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Abstract
We investigate whether a historical pension concept, the tontine, yields enough 
innovative potential to extend and improve the prevailing privately funded pension 
solutions in a modern way. The tontine basically generates an age-increasing cash 
flow, which can help to match the increasing financing needs at old ages. In con-
trast to traditional pension products, however, the tontine generates volatile cash 
flows, which means that the insurance character of the tontine cannot be guaranteed 
in every situation. By employing Multi Cumulative Prospect Theory (MCPT) we 
answer the question to what extent tontines can be a complement to or a substitute 
for traditional annuities. We find that it is only optimal to invest in tontines for a cer-
tain range of initial wealth. In addition, we investigate in how far the tontine size, the 
volatility of individual liquidity needs and expected mortality rates contribute to the 
demand for tontines.
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1 Introduction

Through changes in social, financial and regulatory conditions, both life insurance 
policyholders and life insurers are facing big challenges. One of the large social 
challenges in most of the Western countries is the demographic change caused by 
declining birth rates and an increasing longevity of the population.1 Therefore, the 
old-age-dependency ratio2 rises. As a result, pay-as-you-go retirement systems are 
under pressure while funded retirement products gain relevance. In addition, the 
liquidity need increases for elderly people, which is mainly driven by increasing 
medical expenses at old ages. According to a study by Standard Life [52], the liquid-
ity need of persons older than 85 years is six times higher than for persons below 
65 years of age. As a consequence, the demand for funded retirement products that 
help to diminish the pension provision gap in an aging society can be expected to 
increase. In this context it is, however, surprising to see that life care annuities that 
combine life annuities with long-term care insurance have relatively low market vol-
umes,3 and that product innovation for the decumulation phase is limited in Europe.4

Insurance companies are exposed to changing financial and regulatory condi-
tions. Traditional pension, health and long-term care insurance products often entail 
minimum return guarantees, which providers try to ensure by investing extensively 
in fixed-income securities.5 However, the current low-interest environment clearly 
shows large solvency risks caused by the issuance of lifetime guarantees. The possi-
ble way out of this problem, i.e., to invest extensively in more profitable asset classes 
like stocks, is however restricted due to its higher risk and its limited ability to cover 
granted guarantees. Furthermore, providers of pension products are exposed to the 
longevity risk of their customers, which can only be partially passed on to them.6 
Therefore, alternative solutions for providing pensions, long-term care and health 
insurance are needed.

In the European Union and many other parts of the world, the regulatory con-
ditions for providers of private pension products change substantially with the 
introduction of risk-based solvency regulation. The market-consistent valuation of 

3 In Germany, e.g., in 2018 the number of long-term care riders on life insurance products (not only 
annuities) is relatively small (0.6 million) compared with the number of annuity contracts (38.5 million), 
or compared with, e.g., the number of accident insurance riders (5.4 million), although the number of 
long-term care riders has gone up by 9.7% in 2018; see Gesamtverband der Deutschen Versicherung-
swirtschaft e.V. [20], pp. 15 and 17.
4 See European Insurance and Occupational Pensions Authority [15],  p. 49, and Financial Conduct 
Authority [17], p. 15.
5 See Berdin and Gründl [5].
6 See, e.g., the legal provisions for profit participation for German life insurance products. There, 90% 
of mortality gains must be passed on to the policyholders, whereas mortality losses must be completely 
borne by the insurer; see §7 MindZV (profit participation regulation).

1 See for example Statistisches Bundesamt [54]. for a prognosis for the demographic change until the 
year 2060 in Germany and United States Census Bureau [56] for a prognosis for the demographic change 
until the year 2050 in USA.
2 The old-age-dependency ratio is the ratio between the number of persons aged 65 and above and the 
number of persons aged between 15 and 64.
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investments as well as of technical provisions immediately reveals the addressed 
high risks of traditional life and health insurance products involved and therefore 
can cause severe financial imbalance for life insurers. In a traditional insurance 
context, managing these risks requires considerable equity capital backing or other 
comprehensive risk management activities like re-insurance or securitization. Such 
risk management ultimately has to be funded by higher insurance premiums, which 
might make pension planning unattractive.

The changes in social, financial and regulatory conditions therefore lead to the 
quest for innovative instruments for private pension planning. A product innovation 
should optimally reduce investment guarantees and risks related to longevity, and 
nevertheless be able to provide reliable insurance performance. At the same time it 
should meet the concerns of increasing liquidity needs at old ages.

Against this backdrop, we transfer the idea of the historic tontine to a modern 
context and analyze whether it can help to solve the aforementioned problems. A 
tontine provides a mortality-driven, age-increasing payout structure. Although an 
insurer can easily replicate such a payout structure, the tontine has the big advan-
tage of its simplicity and low costs. While traditional insurance products entail large 
safety and administrative cost loadings,7 a tontine can be offered at low additional 
costs.8 This is because a tontine is a simple redistribution mechanism of the invested 
funds without guarantees and the need for an active management. The investment 
strategy of the tontinized wealth can be decided on an individual basis according to 
the individual risk aversion, without the issuance of guarantees. Due to the linkage 
between tontine returns and individual survival prospects, tontine payments are very 
low in younger years and increase sharply for very high ages.

In this article, we will assess tontines as to their ability to preserve people’s 
standard of living at old ages. Therefore, we take the perspective of a retiree and 
build a portfolio of traditional life annuities and tontines and evaluate the resulting 
income stream relative to the standard of living, i.e. the liquidity need at a certain 
age, as a reference point. To evaluate an income stream relative to a reference point 
we employ Multi Cumulative Prospect Theory (MCPT), as applied by Ruß and 
Schelling [48], which is based on Cumulative Prospect Theory (CPT), originated by 
Kahneman and Tversky [33] and enhanced by Tversky and Kahneman [55].9 CPT is 
also widely used in asset pricing (e.g. Barberis and Huang [3]) and portfolio selec-
tion (e.g. He and Zhou [25]) literature. Finding an optimal, i.e. lifetime-utility maxi-
mizing combination of traditional annuities and a tontine investment will answer the 
question to what extent tontines can be a complement to or a substitute for tradi-
tional annuities.

The main result in our base case scenario is that it is optimal to invest a fraction 
of wealth in a tontine. The utility loss through low tontine payoffs before the age of 
80 is outweighed by the utility gains through high payoffs at older ages.

7 According to Bundesanstalt für Finanzdienstleistungsaufsicht [10] the average acquisition and adminis-
trative costs for German life insurers are 10.7% of the gross premiums.
8 See Weinert [59] for a cost analysis of tontines.
9 Ruß and Schelling [48] apply Cumulative Prospect Theory in a multi-period context.
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However, tontines are only in demand among relatively wealthy people. By 
assuming average mortality rates, there is a positive demand for tontines by people 
with initial wealth (at the age of 62) of more than EUR 571,000. For less wealthy 
people the sole use of traditional annuities is optimal because annuities are needed 
for at least partly covering the liquidity need before the age of 80, whereas any ton-
tine investment extracts payments from these years of retirement. The additional 
income generated by tontines in later years cannot offset the loss of utility in the 
early years of retirement.

For people with an initial wealth of more than EUR 751,000 the traditional annu-
ity is sufficient to cover the liquidity need at all ages. Extracting income before the 
age of 80, when the likelihood of being alive is high, reduces utility more sharply 
than utility gets increased through high payments at older ages, in which tontine 
payments are not needed for meeting the liquidity needs. These results in principle 
also apply when using different probability weights under the MCPT or when apply-
ing a von-Neumann-Morgenstern utility maximization.

Through the pooling effect, a greater tontine size reduces the volatility of tontine 
payoffs, and therefore extends the range of initial wealth endowments for which ton-
tine investments become advantageous.

The higher the volatility of the liquidity need, the lower is the demand for ton-
tines, because annuities are then the better tool for closing possible liquidity gaps 
in the early years of retirement. The higher the liquidity need is in the later years of 
retirement, the higher is the demand for tontines.

Employing lower-than-average mortality rates can be a consequence either of 
using subjective probabilities or belonging to a specific population group. More 
wealthy people, for whom we find it optimal to purchase tontines, also face lower 
mortality rates.10 We find that tontines become even more favorable for people with 
lower mortality rates, especially because they can enjoy the higher tontine payoffs 
for a longer time with higher probabilities. In addition, the range of wealth endow-
ments for which tontine purchases are advantageous widens.

The remainder of the article is organized as follows: Sect. 2 introduces the gen-
eral concept of tontines. Section.  3 reviews the relevant literature on tontines and 
increasing liquidity needs at old ages. Section. 4 introduces our model framework 
specifying the underlying mortality dynamics, the tontine model as well as the old-
age liquidity need curve and the valuation of annuities. Finally, we propose a Cumu-
lative Prospect Theory based valuation of lifetime utility of tontines and annuities. 
In Sect. 5, we first describe the data and the calibration we adopt and provide find-
ings for the optimal individual wealth allocation and discuss our results. Section 6 
provides implications and our conclusion.

