution with a mean of zero. There-
fore, negative values of the SPI indicate relatively dry periods, while positive values point 
to excessively wet periods. An SPI value can be interpreted as the number of standard devi-
ations by which precipitation diverges from its normalized average (Zargar et al. 2011).

In our application, we calculate the SPI over the preceding 12 months. We opted for that 
time horizon to account for long-term precipitation patterns related to river stream flows 
as well as reservoir and groundwater levels, both of which are important factors in water-
dependent production and irrigation systems.

Our drought measure follows the drought definition developed by McKee et al. (1993), 
which defines drought as “a period in which the [monthly] SPI is continuously negative, 
and the SPI reaches a value of −1.0 or less.” In order to calculate our drought measure, 
which we refer to as “Drought SPI” in the following, we first check whether each sample 
month qualifies as belonging to a drought according to McKee et al.’s definition. We cal-
culate the modulus of the annual sum of all 12-month SPI values being part of drought for 
each country. The SPI’s values for all months that do not qualify as drought are set to zero. 
Compared to the number of droughts recorded by EM-DAT, our Drought SPI captures not 
only the frequency but also the severity of droughts and is exogenous to the corruption 
level and the institutional conditions of the sample countries.

Figure  1 maps the mean of the Drought SPI for all analyzed countries from 1965 to 
2013. As we enter the drought measure with up to 20 lags in our estimation approach, the 

17  In order to construct internationally comparable data, either area weights or population weights are used. 
Our study relies on the former, as agriculture is likely a major sector in which drought-induced corruption 
takes place.
18  The CRU CY 3.22 precipitation time series is derived from the CRU Time Series (TS) gridded data set, 
which collects meteorological station observations covering the Earth’s land surface (except for Antarctica) 
to obtain 0.5-degree latitude–longitude grid cell data. For more details on the series, see Harris and Jones 
(2014).
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sample comprises all years in the baseline estimations.19 The color categories refer to eight 
quartiles of the Drought SPI’s mean. Countries with high Drought SPI means are located in 
Africa and in the equatorial regions.

4.2 � Corruption data

Measuring corruption is a rather challenging task (Banerjee et al. 2012). The very nature of 
the corruption phenomenon, being illicit and secretive, necessitates great effort to conceal 
it rather than affording the opportunity to quantify it accurately. Therefore, most attempts 
to deliver consistent measures of corruption across countries rely on the perceptions of 
individuals or experts. Although subjective measures have their limitations, they are the 
most viable tools for cross-country analysis (Banerjee et al. 2012).

We rely on data from the ICRG rating, published by the PRS Group , to assess corrup-
tion within the political system (ICRG 2017). The ICRG’s corruption measure is based 
on experts’ perceptions of different forms of corruption, among them special payments, 
bribes, nepotism and patronage. The data are available for a comparably broad sample of 
140 countries over the period 1984–2016. The original scoring of the ICRG index ranges 
from 0 (indicating the highest corruption risk) to 6 (lowest possible risk).20 To simplify the 
interpretation of the estimation results, we invert the scale in the subsequent analysis, with 
0 denoting low and 6 high corruption risk.

Based on a comparison of the average corruption level of all 120 sample countries from 
1984 to 2013, North America and most parts of Europe are characterized by low corrup-
tion. Canada, Denmark and Finland show the lowest average levels of corruption (0.03, 
0.22 and 0.31 index points, respectively). In contrast, countries such as Armenia, Azerbai-
jan and Bangladesh exhibit average corruption levels of 5.33, 4.71 and 5.33, respectively.

However, a different picture emerges when we evaluate the development of corrup-
tion over time. Figure 2 shows the average annual change in the ICRG corruption index 
from 1985 to 201321 for all sample countries. Some countries, such as Bangladesh and 
Chile, reduced their corruption levels, whereas the United States and European countries 
(including France, Italy and the United Kingdom) experienced increasing levels. In addi-
tion, Fig. 2 points to the considerable rise of corruption in most of the former Warsaw Pact 
states.

