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Abstract
The paper analyzes the design of participating life insurance contracts with mini‑
mum return rate guarantees. Without default risk, the insured receives the maximum 
of a guaranteed rate and a participation in the investment returns. With default risk, 
the payoff is modified by a default put implying a compound option. We represent 
the yearly returns of the liabilities by a portfolio of plain vanilla options. In a Black 
and Scholes model, the optimal payoff constrained by a maximal shortfall probabil‑
ity can be stated in closed form. Due to the completeness of the market, it can be 
implemented for any equity to debt ratio.
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1 Introduction

The paper analyzes the optimal design of participating life insurance contracts with 
minimum return rate guarantees (MRRGs) under default risk.1 The benefits to the 
insured are linked to an investment strategy which is conducted by the insurer on 
the financial market as e.g. observed in participating life insurance contracts. Unless 
there is a default event, the insured receives the maximum of a guaranteed rate and a 
participation in the investment returns. An optimal contract design implies the high‑
est expected utility to the insured. The focus is on MRRGs which are fairly priced 
(pricing by no arbitrage condition) and satisfy regulatory requirements posed on the 
probability that the guarantees are violated (quantile MRRGs).

It is worth mentioning that we merely focus on a savings plan which is motivated 
by participating life insurance contracts. In reality, these contracts are much more 
complicated. They also include a term life insurance component and possess several 
premium payment options to policyholders. It is often criticized, that the underlying 
of this kind of life insurance product is in reality typically based on book values and 
not market values like it is suggested in most research papers. However, the main 
effect is, that the underlying possesses a lower volatility (via “smoothing”) and—
ceteris paribus—the value of the embedded options is lower. In any case, one can 
in principle account for this effect via choosing the “appropriate” volatility in the 
GBM ‑ whenever her model is adjusted to empirical data via time series data. For a 
detailed description of participating life insurance contracts, we refer e.g., to Grosen 
and Jørgensen (2000) and Grosen and Jørgensen (2002). Additionally to these facts, 
the insurance companies even smoothen their asset and liability sides in reality to 
overcome bad financial years with the surplus of good years.2 Furthermore, we also 
define the default event exclusively in terms of the investment returns and do not 
consider that the insurance company may itself default.

Considering the possibility that the liabilities (guarantees) can not be honored 
impedes the basic idea of a guarantee. However, in reality there is no guarantee pre‑
vailing with probability one. Any guarantee may fail in times of extremely negative 
market conditions, i.e. guarantees are only valid under sufficiently good scenarios. 
Thus, one may soften the term guarantee and imagine it as honored with a high 
probability (quantile guarantee). In the context of participating life insurance con‑
tracts the guarantee is secured by regulatory requirements on the maximal shortfall 
probability. For example, Solvency II contains the condition that the shortfall prob‑
ability w.r.t. a time horizon of one year is limited to 0.5%. Intuitively, it is clear 
that the value of a guarantee is decreasing in the shortfall probability. Default risk 
mitigates the guarantee component (it is less often binding and thus the guarantee 

1 In particular, we refer to annual return rate guarantees which are common in German‑speaking coun‑
tries.
2 A paper on this topic is for example Maurer et al. (2016), where a stylized model with payout smooth‑
ing is provided and a literature overview of this topic is given. In addition, Kling et al. (2007) shows an 
example how smoothing can be modelled when analyzing some question related to participating prod‑
ucts.
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is cheaper than without default risk). In contrast, control of the shortfall probability 
makes the guarantee more binding. In summary, the pricing effects due to the impact 
of default risk are rather obvious. The impacts on the utility to the insured is more 
ambivalent, unless the insurer implements an optimal investment strategy. There‑
fore, our main focus is on the optimal contract design in the presence of an upper 
probability bound on the shortfall probability posed by the regulator, i.e. the optimal 
design of quantile MRRGs.