10 See Demakakos et al. [13].
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2  Tontines

The Italian Lorenzo de Tonti invented a product to consolidate the French public-
sector deficit in the early 1650s, which was introduced in 1689.11 His ideas were 
based on the pooling of persons by considering their mortality risk. The innova-
tion was that, in exchange for a lump sum payment to the French government, one 
received the right to a yearly, lifelong pension, which increased over time because 
the yields were distributed among a lower number of surviving beneficiaries. The 
last survivor thus received the pensions of all others who died before. As Manes [38] 
notes, the valuation of the original tontine was inaccurate, retirees were grouped in 
broad age classes, and so the contract terms were not fair in an actuarial sense. In 
this article, we build upon a fair tontine based on Sabin [49] that allows participants 
to be of any age, of any gender, and to invest a desired amount of money12 in the 
tontine. Furthermore, the tontine is revolving, which means that new members can 
join the tontine at any age and take on the position of deceased members. Apart 
from that it is not allowed to leave the tontine before passing away. The tontine is a 
fair lottery for every member. Expected individual tontine payments equal the indi-
vidual investment in the tontine, yielding an unconditional expected profit of zero. 
Expected tontine payments depend on the individual stake in the tontine and on the 
individual survival probability. On the one hand, if a member dies, he or she loses 
the entire stake, while, on the other, if he or she survives he or she receives some 
fraction of the stake of deceased members. To be fair, expected gains and losses are 
equal in each period. Because the survival probability declines with age and tontine 
payments are only paid if one survives, the probability of receiving tontine payments 
decreases. To counterbalance the otherwise induced reduction in expected tontine 
payments, the size of the payments one receives has to increase. Through this mor-
tality-driven feature, the expected conditional tontine payments increase with age. 
Mortality, therefore, is the crucial factor for determining the tontine benefit struc-
ture. For example, a man born in 1981 has a life expectancy of 73 years, while a 
man born in 2020 has an increased life expectancy of 81 years.13 This difference of 
8 years translates directly into different benefit patterns, especially at old ages. Fur-
thermore, the whole composition of the demographic structure of the tontine mem-
bers changes on the basis of the population mortality, which also impacts the actual 
benefit structure. Therefore, it is important to model and forecast the development of 
mortality and demographic structure of the tontine members. We use the one-factor 
model by Lee and Carter [36] to forecast mortality, which is the standard approach 
to model mortality rates.14

11 See McKeever [40] for an overview of the history of tontines.
12 According to Sabin [49] a fair tontine is a tontine in which the distribution to surviving participants is 
made in unequal portions according to a plan that provides each participant with a fair bet.
13 See DESA [14]. For the year 2070, the male life expectancy is estimated to further grow to 88 years.
14 See, e.g. Hunt and Blake [31], Nigri et al. [44] Renshaw and Haberman [47] and Renshaw and Haber-
man [46].
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While in a traditional annuity15 longevity risk is transferred from the insured to 
the insurer (and covered by its risk management instruments), in a tontine the risk 
that a single participant might live longer than expected is fully borne and shared by 
the other tontine holders who in this case receive lower cash flows than expected. 
Therefore, no equity capital backing is needed to cover longevity risk, and the ton-
tine can be offered without a risk-cost loading. However, the tontine has the disad-
vantage that because individual shares in the tontine as well as times of death of 
tontine members are random, both the amount and timing of tontine payments are 
uncertain.

Because the tontine members carry, pool and share the total risk among each 
other while the offering provider does not bear it, a tontine can be offered at a 
cheaper price than a comparable traditional life insurance product. In addition, it 
generates age-increasing benefits and is therefore able to meet increasing monetary 
requirements at old ages.

In this sense, the tontine is aimed at average individuals who want to run pri-
vate old-age provision and it might compete with specific long-term care insurance 
schemes. However, such schemes depend on the degree of care and contain excep-
tions, which means that soft factors and uninsured aspects are not covered. In con-
trast, the tontine allows for open use of funds, such as the age-appropriate conver-
sion of an apartment (e. g. ground level bathroom or stair lift). Other possible uses 
of a tontine comprise the financing of costly items to maintain the standard of living 
(e. g. increased taxi driving with reduced vision, the use of high-quality meals-on-
wheels services or shopping delivery services) or the provision of high-quality nurs-
ing care services beyond the statutory level.

Moreover, due to the absence of guarantees, the tontine enables participation 
in stock market developments. However, the tontine generates volatile payments, 
which means that the insurance character of a tontine might not be ensured in every 
situation.

So far, tontines have been considered an alternative or historic predecessor of tra-
ditional pension insurance. However, tontines were considered to be inferior com-
pared to traditional pension insurance, because the latter provides less volatile pay-
ments for an equal expected return.16 In contrast to this point of view we will regard 
tontines as a complement to traditional pension products.

3  Literature review

The literature provides several contributions on the suitability of tontines for pen-
sion planning. Sabin [49] designs a fairly priced tontine with regard to age, gender 
and entry date that is equivalent to a common annuity scheme. His results exhibit a 
more cost-efficient payout pattern compared to a typical insurer-provided annuity 

15 In the following we use “annuity” synonymously for the traditional life insurance product.
16 See Sabin [49].
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not just on average, but for virtually every member who lived more than just a few 
years.

Forman and Sabin [18] construct a fair transfer plan (FTP) to guarantee a fair bet 
for all participating investors of a tontine by accounting for each age, life expectancy 
and investment level. They show that a fairly designed tontine is superior to defined 
benefit plans in terms of funding and sponsoring of the pension system. They illus-
trate that a fairly developed tontine model would improve the situation of pension 
providers while serving the retirement income demand of the tontine participants.

Milevsky and Salisbury [42] and Milevsky and Salisbury [43] derive expected-
lifetime-utility maximizing tontine designs by accounting for sensitivity of both the 
tontine size and the longevity risk aversion for each tontine member. In the case 
without transaction costs, Milevsky and Salisbury [42] find that, due to higher vol-
atility of the payments, the tontine provides a lower utility than a traditional life 
annuity.

Chen et al. [11] propose a retirement product called tonuity, in which a tontine 
and an annuity are combined to serve best the policyholder needs in a way that the 
policyholder owns a tontine in the early years of retirement, and the tontine is then 
converted into a deferred annuity. As tontine payouts are relatively stable in the early 
years of retirement at low costs because of the absence of guarantees, its payouts are 
highly volatile in the later years of retirement. Therefore, the tontine is converted 
into a stable deferred annuity at an optimal switching time. Chen et al. [12] com-
pare the “tonuity” with a bundled product called “antine” that starts with annuity 
payments and switches to tontine payments in later years, and with a product bun-
dle consisting of a traditional annuity and a tontine. In an expected-lifetime-utility 
framework they find that the product bundle is superior to the bundled products 
“tonuity” and “antine”.

Milevsky and Salisbury [42] also encourage the idea of both tontine and annui-
ties to co-exist. Their proposed optimal tontine structure allows anyone of any age 
to participate in the scheme, making the mix of cohorts possible.17 Along with our 
results, Milevsky and Salisbury [42] support the conclusion that introducing prop-
erly designed tontines could help to maximize lifetime utility. The idea of combining 
both the benefits of tontines and conventional annuities is likewise encouraged by 
Chen et al. [11]. However, they propose the tonuity as a single product, which offers 
a tontine-like pay-off in the first years of retirement and then switches to a secure 
payment of an annuity. In their case, they do not focus on initial endowment wealth 
as a determinant but suggest that retirees with medium risk aversion will prefer the 
combination of tontines and annuities.

In an expected-lifetime-utility context, Bernhardt and Donnelly [6] derive the 
optimal investment in a tontine that allows to bequeath payments in the case of 
death.

Weinert [60] extends the prevailing tontine scheme by the possibility of a prema-
ture surrender and determines the fair surrender value.

17 See Milevsky and Salisbury [43].
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4  Model framework

We first model mortality dynamics in Germany for the upcoming decades and derive 
possible population pyramids in a second step. These, in turn, are the basis for the 
composition of the fair revolving tontine. We then estimate the risk-free benefit pro-
file of a standard annuity and compare it to the risky benefit profile of a tontine. We 
assume that each individual i has initial wealth endowment Wi and that there is no 
further source of income in the future. Wi can be seen as the sum of both discounted 
future earnings until retirement and savings up to the investment date. Wi will be 
completely converted into pension installments. For the expected tontine benefits, 
we provide a closed-form solution while we determine the realized benefits by per-
forming a Monte Carlo simulation. We then analyze to what extent tontine and tradi-
tional annuity are able to satisfy an empirically estimated, increasing old-age liquid-
ity need function for different settings. In our analysis, we assume a risk-fee rate of 
zero. On the one hand, it describes the current low interest rate environment that 
exerts pressure on the profitability and solvency positions of insurers.18 On the other 
hand, it allows us to mainly focus on the effects stemming from mortality risk. For 
this reason, we also refrain from modeling stochastic investment returns. A constant 
risk-free rate of zero is likewise assumed in the models by Milevsky and Salisbury 
[42]. Furthermore, we estimate an optimal portfolio consisting of annuity and ton-
tine, maximizing expected utility according to a Cumulative Prospect Theory frame-
work. We provide results for different demographic scenarios and mortality dynam-
ics and show the capability of tontines as instruments for retirement planning from a 
policyholder perspective. Finally we incorporate subjective beliefs about individual 
mortality to account for different perceptions about individual life expectations, 
which leads to a changing optimal asset allocation for retirement planning.