4.3 � Other institutional and macroeconomic data

Testing our transmission hypotheses requires appropriate measures of the candidate trans-
mission factors affecting the determinants of corruption. Global data sources for drought 
relief in the form of foreign aid or as government spending are unavailable. Therefore, we 
approximate the variables of interest with more general measures.22 Specifically, we enter 

19  ICRG data for computing changes are not available prior to 1985; however, as the drought measure 
enters the estimation equation with up to a 20-year lag, the drought data in our sample contain observations 
from 1965 on.
20  Theoretically, every value within the two bounds can be achieved (not only integers), which allows us to 
handle the measure as a continuous variable.
21  Annual changes can be calculated the first time for the year 1985.
22  The limited global availability of appropriate data emphasizes the need for microeconomic or regional 
analyses to shed further light on the transmission channels of drought-induced corruption.
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(i) received per capita net official development assistance and official aid to approximate 
foreign drought aid (WDI 2019) and (ii) the change in the share of government consump-
tion (WDI 2016) to account for governmental drought relief payments, although admit-
tedly drought relief constitutes only a small portion of those two variables. We measure 
the extent to which droughts affect the accountability and transparency of public officials’ 
behavior by means of three ICRG indices: political risk associated with (1) democratic 
accountability, (2) law and order and (3) internal conflict. Table 1 summarizes the meas-
ures and data sources for the transmission channels examined.

To conduct our stability tests, we enter additional climatic and macroeconomic data. We 
discuss the empirical measures in Subsection 5.2. A summary of all data sources and sum-
mary statistics can be found in “Appendices 1 and 2”.

Considering all necessary climatic, institutional and macroeconomic data, we end up 
with an unbalanced panel of 120 countries for the period 1985–2013 in our baseline esti-
mations.23 Because the climate variables are included in the estimation equation with up to 
20 lags, our sample comprises observations of climatic measures from 1965 on.

Fig. 1   Country mean of Drought SPI (1965–2013), eight quantiles; data source: CRU CY 3.22

23  However, when estimating our baseline regressions with all 136 countries for which we have ICRG and 
climate data, the results remain nearly unchanged. The results are available from the author upon request.
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5 � Estimation results

In this section, we present the results of estimating the two-way fixed-effects model. Unit 
root tests indicate that the left-hand variables, drought measures and other control vari-
ables are stationary.24 Thus, the results presented do not suffer from spurious regression 
problems.

Instead of reporting the full estimation results for every model, we offer a graphical 
representation of the estimated cumulative coefficients of the Drought SPI and the cor-
responding 90% confidence intervals (based on HAC standard errors).25 Coefficients dif-
fering significantly from zero at the 90% confidence level are marked in color, whereas 
insignificant coefficients are shown in gray. The graphs depict the standardized cumulative 
coefficients of the drought measure for up to 20 lags.

5.1 � Baseline results

5.1.1 � Full sample and economic development subsamples

The starting point for our analysis is how the Drought SPI affects the change in corruption 
for the full sample of 120 countries. The overall positive signs of the estimated cumula-
tive coefficients in the upper part of Fig. 3 indicate that corruption increases with a rising 
Drought SPI. In the short term, the cumulative coefficients are not significantly different 

Fig. 2   Country averages of corruption change (1985–2013); eight quantiles; data source: ICRG (2017)

24  The results of the unit root tests are reported in “Appendix 3”.
25  Graphical representations of the stability test results are available from the author upon request.
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from zero at conventional levels of significance. However, in the medium and long run, 
droughts have a significant impact on corruption. Cumulating the effects of the Drought 
SPI over four or more years leads to a significant increase in corruption in the full sample. 
The standardized cumulative coefficient at 20 lags of the Drought SPI amounts to 0.101. 
Thus, after 20 years, a one-standard-deviation increase in the drought measure results in a 
0.101 × 0.345 = 0.035-point larger drought-related increase in the ICRG corruption index. 
Because the mean change in corruption in our sample is 0.024, the effect is sizable.