We proceed as follows. In the absence of mortality and surrender risk, we dis‑
cuss the modification of the (return) payoff which arise by introducing default risk 
referred to a strictly binding guarantee. In a stylized manner, we model the asset 
side of the insurance company (the contract provider) by means of the value process 
of an admissible financial market investment strategy, i.e. a self‑financing strategy 
where the initial value is given by the sum of equity and the contributions of the 
insureds. The liability side, i.e. the benefits to the insured, depends on the guarantee 
promise as well as on the question how the surpluses, if any, are distributed between 
the shareholders and the insured. This is modeled by a participation fraction on the 
investment returns. Considering default risk, the return payoff to the insured also 
depends on the amount of equity backing up the guarantee. If the intended payoff 
which is paid in a default free version is not obtained by the investment strategy, the 
remaining amount is provided by reducing the equity, i.e. unless the equity amount 
drops to zero.

In summary, the impact of the default risk on the contract pricing is captured by 
a short position in a default put option. In financial terms, the default put is a com‑
pound option (option on an option). The inner option is introduced by the guarantee 
option of the insured, i.e. arising from the (intended) guarantee. The outer option 
is implied by the default possibility, i.e. the intended payoff is only honored if the 
asset/investment performance is sufficiently good. We show that, w.r.t. each annual 
return payoff, the (return) payoff of the compound option can (for a suitable distinc‑
tion of the equity to debt ratio compared to a function of the guarantee and par‑
ticipation fraction) be disentangled into a piecewise linear payoff function (of the 
investment return), i.e. the payoff can be stated in terms of plain vanilla options. 
The same is true for the liabilities to the insured (Proposition 2). Closed form solu‑
tions for pricing the default put and the insurance contract itself are possible in any 
financial market model setup which provides closed form solutions for plain vanilla 
options. Closed‑form solutions for the return payoff in the context of no default risk 
but with mortality risk can be found e.g. in Bacinello (2001).

The Cliquet‑style contracts can then be solved in closed form in any model/
investment setup which implies independent and identically distributed return incre‑
ments, at least if one assumes a constant or deterministic equity to debt fraction. 
Some general implications of considering (i) default risk and (ii) regulatory require‑
ments on the shortfall probability can already be derived in a model free manner 
such that the results are valid in any arbitrage free model setup. We illustrate and 
quantify the results in a Black and Scholes model setup. This simple model setup in 
combination with the assumption that the insured is described by a constant relative 
risk aversion (CRRA) gives further insights on the utility effects from the perspec‑
tive of the insured.
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Due to the completeness of the model setup and the exclusion of mortality and 
surrender risk, we can even solve the resulting pure portfolio optimization problem 
and state the expected utility maximizing return payoff under the quantile condi‑
tion posed by the regulator, i.e. the upper bound on the shortfall probability (Propo‑
sition 5).3 In particular, the derivation of the optimal quantile contract is tractable 
because of the complete market assumption. W.l.o.g., one can analyze the relevant 
optimization problem without considering equity, i.e. by means of setting the equity 
to debt fraction to zero. Once the optimal return distribution is computed without 
equity, the same return payoff distribution can be implemented in the presence of 
any equity amount held by the insurance company. We compare the optimal quantile 
MRRG with the unrestricted solution (no shortfall condition posed by the regulator) 
as well as with solutions which are based on restrictions on the investment strategy 
implemented by the insurance company. For example, we consider the case that the 
insurer is restricted to constant mix strategies. Intuitively it is clear that the upper 
bound on the shortfall probability (if binding) affords some kind of quantile hedge. 
The resulting optimal payoff is not attainable without some (synthetic) option posi‑
tions and can not be contained by a fixed sharing rule between equity and debt. We 
show that the utility loss to the insured arising if the insurer implements a subopti‑
mal investment strategy can be significant.