4.1  Mortality model

In a first step, we project mortality rates for a forecast horizon of t = 1,… , T  years. 
Our starting point is the one-factor-model for estimating mortality rates by Lee and 
Carter [36]. According to the Lee-Carter Model the force of mortality �x,t of a per-
son aged x in year t is specified19 as

where �x and �x are time constant parameters for a male20 aged x that determine 
the shape and the sensitivity of the mortality rate to changes in �t , which is a time-
varying parameter that captures the changes in the mortality rates over time. As pro-
posed by Lee and Carter [36], the parameter �t can be modeled and estimated using 

(1)ln
(
�x,t

)
= �x + �x ⋅ �t ⇔ �x,t = e�x+�x⋅�t

18 See European Insurance and Occupational Pensions Authority [16].
19 We assume that the force of mortality is constant over each year of age and year, yielding that force of 
mortality and the central death rate coincide.
20 We use y for a female aged y years analogously.
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ARIMA processes. �t is assumed to follow a random walk with drift. Thus the time 
variable parameter is given by �t = � + �t−1 + �t , where � is the drift parameter and 
the error terms are independent, normally distributed �t ∼ N(0, �k) . The one year 
death probability qx,t of a person aged x in year t is21 qx,t = 1 − exp(−�x,t).

4.2  Demographic Structure

Based on the predicted mortality rates qy,t for the one-year death probability of a 
woman aged y in period t, and qx,t for the one-year death probability of a man aged x 
in period t, we determine the demographic structure of an economy in every period 
t. Qy,t ( Qx,t ) is the total quantity of female (male) people of a cohort aged y (x) at time 
t. Equation (2) shows the updating process. Newborns, or people in their first year of 
life ( y, x = 1 ) are determined by the sum of the age-specific fertility rate AGZy times 
the quantity of females of the respective age y in each period t, which is weighted by 
the fraction of newborn females f0 and males m0 = 1 − f0 . From the second year of 
being alive, the number of people is the probability to survive one year of someone 
who was one year younger in the year before, times the number of people who were 
one year younger in the year before:

We determine these quantities for all cohorts y, x = 1,… ,� in all periods 
t = 1,… , T  for males and females to estimate the corresponding population pyra-
mids. Fy,t ( Fx,t ) in Eq. (3) shows the Cumulative Distribution Function (CDF) of a 
person aged y (x) in each t, where �y,t =

Qy,t∑�

y=1
Qy,t

 and �x,t =
Qx,t∑�

x=1
Qx,t

( for y, x = 1,… ,�) 

are the fractions of each cohort of females and males of the total female and male 
population in each period t.

The fractions of females and males aged y and x of the total population in each t are 
fy,t =

�y,t

�y,t+�x,t
 and mx,t = 1 − fy,t . The predicted mortality rates and demographic 

structures are the basis for calculating the tontine composition and tontine benefits, 
and are the starting point to analyze the impact of the demographic development on 
the tontine and its possible application as an alternative retirement planning 
product.

(2)

Qy,t =

⎧⎪⎨⎪⎩

f0 ⋅
�∑
y=2

Qy,t ⋅ AGZy

Qy−1,t−1 ⋅
�
1 − qy−1,t−1

� Qx,t =

⎧⎪⎨⎪⎩

m0 ⋅

�∑
y=2

Qy,t ⋅ AGZy for y, x = 1

Qx−1,t−1 ⋅
�
1 − qx−1,t−1

�
for y, x = 2…�

(3)Fy,t =

⎧⎪⎨⎪⎩

0 ∶ y < 0
y∑
1

𝜅y,t ∶ 0 ≤ y < 𝛺

1 ∶ y > 𝛺

Fx,t =

⎧⎪⎨⎪⎩

0 ∶ x < 0
x∑
1

𝜅x,t ∶ 0 ≤ x < 𝛺

1 ∶ x > 𝛺

21 See for example Milevsky [41].
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4.3  Tontine model

We model a fair revolving tontine based on Sabin [49] that allows tontine partici-
pants to be of any gender and age, and to invest a desired one-time initial amount of 
money Bi at tontine entrance. Bi then is tied in the tontine and cannot be withdrawn 
before the tontine member’s death. Furthermore, there is no possibility to inject 
additional capital for any individual in future periods. While the original model con-
siders infinitesimal points in time, resulting in only one member being able to die at 
one point in time, we adjust the model to a yearly time frame allowing for multiple 
deaths. We further assume the number of the tontine members N as fixed: every time 
a participant dies, the tontine is refilled to N. A new entrant i is randomly drawn 
from the period-corresponding demographic structure. We assume entrants at least 
to be of a certain age y , x and also assume an upper limit of entering the tontine of 
age y , x so 0 ≤ y, x < y, x ≤ 𝛺 . The random age of an individual i entering the ton-
tine in t is expressed by

where F−1
t

 is the inverse function of Ft with Pr(y) = fy,t and Pr(x) = mx,t and with 
z ∈

(
F−1
t

(
y
)
,F−1

t

(
y
))

 or z ∈
(
F−1
t

(
x
)
,F−1

t

(
x
))

 where z is uniformly distributed on 

U

(
F−1
t

(
y
)
,F−1

t

(
y
))

 or U
(
F−1
t

(
x
)
,F−1

t

(
x
))

 . We further assume the establishment of 
the tontine in t = 0 and refrain from investing the tied capital to streamline the model 
and to be able to quantify solely the interrelation of mortality benefits and demo-
graphic change. For better readability, we denote the one-year death probability of 
individual i with the beforehand assigned characteristics as qi,t in t. The index i 
allows to identify each individual with its specific characteristics in each period. 
Furthermore we denote the age of a person as x in the following, irrespective of the 
gender.

Let 
{
Ai,t

}
 be the event that i dies in t with P

(
Ai,t

)
= qi,t and 

{
A�

i,t

}
 be the event 

that i survives in t with P
(
A�

i,t

)
= 1 − qi,t . Let 

{
A�

0,t

}
 be the event that at least some-

one dies in t and 
{
A0,t

}
 be the event that no one dies in t. Using the inclusion-exclu-

sion principle,22 the probability that at least someone dies in t is

and the probability that no one dies in t is

(4)yE,i,t, xE,i,t = F−1
t
(z)

P
�
A�

0,t

�
= P

�
N�
i=1

Ai,t

�
=

N�
j=1

⎛
⎜⎜⎜⎜⎜⎝

(−1)j+1
�

I ⊆ {1,…N}

�I� = j

P

��
i∈I

Ai,t

�⎞⎟⎟⎟⎟⎟⎠

22 See for example Graham et al. [21].
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{
Ak,t ∣ A

�

0,t

}
 denotes the event that k dies in t conditioned that at least someone dies 

in t. Using the law of total probability yields for the probability that k dies in t condi-
tioned that at least someone dies in t, �k,t

If member i dies, his or her balance account Bi is distributed to the survivors. To 
be fair, this reallocation takes place according to the specific characteristics of the 
surviving members: Older members and those with a larger stake in the tontine have 
to receive more. If member k ≠ i dies, member i receives a fraction of k’s balance 
ai,k,tBk , where

k’s balance is forfeited entirely, so

Equation (7) states that the dying members’ stake in the tontine is distributed among 
the surviving members. In sum, the amount lost by k equals the sum of the distrib-
uted benefits to the surviving members, so

The unconditional expected benefit received by member i in t is the return in case no 
one dies and the return if at least someone dies, weighted with their corresponding 
probabilities, thus

Since return is generated solely by mortality, there cannot be any return if no one 
dies. Thus E

[
ri,t ∣ A0,t

]
= 0 and the expected return reduces to the second term of 

the right-hand side of Eq. (9). The expected return conditioned that at least someone 
dies is the sum of the conditional death probability weighted fractions of the balance 
accounts over all k members in t, thus

P
(
A0,t

)
= 1 − P

(
N⋃
i=1

Ai,t

)
.

(5)

𝜌k,t = P
�
Ak,t ∣ A

�

0,t

�
=

P
�
Ak,t

�

P
�
A�

0,t

� =
qk,t

∑N

j=1

⎛
⎜⎜⎜⎝
(−1)j+1

∑
I ⊆ {1,…N}

�I� = j

P
�⋂

i∈I Ai,t

�⎞⎟⎟⎟⎠

.

(6)0 ≤ ai,k,t ≤ 1 for i, k = 1,… ,N and i ≠ k.

(7)ak,k,t = −1 for k = 1,… ,N.

(8)
N∑
i=1

ai,k,t = 0 for k = 1,… ,N.

(9)E
[
ri,t

]
= E

[
ri,t ∣ A0,t

]
P
(
A0,t

)
+ E

[
ri,t ∣ A

�

0,t

]
P
(
A�

0,t

)
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To achieve a fair tontine, each member’s expected benefit is zero in each year. This 
is because the expected loss of the own balance account in the case of the own death 
has to be offset by the expected gains one receives from other members’ deaths, so 
E
[
ri,t ∣ A

�

0,t

]
!
=0 . The older i is, the higher the death probability qi,t , causing that �i,t 

increases as well (assuming that the composition of the tontine does not change) and 
leads to a higher expected loss in case of the i-th death. This has to be compensated 
by an increase in the fractions ai,k,t one receives in the case of other members’ death 
to counterbalance the aforementioned effect and to create a fair bet.

