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Abstract
In energy-oriented lot-sizing and scheduling research, it is often assumed that mini-
mizing energy costs automatically leads to an improvement of the ecological foot-
print of a company, i.e., lower carbon dioxide emissions. More precisely, a close 
to one (positive) correlation between energy costs and carbon dioxide emissions is 
often supposed. In this contribution, we show that this conjecture does not always 
hold true due to fluctuating carbon dioxide emissions over the whole day. There-
fore, we present a real-world business case study, combining lot-sizing and machine 
scheduling under time-varying electric energy costs and carbon dioxide emissions in 
a mixed integer optimization model; in this context, we also consider on-site power 
generation. The interplay between all these aspects is demonstrated via a numerical 
analysis.

Keywords Energy costs · Carbon dioxide emissions · Multi-objective production 
planning · Sustainable manufacturing

JEL Classification C610

1 Introduction

1.1  A first motivation

The concept of sustainability or sustainable development has a long history and has 
been widely discussed in different contexts, especially in social, political and sci-
entific contexts. According to Munda et al. (1994) one of the most widely accepted 
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definitions dates back to 1987 and stems from the World Commission on Environ-
ment. Sustainable Development is, thus, “the paths of human progress which meet 
the needs and aspirations of the present generation without compromising the ability 
of future generations to meet their needs”.

The scientific examination of sustainability is a complex challenge because espe-
cially the time aspect—the anticipation of the needs of future generations—leaves 
a lot of room for the interpretation of sustainable activity. It has been common to 
operationalize the term sustainability by connecting it with specific goals, depending 
on the context. In the production context, sustainability implies that the processes 
used to produce industrial products should be adjusted to reduce negative ecologi-
cal influences as well as energy consumption, thus conserving natural resources. 
Furthermore, production processes should be safe and harmless for all stakeholders, 
and also be considered as “economically healthy”, cf. Garetti and Taisch (2012), 
Haapala et al. (2013), Hong et al. (2012), Li et al. (2013).

If the reduction of energy consumption is seen as a primary goal, the operational-
ization of sustainability is often carried out via so-called energy efficiency, cf. Merk-
ert et  al. (2015), Giret et  al. (2015), Mansouri et  al. (2016). In general, efficiency 
describes an assessment criterion for the quality of a measure; here, the relationship 
between the output and input of an economic activity is often considered. According 
to Kleine and Ostmeyer (2018) and Fysikopoulos et al. (2014), the term energy effi-
ciency refers to the ratio of the achieved output—e.g., the quantity produced—to the 
energy consumption—e.g., the amount of energy required to obtain the respective 
result. However, due to practical issues like the unavailability of appropriate meas-
uring points, energy costs are often used instead of the actual energy consumption of 
particular processing steps.

One route to achieving a sustainable production in companies might be to 
improve energy efficiency, i.e., to increase the output or to reduce energy consump-
tion or energy costs, cf. Jaehn (2016), Merkert et al. (2015), Kästner and Kießling 
(2016). However, the present work questions the common implicit conclusion that 
an improvement in energy efficiency leads to more sustainability in production. 
Our business case of a medium-sized metalworking company will demonstrate that 
sustainability and energy efficiency are not necessarily the same or complementary 
goals. More precisely, from an operational point of view, we show that carbon diox-
ide emissions can increase when decreasing energy costs by resizing and reallocat-
ing operational activities over a production week. Hence, there can be a trade-off 
between both aims and prudent management should pay heed to these effects.

The theoretical basis for this observation is related to previous work in the field 
of energy-efficient production planning (EEPP). In the classification scheme of Biel 
and Glock (2016), the authors distinguish between energy-efficient lot sizing and 
energy-efficient scheduling of machines within the short-term EEPP. In this paper, a 
multi-criteria optimization model is presented that simultaneously takes both plan-
ning tasks into account by considering the minimization of energy costs as well 
as average carbon dioxide emissions. From a model-theoretical point of view, our 
study is, thus, closely related to the work of Wichmann et al. (2019), Johannes et al. 
(2018), and Masmoudi et al. (2016) because they also minimize energy-driven goals 
in the context of lot sizing and scheduling problems. From a pure energy-efficient 
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scheduling perspective, our work can be linked to Mouzon and Yildirim (2008), 
Moon et al. (2013), Rager et al. (2015) and Wang et al. (2015)—we also consider 
unrelated machines in parallel. However, the energy demand-side management 
of production processes (cf. Gahm et  al. (2016)) and the minimization of power 
peaks by shifting energy-intensive production steps to periods with lower electric-
ity prices (see e.g. Buscher et al. 2016; Keller et al. 2015; Bego et al. 2014; Rein-
hart et al. 2012) are well-known measures to rapidly improve energy efficiency. It is 
often assumed that a decrease in energy consumption and/or energy costs leads to a 
decline in carbon dioxide emissions (cf. Jaehn (2016)). However, our case study will 
show that this is not necessarily true; for a first hint regarding this issue see also Li 
et al. (2018). Therefore, our novel approach is to consider fluctuating average carbon 
dioxide emissions and electricity prices simultaneously in a lot sizing and schedul-
ing environment. The next section highlights the interplay between average carbon 
dioxide emissions and electricity prices more transparent.

1.2  Electricity market prices vs. average carbon dioxide emissions

As mentioned in the motivation, it is often assumed that minimizing energy-ori-
ented objective functions automatically leads to more sustainable production plans, 
decreasing, e.g., carbon dioxide emissions. However, assuming such a causal link 
is questionable, and this section provides evidence regarding this issue (also refer 
to Li et al. (2018)). The question “what are the electricity mix and the correspond-
ing average carbon dioxide emissions at a specific point in time?” might give a first 
orientation. To answer this question, we provide Fig. 1—the hourly electricity mix 
data for the work week dating from 24 Sep 2018 to 28 Sep 2018; refer to the energy 
charts (https ://www.energ y-chart s.de) of the Fraunhofer-Institut für Solare Ener-
giesysteme (ISE).