The sample countries are characterized by markedly different levels of development; 
therefore, we ask whether the detected effect of droughts on the increase in corruption dif-
fers depending on a country’s level of development. The middle and lower parts of Fig. 3 
display the estimation results for the developing and developed subsamples, respectively. 
Both subsamples show a significant, positive effect of the Drought SPI on corruption, yet 
with different timings and intensities. Within the developing subsample, the change in cor-
ruption is significantly larger in response to the cumulative effect of four up to ten as well 
as 14 and 15 lags of our drought measure. However, the corruption-increasing effect of 
severely drought-prone years becomes insignificant in the long term. In the developed-
country subsample, larger Drought SPI values increase corruption in the medium and the 
long term. The cumulative coefficients of six up to 17 lags of our drought measure are 
significantly different from zero at the 10% level. The effects of drought on corruption in 
developed countries are comparatively large. The standardized cumulative coefficient at 14 
lags of the Drought SPI is 0.342, indicating a 0.118-point larger change in corruption from 
a one-standard-deviation rise in the drought measure. That large effect in developed coun-
tries does not come as a surprise, as corruption is expected to rise more with lower initial 
levels of corruption (Knack 2001; Savoia and Sen 2016). Another explanation for the dif-
ference in timing and size of drought impacts in the two subsamples is that developed coun-
tries typically possess well-established and reliable water resource management systems 
(Grey and Sadoff 2007). Therefore, developed countries are comparably better equipped 

Fig. 3   Cumulative effects of Drought SPI on corruption change; full, developing and developed subsam-
ples; point estimator and 90% confidence interval (1985–2013)
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to mitigate and overcome water supply shocks in the short term, while drought impacts 
in developing countries might be more severe. At the same time, corruption in developed 
countries seems to become more established in the medium term but with greater persis-
tence and intensity. That effect could be triggered by drought relief payments, which may 
be more readily available and also more generous in developed countries. We shed some 
further light on the issue in the analysis of transmission channels, later in this section.

5.2 � Stability tests

We conduct a variety of stability tests to investigate the robustness of our findings: we enter 
standard control variables in our baseline estimations and vary the applied (1) corruption 
measure, (2) drought measure and (3) country sample.

Although we refrained from entering standard control variables in our baseline esti-
mations to avoid the over-controlling problem, one might be interested in the results we 
find when considering common control variables. As a first stability test, we control for 
the initial level of ICRG corruption risk (ICRG 2017) as well as the growth rates of GDP 
per capita and population, as proposed by Knack (2001). Furthermore, we include natural 
resource rents as shares of GDP and net official development assistance and official aid 
received26 (WDI 2019) in our estimation equation to address the “resource curse” (Brollo 
et al. 2013) and the “aid curse” (Djankov et al. 2008) scenarios. Both “curses” raise the 
prevalence of corrupt behavior by opening manifold opportunities for rent-seeking behav-
ior (Brollo et al. 2013; Djankov et al. 2008; Knack 2001). To control for common factors 
lowering the risk of corruption, we also add the change in the share of the Protestant popu-
lation taken from the Association of Religion Data Archives (ARDA) (ARDA 2018), as 
well as changes in ICRG measures of democratic accountability and law and order (Aidt 
2011; ICRG 2017). To account for government size and government spending (Dimant and 
Tosato 2017), we control for the change in government consumption (WDI 2016). In addi-
tion, we control for internal conflicts and enter the change in the ICRG internal conflict 
risk index (ICRG 2017) in our estimation equation. All control variables enter our estima-
tion equation with a 1-year lag. Including the previous year’s level of corruption—which is 
most likely influenced by lags of the Drought SPI of the preceding two or more years—and 
other potentially endogenous control variables in the estimation equation should lead to 
less pronounced and significant effects of the drought measure on corruption. In fact, we 
find such an effect in the medium term in both the full sample and the developed subsam-
ple. In our estimations with control variables, corruption-increasing effects of the Drought 
SPI remain significant only over extended time horizons of 12 years or more.