To satisfy the conditions of a fair bet for every tontine member i = 1,… ,N , 
one has to search for a set of ai,k,t that yield an expected benefit of zero for every 
tontine member and which fulfills conditions (5), (6), (7) and (8), yielding 
E[ri,t] = E[ri,t|A�

0,t
] = 0.

As Sabin [49] shows, such a set of ai,k,t exists only if no member is exposed to 
more than half of the total risk of the tontine. This can be achieved by introducing 
a ceiling of the amounts to invest Bi . Choosing N large enough additionally reduces 
the threat of a single individual holding too large a fraction of risky exposure of the 
tontine. Here, we implement an algorithm23 for the determination of the set of ai,k,t 
that is proposed by Sabin [49], which approximately assigns constant ai,k,t , irrespec-
tive of k for k ≠ i and which provides best results for large N. In the following, we 
assume that the resulting ai,k,t satisfy conditions (5)–(8) and that no member holds 
more than half of the risky exposure of the tontine, formally meaning that

The expected return, conditioned that i survives in t, is

Because Eq.  (10) is solved to be zero, to yield a fair bet, ∑N

k = 1

k ≠ i

�k,tai,k,tBk = −�i,tai,iBi and Eq. (12) is

(10)E
[
ri,t ∣ A

�

0,t

]
=

N∑
k=1

�k,tai,k,tBk.

(11)�i,tBi ≤ 1

2

N∑
k=1

�k,tBk for i = 1…N.

(12)
E
[
ri,t|A�

i,t

]
=

N∑
k = 1

k ≠ i

�k,tai,k,tBk.

(13)E
[
ri,t|A�

i,t

]
= �i,t = qi,tBi.

23 For further algorithms to construct a tontine, see Sabin [50].
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This is an interesting property since the individual expected return in case of the 
own survival is solely driven by the own mortality qi,t and the own investment in the 
tontine Bi , and does not depend on the tontine composition.24

The unconditional realized benefit for i in t is

where the indicator function �{…} takes on the value of 1 if the respective event 
occurs and 0 otherwise and therefore �{…} ∼ BerP(…) . The realized return condi-
tioned that i survives is

Since the ai,k,t are approximately constant for i for large N, ai,k,t ≈
qi,tBi∑N

k = 1

k ≠ i

qk,tBk

 , and 

Eq. (14) is

Although the volatility of the tontine converges toward zero for N → ∞ , for a finite 
and realistic tontine size, the payouts are volatile.25 As Appendix Tontine Volatility 
shows, the tontine payouts are approximately normally distributed, with

and

ri,t =

N�
k = 1

k ≠ i

ai,k,tBk�
�
Ak,t

⋂
A�

i,t

� − Bi�{Ai,t}

(14)
ri,t|A�

i,t
=

N∑
k = 1

k ≠ i

ai,k,tBk�{Ak,t}.

(15)ri,t�A�

i,t
≈ qi,tBi

N∑
k = 1

k ≠ i

Bk�{Ak,t}

N∑
k = 1

k ≠ i

Bkqk,t

.

�i,t = qi,tBi

25 For example, the tontines offered by Le Conservateur have to comprise at least 200 members to be 
launched. See http://www.conse rvate ur.fr/.

24 As long as no individual holds more than the mortality weighted tontine exposure (Eq. 11), a tontine 
exists (i.e. no negative death probabilities exist).

http://www.conservateur.fr/
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with M Monte Carlo simulation paths.

4.4  Annuity model

The considered individual has pension wealth Wi , no other wealth, no other source 
of income and the share of wealth which is not tontinized gets annuitized. The indi-
vidual can choose to hold any positive proportion of his wealth in an annuity or in a 
tontine. The individual has no heirs and no desire to leave a bequest. We refer to an 
annuity applied by Milevsky [41] which requires a lump sum investment of Wi − Bi . 
The annuity then pays a stable income stream on a yearly basis until the participants’ 
death, starting as an immediate annuity.

The conditional survival probability of a person aged x in t of surviving � more 
years is defined as

The annuity provider is risk-neutral. Therefore, because we refrain from interest 
rates in this model, the lump sum price āt

x
 in t of an immediate annuity which pro-

vides an income of 1 EUR per year until death is

To simplify, we denote the price of the immediate annuity as āt
i
 , where the individ-

ual characteristics can be identified via i. A lump sum investment of Wi − Bi in the 
annuity provides a stable, lifelong and yearly income stream of

The individual can decide on the allocation of tontinization ( Bi ) and annuitization 
( Wi − Bi ) of the wealth Wi.

4.5  Old age liquidity need function

According to Worldbank [61], worldwide life expectancy at birth has increased 
between 1960 and 2015 from 52.5 to above 71.7 years. The increasing lifetime will 

(16)�i,t =
qi,tBi√
M − 1

������������
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⎛
⎜⎜⎜⎜⎜⎝
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.
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t
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x
=

𝛺∑
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t+𝜏
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.

(17)Ri,t =
Wi − Bi

āt
i

.
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cause the number of people over 80 years to almost double to 9 millions in Germany 
by the year 2060 according to forecasts by the Statistisches Bundesamt [54]. In the 
future, it is therefore very probable that very high ages of 100 years and even more 
will be reached by a large number of people. According to the medicalisation the-
sis motivated by Gruenberg [22], the additional years that people live due to demo-
graphic change are increasingly spent in bad health condition and disability. Jagger 
et al. [32] find a significant increase in life expectancy between 1991 and 2011 in 
England. However, cognitive impairment, poor health and disability increase with 
age and elderly disability increased in that period. In those additional years of life, 
the demand for care products and medical service increases over-proportionately. 
Coming from 2.6 million nursing cases in Germany in 2013, Kochskämper [34] esti-
mates between 1.5 and 1.9 million additional nursing cases in Germany in the year 
2060 due to demographic change. By the year 2030, the demand for stationary per-
manent care will increase by 220,000 places in Germany.

While previous research finds a systematic decrease in the consumption level at 
retirement,26 incorporating the nursing care costs and medical expenses into con-
sumption yields a so called retirement smile.27 When people retire they are mostly 
still healthy and have therefore time to spend on lifestyle. As they age, first physical 
constraints appear, they become more and more home-bound, and thus consumption 
declines while supplementary and medical costs are still at a low level. As people 
become very old they rely more on assisted living requirements, and costly long-
term nursing care is needed. Therefore the typical monetary demand for a retiree is 
U-shaped. Based on own empirical research28 we model an old-age liquidity need 
function, which accounts for demand for nursing care and medical service. The 
determination of the liquidity need function is based on data available on consumer 
spending in the SOEP from 1984 to 2013. We determine the age-specific expendi-
ture pattern for the spending categories of food, living, health, care, leisure, refur-
bishment and miscellaneous and finally aggregate them. The considered age ranges 
from 60 to 95. From the age of 95 on, we extrapolate until the age of 105 due to the 
limited data basis for those ages. The modeling of the nursing care costs is based 
on the costs of an inpatient, permanent care, which occurs in nursing homes, even 
though a large share of care is performed by family members and nursing care ser-
vices. The inpatient care costs reflect the actual potential resources needed in a more 
appropriate manner because in home care, the time spent by family members is not 
taken into account. Moreover, many refuse inpatient care only because of lacking 
resources. Figure 1a shows our estimates of the average nursing care costs from the 
age of 60 to 90 per year. In addition, the average liquidity need without nursing care 

28 The data used in this publication was made available to us by the German Socio-Economic Panel 
Study (SOEP) at the German Institute for Economic Research (DIW), Berlin.

26 See for example Hamermesh [24], Mariger [39], Banks et al. [2], Bernheim et al. [7] or Haider and 
Stephens Jr [23].
27 In an empirical work, Blanchett [9] derives the trend of retirement consumption. He observes a shift 
in the expenditures towards increasing health care, entertainment and food.
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costs is shown. If we aggregate both components, we obtain the characterized retire-
ment smile, which is presented in Figure 1b.