Fig. 1  Relative mix of electricity production in Germany

https://www.energy-charts.de
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As one can see, the electricity mix varies strongly from 1 h to another. In par-
ticular, the relative importance of solar and wind energy decreases during the night. 
Besides nuclear power, coal-fired power production becomes more attractive at 
night (off-peak, 10 pm–8 am) than ramping up gas-fired power plants due to lower 
marginal costs. This observation merely summarizes current economic facts of con-
ventional energy generation, i.e., merit order-based operational planning. Consider-
ing the ecological footprint, however, it is preferable to produce within the power 
peak periods (8 am–10 pm) because injection rates of renewables are highest then. 
To underpin this, we calculate the average CO2 emissions per hour, determining the 
weighted average emissions [kg/kWh] of power plants based on the given electricity 
mix data; for details regarding the data refer to the homepage of the German Fed-
eral Environmental Agency (https ://www.umwel tbund esamt .de). Figure 2 shows the 
results and the corresponding hourly spot prices [EUR/kWh] from the EPEX SPOT 
SE (European Power Exchange, https ://www.epexs pot.com). Here again, we present 
the weekly data from 24—28 Sep 2018. One important aspect of this week is that 
it does not include any one-off effects and, hence, might be a veritable proxy for a 
normal business week; this data will be used in our business case study because it 
corresponds to the production period in our business case.

Figure 2 supports our assumption, but it needs further explanation. As a first indi-
cator, one can take the period in the shaded area. Here, the market price is very low 
at night, but the average carbon dioxide emissions are considerably higher at night 
than during the day. In order to explore these relationships more systematically, we 
split the days into peak periods (8 am–10 pm) and off-peak periods (10 pm–8 am), 
thus determining the correlation between market prices and emissions. For the peak 
periods, we obtain a moderate positive correlation of 0.6038, and for the off-peaks, 
we obtain a positive correlation of only 0.3672. Obviously, there is no one-to-one 
relationship, i.e., these numbers might indicate the occurrence of a potential conflict 
between minimizing energy costs and carbon dioxide emissions; see also Li et al. 
(2018).

Fig. 2  Average emissions vs. electricity market prices

https://www.umweltbundesamt.de
https://www.epexspot.com
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To put it plainly, the electricity generation costs of gas power plants are higher 
than those of coal-fired power plants, yet for the emissions, the opposite is true; for 
a justification refer to Kost et al. (2018). Renewable energies are, of course, ’green-
est’ and marginal costs here are generally considered to be very low, but the respec-
tive energy output is determined by volatile exogenous factors. These facts imply 
that if the electricity price continues to increase, it will become more attractive to 
ramp up cleaner power generation plants such as gas power plants. In summary, the 
above figures might give a first hint that an energy-efficient production plan does 
not automatically imply a sustainable one and vice versa; this is in sharp contrast, 
e.g., to Gong et al. (2015). This conflict can be heightened further when additionally 
considering on-site power generation via alternative energy sources. In the long run, 
these statements will, obviously, become obsolete if renewable energies fully substi-
tute the remaining nuclear and conventional power plants. However, in the short run, 
our findings should be considered in a rationality-driven decision-making process. 
To make possible trade-offs more transparent in the context of short-term produc-
tion planning, we discuss such effects by means of an illustrative example and a real-
world business case in the next sections.

The remainder of the paper is organized as follows: first of all, the potential trade-
off between sustainability and energy efficiency has to be examined in-depth in 
Sect. 2. Next, we present our case study in Sect. 3, including the introduction of the 
optimization problem, the presentation of numerical results and a critical discussion. 
Case-related takeaways for the management of similar industrial companies are also 
presented in this section. Sect. 4 concludes this paper with a brief summary of our 
main results and a short outlook.

2  Short‑term production planning—the trade‑offs

In the previous section, we discussed the relationship between average carbon 
dioxide emissions and electricity market prices. However, this analysis has left 
one essential question unanswered: What does this mean for short-term produc-
tion planning? To answer this question and to make the indicated trade-offs more 
accessible, we present an illustrative example. Figure   3 shows an arbitrary path 
of machine states—off mode ( i = 0 ), changeover ( i = 1 ), ramp up ( i = 2 ), test run 
( i = 3 ), standby ( i = 4 ), and production ( i = 5)—and the corresponding energy 

i = 2
i = 4

i = 5

i = 4
i = 1

i = 3

i = 5

i = 0

t

kW
average
emissions

electricity
price

Fig. 3  Machine states, electricity prices and average emissions
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consumptions. Furthermore, the black curve shows an electricity price curve and 
the red one the associated average emissions. In this illustrative example, both pro-
duction states ( i = 5 ) take place at price peaks; in contrast to the second production 
state, the first production state seems to be favorable in terms of average emissions.

The next figure presents an energy price-driven rescheduling of the first pro-
duction state. This means, if we face a period with relatively high energy prices, 
we try to shift our production state to cheaper periods in order to minimize 
energy costs if possible. Therefore, we swapped the first production state with the 
standby state. Obviously, this shift leads to decreasing energy costs because now 
the production—the state with highest energy consumption—takes place at more 
moderate electricity prices; however, the average emissions reach their maximum 
in this period (Fig. 4).

Evidently, this trade-off might be acceptable if the management primarily 
focusses on profit-oriented targets. From an ecological footprint perspective, this 
shift appears to be unreasonable. Therefore, we provide Figure 5 to show the reverse 
picture. Now, as in the first figure, we produce in a very expensive period of time, 
yet at minimum average emissions.

The trade-off shown above is primarily demonstrated via shifting operations, i.e., 
it is based on scheduling production activities. Yet, what are the consequences if lot-
sizing comes into play? The answer is very straightforward: when considering only 
one of the aforementioned two perspectives, then the other component—either the 
production’s energy costs or average emissions—will further deteriorate due to the 
increased flexibility in the allocation of resources.