As a second stability test, we ask whether our baseline results are robust to a different 
measure of public sector corruption and a considerably longer estimation period. Owing 
to its comprehensive sample and comparability over time, the ICRG corruption index is a 
standard measure of public sector corruption in empirical studies based on panel estima-
tions.27 All international studies of disaster-induced corruption presented in Sect. 2 rely on 
that measure (Yamamura 2014; Escaleras and Register 2016; Rahman et al. 2017). How-
ever, the recent Varieties of Democracy (V-Dem) initiative provides a large database of 

26  Most developed countries do not receive official development assistance. Therefore, we replace missing 
values for these countries with zero when conducting the stability test to avoid a sample reduction.
27  The well-known Corruption Perception Index of Transparency International (TPI) is not appropriate for 
time series analyses prior to 2012 (TPI 2017).
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social science indicators with worldwide coverage starting as early as 1900. The database 
also contains an index of public sector corruption (McMann et al. 2016).28 We first esti-
mate the effect of the Drought SPI on the change in V-Dem public sector corruption for the 
120 countries in our baseline sample from 1901 to 2013. We find positive cumulative coef-
ficients for the Drought SPI particularly in the full sample and the developing subsample; 
however, none are different from zero at conventional levels of significance. That finding 
might be explained by the possibility that the relevant transmission channels on which our 
baseline results rest are not stable over more than a century. We therefore repeat the estima-
tions for the period 1950–2013, thus restricting the sample to the likely more homogeneous 
period after World War II. The results generally confirm the evidence of drought-induced 
increases in public sector corruption. In particular, the findings for the developing coun-
tries differ only marginally from our baseline results. In the developed country subsample, 
the positive cumulative coefficients on the Drought SPI are significantly different from zero 
in the long term, when cumulating the effects of 12 and more lags of the drought measure.

Furthermore, we consider two different variations of our drought measure. First, we 
ask whether and how our estimation results change when using the number of droughts 
reported in EM-DAT to measure the occurrence of droughts (CRED 2018).29 While that 
measure is problematic, as discussed earlier, comparable studies analyzing the effects of 
natural disasters on corruption typically rely on the number of disasters reported in EM-
DAT (Yamamura 2014; Escaleras and Register 2016). When estimating with the EM-DAT 
drought numbers, the results for the full sample and the developing subsample do not differ 
markedly. In both samples, higher drought exposure leads to increased corruption in the 
medium term. Positive significant effects of droughts on corruption change endure over 
very extended time horizons. However, the results for the developed country subsample 
clearly differ; here we find that additional droughts lead to a significant reduction in cor-
ruption in the short and medium term and have no long-term effects. The first explanation 
for the differences is the potential endogeneity of the EM-DAT drought number. An identi-
cal meteorological drought might fulfill EM-DAT’s admission criteria thresholds, depend-
ing on deaths, the total number of affected persons, a declaration of a state of emergency 
or a call for international assistance, far earlier in the more vulnerable developing countries 
than in developed countries. Therefore, the EM-DAT drought number might over-report 
droughts in developing countries. Second, the number of droughts in developing countries 
might be overstated in order to obtain international aid (Albala-Bertrand 1993; Skidmore 
and Toya 2002). Third, it should be noted that the EM-DAT drought numbers do not pro-
vide information about the severity of the reported droughts. The lack of such information 
may help to explain the significant negative cumulative coefficients we find in the devel-
oped subsample.

As a second variation of our drought measure, we employ an extended drought index 
considering potential evapotranspiration (PET) being a further determinant of drought 
severity. Based on the SPI relied on herein, Vicente-Serrano et  al. (2010) developed the 

28  Although V-Dem’s public sector corruption index comprises interval data (McMann et al. 2016), asymp-
totic considerations associated with the large data sample allow for incorporating it into our two-way fixed-
effects regression approach.
29  We normalize the reported number of droughts for the different sizes of countries by dividing it by the 
land areas of the countries (in million sq. km) derived from the WDI database (WDI 2016).
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Standardized Precipitation Evapotranspiration Index (SPEI). It also incorporates water 
demand associated with temperature increases, which is a particularly relevant feature for 
studying future drought severity in an environment marked by climate change (Vicente-
Serrano et al. 2010). We calculate the Drought SPEI analogously to the Drought SPI meas-
ure described in Sect. 4 and repeat all estimations. The PET data were taken from the CRU 
CY 3.22 data set (Harris and Jones 2014).30 The estimation results largely remain stable 
when the Drought SPEI is adopted as a measure of drought occurrence and severity in the 
estimation approach.31 However, we see less significant long-term effects on corruption in 
both the full sample and the developing subsample.