In our model, we map the old-age liquidity need via a polynomial liquidity need 
function Dt of order 2 which is calibrated based on our results, and assume an 
extrapolation up to the age of x = 105 . The desired consumption level is driven by 
age x in t so

where the parameters �0 , �1 and �2 are fitted using our empirical data, and �t is the 
error term in t. For simplicity, tontine payments and liquidity need are assumed to be 
independent.29

4.6  Multi cumulative prospect theory valuation

So far, we have on the one hand an income stream which is composed of both certain 
annuity and volatile tontine payments, and on the other an age-increasing liquidity 
need which the income stream should cover. We aim to design the payout pattern of 
tontine and annuity such that the liquidity need can be served optimally. Therefore, 
we evaluate the income stream relative to the liquidity need as a reference point. An 
income stream larger than the liquidity need is considered a gain and utility-gener-
ating, while an income stream lower than the liquidity need generates a loss, which 
provides disutility.30 In this sense, we look at the utility of the income relative to 
the liquidity need, rather than the absolute level of income. Since the liquidity need 
increases with age, a payout which is able to meet the demand in early years might 
not be sufficient in the later years of retirement. Therefore, to evaluate an income 
stream relative to a reference point, the Cumulative Prospect Theory (CPT), origi-
nated by Kahneman and Tversky [33] and enhanced by Tversky and Kahneman [55] 
is highly suitable for our purpose.31 Although CPT is a descriptive rather than a 
normative theory, it allows us to capture the aforementioned properties and to deter-
mine an optimal, CPT-utility maximizing fraction to be invested in the tontine. To 
capture the life-cycle dynamics of the repeating payments until death, we use the 
Multi Cumulative Prospect Theory (MCPT), as applied by Ruß and Schelling [48], 
where the CPT-utility is determined in every period t by considering a changing ref-
erence point which is represented by the respective liquidity need Dt , and is finally 
aggregated with respect to survival prospects. The total utility of person i over his 
or her stochastic remaining lifespan is the sum of the CPT-utilities of the gains and 
losses Zi,t of the payouts generated by the portfolio of tontine and annuity in relation 

(18)Dt = �0 + �1xt + �2x
2
t
+ �t

29 In future work, it would be interesting to explore how the consumption pattern and portfolio decisions 
respond to late-life care expenses. See Yogo [62] and Koijen et al. [35].
30 In this article we assume that the cash flows generated in the respective period are used to maximize 
the utility of the respective period. Thus, there is no intertemporal consumption optimization where gen-
erated funds are saved for future periods in which they can better meet liquidity needs. See Gemmo et al. 
[19], who study a tontine in an intertemporal life cycle model.
31 In this sense, Schmidt [51] uses CPT to determine insurance demand.
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to the liquidity need at each point in time t, deflated by a subjective discount fac-
tor � ≤ 1 . The conditional survival probability �px of an x-year-old of surviving � 
more years is incorporated in the CPT-utility. It is combined with the density of the 
respective retirement payouts and the resulting joint probability is valued according 
to the CPT, thus

The CPT-utility in each period is

in a continuous context.32 The probability weighting function w+(F) for gains and 
w−(F) for losses is

where � and � are the probability weighting parameters. The value function v(z) is 
given by

(19)MCPT(i, t) =

T−x∑
�=1

��CPT
(
Zi,t+�

)
.

(20)

CPT
(
Zi,t+�

)
= ∫

0−

−∞

v(z)d
(
w−

(
Fi,t+�(z)

))
+ ∫

∞

0+
v(z)d

(
−w+

(
1 − Fi,t+�(z)

))

(21)w+(F) =
F�

(F� + (1 − F)� )
1∕�
, w−(F) =

F�

(F� + (1 − F)�)
1∕�

(22)v(z) =

{
za z ≥ 0

−𝜆|z|b z < 0
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(a) Average nursing care costs and liquidity
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(b) Aggregated liquidity need per year

Fig. 1  The retirement smile

32 See for example Hens and Rieger [26], Ågren[1] or Ruß and Schelling [48] who use the CPT in a 
continuous context.
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where a, b ∈ (0, 1) and 𝜆 > 1 . The mixture cumulative distribution function, to 
account for the joint probability of conditional survival and the payout size, is

where FNi,t+�
 is the CDF of a normal distribution with the first moment

and the standard deviation �i,t+� resulting from Eq. (16) for the normally distributed 
gains and losses.

Figure 2 shows the illustration of Eq. (23): dying leads to z = 0 to which the death 
probability 1 −� px is assigned. This explains the jump in the CDF.

By incorporating the mixture CDF in the analysis, Eq. (20) becomes

with

where � ∈ (� , �) . The first two lines of Eq. (25) are the utility in case of survival, 
whereas the third and fourth line are the utility in case of death. Since the utility in 
case of death is zero because of v(0) = 0 , Eq. (25) reduces to just the first two lines.

(23)Fi,t+�(z) =
(
1 −� px

)
�[0,∞) +� px ∫

z

−∞

dFNi,t+�
(u)

(24)�i,t+� = qi,t+�Bi +
Wi − Bi

ai,0
− Di,t+�

(25)

CPT
(
Zi,t+�

)
=� px

[
∫
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−∞

v(z)w−�
(
Fi,t+�(z)

)
fNi,t+�

(z)dz

+ ∫
∞
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v(z)w+�

(
1 − Fi,t+�(z)

)
fNi,t+�

(z)dz

]

+
(
1 −� px

)[
v(0−)w−�

(
Fi,t+�(0

−)
)

+ v
(
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)
w+�

(
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(
0+

))]

(26)w�(F) =
F�

(
F� + (1 − F)�

)1∕�
⋅

[
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Fig. 2  Mixture CDF of survival probability and retirement payout distribution vs. Normal CDF of retire-
ment payout
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Finally, we numerically maximize Eq. (19) subject to the optimal level of tontine 
investment Bi.

4.7  Variation: stochastic liquidity need in MCPT valuation

Because Eqs. (24) and (16) are assumed to be normally distributed, it follows that 
also the combined payout of tontine and annuity is normally distributed with

To cover effects stemming from uncertainty about the future liquidity need, we 
assume that the liquidity need itself is normally distributed with mean E

(
Di,t

)
 and 

standard deviation �Di,t
 , therefore

where �i,t0 = qi,tBi +
Wi−Bi

ai,0
− E

(
Di,t

)
 and �2

�i,t
= �2

Di,t
 is calibrated based on own 

empirical research. Tontine payments and liquidity need are assumed to be inde-
pendent. If we write

then

and

because the sum of two normally distributed random variables is also normally dis-
tributed. While the mean expected payout remains the same, the volatility increases 
to the sum of the variance of the tontine payment and the variance of the liquidity 
need.

4.8  Variation: subjective mortality

To account for subjective beliefs about one’s own mortality risk, we adjust the 
objective forecasted mortality. It is important to understand the difference com-
pared to the probability adjustment which CPT undertakes: while CPT accounts for 
a deviating perception of objective probabilities, the subjective mortality adjustment 

(27)
max
Bi

MCPT(i)

s. t. Bi ≤ Wi,Bi ≥ 0
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(
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2
i,t

)
.
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(
�i,t0, �

2
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Z�
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Z�
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+ �i,t

(
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modifies the average probabilities subject to own perceptions about the individual 
health status. People who believe to live longer than the aggregate average because 
they feel very healthy or have an active lifestyle perceive to have lower death proba-
bilities and thus believe to have a longer expected remaining lifetime. Therefore, the 
optimistic subjective death probability q′

x,t
 is lower than the average, objective death 

probability qx,t . Likewise, the pessimistic subjective death probability q′
x,t

 for people 
who believe to live shorter than the overall average (because of severe illness or the 
awareness of a poor lifestyle) is higher than the actual death probability qx,t . Bisson-
nette et al. [8] show that, within different groups (e.g. gender, ethnic background or 
education), people with similar characteristics are only slightly optimistic regard-
ing their survival prospects compared to the average mortality within the subgroup, 
whereas the actual subgroup mortality itself differs tremendously from the overall 
population mortality. The authors conclude that the individual perceptions are very 
precise. Therefore, it is important to incorporate subjective survival probabilities 
in our analysis, because people who believe to live longer tend to live longer, and 
thus different retirement planning solutions are needed for different individuals. To 
account for subjective mortality in our model, we adjust the actual mortality rates 
qx,t by an individual mortality multiplier d, therefore the subjective mortality rate q′

x,t
 

is

where d is the realization of a random variable D and determines the subjective sur-
vival probability. For 0 < d < 1 the individual expects to live longer than the aver-
age, if d = 1 the individual self assesses his or her lifetime of being average and if 
d > 1 , the individual expects to live shorter than the actual mortality table predicts. 
Furthermore, q� = 1 which means that there is a limiting age � when the individual 
dies with certainty. A simple modeling approach for d ∼ D is shown in Appendix 
Modeling Subjective Mortality, where D is modeled using a Gamma Distribution. 
Since the insurance company offering tontines and annuities uses average objective 
mortality rates, pricing is undertaken on the basis of average mortalities. The sub-
jective beliefs only influence the subjective determination of individual utility.

5  Calibration and results

We calibrate33 the Lee-Carter model based on data from the Human Mortality Data-
base,34 and forecast mortality rates for T = 100 years, beginning from 2011, which 
is denoted by t = 1 in the analysis. The fractions of female and male newborns to 

(29)q�
x,t

=

{
d ⋅ qx,t if d ⋅ qx,t ≤ 1

1 otherwise

33 See appendix Calibration of the Lee-Carter model for the fitted values for �x , �y , �x , �y , �x
t
 , and �y

t  for 
1–105 years of age and years 1956–2011. To forecast �t , an ARIMA process is used.
34 Data from 2011, Source: http://www.morta lity.org.

http://www.mortality.org
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update population pyramids are calculated based on German birth statistics.35 The 
age-specific birth rates are based on German birth statistics36 and describe the num-
ber of newborns per year of a woman in each cohort. The maximum attainable age 
is set to be � = 105 which means that at the age of x = 105 one dies with certainty. 
We consider initial wealth Wi as an independent variable and measure its influence 
on the optimal investment behavior under various scenarios. The parameters of the 
polynomial liquidity need function Dt are �0 = 163, 984.686 , �1 = −4, 000.634 and 
�2 = 28.589 and fit our empirically estimated old-age liquidity need function based 
on SOEP data.