Accordingly, we provide the following two definitions to render more precisely 
the two—possibly competing—objectives:

i = 2
i = 4 i = 4

i = 5

i = 1

i = 3

i = 5

i = 0

t

kW
average
emissions

electricity
price

Fig. 4  Energy price-driven rescheduling

i = 2

i = 5

i = 4 i = 4
i = 1

i = 3

i = 5

i = 0

t

kW
average
emissions

electricity
price

Fig. 5  Emission-driven rescheduling
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Definition 1 A short-term production plan is called energy efficient if it is executed 
at minimal energy costs.

Definition 2 A short-term production plan is called operationally sustainable if it is 
executed at minimal carbon dioxide emissions.

Of course, measuring or determining carbon dioxide emissions is a complex issue 
in practice. Emissions, a strong fluctuation of power generation from renewable 
energies, and associated changes for the industry are interrelated problems which 
are reflected by the challenging electricity trading in Germany, cf. Graeber and 
Kleine (2013). Here, the structural composition of the German electricity market 
(the electricity mix), network stability, market price developments, and the influence 
of energy policy decisions are intensively researched topics, see e.g. Paraschiv et al. 
(2014) and Wozabal et al. (2016). Due to our operational focus, we take these mar-
ket situations as given and operate with historically observed energy market prices 
in order to show the potential of our novel multi-criteria optimization model. In 
doing so, we check for potential gains when entering into energy contracts involving 
real-time pricing without the background noise of any forecasting tool.

3  Energy costs vs. average CO
2
 emissions: a case study

3.1  The business case

In our operational planning case, we need to determine a production plan to finish a 
set of jobs on a set of machines considering multiple objectives. In order to obtain a 
final plan, it is important to fathom the impact of such goals from a technical, eco-
nomic, and ecological perspective. First of all, we give the main assumptions of the 
underlying production environment: we consider

– a single stage, multi-product production process,
– (four) unrelated machines in parallel,
– finite and constant production speed,
– deterministic (weekly) demand data,
– a finite planning horizon (one work week comprising three shifts).

In our business case, we are given a metal-working company which bends metal on 
unrelated machines in parallel; i.e., the machines are identical with respect to their 
processing times but heterogeneous regarding electric energy consumption. Further-
more, the machines do not deteriorate over time. The machines are working in three-
shift operation—eight hours per shift—and can be set up and operated over a period 
of five days. Additionally, the company produces seven product groups or jobs; but 
each machine can only handle a subset of all such groups. Notably, the setup process 
constitutes a special issue: to make the machines ready, one needs a full shift of 8 h.
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More precisely, we consider a set of jobs J = {1,… , J} , with J = 7 , which can 
be produced on a set of unrelated (parallel) machines M = {1,… ,M} , with M = 4 , 
in the periods t, where each t represents 1 h and t ∈ T = {0,… , T} with T = 120 ; 
where t = 0 determines the initialization state and t > 0 the actual planning horizon. 
Unrelated and parallel here means we suppose that each job j ∈ J  can be realized 
only on a subset Mj of all production units Mj ⊂ M = {1,… ,M} , considering 
the same processing time for all jobs regardless of the machine equipment; Table 1 
shows respective feasible assignments.

Additionally, there are three features which make our business case more 
sophisticated:

• Each machine m ∈ M can have different states i ∈ I = {0,… , I} , with I = 5 , 
and a transition into another state h only depends on the current state i. To illus-
trate this, in Fig. 6, we show a dependency graph consisting of the six machine 
states and the respective feasible transitions—directions are indicated by arrows. 
This means, if there is an arrow from node i to h, then a state transition is feasi-
ble and the edge weight � tran

ih
 equals 1; otherwise the weight is zero.

Table 1  Feasible assignments �asgn
jm

m = 1 m = 2 m = 3 m = 4

j = 1 1 1
j = 2 1 1 1
j = 3 1 1
j = 4 1 1
j = 5 1
j = 6 1 1
j = 7 1

off mode (i = 0)

ramp up (i = 2)

production (i = 5)

standby (i = 4)

test run (i = 3)

changeover (i = 1)

Fig. 6  Feasible states and transitions
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• Each machine m ∈ M consumes an individual amount of electric energy aelec
im

 
depending on its state, as illustrated by Figs. 3, 4, 5; here, the superscript elec is 
used to identify the resource that we deal with—electrical energy.

• Additionally, in line with our business case, we consider on-site generation of 
electric energy via a so-called cogeneration unit (CU). Such a unit converts gas 
into heat energy and electricity. Particularly interesting is the fact that in each 
period, we can sell the self-generated electricity or we can use it —or a combi-
nation of both. This CU can be operated at different energy generation modes: 
� = 1 relates to the off mode, and the conversion efficiency r

�
 of the states – 

� = 2 , � = 3 as well as � = 4 – varies between 0.31 and 0.36. This means r
�
 

converts the gas units (input of CU in cubic metre) to electricity units (output of 
CU in kilowatt hours). The states � ∈ L refer to the corresponding operational 
intensity, i.e., � = 2 refers to a 0.5 capacity utilization, � = 3 a 0.75 intensity, and 
� = 4 a full capacity utilization 1.

Figure 7 summarizes the core elements of our business case environment.

The next section details the business case-based multi-objective optimization 
problem.

Production System

Machine 1

i = 1

i = 3

i = 5 i = 5 i = 5 i = 5 i = 5

i = 0

Machine 2

i = 2

i = 5 i = 5

i = 4

i = 5 i = 5

i = 0 i = 0

Machine 3

i = 2
i = 4

i = 5

i = 4
i = 1

i = 3

i = 5

i = 0

Machine 4

i = 2

i = 5 i = 5

i = 0

i = 2

i = 5 i = 5

i = 0

Unrelated
Machines

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Power
Market

Buy
CU

Use

Sell

Fig. 7  Business case environment
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3.2  The business case‑related multi‑objective optimization problem

As already mentioned, the processing of a job on a machine requires that the respec-
tive machine is prepared. This means, we need to opt for the set up of machines, 
necessary changeovers and the lengths of the production periods. This timing issue, 
obviously, is directly related to the decision on energy consumption. To make the 
entire optimization problem and equations more perspicuous, we first give all indi-
ces, parameters, and decision variables in tabular form; see Tables 2, 3 and 4.