The contributions of the paper can be summarized as follows. Based on the dis‑
tinction between a high and a low equity to debt ratio (compared to the combination 
of guarantee and participation fraction), we state the return payoff to the insured 
(Proposition 2) by means of piecewise linear functions of the return of the insur‑
ers asset returns. On the one hand, this simplifies the pricing problem under default 
risk to the pricing of standard call (put) options. On the other hand, this already 
gives model independent insights, i.e. insights which are true w.r.t. any arbitrage free 
financial market model setup. For example, a low (high) equity to debt ratio implies 
a concave (piecewise concave and convex) payoff.4 Thus, for a low equity to debt 
ratio, the value of the liabilities is decreasing in the riskiness of the insurer’s assets. 
Consequently, the default risk dominates the guarantee option which contradicts the 
guarantee concept, i.e. if the admissible asset distributions are not restricted by an 
upper bound on the shortfall probability (on the guarantee). A further contribution is 
then given by deriving the optimal return payoff distribution to the insured (Propo‑
sition 5). Because of the market completeness, the optimal (return) payoff to the 
insured can be implemented for any equity to debt ratio. Finally it is important to 
point out that there are utility losses to the insured (and there is too much equity 
involved) if the insurer implements a suboptimal investment strategy.

Our paper is related to several strands of the literature including the ones on (i) 
pricing and hedging embedded guarantees/options, (ii) the impact of default risk 
(emphasizing on participating life insurance contracts), (iii) utility losses caused by 

4 In our setup, a low equity to debt ratio is always implied if there is a return guarantee which gives a 
return accumulation higher (or equal) one.

3 Notice, that in general Solvency requirements and Solvency II in particular lead in fact to restrictions 
when it comes to optimal asset allocation settings
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guarantees and/or suboptimal investment decisions (conducted by insurance com‑
panies or pension funds), (iv) portfolio planning, (v) quantile hedging, and (vi) the 
analysis of piecewise convex and concave contingent payoffs. Without postulating 
completeness we only refer to the most related literature and hint at the additional 
literature given within the mentioned papers. Pricing embedded options by no arbi‑
trage already dates back to Brennan and Schwartz (1976). A more recent paper is 
Nielsen et al. (2011). Risk management and hedging aspects are discussed in Cole‑
man et al. (2006), Coleman et al. (2007), and Mahayni and Schlögl (2008).

An early paper which already provides tools to determine closed‑form solutions 
for the solvency restriction based on a shortfall concept under certain distribution 
assumptions (normal and log normal case) is given by Winkler et al. (1972) using 
partial moments. Non‑linear optimization problems under shortfall constrains have 
already been solved in the past, c.f. McCabe and Witt (1980) who calculated the 
optimal chance‑constrained expected profit of a non‑life insurer.

Considering default is, in the context of participating life insurance contracts, 
firstly analyzed in Briys and de Varenne (1997) and Grosen and Jørgensen (2002). 
More recent papers are Schmeiser and Wagner (2015) and Hieber et  al. (2019). 
Other papers on participating life insurance contracts excluding default risk are e.g. 
Bacinello (2001) who discusses amongst other results how a minimum interest rate 
guarantee (“technical rate”) has to be set, such that the contracts are fairly priced and 
Gatzert et al. (2012) where the customer value of the policyholder is maximized.

Papers on utility losses caused by (suboptimal) investment strategies include 
Jensen and Sørensen (2001), Jensen and Nielsen (2016) and Chen et al. (2019).5Chen 
et al. (2019) consider a general utility maximization under fair‑pricing and budget 
constraints in a complete, arbitrage‑free Black and Scholes model setup for an 
CRRA Investor. The payoff function is chosen such that it also includes default risk. 
They apply their results on equity‑liked life insurances using a constant mix strategy 
and examine the effect of taxation.

Literature on portfolio planning with a main focus on insurance contracts with 
guarantees includes Huang et al. (2008), Milevsky and Kyrychenko (2008), Boyle 
and Tian (2008) and Mahayni and Schneider (2016). The general idea of maximiz‑
ing the expected utility of the insured by choosing optimal parameter settings which 
fulfill fair pricing conditions has been provided in the literature before. The paper 
of Branger et al. (2010) analyzes different forms of point‑to‑point guarantees. Cli‑
quet‑style options are analyzed in Gatzert et al. (2012) and Schmeiser and Wagner 
(2015). In contrast to these articles we add the portfolio composition as a decision 
variable in the optimization problem to determine the overall expected utility maxi‑
mizing payoff of the insured in quasi‑closed form.