5.1  Base case

In Table 1, we report the parameters used in the MCPT37 analysis, which constitute 
the base case. We consider i as a male individual aged 62 in the year the tontine is 
set up ( t = 1 ), and vary his initial endowment Wi . Furthermore, we assume that the 
remaining tontine members k = 1…N, k ≠ i behave optimally, i.e. the individual 
amounts Bk invested in the tontine are the MCPTk-utility maximizing amounts and 
lie between 0 and approximately EUR 50,000. We therefore assume them to be uni-
formly distributed on [0, 50, 000].38 Based on M = 10, 000 simulations, we calculate 
the realized tontine returns for individual i in every period in which he is alive and 
thereby determine the moments of the normal approximation of tontine returns for 
member i. We set the subjective discount factor � = 1 , because we assume that the 
future states are as important as present states for an individual who aims to secure 
the future standard of living.39 We calibrate the CPT-value function parameters a, b 
and � according to the values proposed by Tversky and Kahneman [55], but use the 
actual (i.e. not weighted) probabilities, i.e. � = � = 1.40

35 Data from 2000 to 2010, see Statistisches Bundesamt [53].
36 Data from 2011, German Federal Statistical Office, https ://www-genes is.desta tis.de/genes is/onlin e.
37 We use the notation MCPT according to Eq. (19) for the sum of the periodic CPT-utilities and CPT 
according to Eq. (25) for the periodic utilities.
38 For every amount invested in the tontine Bk , there exists a corresponding amount of initial wealth Wk 
for which Bk is optimal. Since we chose the optimal amounts of Bk randomly, we implicitly specify their 
initial wealth levels Wk . The chosen values for Bk correspond to the range of optimal amounts invested 
in the tontine for average individuals for the considered range of initial wealth Wi . Thereby we provide 
the optimal investment decision for hypothetical levels of Wk , which are roughly in the same range as 
the bandwidth of Wi . This implies that individuals have a sufficiently high wealth Wi that allows them to 
behave optimally. This assumption could be violated in reality if the required range of wealth does not 
fully reflect the population. An iterative adjustment of the population pyramid can help here. Our choice 
of the total population pyramid is therefore simplifying and offers a starting point for further research.
39 In this sense, Parsonage and Neuburger [45] and Van der Pol and Cairns [57] provide empirical evi-
dence that it is feasible to assume a subjective discount rate of zero for the discounting of future health 
benefits.
40 This is in line with the asset pricing literature. See for example Barberis et al. [4] and Levy and Levy 
[37], who also use the actual probabilities. Cumulative Prospect Theory deviates from expected utility 
theory mainly in two respects: by using reference points and distorted occurrence probabilities. As we 
want to concentrate on effects stemming from deviations from reference points, we refrain from distort-
ing the occurrence probabilities in our base case. In Sect. 5.7 we calibrate � and � according to Tversky 
and Kahneman [55].

https://www-genesis.destatis.de/genesis/online
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Since the expected tontine return as well as the tontine volatility are driven by the 
individual survival probability, both increase as i becomes older. Aged 62 in t = 1 , 
a person investing Bi = 30, 000 EUR in the tontine can expect to receive a first-year 
tontine return of 345.15 EUR which amounts to 1.15% of the initial tontine invest-
ment. In t = 10 , his expected return is roughly 1.6 times higher than in the first year 
but still amounts to only 1.86% of the initial investment. The payments thus increase 
slowly in the early retirement years because of the slow increase of death probabili-
ties in the early years. After 20 years, at the age of 81, the expected return is already 
4.8 times as large as in the first year and the single payment in this year amounts to 
5.51% of the initial investment. For very high ages, the payments increase tremen-
dously: at the age of 91, in t = 30 , the expected tontine return is almost 16.3 times 
as large as in the first year and yields a rate of return of 18.73%. Every year of fur-
ther survival then yields even steeper increasing returns, being 47.69% of the initial 
investment at the age of 101 in t = 40 , and finally 100% at the maximum attainable 
age of 105 in t = 44 . Neglecting interest rate effects, one can expect to recoup the 
initial investment in year 26 at the age of 87. Since the standard deviation of the ton-
tine returns depends on the individual mortality, volatility increases similarly with 
age. In comparison, an immediate fairly priced annuity with a lump sum investment 
of 30,000 EUR would yield an income of yearly 1458.96 EUR. The investor could 
recoup the initial investment already after 21 years at the age of 82. This is because 
the annuity provides stable payments whereas tontine payments increase with age. 
Figure 3 shows the yearly expected payout patterns of a tontine and an annuity with 
investment volume normalized to unity.

Table 1  MCPT parameters base 
case

Parameter Notation Value

Forecast horizon (in years) T 100
Maximum attainable age � 105
Fraction of female newborns �f 48.68%
Fraction of male newborns �m 51.32%
Lower boundary age at tontine entrance x 62
Upper boundary age at tontine entrance x 100
Size of the tontine N 10,000
Monte Carlo Paths M 10,000
Subjective discount factor � 1
CPT value function parameters a, b 0.88
CPT loss sensitivity factor � 2.25
CPT w+ parameter � 1
CPT w− parameter � 1
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Fig. 3  Normalized payout of annuity vs. tontine for N = 10, 000
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Based on these considerations, we determine the CPT-utility CPT(Zi,t) in each 
period for different levels of Wi for member i. Figure 4a shows the CPT-utility of 
member i for an initial wealth endowment of Wi = 571, 000 EUR for different port-
folio compositions at each point in time t. This represents the expected contribu-
tion of the CPT-utility on the aggregated MCPT-utility. Since survival probabilities 
decline with age, the impact of each CPT-utility declines with age and finally con-
verges toward zero. We first consider the case in which person i completely annu-
itizes his initial wealth (solid line). As annuity payments are constant, an increasing 
liquidity need Di,t causes declining CPT-utilities in time. In early years, the liquid-
ity need can be met. As the liquidity need rises and exceeds the available funds, 
CPT-utility decreases and becomes negative. As age increases, the declining sur-
vival probability causes a lower CPT-utility which reduces the impact of late periods 
on MCPT-utility. For the very late years, the low survival probabilities outweigh the 
negative CPT-utility, yielding that, finally, the impact of very late years on MCPT-
utility approaches zero. Second, we consider the complete tontinization of initial 
wealth (dotted line). Because tontine payments are driven by mortality, payments 
are very low in the early years and increase in age, thus the liquidity need cannot be 
met for early ages and can easily satisfy Di,t in later years. Again, very low survival 
probabilities in later years reduce the impact on MCPT-utility. Furthermore, since 
tontine and annuity payments proceed adversely, a portfolio of both can help to gen-
erate payout patterns which enable to finance the increasing liquidity need appropri-
ately. The dashed line shows the CPT-utilities of a payout pattern of a portfolio con-
sisting of 10% tontine and 90% annuity. While still being able to satisfy the liquidity 
need in the early years, it is also able to provide almost sufficient funds in the later 
years. The sum of the CPT-utilities yields the MCPT-utility.

Figure  4b exemplarily shows the MCPT-utility for different fractions of 
Wi = 571, 000 EUR being invested in the tontine ( Bi ). The remaining fraction Wi − Bi 
is annuitized. Starting from a situation of complete annuitization, i can increase his 
MCPT-utility by investing a positive fraction in the tontine, and finally maximizes 
his MCPT-utility if he invests 10.86% of Wi in the tontine. An optimal fraction exists 
because of two counteracting effects: up to an optimal point, a higher investment in 
the tontine increases the later years’ CPT-utilities more than it decreases the early 
years’ CPT-utilities, yielding an increasing MCPT-utility. Beyond this optimal point, 
the decrease in CPT-utility in early years outweighs the increase in CPT-utility in 
the late years, yielding a declining MCPT-utility. These effects are resulting from 
the fact that up to the age of 80, the annuity provides a higher return than the ton-
tine, while beyond the age of 80, the tontine outperforms the annuity. Therefore, 
one unit of additional investment in the tontine decreases CPT-utilities until the age 
of 80 and increases CPT-utilities beyond the age of 80, finally yielding an optimal 
MCPT-utility maximizing tontine investment level.