Finally, we vary the country sample our estimations rely on. In the post-Cold War era, 
former Warsaw Pact states32 experienced deep institutional transformations (Savoia and 
Sen 2016), affecting the perceived corruption in that country group. After a sharp decline 
in the average change in corruption during the early 1990s, corruption increased dramati-
cally until 2002. Recognizing the variations in corruption in the former Warsaw Pact states 
raises the question of whether our estimation results are driven by developments in those 
countries. Therefore, we re-estimated all models excluding the 16 former Warsaw Pact 
states from our sample. Evidence of drought-induced corruption increased as a result of the 
sample change, especially in the short term for the developing country subsample.

5.3 � Transmission channels

After presenting robust evidence for drought-induced corruption, this subsection delivers 
some insights into possible transmission channels.33 According to our transmission hypoth-
eses stated in Sect. 3, we ask whether droughts affect transmission factors influencing the 
determinants of corruption risk.

5.3.1 � Monopoly and discretion

Droughts may affect the determinants of corruption related to monopoly and governmental 
discretion in providing drought relief, which may be available in the form of foreign aid or 
domestic public spending. That transmission channel plays a central role in most disaster-
corruption studies (Leeson and Sobel 2008; Nikolova and Marinov 2017). However, a sep-
arate analysis is advisable because of two characteristics of drought that differ from those 
of other natural disasters. First, the slow onset of droughts may allow for better preparation 
and planning of relief measures. That might lower the risk of corruption; however, at the 

30  PET values refer to the theoretical evaporative demand of the atmosphere calculated for a reference sur-
face.
31  It should be discussed whether it is appropriate to include Drought SPEI together with a temperature 
control in the estimation equation, since temperature is a main determinant of PET. However, when estimat-
ing without a temperature control, the results remain nearly unchanged. The results are available from the 
author upon request.
32  The former Warsaw Pact states include Armenia, Azerbaijan, Belarus, Bulgaria, Czech Republic, Esto-
nia, Hungary, Kazakhstan, Latvia, Lithuania, Poland, Republic of Moldova, Romania, Russian Federation, 
Slovakia and Ukraine.
33  In general, droughts may increase corruption through channels that are not amenable to macroeconomic 
analysis. Scarce water availability may lead directly to acts of corruption, e.g., when competing for irriga-
tion water (Wade 1982), which underscores the need for microeconomic analyses of drought-induced cor-
ruption.
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same time, droughts might offer time to develop efficient corruption schemes (Ewins et al. 
2006). Second, because droughts typically span longer time horizons, established corrup-
tion schemes are repeatable and defense mechanisms can be developed (Ewins et al. 2006).

Figure 4 shows that an increase in the Drought SPI significantly increases per capita 
development assistance and official aid received in the full and developing country sub-
sample after three and more lags. In the developed country subsample, we find no signifi-
cant influence of the Drought SPI on received aid, as external disaster aid should not be 
very relevant for developed countries.34

The results presented in Fig.  5 provide evidence that the second transmission factor, 
government spending, has an important influence in developed countries. In particular, we 
find that droughts lead to significant increases in government spending, especially in the 
short and medium terms in developed countries. We suggest that the effect is explained by 
taxpayer-financed drought relief payments, which typically are more generous and more 
readily available in developed countries.