Next, we present our business case-driven multi-objective optimization prob-
lem, which is defined by Eq.  (1)–(22). Here, four objectives are taken into account: 
roughly speaking, we optimize production quantities D, a time-related goal Y, opera-
tional energy costs C, and the carbon dioxide emissions E. We do not consider other 

Table 2  Indices and descriptions

Symbol Specification

m Machine m ∈ M = {1,… , 4}

i, h Machine state i, h ∈ I = {0,… , 5}

j, g job j, g ∈ J = {1,… , 7}

� State of the cogeneration unit � ∈ L = {1,… , 4}

t, � period (a working hour) t, � ∈ T = {0,… , 120}

Table 3  Parameters and descriptions

Symbol Specification

a
prod

j
Production output for job j per period t

aelec
im

Electricity consumption of machine m in state i
B Big number
celec
t

Cost rate [per kWh] of the electric energy purchased in t

cle Cost rate [per kW] when breaching the agreed energy peak demand, so-called Leistungsentgelt

cth Penalty fee when exceeding the materiality threshold
dj Demand of job j to be fulfilled
eelec
t

CO
2
 emission [kg/kWh] of the electricity mix purchased in t

�
asgn

jm
If m ∈ Mj , then �asgn

jm
 equals 1 and an assignment of job j to machine m is feasible

� tran
ih

Transition from machine state i to h
�j Number of parallel machines for processing job j
bthresh Materiality threshold [kWh] to reduce grid charges, so-called Erheblichkeitsschwelle
btot Total amount [kWh] of contractually agreed electrical energy
belec
�

Max. amount of electricity from cogeneration in state �

c
gas

t
Cost rate [per kWh] of the gas purchased in t

egas CO
2
 emission [kg/kWh] of the cogeneration unit

pelec
t

Price [per kWh] of the electricity sold in t
r
�

Conversion efficiency of the cogeneration unit in state �
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operational costs, such as personnel and/or material costs because in our business 
case these numbers are fixed over the working week. However, the model below 
can be easily modified to exploit cost savings potentials for such factors, of course. 
Furthermore, we are given deterministic demand, energy prices and emission mixes 
over the respective planning period. Additionally, we assume perfect production 
processes, i.e., the machines do not deteriorate over time, and due dates are also not 
considered.

(1)min D =

J
∑

j=1

d+
j
+ d−

j

(2)min Y =

M
∑

m=1

T
∑

t=0

(

�state
1mt

+ �state
3mt

)

(3)

min C =

T
∑

t=0

(

celec
t

⋅ s
buy

t − pelec
t

⋅ ssell
t

)

+ cle ⋅ �stot

+

L
∑

𝓁=1

T
∑

t=0

(

c
gas

t ⋅

belec
𝓁

r
𝓁

⋅ z
𝓁t

)

+ cth ⋅ �sthresh

(4)min E =

T
∑

t=0

eelec
t

⋅ s
buy

t +

L
∑

𝓁=1

T
∑

t=0

(

egas ⋅
belec
𝓁

r
𝓁

⋅ z
𝓁t

)

Table 4  Decision variables and descriptions

Symbol Specification

d−
j

Production shortfall for job j (backlogs)
d+
j

Production excess for job j

s
buy

t
kWh amount of electricity purchased in t

xjmt (Job assignment) binary equals 1 if job j will be processed on machine m in period t, otherwise 
0.

�state
imt

(Machine state) binary equals 1 if machine m has state i in period t, otherwise 0.
�
setup

jmt
(Machine setup) binary equals 1 if machine m can produce job j in period t, otherwise 0.

�
change

jgmt
(Machine changeover) binary equals 1 if the retooling of machine m—to produce g instead of 

j—has to be started in period t, otherwise 0.
�stot Excess of contractually agreed energy amount btot

�sthresh Excess of materiality threshold bthresh

s
self

t
kWh Amount of electricity self-generated in t

ssell
t

kWh Amount of electricity sold in t
z
�t (CU state) Binary equals 1 if the cogeneration unit has state � in period t, otherwise 0.
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(5)s.t.

J
∑

j=1

xjmt ≤ 1 ∀ m, t

(6)
M
∑

m=1

xjmt ≤ �j ∀ j, t

(7)
M
∑

m=1

T
∑

t=0

(

a
prod

j
⋅ xjmt

)

− d+
j
+ d−

j
= dj ∀ j

(8)
I

∑

i=0

�state
imt

= 1 ∀ m, t

(9)xjmt − �state
5mt

≤ 0 ∀ j,m, t

(10)�state
im,t−1

− �state
imt

+ �state
hmt

≤ 1 + � tran
ih

∀ i, h ≠ i,m, t ∈ T�{0}

(11)
J
∑

j=1

�
setup

jmt
= 1 ∀ m, t

(12)xjmt − �
asgn

jm
⋅ �

setup

jmt
≤ 0 ∀ j,m, t

(13)�
setup

jm,t−1
+ �

setup

gmt − �
change

jgmt
≤ 1 ∀ j, g ≠ j,m, t

(14)
∑

j

∑

g≠j

�
change

jgmt
≤ 1 ∀ m, t

(15)�
change

jgmt
−

1

8
⋅

(

t+4
∑

�=t

�state
1m�

+

t+7
∑

�=t+5

�state
3m�

)

≤ 0 ∀ j, g ≠ j,m, t ∈ T
shift

(16)�
change

jgmt
= 0 ∀ j, g ≠ j,m, t ∈ T�Tshift

(17)
L
∑

�=1

z
�t = 1 ∀ t



1 3

Energy costs vs. carbon dioxide emissions in short-term…

In order to meet the production demand, we minimize deviations from the amount 
requested per week for each job; it is due to the fact that the production capacity 
available may not meet the demand. This is what the first objective function is about.