Figure 4c shows the optimal, MCPT-utility maximizing fractions to be invested 
in the tontine for different levels of initial wealth Wi . If Wi < 553, 000 EUR, it is 
optimal not to invest in the tontine. This is because even for complete annuitiza-
tion, annuity payments are so low that the CPT-utility losses in early years, caused 
by investing in the tontine, are large and cannot be offset by the CPT-utility gains 
in later years, caused by increasing tontine payouts. As Wi increases, the optimal 
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fraction to invest in the tontine increases very sharply up to Wi = 571, 000 EUR and 
decreases thereafter. In the wealth region 553, 000 ≤ Wi ≤ 751, 000 the reduction in 
early years’ CPT-utilities due to shifting from annuity to tontine investment is over-
compensated by the increase in late years’ CPT-utilities. This is because the mar-
ginal CPT-utility in early years is lower for higher Wi , and therefore more wealth can 
be shifted from the annuity to the tontine investment. The optimal tontine fraction 
decreases beyond the peak at Wi = 571, 000 EUR because for higher Wi marginal 
CPT-utility decreases for late years’ consumption and less wealth in relative terms is 
needed to increase late years’ CPT-utilities. In other words, the CPT-utilities in early 
years do not decline much, while late years’ consumption can be financed with the 
additional tontine payments. For Wi > 751, 000 EUR it is again optimal not to invest 
at all in the tontine. At this wealth level, the annuity payments are sufficient to sat-
isfy the liquidity need in early as well as in later years. An investment in the tontine 
thus would reduce early consumption possibilities and therefore reduce early years’ 
CPT-utility, while the gain from later consumption would be very small because 
later years’ liquidity need can already be met by the annuity payments. Therefore, 
the tontine would take away funds in early years in which survival prospects are 
high and therefore negatively impact utility. In turn, the tontine would provide funds 
in states when the additional tontine payments are not needed because funds from 
the annuity payments are already sufficient. In addition, these funds hardly contrib-
ute to MCPT-utility because of low survival prospects at high ages41.

Figure  4d shows the optimal MCPT-utility for different levels of Wi compared 
to the MCPT-utility under complete annuitization. For Wi < 553, 000 EUR and 
Wi > 751, 000 EUR, complete annuitization provides the highest MCPT-utility. As 
seen before, in these domains tontine investment reduces the MCPT-utility. For 
553, 000 ≤ Wi ≤ 751, 000 EUR, the highest MCPT-utility can be achieved by invest-
ing a positive fraction of wealth in the tontine. The highest MCPT-utility increase 
can be generated at Wi = 584, 000 EUR. This can be seen in the gray shaded area, 
which corresponds to the scale on the right hand side of the figure.

The central result in the previous tontine literature is that a tontine has the high-
est (von-Neumann–Morgenstern) expected utility if its payment profile corresponds 
to that of a constant annuity.42 Our approach is different in that we take the age-
increasing payout profile of the tontine as given and use this natural property to ana-
lyze how well the tontine is suited to meet the needs of an aging individual. For this, 
we do not optimize the intertemporal consumption pattern. We rather optimize the 
investment in a tontine to cover the age-increasing liquidity need by using Cumula-
tive Prospect Theory. Thus, our results already differ by assumption from the previ-
ous literature, on the one hand, due to the different utility concept, and on the other 
hand since we do not engineer the naturally resulting tontine payments. Therefore, 

41 If we used a positive subjective discount rate � , the advantage of the tontine investment in the later 
years would diminish (See Fig. 4a), resulting in lower optimal fractions to invest in the tontine.
42 See for example Milevsky and Salisbury [42] Milevsky and Salisbury [43], Chen et al. [12] and Chen 
et al. [11].
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our results do not contradict previous results, as we look at the tontine from a differ-
ent angle.

5.2  Variation: equal treatment of gains and losses

If we set the parameters of the value function of the CPT to a = b = 0.5 and the 
CPT loss sensitivity factor to � = 1 , we receive a square root utility, by which gains 
and losses are treated equally. As Fig.  5 shows, the resulting fractions of tontine 
investment are generally similar compared to the base case setting. It is striking 
that at Wi = 591, 000 EUR the optimal fraction to invest in the tontine immediately 
jumps from 0 to 10.73% and decreases thereafter, until it finally reaches 0 again at 
Wi = 950, 000 EUR. Compared to the base case, investment in the tontine is optimal 
for higher Wi . Figure 6 provides an explanation for these results.

Figure 6a shows the MCPT-utility values for Wi = 560, 000 EUR for different lev-
els of tontine investment. The highest MCPT-utility can be achieved if no invest-
ment in the tontine takes place. If the tontine investment increases, the MCPT-utility 
first decreases, and at roughly 12% there is a little peak with a local maximum where 
MCPT-utility slightly increases, but decreases thereafter again43 (Fig. 6b). As ini-
tial wealth reaches the threshold value Wi = 591, 000 EUR (Fig. 6c), the hump is as 
large as that the MCPT-utility with 10.73% tontine investment equals the MCPT-
utility without tontine investment. Therefore, the individual is indifferent between no 
tontine investment and 10.73% tontine investment. For a tontine investment between 
0 and 10.73%, the MCPT-utility is lower compared to the maximum MCPT-utility. 
For tontine investments larger than 10.73%, the MCPT-utility decreases as well. As 
Wi further increases, the peak further moves to the left and surmounts the MCPT-
utility without tontine investment (Fig. 6d). Gradually, the local minimum between 
no tontine investment and optimal tontine investment disappears (Fig. 6e). Finally, 
as Wi is very large, the slope around the local maximum is very flat and finally dis-
appears when the MCPT-utility maximizing fraction to invest in the tontine hits 0 
again (Fig. 6f).

5.3  Variation: tontine size

For an increased tontine size of N = 100, 000 (compared to N = 10, 000 in the 
base case), the volatility of the tontine payments declines (Table 2). As presented 
in Fig. 7, less volatile tontine payments make it optimal to invest in the tontine for 
lower Wi than in the base case scenario. Similarly, for higher Wi , investing in the 
tontine remains beneficial with an increased pool size. This is because less volatile 
payments generally enhance CPT-utilities. Therefore, it is optimal for both a lower 
and a higher Wi to invest more in the tontine compared to N = 10, 000.

43 The reason for this peak lies in the tradeoff between early and later years’ consumption possibilities as 
explained in the previous base case.
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5.4  Variation: stochastic liquidity need

If we assume a stochastic liquidity need, the fact whether cash flows lead to gains or 
losses with respect to the liquidity need is affected by the volatility of the tontine 
payments as well as by the volatility of the liquidity need. A stochastic liquidity 

Fig. 5  Equal treatment of gains and losses-calibration (ETGL) maximizing fractions to invest in the 
tontine for different levels of Wi
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need increases the overall volatility and therefore CPT-utilities decline. First, we set 
the variance of the liquidity need at �2

�i,t
= �2

Di,t
= 25002 which could reflect both, 

uncertainty about health care costs and uncertainty of becoming frail and dependent. 
As a consequence, the wealth level at which it becomes optimal to invest in the ton-
tine increases compared to the base case (see Fig. 8). The reason for this lies in the 
fact that in early years the more volatile nature of gains and losses makes it desirable 
to hold more funds to cover the liquidity need. Every unit taken away from the annu-
ity in the early years causes a huge decline in early years’ CPT-utilities. Therefore, it 
is optimal only for a higher Wi to invest in the tontine. The opposite effect applies to 

Fig. 7  MCPT-utility maximizing fractions to invest in the tontine for different levels of Wi for 
N = 100, 000
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Table 2  Properties of normally distributed tontine returns for Bi = 30, 000 in t in EUR for tontine size 
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�
i,t
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N=100,000
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Fig. 8  MCPT-utility maximizing fractions to invest in the tontine for different levels of Wi for stochastic 
liquidity need
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high Wi . The volatile liquidity need brings about situations of high liquidity need in 
which payments from the tontine can support its coverage. Therefore, it is optimal 
for a higher Wi to hold some fraction in the tontine. Furthermore, the optimal frac-
tion to invest in the tontine is smaller compared to the base case, because the tontine 
investment itself adds another layer of volatility to the payments, which decreases 
utility. As we further increase the volatility of the liquidity need to 
�2
�i,t

= �2
Di,t

= 4, 0002 , we can observe a boost of both effects. A higher Wi is required 
to start investing in the tontine in order to lower the risk of experiencing a utility-
harming drop far below the liquidity need. As the level of Wi is relatively high, the 
tontine investment loses its efficiency compared to the resulting annuity payments, 
yielding a lower optimal fraction to be invested in the tontine.

5.5  Variation: subjective mortality

If we adjust the mortality according to Eq. (29) by d = 0.8 , the individual expects 
to live longer than average. This means that future periods have a greater impact on 
MCPT-utility because survival probabilities decline less fast. Therefore, later years’ 
CPT-utilities are higher compared to the base case. This situation is presented in 
Fig. 9a, where the dotted lines represent the CPT-utility paths for the base case and 
the solid lines represent the CPT-utility paths for the subjective, improved mortality. 
As a result, positive and negative subjective CPT-utilities both have a higher impact 
on total MCPT-utility compared to the base case, indicating that it might be more 
favorable to invest a higher fraction in the tontine because it is more likely to experi-
ence the later years’ CPT-utilities. Figure 9b shows that it is optimal to invest in the 
tontine for lower Wi because, by investing in the tontine, later years’ CPT-utilities 
gain more relevance and are higher although early years’ CPT-utilities are reduced. 
By investing more intensely in the tontine, overall MCPT-utility can be increased. 
Furthermore, it is optimal to invest in the tontine up to a higher Wi , compared to 
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the base case. This is because marginal CPT-utility in later years increases as sur-
vival probabilities increase. Early years’ CPT-utility losses can be overcompensated 
by later years’ CPT utility gains. Furthermore, later years’ CPT-utility losses also 
have a higher impact on the MCPT and, therefore, a tontine investment in higher Wi 
regions can help to mitigate the otherwise resulting underfunding problem. In addi-
tion, it is optimal to invest a higher fraction in the tontine for all Wi for which it is 
optimal to invest in the base case. This is due to the increased probability of experi-
encing CPT-utilities in the late years.