5.3.2 � Accountability and transparency

Droughts may increase corruption by reducing the accountability and transparency of the 
public sector’s behavior. More autocratic governance—both during and in the aftermath 
of a drought—may ensure an efficient distribution of drought relief and avoid plunder and 
unrest in the disaster situation (Rahman et al. 2017).35

Figure 6 shows that a higher Drought SPI leads to significant short- and medium-term 
reductions in democratic accountability in the full sample and especially in the developing 
subsample.36 In the developed country subsample, we find no significant effect of drought 
exposure on democratic accountability.

Furthermore, we find that droughts lead to an atmosphere of disorder by significantly 
weakening law and order in a country.37 The results presented in Fig. 7 show that the effect 
is especially prevalent in the developing country subsample: the cumulative coefficients 
considering five or more lags of the Drought SPI are significantly different from zero at 
conventional levels of significance. In developed countries, we do not find any effects of 
droughts on law and order.

The risk of internal conflict may further contribute to an atmosphere of disorder. Fig-
ure 8 shows significant increases in the risk of internal conflict in the developing sub-
sample when cumulating the effects of 13 or more lags of the Drought SPI. Because the 
effect clearly starts later than the drought-induced corruption effect found in our base-
line estimations, internal conflicts do not seem to contribute to the atmosphere-of-dis-
order transmission factor. In developed countries, the risk of internal conflict declines 
significantly in the aftermath of a drought; that result might be explained by stronger 
social cohesion and solidarity in reaction to disasters in the developed subsample.

34  In our aid estimations, the developed country subsample consists of seven countries. No other developed 
countries report information on net official development assistance and official aid received.
35  Rahman et al. (2017) distinguish two opposing effects of floods on democracy: first, autocratic tenden-
cies are strengthened by governmental repression to avoid plunder and to manage the relief distribution 
efficiently; second, greater democracy following revolts caused by citizens’ dissatisfaction with disaster-
induced corruption.
36  A positive cumulative coefficient shows an increase in risk from less democratic accountability; we 
inverted the scale of the original ICRG democratic accountability measure.
37  A positive cumulative coefficient shows an increase in risk from weaker law and order; we again inverted 
the scale of the original ICRG law and order index.
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We conclude that droughts increase corruption risk in developing countries by trig-
gering significantly larger aid inflows, less democratic accountability and deteriorating 
law and order. In developed countries, corruption rises as a consequence of governmen-
tal drought relief payments.

Fig. 4   Cumulative effects of Drought SPI on received aid; full, developing and developed subsamples; 
point estimator and 90% confidence interval (1985–2013)

Fig. 5   Cumulative effects of Drought SPI on government consumption share change; full, developing and 
developed subsamples; point estimator and 90% confidence interval (1985–2013)
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6 � Conclusions

The present paper provides a study of short-, medium- and long-term effects of droughts on 
public sector corruption on the basis of a panel analysis of 120 countries over the period 
1985–2013. We rely on a truly exogenous measure of drought occurrence and severity, 

Fig. 6   Cumulative effects of Drought SPI on democratic accountability change; full, developing and devel-
oped subsamples; point estimator and 90% confidence interval (1985–2013)

Fig. 7   Cumulative effects of Drought SPI on law and order change; full, developing and developed sub-
samples; point estimator and 90% confidence interval (1985–2013)
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based on the Standardized Precipitation Index, and explicitly consider the over-control-
ling problem. Furthermore, we correct for spatial correlation of the regression residuals. 
Our estimation results for the full sample show that drought-prone countries experience 
more corruption in the medium and long terms. The effect holds for subsamples of devel-
oping and developed countries. In developing countries, a drought is followed by signifi-
cant increases in corruption, especially in the medium term, whereas developed countries 
experience stronger and more long-term corruption increases. We test the robustness of the 
results in a variety of stability tests. In addition, we find evidence of transmission channels 
of drought-induced corruption that clearly differ depending on a country’s level of develop-
ment. In the developing subsample, droughts increase corruption risk by significant larger 
aid inflows, less democratic accountability and weaker maintenance of law and order. 
Drought-induced corruption in the developed subsample is caused by more government 
spending, which we suggest can be explained by more generous disaster relief payments.