Applying the second objective function, we minimize the total amount of time 
spent on a very special setup process, which consists of changing equipment con-
figurations and testing product quality. Obviously, this is not a classical time-related 
scheduling objective; it stems from our business case because the whole gearing up 
process consumes an eight-hour work shift. Still, one can easily replace this function 
by, e.g., makespan or cycle time, if desired. For a good overview of classical time-
related objectives, see e.g. Pinedo (2016, pp. 19–20).

The third objective function corresponds to Definition 1 and pursues the aim of 
minimizing the total energy costs. Here, the first term refers to the amount of energy 
s
buy

t  which will be bought on the market, where celec
t

 is the energy price depending on 
the period t. Additionally, we have to subtract the amount of the self-produced elec-
tricity ssell

t
 that we sell on the market for the price pelec

t
 . The next component refers to 

excess of the contractually agreed amount of electrical energy where the costs or 
penalty fees come from the utility contract. As already mentioned in Sect. 3.1, the 
cogeneration unit (CU) operates at different states � ∈ L = {1,… , L} , with L = 4 . 
The total costs of the conversion process of the CU are determined by the double 
sum. cgast  is the the cost coefficient for one kilowatt hour gas, the fraction b

elec
�

r
�

 cap-
tures the maximal output belec

�
 adjusted via the conversion efficiency r

�
 , and z

�t is the 
corresponding binary variable for switching between the various states. But keep in 
mind that if we reach the off mode ( � = 1 ), we get r

�
= 0 and, hence, b

elec
�

r
�

 becomes 

meaningless. In such a case, we set b
elec
�

r
�

= 0 . Furthermore, to save grid costs, we are 
looking for an atypical profile of energy consumption with the last term in (3)—so-
called atypical network usage. Here, atypical network usage means that we need to 
keep our energy consumption below bthresh in certain periods. These periods are, on 

(18)
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principle, stipulated by the network operator and coincide with high levels of net-
work capacity utilization.

With the fourth objective function, according to Definition 2, we track the emis-
sions of the production process with respect to the total energy consumption. It 
measures the emissions eelec

t
 regarding the electrical energy purchased; here, the 

emissions depend on t. The second part measures the CU’s emissions by the double 
sum in (4), where the emission coefficient egas is independent of t.

The constraint (5) simply guarantees that one machine can only handle one job, 
but we can finish one job on multiple machines in parallel if 𝜌j > 1 , refer to (6).

Equation (7) covers the product demand for all jobs, where dj specifies the num-
ber of goods corresponding to each job j and the fraction dj

a
prod

j

 the length for each job 

j operated continuously. In this context, we allow over- and underproduction (stocks 
and backlogs) to equate demand quantities dj . Obviously, over- and underproduction 
depend on the data of a specific instance, and the latter case is more likely if demand 
dj is high for each job. However, overproduction can also happen when, e.g., dj

a
prod

j

 is 

not integral.
Equation (8) prevents machines from becoming stateless. However, we can only 

get a job done on a machine when it is already prepared for production (state i = 5 ); 
this is what inequality (9) is about. In order to control state transitions on machines, 
we give Eq. (10). Here, one can hold the state �state

im,t−1
= �state

imt
= 1 or we can change it 

�state
im,t−1

= �state
hmt

= 1 . The latter case is only possible if the parameter � tran
ih

 equals 1; for 
feasible transitions see again Fig. 6.

In every period, each machine must always be prepared for any arbitrary job—
more precisely, we cannot have a toolless situation, confer (11). To produce goods, 
we need the correct equipment, see (12). Furthermore, we apply equation (13) to steer 
the equipment changeovers. The operating principle of this group of restrictions is 
similar to that of (10), but we can perform only one changeover on a machine, hence 
(14) is necessary. The next Eq. (15) looks slightly more complicated, but it ensures 
that a changeover will be completed without replacing the staff. In our business case, 
the issue is that a changeover takes an entire shift, i.e. eight hours: five hours for 
changing the equipment and three hours for testing the quality of products. This jus-
tifies the very special paremeters in (15). To avoid staff changes during a changeo-
ver, one has to start at the beginning of a work shift; these points in time are defined 
by the set Tshift = {1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113} ⊂ T  . Of 
course, constraint (15) can easily be adapted to other situations by merely modifying 
respective numbers. Via equation (16) we suppress undesired changeovers.

Equations  (17) and (18) model the operational deployment of the CU. The CU 
cannot be stateless, see (17), and we can either sell ssell

t
 or use sselft  the total amount 

of self-generated energy, refer to (18). It is important to cover the electricity demand 
of all machines. Therefore, we need an energy balance equation like in (19). Ine-
qualities (20) and (21) capture deviations of two electricity bounds. The first bound 
is based on a contractual agreement and can be violated; yet, in such a case, the 
company will be penalized by cle per unit of �stot . The second one is an intragroup 
bound to participate in a program of the German Federal Network Agency that offers 
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individual grid charges when not breaching a specific energy amount in pre-defined 
peak load time windows T

peak = {14, 15, 38, 39, 62, 63, 86, 87, 110, 111} ⊂ T  , 
in Germany also known as Hochlastzeitfenster; more on that topic can be found 
in StromNEV (2005). The company will lose its cost savings ( cth ) if the respec-
tive bound is violated. A violation is indicated by the binary �sthresh , and to control 
respective behavior in (21), we need the big number B. Constraints (22) are classical 
binary and nonnegativity restrictions.