Portfolio planning itself dates back to Merton (1971) who, amongst other results, 
solves the portfolio planning problem for a CRRA investor. The solution for inves‑
tors who must also manage market‑risk exposure using the Value‑at‑Risk (VaR) is 
firstly mentioned in Basak and Shapiro (2001). Yiu (2004) solves the problem where 

5 In particular, Jensen and Sørensen (2001) analyze wealth losses for pension funds and emphasize that 
the individual investor can substantially suffer from the investment strategy conducted by the sponsor.
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the VaR constraint is posed for the entire investment horizon. More recently, Gao 
et al. (2016) derive the solution for an investor with a dynamic mean‑variance‑CVaR 
and a dynamic mean‑variance‑safety‑first constraint. A joint (terminal) VaR and 
portfolio insurance constraint is considered in Chen et  al. (2018a). Multiple VaR 
constraints are analyzed in Chen et al. (2018b).

With respect to European and American guarantees, we also refer to El Karoui 
et al. (2005). Quantile hedging already dates back to Föllmer and Leukert (1999). 
For an analysis of retail products with investment caps (piecewise convex and con‑
cave payoffs) we e.g. refer to Bernard et al. (2009), Bernard and Li (2013), Mahayni 
and Schneider (2016).

Literature on the insurance demand dates back to Leland (1980) and Benninga 
and Blume (1985) who show that in a complete financial market setup with risky 
and risk‑free asset investments and a utility function with constant risk aversion the 
investor will never buy portfolio insurance, instead buys the asset itself directly. 
Ebert et al. (2012) confirm the result for guarantee contracts, i.e. for CRRA Inves‑
tors with reasonable risk aversion parameter Cumulative Prospect Theory (CPT) can 
not explain the demand for complex guarantee contracts. Ruß and Schelling (2018) 
introduce the concept of Multi Cumulative Prospect Theory (MCPT) which does not 
only consider the terminal value of the investment but also the annual value change. 
Under the MCPT the demand for complex guarantee products can be explained.

The rest of the paper is organized as follows. Section  2 describes the contract 
design. In particular, it is based on a combination of the contract parameters and the 
equity fraction such that the contract design gives no rise to any arbitrage oppor‑
tunity. In addition, the contract design must meet some regulatory requirements 
regarding an upper bound on the shortfall probability. Along the ways, we give some 
convenient representations of the payoff profiles. We illustrate the contract design 
and some important properties in a Black and Scholes model setup. In Sect. 3, we 
derive the optimal contract design (return payoff, respectively) of a quantile mini‑
mum return guarantee (MRRG), i.e. a return guarantee which satisfies the fair pric‑
ing condition and an upper bound on the shortfall probability, and in view of an 
insured whose preferences are characterized by a constant relative risk aversion. We 
illustrate the utility loss to the insured which is caused if the insurer implements a 
suboptimal investment strategy. Section 4 concludes the paper.

2  Contract design, payoffs, and fair pricing

We examine stylized versions of minimum return rate guarantees (MRRGs) which 
are e.g. observed in participating life insurance contracts. The insured pays a sin‑
gle premium at inception of the contract. The focus is on contracts which grant the 
insured a participation on positive investment results and include a return guarantee 
unless there is default risk. Since we abstract from mortality or surrender risk, there 
is no loss of generality due to a single premium compared to more flexible premium 
payments. The initial contribution of the insured is denoted by P0 . The product ter‑
minates and pays out to the insured at T > 0.
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2.1  Stylized version of MRRG 

Throughout the following, AT denotes the terminal value of the insurance result 
(asset result) which is the outcome of an admissible investment strategy with initial 
investment A0 . In particular, the initial investment A0 consists of the existing equity 
amount E0 ≥ 0 and the contributions of the insureds P0 , i.e. A0 = E0 + P0 . In par‑
ticular, we normalize P0 = 1 and set E0 = �(E) where �(E) ∈ [0, 1] denotes the equity 
fraction (equity to debt ratio, respectively).