The results of our analysis should encourage governments and institutions to review 
best practices for drought management. Drought relief measures that concentrate on 
post-disaster assistance facilitate corrupt behavior, as they are often uncoordinated 
(Wilhite et al. 2014) and characterized by the institutional incapability of public catas-
trophe responses (Shughart 2011). Instead, more proactive and self-reliant strategies 
could help to prevent drought-induced corruption. Such measures—including drought 
monitoring and early warning systems, preparedness plans and individual risk manage-
ment—might mitigate or even avoid disastrous circumstances by increasing the nations’ 
coping capacities to manage drought hazards. Furthermore, those strategies avert exten-
sive post-impact relief windfalls provided by government and donor organizations 
(Sivakumar et al. 2014; Wilhite et al. 2014; Carrao et al. 2016, Shughart 2011).

Further research analyzing the transmission channels of drought-induced corruption 
based on subnational or micro-level data is warranted.

Fig. 8   Cumulative effects of Drought SPI on internal conflict change; full, developing and developed sub-
samples; point estimator and 90% confidence interval (1985–2013)
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Appendix 1

See Table 2.

Table 2   Variables and data sources

PPP purchasing power parity

Variable Description References

Corruption Assessment of corruption within the political system 
(inverted)

ICRG (2017)

Corruption (V-Dem) Public sector corruption index (v2x_pubcorr) V-Dem (McMann et al. 
2016)

Precipitation Area-weighted monthly mean of precipitation (in mm) CRU CY 3.22 (Harris 
and Jones 2014)

Potential evapotranspi-
ration

Area-weighted daily mean of potential evapotranspira-
tion (in mm)

CRU CY 3.22 (Harris 
and Jones 2014)

Temperature Area-weighted monthly mean of temperature (in degrees 
Celsius)

CRU CY 3.22 (Harris 
and Jones 2014)

Drought number Number of registered drought events (per million sq. 
km)

EM-DAT (CRED 2018)

Received aid Net official development assistance and official aid 
received (in constant 2015 US$)

WDI (2019)

Government consump-
tion

Share of government consumption at current PPPs WDI (2016)

Democratic account-
ability

Risk arising from responsivity of government to its 
people (inverted)

ICRG (2017)

Internal conflict Risk from internal conflicts (inverted, normalized 
between 0 and 6)

ICRG (2017)

Law and order Assessment of strength and impartiality of the legal sys-
tem and of popular observance of the law (inverted)

ICRG (2017)

GDP per capita GDP per capita (constant 2010 US$) WDI (2016)
Resource rents Total natural resources rents (% of GDP) WDI (2016)
Protestant % of Protestants ARDA (2018)
Population De facto total population WDI (2016)
Area Land area (sq. km) WDI (2016)
Latitude Latitude of country center point in degrees CIA (2015)
Longitude Longitude of country center point in degrees CIA (2015)

http://creativecommons.org/licenses/by/4.0/
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Appendix 2

See Table 3.

Appendix 3

See Table 4.

Table 3   Summary statistics

SPI Standardized Precipitation Index, SPEI Standardized Precipitation Evapotranspiration Index