Solving multi-objective optimization problems as given above is a difficult task. 
The problem here is that if the goals are conflicting, we do not have one optimal 
solution regarding all objective functions—there might be a trade-off between them; 
and due to our observations in Sect. 2, it is not obvious whether the above objec-
tive functions are conflicting or not. Consequently, the decision-maker has to choose 
one optimal solution from possibly an infinite number of optimal solutions, gener-
ally known as Pareto-optimal solutions. In our case study, the decision makers have 
the following preferences regarding the objective functions D ≻ Y ≽ C ≽ E . This 
means that the company here primarily seeks to meet production demand. Next, the 
company will avoid spending much time and effort on changeovers and test runs, 
energy costs, peak loads, and carbon emissions. Yet, to get a more in-depth look into 
the trade-offs of these four— possibly competing—objectives, we additionally seek 
to check for different weight compositions. Therefore, to fathom the optimization 
problem without precluding Pareto-optimal solutions which are not part of the con-
vex hull of the feasible region, we opt for a Chebyshev approach that minimizes the 
weighted maximal deviation from all individual optimal solutions. In this context, 
we always obtain a weak efficient solution given the fact that the weights wD , wY , wC 
and wE are strictly positive; for further details see Ehrgott (2005)—especially propo-
sition 4.22 on page 114—and for an overview of theoretical aspects of multicriteria 
optimization T’kindt and Billaut (2006, pp. 53–112) and again Ehrgott (2005). Ulti-
mately, we solve

The normalization of the mathematical terms of previous objective functions in 
Eq.  (23) is necessary to eliminate effects caused by units of different dimensions 
when fathoming the goals’ trade-offs, cf. Steuer (1986, p. 201). The reference lev-
els are given by minimum and maximum values for each objective function (1)–(4). 
However, the issue now is that we do not know the reference levels to implement the 
above corrections. Therefore, we propose a two-stage optimization procedure: 

1. First, minimize and maximize each single goal to obtain Dmin , Dmax , Ymin , Ymax , 
Cmin , Cmax , Emin , Emax.

(23)

min z = g

s.t. wD
⋅

D−Dmin

Dmax−Dmin
− g ≤ 0

wY
⋅

Y−Ymin

Ymax−Ymin
− g ≤ 0

wC
⋅

C−Cmin

Cmax−Cmin
− g ≤ 0

wE
⋅

E−Emin

Emax−Emin
− g ≤ 0

plus constraints (5) to (22)
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2. Second, optimize Eq. (23) by applying the optimal values of the first stage and 
the desired weighting schemes.

Now, all the fundamentals are in place to study the real-world application in the next 
section.

3.3  Further parameter specifications and scenarios

In our case study, as already mentioned in Sect. 3.1, we consider a metal-working 
company, which bends metal on four machines. The exact amounts of the maximum 
output per hour aprod

j
∀j and the state-dependent energy consumption rates aelec

im
∀i,m 

of the machines, as well as the total demand dj ∀j are not reported—for reasons of 
confidentiality. However, in order to guarantee reproducibility of the results pre-
sented subsequently, we give relative numbers.

The most important product group is the second one, as one can see in Table 5, 
j = 4 , j = 5 and j = 7 are of less importance.

The relative proportions of output coefficients – illustrated in Table  6—can be 
read as follows: for product group j = 1 , in each hour, every machine can produce 
1.63 % of the overall demand given in Table 5; the other numbers can be interpreted 
analogously. The next table shows normalized numbers of the state-dependent 
energy consumption rates.

These numbers are defined as the actual state-dependent energy consumption 
rates divided by the maximum energy consumption rate regarding all machines; 
obviously, the fourth machine shows the maximum value in the production state 
( i = 5).

Now, we study sixteen different scenarios ( s = 1,… , 16 ) comprising the follow-
ing weight compositions:

To comply with the company’s preferences, the base case s = 1 is driven by the 
weighting scheme wD

1
>> wY

1
= wC

1
= wE

1
 . Applying the scenarios s = 2,… , 5 , we 

put most pressure on each individual objective. Furthermore, we check for pairwise 

Table 5  Relative proportions of demand

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

dj 0.2998 1 0.4283 0.0128 0.0514 0.3319 0.0385

Table 6  Relative proportions of output coefficients

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

a
prod

j
0.0163 0.0054 0.0114 0.1375 0.0344 0.0161 0.0458
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( s = 6,… , 11 ) and group of three ( s = 12,… , 15 ) interrelations between the objec-
tives as well as a uniformly distributed weighting scheme ( s = 16).

The planning horizon covers the next five days and, consequently, we determine 
the production schedules for the next T = 120 h. In order to study economic poten-
tials of our approach, we use spot prices—so-called Day-Ahead auction prices—
from the EPEX SPOT SE (European Power Exchange). The daily price curves 
cover exactly the time period of the company’s internal dataset, particularly dating 
from 24 Sep. 2018 to 28 Sep. 2018. We perform all calculations—via GAMS and 
CPLEX—on a Windows 10 PC, with an i7-3930K CPU 3.2 GHz and 32 GB mem-
ory. To obtain the results, the overall computation time was about 122 h. Here, the 
base case ( s = 1 ) took approx. 36.6 min with a relative gap of less than 0.1 %. Obvi-
ously, the remaining scenarios have covered most of the overall computation time. 
They achieved a relative gap of below 0.01 % each; only the scenarios s = 2 , s = 6 , 
s = 7 and s = 12 have reached slightly worse relative gaps of approx. 0.78 %, 0.37 
%, 0.04 % and 0.82 %—which are still nearly optimal. All solutions are integral and, 
hence, there is the presumption that the solver has not yet discovered the optimality 
of most of the solutions at hand. In the next section, we study and discuss the results 
of the scenarios.

Fig. 8  Machine states for s = 1
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3.4  Discussion of the findings

3.4.1  Scenario analysis

Solving (23) with regard to our base case (scenario 1), we obtain Figs. 8, 9 and 10.
Figure 8 shows the machine states for the whole planning horizon. Here, due to 

the fact that machine m = 1 is relatively new and has the lowest power consumption 
in production mode, refer to Table 7, it operates continuously. During the first day, 

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

machine m = 1

job j = 2

machine m = 2

job j = 2

off mode

changeover and test run

job j = 3

Fig. 9  Partial Gantt-chart for the second day and s = 1

Fig. 10  Cumulative power consumption for s = 1 , spot prices and average emissions



1 3

Energy costs vs. carbon dioxide emissions in short-term…

machine m = 2 is also in the production state, but then the second day is used to 
change the equipment. Figure 9 shows a partial Gantt-chart to illustrate these details.