Along the lines of Schmeiser and Wagner (2015), we assume that the policyhold‑
er’s account evolves from t − 1 to t ( t ∈ {1,…T} ) according to

where � ( � ∈]0, 1[ ) denotes the participation fraction and 1 + g ( g ≥ −1 ) is the guar‑
anteed accumulation factor granted for one year.6 The special case g = −1 includes 
a contract without guarantee. To simplify the expositions, we restrict ourselves to 
T = 1 , i.e. we refer to the intended MRRG payoff P1 to the insured, i.e. the payoff 
which is valid without default risk given by

Using 1 +max
{
g, �

(
A1

A0

− 1
)}

= 1 + g + �

(
A1

A0

−

(
1 +

g

�

))+

 implies the following 
Lemma.

Lemma 1 (Intended payoff representation) For P0 = 1 , the intended payoff to the 
insured P1 can be represented by

Thus, P1 can be stated in terms of the payoff of (i) a long position in e−rP0(1 + g) 
zero bonds maturing in one year (r denotes the c.c. interest rate) and (ii) �P0

A0

 long 
calls on the synthetic asset A with maturity T = 1 and strike K̃ = A0(1 +

g

𝛼
) . Without 

default risk, the MRRG payoff is illustrated in Fig. 1. In particular, by pure domi‑
nance arguments, the (arbitrage free) value of a payoff which is always equal or 
sometimes even above another payoff must be higher than the value of the other pay‑
off. Thus, two equally valuable payoffs P1 and P̃1 with 𝛼 > �̃� imply that g < g̃.7

The assumption of a maturity T = 1 implies some simplifications to our model: 
Because of the one period setting, the insured has no other premium payment option 

Pt = Pt−1

(
1 +max

{
g, �

(
At

At−1

− 1

)})
,

(1)P1 = P0

(
1 +max

{
g, �

(
A1

A0

− 1

)})
.

(2)P1 = 1 + g + �

(
A1

A0

− K

)+

, where K = 1 +
g

�
.

6 For different contract specifications within participation life insurance contracts, cf. Nielsen et  al. 
(2011). Further details, in particular w.r.t. participating life insurance contracts with annual return rate 
guarantees which are common in German‑speaking countries are given in Schmeiser and Wagner (2015).
7 The properties of such contracts are analyzed in detail in Nielsen et al. (2011).
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than an upfront premium. Furthermore the insurer cannot suffer from death or sur‑
render of the policyholder, such that the surrender and mortality risk is excluded 
from our analysis. Because of this, our optimization problem in the later Section is 
a purely state dependent portfolio optimization problem without time dependency. 
In this simplified setting, we find in the next Section model independent insights for 
any arbitrage free financial market model and in Sect. 3.3, we can derive the utility 
maximizing return payoff of the insured.8

2.2  MRRG under default risk

Considering default risk (DR), the insured only receives the payoff P1 if the asset 
value A1 is sufficiently high. The actual payoff to the insured under default risk is 
denoted by L1 = PWith DR

1
 and is given by

can be interpreted as the default put option of the contract provider. Although the 
default put option is given in terms of a nested version of the max operator (a com‑
pound option feature), it is possible to disentangle the payoff in terms of the payoffs 
of plain vanilla options, only. Notice that the initial value of the asset side is given 
by A0 = P0 + E0 . Normalizing P0 = 1 and setting E0 = �(E) gives A1 = (1 + �(E))

A1

A0

 
such that

(3)

L1 = P1 − (P1 − A1)
+ where

(P1 − A1)
+ = max{P1 − A1, 0} = max

{(
1 +max

{
g, �

(
A1

A0

− 1

)})
− A1, 0

}

Fig. 1  Intended MRRG payoff 
P1 depending on the asset return 
A1

A0

 . For varying asset return A1

A0

 , 
the figures illustrate guarantee 
return payoffs without default 
risk. The black solid line refers 
to (�, g) = (1,−1) (no 
guarantee), the black dashed line 
is given by (�, g) = (0.8, 0.1) , 
and the black dotted line is 
based on (�, g) = (0.6, 0.2)

8 The assumption of a maturity T = 1 gives us the possibility to state the payoff of the insured in closed‑
form. For a maturity T > 1 this is not possible anymore. See for example the comment in the paper of 
Schmeiser and Wagner (2015) on page 669.
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In particular, there is only one random variable A1