Variable N Mean SD Min Max

Corruption 3375 2.926 1.3458 0 6
Corruption change 3255 0.0242 0.3451 −3.17 2.58
Corruption (V-Dem) 11666 0.4089 0.2946 0.005 0.974
Corruption change (V-Dem) 11,633 0.0003 0,0322 −0.624 0.562
Drought SPI 13,440 0.3525 0.5058 0 3.3045
Drought SPEI 13,440 0.3643 0.4876 0 2.7157
Drought number 6480 0.5019 5.2705 0 194.9318
Temperature 13,440 17.6870 8.6224 −7.4 29.8
Standardized temperature anomaly 13,440 0.0032 0.9973 −3.6713 4.5205
Received aid 2581 45.2772 53.1072 −33.2541 617.1832
Government consumption 3398 15.8780 5.8873 0 76.2221
Government consumption change 3369 −0.0384 2.1957 −38.5816 37.4729
Democratic accountability 3375 2.0737 1.6013 0 6
Democratic accountability change 3255 −0.0254 0.3915 −2.58 2.92
Internal conflict 3375 1.4967 1.1859 0 6
Internal conflict change 3255 −0.0190 0.3983 −2.98 2.02
Law and order 3375 2.2454 1.4488 0 6
Law and order change 3255 −0.0121 0.3282 −2.25 2.04
GDP per capita growth 3421 0.0179 0.0489 −0.5555 0.3054
Resource rents 3350 9.1946 13.1143 0 77.0545
Protestant 3579 10.6984 18.2072 0.0074 94.6532
Protestant change 3579 −0.0010 0.3961 −17.2150 1.8084
Population 3597 46,121,554.8 148,920,995 216,893 1,357,380,000
Population growth 3593 1.4907 1.4389 −5.8143 17.6248
Area 3600 949,606.111 2,267,446.63 670 16,389,950
Latitude 13,440 21.8952 25.4896 −41 65
Longitude 13,440 11.8734 58.7982 −102 174
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Table 4   Augmented Dickey–Fuller unit root test

Inverse logit t test statistic (L*). Calculated for demeaned variables
p values reported in parentheses

Variable lags(1) lags(2) lags(3)

Corruption −9.4639
(0.0000)

−6.1393
(0.0000)

−4.4695
(0.0000)

Corruption change −33.0325
(0.0000)

−20.0646
(0.0000)

−14.7289
(0.0000)

Corruption (V-Dem) 5.0424
(1.0000)

3.4062
(0.9996)

4.6271
(1.0000)

Corruption change (V-Dem) −104.0782
(0.0000)

−71.3791
(0.0000)

−55.7439
(0.0000)

Drought SPI −105.1917
(0.0000)

−64.9251
(0.0000)

−50.3655
(0.0000)

Drought SPEI −102.8083
(0.0000)

−60.6376
(0.0000)

−45.8201
(0.00000)

Drought number −58.0713
(0.0000)

−36.2133
(0.0000)

−58.0713
(0.0000)

Temperature −75.1919
(0.0000)

−56.9569
(0.0000)

−42.0380
(0.0000)

Standardized temperature anomaly −84.2453
(0.0000)

−60.3217
(0.0000)

−45.8728
(0.0000)

Received aid −11.7410
(0.0000)

−7.5048
(0.0000)

−4.4614
(0.0000)

Government consumption −6.8330
(0.0000)

−6.1335
(0.0000)

−5.9149
(0.0000)

Government consumption change −46.3261
(0.0000)

−28.2820
(0.0000)

−18.6207
(0.0000)

Democratic accountability −4.9473
(0.0000)

−2.5286
(0.0059)

−5.1764
(0.0000)

Democratic accountability change −34.5060
(0.0000)

−18.9787
(0.0000)

−17.8500
(0.0000)

Internal conflict −7.9622
(0.0000)

−3.9943
(0.0000)

−5.4098
(0.0000)

Internal conflict change −40.7990
(0.0000)

−22.4971
(0.0000)

−17.5284
(0.0000)

Law and order −7.3079
(0.0000)

−5.9449
(0.0000)

−5.0837
(0.0000)

Law and order change −35.7684
(0.0000)

−19.9676
(0.0000)

−193,603
(0.0000)

GDP per capita growth −24.8691
(0.0000)

−12.2141
(0.0000)

−9.5149
(0.0000)

Resource rents −8.3815
(0.0000)

−1.1885
(0.1175)

−3.1992
(0.0007)

Protestant 7.6977
(1.0000)

4.6719
(1.0000)

5.0117
(1.0000)

Protestant change −15.7618
(0.0000)

−9.3094
(0.0000)

−0.1015
(0.4596)

Population 0.1431
(0.5569)

3.2012
(0.9993)

−1.1860
(0.1181)

Population growth −14.5524
(0.0000)

−5.9485
(0.0000)

−5.6099
(0.0000)
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