Machine m = 3 will also be prepared at the second day. Interestingly, machine 
m = 4 is often switched off over the whole period of time. This situation is very 
close to the company’s current schedule because machine 4 is the oldest one and 
requires a large amount of energy, see again Table  7; it only operates if some 
special products are requested, cf. Table 1, or in the case of an unexpected high 
demand. To make the economic consequences more transparent, we consider 
Fig. 10; the presentation of the power level follows the same logic as in Table 7. 
From an energy-oriented perspective, one can see that the model steers the pro-
duction states in some unfavourable periods because the second day shows two 
spot price low points ( t = 28 and t = 38 ). From an ecological point of view, how-
ever, the second day is very unattractive due to its emission maximum.

Table 8, which comprises the normalized target achievements for the 16 sce-
narios, reveals the partially conflicting relations between all goals. Due to our 
normalization in (23), the best value equals 100 % and the worst value is 0 %.

Here, the scenarios s = 5 , s = 10 , s = 11 and s = 15 lead to almost no produc-
tion quantities. From a management point of view, these scenarios are unreason-
able due to insufficient service of demand; from an ecological perspective, how-
ever, such scenarios yield the best outcomes regarding the emissions, of course. 
This observation might emphasize the omnipresent conflict between economic 
and ecologic criteria. The scenarios s = 1 , s = 2 and s = 7 indicate a conflict 
between production quantities and changeovers. To study the impact on produc-
tion quantities in more detail, Table 9 comprises the relative shortfalls in quanti-
ties for selected scenarios.

Table  9 shows that even  in the best case s = 2—from a production point of 
view—, the company’s capacity is too little to meet the demand. That is, even if 
we focus most strongly on producing goods, the company is unable to fulfill the 
weekly demand. On the other hand, the worst case scenario is s = 3 ; in this case, 
we only fulfill approx. 68 % of the total demand. Three scenarios ( s = 1 , s = 6 , 
s = 12 ) imply shortfalls in three jobs, while scenario s = 2 causes a shortfall in 
only two out of seven jobs. In the scenarios s = 3 , s = 8 and s = 14 , for example, 
we are given a shortfall in six jobs. There is only one job which is fully completed 
over all scenarios; this is job j = 2 . It comprises the most important product type 
and is the most-sold product of the company.

Returning to the discussion regarding our main conflict, we see that put-
ting more pressure on the energy cost goal and less on the emission target (see 
s = 1 and s = 7 in Table  10) can lead to higher emissions, realizing only mod-
erate energy cost improvements (cf. Table  8). Accordingly, scenarios s = 7 and 
s = 12 provide good solutions in terms of energy costs, but the emission values 
are rather poor. The opposite is true for the emissions of scenario s = 8 . How-
ever, almost ignoring the goals energy costs and emissions leads to the results 
of scenario s = 6 ; here, the energy consumption exceeds the so-called Erhebli-
chkeitsschwelle bthresh in one of the pre-defined peak load time windows Tpeak , 
thus the energy costs are highest. It is also noteworthy that the scenarios 8, 13, 
14, and 16 yield the same results. In these four scenarios, the production quantity 
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goal and the emission goal receive a high weight each. Here, it is also interesting 
to note that the exchange between the time-related one and the energy cost objec-
tive obviously has no impact on the outcomes, see again Table 8.

All observations provide a first hint regarding the relationship between energy 
costs and carbon dioxide emissions. Table  11  presents the upper triangle of linear 
correlations to illustrate the mutual relationships between the four goals more clearly:

Obviously, there are no perfect linear relationships. The smallest negative score 
can be found in the second column of the first row; this number indicates a high 
inverse relation between production quantities and numbers of changeovers. Cer-
tainly, this is not surprising. Production quantities and energy costs as well as emis-
sions are also negatively correlated. Surprisingly enough, the results regarding 
energy costs and emissions are almost linearly uncorrelated; this again supports 
the hypothesis which we have raised in Sect. 2—a possible conflict between energy 
costs and average carbon dioxide emissions. Next, to show possible countervail-
ing effects between energy costs and average carbon dioxide emissions, we present 
Fig. 11. In this figure, the black graph shows the relative energy costs, i.e., the actual 
energy costs divided by the maximum energy costs realized in scenario s = 7 ; the 

Fig. 11  Relative energy costs vs. relative emissions for s = 7

Table 7  Normalized energy consumption rates

aelec
im

m = 1 m = 2 m = 3 m = 4

i = 0 0 0 0 0
i = 1 0.0789 0.0789 0.0789 0.0789
i = 2 0.1842 0.2895 0.3684 0.1316
i = 3 0.3947 0.6579 0.5263 0.7368
i = 4 0.1316 0.1842 0.2105 0.0789
i = 5 0.5526 0.9211 0.8421 1.0000



1 3

Energy costs vs. carbon dioxide emissions in short-term…

grey curve follows the same logic but presenting the relative carbon dioxide emis-
sions. Here, energy costs partially diverge from average carbon dioxide emissions in 
certain periods—namely during the off-peak periods, where the energy mix tends to 
be less green, see again Fig. 2 in Sect. 1.2.

3.4.2  Managerial takeaways

Our business partner was interested in operative instructions and helpful comments 
derived from our scenario solutions. Ex post, the different scenarios and machine 
assignments can be compared with one another without any problems. However, 
time-critical operational planning with current real data from the enterprise resource 
planning (ERP) system requires that the findings of exemplary scenario analysis can 
be used directly for decision support avoiding further scenario simulations.

Our approach provides a well-grounded basis for such a decision support, espe-
cially in energy intensive industries. It permits an overview of the mutual relation-
ships of the most pertinent aspects in the context of sustainable production planning. 
Lot sizes and machine schedules can be carefully fine-tuned with respect to chang-
ing conditions.