5.6  Variation: changing liquidity need

In this section we change the shape of the liquidity need. First, we parallel shift the 
standard liquidity need curve up by 10,000 EUR. Second, we assume an exponen-
tial growth of the standard liquidity need curve by Dexp

t = 1.01tDt . Since the stand-
ard liquidity need curve represents the average liquidity need unconditioned on the 
health status, an exponential growth can be interpreted as the liquidity need condi-
tional on bad health. Figure 10a, b show the resulting liquidity need curves and the 
optimal fractions to invest in the tontine for the different liquidity need curves. If 
we assume a parallel, upward shift of the liquidity need curve by 10,000 EUR, two 
characteristics of the optimal investment choice can be observed. First, the optimal 
investment pattern shifts to the right, which means that it is optimal to invest in the 
tontine only for higher initial wealth endowment Wi . Second, the optimal fractions 
to invest in the tontine are lower compared to the base case. The reason for these 
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two properties lies in the increasing liquidity need in every period. For a relatively 
low Wi , it is not optimal to invest in the tontine because the loss in CPT-utilities in 
the early years due to a reduction of annuitized wealth exceeds the CPT-utility gains 
in later years. Only if there is sufficient initial wealth it is optimal to invest in the 
tontine. The maximal tontine investment in the parallel shift case is lower compared 
to the peak in the base case. This is a consequence of a substantially higher liquid-
ity need in the early years which can not be covered by tontines. If we assume an 
exponentially increasing liquidity need, investment in the tontine starts for a higher 
Wi compared to the base case and below the parallel shift case at approximately 
Wi = 600, 000 EUR. Furthermore, the peak of the optimal amount to be invested 
in the tontine is almost twice as large compared to the base case. Optimal positive 
fractions of tontine investment persist longer for high Wi . This is because in the early 
years the liquidity need in the exponential case is relatively close to the base case 
and disproportionately increases with age, compared to the base case. Therefore, 
the CPT-utility decrease in early years is relatively low when investing some frac-
tion in the tontine, while the CPT-utility gains of the tontine investment in the late 
years are very high. Thus, with large amounts of money invested in the tontine, the 
early years’ CPT-utilities do not suffer much, while later years’ CPT-utilities benefit 
strongly. As a consequence, larger amounts to be invested in the tontine are optimal 
to satisfy the liquidity need best. To sum up, the tontine is most powerful if the 
liquidity need is low in the early years and high in the later years of retirement.

5.7  Variation: cumulative prospect theory probability weights

If we calibrate the probability weighting function of the Cumulative Prospect The-
ory according to the originally proposed values by Tversky and Kahneman [55], 
� = 0.61 and � = 0.69 , we can observe in Fig. 11 that the optimal fractions to invest 
in the tontine are on a similar level as using objective probabilities. However, using 
the distorted weights makes it optimal to begin to invest in the tontine for a slightly 
lower Wi , and that it is optimal to invest a larger fraction in the tontine for any 
wealth level, where it is optimal in the base case to invest at least some fraction. 

Fig. 11  MCPT-utility maximizing fractions to invest in the tontine for objective ( � = � = 1 ) and subjec-
tive ( � = 0.61 and � = 0.69 ) probability weights
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Furthermore, it is still optimal for a higher available wealth Wi to invest in the ton-
tine. The reason for the slightly different tontine investment pattern is that small 
probabilities are over- and large probabilities are under-weighted. Small gains and 
losses occur with relatively equal probabilities and thus are hardly distorted. How-
ever, large gains and losses are low probability events and are therefore perceived 
to occur less frequent. Since a large loss harms more than a large gain benefits, the 
lower perception of those extreme events yields that the optimal tontine investment 
curve with distorted probabilities lies slightly above the base case optimality curve.

6  Summary and conclusion

The changing social, financial and regulatory framework, such as an increasingly aging 
society, the current low-interest environment, as well as the implementation of risk-based 
capital standards in the insurance industry, lead to the search for new product forms for 
private pension provision. These product forms should reduce or avoid investment guar-
antees and risks stemming from longevity, provide reliable insurance benefits and reflect 
in the payout pattern the increasing financial resources required for very high ages. We 
propose the traditional tontine to serve as such “product innovation”, especially in com-
bination with a traditional life annuity.

To assess the effects of tontine investments on policyholders’ welfare, we develop a 
lifetime-utility model based on Multi Cumulative Prospect Theory by which individual 
old-age liquidity needs and payouts stemming from annuity and tontine investment can 
be evaluated. The analysis results in an optimal retirement planning decision, based on 
individual preferences, characteristics and subjective mortality beliefs.

To show the effects of a tontine investment on retirement planning, we model the 
development of the changing population structure for the next decades in Germany. 
Based on the changing mortality dynamics, we describe a fair revolving tontine. To 
assess its advantages and disadvantages compared to a traditional life annuity, we derive 
a targeted consumption level from empirical data and combine the tontine payout struc-
ture with the payout structure of a traditional annuity to optimally cover the desired 
consumption. Our results reveal that a portfolio of annuity and tontine can provide the 
highest expected Multi Cumulative Prospect Theory utility. While the annuity pays a 
stable, constant pension, the tontine provides volatile, age-increasing payouts. However, 
purchasing tontines is only optimal for individuals within a certain range of wealth. On 
the one hand, these individuals can cover their liquidity needs in their early years of 
retirement by traditional annuities. On the other hand, they are wealthy enough to forgo 
income in those early retirement years by investing in tontines, which in the subsequent 
old age years generate the required income that could otherwise not be provided by 
level annuity payments. The higher the liquidity need is in the later years of retirement, 
the higher is the demand for tontines. In contrast, individuals with a low wealth level 
need traditional annuity payments in their early years of retirement, and cannot give up 
income for investing in tontines whose benefits mainly accrue in later years. Individu-
als with a very high wealth level, in turn, do not need the tontine income to cover their 
liquidity needs in their later years of retirement, while the tontine investment reduces 
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their income in the early years of retirement. These results, in principle, also hold if we 
apply von-Neumann-Morgenstern expected utility maximization.

Through the advantages of pooling, a greater tontine size extends the range of ini-
tial wealth endowments for which tontine investments become advantageous. A fur-
ther result of our analysis is that the more volatile the liquidity need is, the lower is the 
demand for tontines, because traditional annuities are then more useful to close possible 
liquidity gaps in the early retirement years that contribute strongly to the overall util-
ity. Finally, the demand for tontines is higher for individuals with lower mortality rates 
because of the expected longer lifetime in which they receive high tontine payouts.

Future research could incorporate investment risk and analyze its effects on the opti-
mal tontine investment decision. The level of investment risk might significantly change 
the optimal allocation of retirement wealth. In this context, the integration of reinvest-
ment opportunities of tontine and annuity returns might yield an additional determining 
factor for the optimal retirement planning decision.

Further research could include a mechanism for financing liquidity gaps or invest-
ing excess liquidity during the decumulation phase. This could be done in a two-step 
approach. In a first step the deviations from reference point, i.e. the liquidity need, could 
be evaluated and would go into the MCPT-valuation. In a second step, financing the gap 
or investing surplus would take place, leading to a change of deviations from liquidity 
needs in future years. These future deviations would then be treated in the same two-step 
approach. This procedure would, however, not measure utility and disutility of consump-
tion (deviations), but rather utility and disutility from actual investment and financing 
activities.

Another interesting area for further research is the analysis from an insurer’s per-
spective. It will be interesting to analyze whether the supply of tontines can reduce the 
insurer’s capital requirements, or reduce safety loadings included in annuity prices, since 
the tontine involves no longevity risk for the provider, and might partially substitute 
annuities.
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Tontine volatility

The variance of the return conditional that i survives in t is

If we assume constant ai,k,t’s, the variance can be expressed as

For N → ∞

because E
[
�{Ak,t}

]
= qk,t . Nevertheless, the tontine we employ is large, but still 

risky44. For a fixed tontine size N, the tontine payouts are still volatile and follow a 
Poisson binomial distribution in each t which we approximate by a normal distribu-
tion45 N
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44 At a tontine size of N = 100, 000, 000 members, the volatility would be negligible. Of course, a 
tontine of this size is not realistic. Therefore, in our numerical approach, we employ a tontine size of 
N = 10, 000 members which might be practically realizable and which comprises significant volatility.
45 See for example Volkova [58], Hong et al. [30], Hong and Meeker [29] and Hong [28].
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with M Monte Carlo simulation paths.

Modeling subjective mortality

Hoermann and Ruß [27] propose a gamma distribution for modeling D ∼ � (�, �, �) 
with density function

expected value

and variance

for d ≥ � , � ∈ ℝ and 𝛼, 𝛽 > 0.

Calibration of the Lee‑Carter model

The fitted parameters � , � and � of the Lee-Carter model re depicted in Figs. 12, 13, 
14.
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Fig. 12  Lee-Carter fit for male �x and female �y for x, y = 1… 105
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