Table 8  Degree of goal achievements

scenario Dnorm
s

Ynorm
s

Cnorm
s

Enorm
s

s=1 95.89 % 62.35 % 99.28 % 83.70 %
s=2 100.00 % 0.00 % 87.03 % 33.28 %
s=3 59.64 % 100.00 % 98.09 % 85.59 %
s=4 20.67 % 100.00 % 100.00 % 17.96 %
s=5 3.23 % 100.00 % 95.46 % 100.00 %
s=6 96.49 % 70.59 % 66.37 % 63.80 %
s=7 98.98 % 64.71 % 99.92 % 1.04 %
s=8 88.05 % 76.47 % 99.41 % 86.66 %
s=9 27.42 % 100.00 % 99.99 % 22.79 %
s=10 7.11 % 100.00 % 95.64 % 99.74 %
s=11 0.00 % 100.00 % 99.86 % 97.09 %
s=12 96.49 % 70.59 % 99.81 % 0.00 %
s=13 88.05 % 76.47 % 99.41 % 86.66 %
s=14 88.05 % 76.47 % 99.41 % 86.66 %
s=15 0.00 % 100.00 % 99.86 % 97.09 %
s=16 88.05 % 76.47 % 99.41 % 86.66 %

Table 9  Relative numbers of the shortfall quantities for selected scenarios

s = 1 s = 2 s = 3 s = 6 s = 7 s = 8 s = 12 s = 13 s = 14 s = 16

shortfall 0.0336 0.0018 0.3172 0.0345 0.0163 0.0997 0.0345 0.0994 0.1013 0.1009
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A changing condition could look like this. A company, like our business partner, 
primarily focuses its production on serving weekly customer demand in the best pos-
sible way and doing this at the lowest possible energy costs. This would correspond 
to a target weighting similar to that in scenario s = 7 . The top management now 
pretends to produce more sustainably and thus to increase the company’s reputation. 
The production management would now face the task of increasing sustainability 
beyond the heavily weighted minimization of energy costs. A conceivable adjust-
ment of the target would be found in scenario s = 14 . The target adjustment from 
s = 7 to s = 14 , for example, implies particular operational effects for the machine 
assignment of the coming week. From the findings of our case study, the production 
manager could take away that, at the tolerable expense of satisfying weekly cus-
tomer demand (cf. Table 9), one could produce much more sustainably (in terms of 
goal E) with even less set-up times.

The previous example shows that the production manager must finally weigh up 
which target weighting he/she chooses. In order to be able to recognize the advan-
tages and disadvantages of different options more clearly, it can help to make the 

Table 10  Weighting schemes of all scenarios

wD
s

wY
s

wC
s

wE
s

s = 1 0.550 0.150 0.150 0.150
s = 2 0.991 0.003 0.003 0.003
s = 3 0.003 0.991 0.003 0.003
s = 4 0.003 0.003 0.991 0.003
s = 5 0.003 0.003 0.003 0.991
s = 6 0.497 0.497 0.003 0.003
s = 7 0.497 0.003 0.497 0.003
s = 8 0.497 0.003 0.003 0.497
s = 9 0.003 0.497 0.497 0.003
s = 10 0.003 0.497 0.003 0.497
s = 11 0.003 0.003 0.497 0.497
s = 12 0.332 0.332 0.332 0.004
s = 13 0.332 0.332 0.004 0.332
s = 14 0.332 0.004 0.332 0.332
s = 15 0.004 0.332 0.332 0.332
s = 16 0.250 0.250 0.250 0.250

Table 11  Correlations

quantity goal time-related goal energy cost goal emission goal

quantity goal (D) 1.0000 −0.7169 −0.2509 −0.3263
time-related goal (Y) 1.0000 0.3406 0.3369
energy cost goal (C) 1.0000 0.0167
emission goal (E) 1.0000
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decision-making environment more flexible. Such a redesign would be the use of 
a cogeneration unit. We studied the consequences of integrating such a CU at the 
request of our business partner. Currently, however, the company effectively uses 
only the thermal energy for production purposes and sells the electric energy as a 
by-product of this primary function. In Sect. 3.2, we presented how the decisions 
regarding the electric energy of the cogeneration unit—sell, own use or a combi-
nation of both—can be embedded in the multi-objective optimization problem. 
Because of the additional flexibility for the production manager the use of a CU also 
can be seen as a further, rather indirect, measure towards sustainable production.

All results and explanations so far show that minimizing energy costs is a pure 
economic goal and neither an ecological one. The management of a company should 
be aware of this fact. To put it more ostensively, the energy price and the average 
emissions of the associated energy-mix are not always following the same move-
ment. That means, if the energy price is relatively high in a considered time period, 
the associated average emissions could be relatively low. A company can exploit this 
fact by shifting specific production processes not only in times of low energy prices, 
but also in times of low average emissions of the energy-mix.

In the current situation, in summary, where the European power industry is in a 
transitional phase, focussing only on energy costs can worsen the ecological foot-
print of a company. In other words, we should always be mindful when creating opti-
mization models for steering production plants sustainably, as this always entails a 
very complex interplay of different objectives which should be considered carefully.

4  Conclusions and future research

In this paper, we present a case study comprising a scheduling and lot-sizing 
problem of a metal-working company, where the company’s goals are mainly 
determined by four objective functions—namely a production quantity-based 
goal, a changeover-related time goal, an electrical energy cost goal, and a car-
bon dioxide emission goal. In such an environment, it is usually assumed that 
reducing electrical energy costs—e.g. via shifting operations—automatically 
leads to (more) sustainable production plans. In the present paper, we show that 
this supposition does not always hold true when facing fluctuating carbon dioxide 
emissions over the whole day. In particular, we present a (deterministic) mixed 
integer optimization problem, combining lot-sizing and scheduling under time-
varying electric energy costs and time-varying carbon dioxide emissions. In this 
context, we also allow for self-generation of electricity via a cogeneration unit—
either selling this energy or using it for production. However, there is still room 
for improvement towards modeling; yet, we neglect the heat production process 
of the cogeneration unit and, hence, further economical and ecological gains. 
Finally, we discuss all outcomes from a managerial point of view.

However, electricity prices as well as the corresponding relative mix of car-
bon dioxide emissions are uncertain. Consequently, what are useful methods to 
provide reliable estimates of both data sets? And how can we deal with dynamic 
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lead times in our mixed integer optimization problem? These questions could be 
interesting pathways for future research.
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