A0

 involved. An intuitive interpreta‑
tion of the payoff L1 is possible if one considers the payoff of the default put option 
as a function of the random outcome of the investment decisions of the insurer, i.e. 
as a function of the asset increment A1

A0

 , and to distinguish between the strikes K1 , K2 , 
and K3 defined by

K1 defines the level of A1

A0

 such that the inner option (the call option of the insured due 
to the participation in the excess returns) is in the money, i.e. where the intended 
payoff P1 pays out 1 + �

(
A1

A0

− 1
)
 instead of 1 + g . Now, the put option (of the equity 

holders) can be in the money in both cases, i.e. we can observe (i) the intended pay‑
off P1 is equal to 1 + g , but the asset side A1 is lower, i.e. 
A1 < 1 + g ⇔

A1

A0

<
1+g

1+𝛼(E)
= K2 , and (ii) the intended payoff P1 is equal to 

1 + �

(
A1

A0

− 1
)
 , but the asset side A1 is lower, i.e. 

A1 < 1 + 𝛼

(
A1

A0

− 1
)
⇔

A1

A0

<
1−𝛼

1−𝛼+𝛼(E)
= K3.

In consequence, we can express the payoff of the default put option by means of 
piecewise linear functions as follows:

A crucial distinction is given by a different ranking order of the strikes K1 , K2 and 
K3 . However, the relation between the strikes is given by comparing the equity to 
debt ratio �(E) to the guarantee g (and participation rate � ). A visualization is given 
in Fig. 2. The result is summarized in the following Lemma.

Lemma 2 (Strikes) Let K1 , K2 , and K3 be defined as in Equation (4), then the follow-
ing relations hold

 (i) K1 = K2 = K3 ⇔ �(E) =
−g(1−�)

�+g

 (ii) K1 > K2 > K3 ⇔ 𝛼(E) >
−g(1−𝛼)

𝛼+g
,

(P1 − A1)
+ = max

{(
1 +max

{
g, �

(
A1

A0

− 1

)})
− (1 + �(E))

A1

A0

, 0

}
.

(4)K1 ∶= 1 +
g

�
, K2 ∶=

1 + g

1 + �(E)
and K3 ∶=

1 − �

1 − � + �(E)
.

(
P1 − A1

)+
=

(
(1 + g) − (1 + 𝛼(E))

A1

A0

)
1{ A1

A0
≤min{K1,K2}

}

+

(
1 + 𝛼

(
A1

A0

− 1

)
− (1 + 𝛼(E))

A1

A0

)
1{

K1<
A1

A0
<max{K1,K3}

},

i.e.
(
P1 − A1

)+
=
(
1 + 𝛼(E)

)(
K2 −

A1

A0

)
1{ A1

A0
≤min{K1,K2}

}

+
(
1 + 𝛼(E) − 𝛼

)(
K3 −

A1

A0

)
1{

K1<
A1

A0
<max{K1,K3}

}.
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 (iii) K3 > K2 > K1 ⇔ 𝛼(E) <
−g(1−𝛼)

𝛼+g
.

and g ≥ 0 implies �(E) ≥ −g(1−�)

�+g
 . In addition, notice that case (ii) ((iii), respectively) 

in fact means a rather high (low) equity to debt ratio compared to the guarantee g.
In summary, the payoff (return) of the default put can be represented as 

follows.

Proposition 1 (Payoff representation of the defaultable put) The payoff of the 
defaultable put can be stated in terms of a piecewise linear function in the asset 
increment A1

A0

 , i.e.

An intuitive way to understand the liability side under default risk is analogously 
given by stating the payoff L1 depending on the asset increment A1

A0

 . First notice that, 
without default risk, the call option of the insured (cf. Lemma 1) is in the money if 
A1

A0

> K1 = 1 +
g

𝛼
 . Otherwise the intended return is 1 + g . Under default risk, the 

insured only receives 1 + g if this is possible, i.e. if A1 > P0(1 + g) ( P0 = 1 , 
A0 = 1 + �(E) ), or equivalently if A1

A0

> K2 =
1+g

1+𝛼(E)
 . For A1

A0

≤ K1 = 1 +
g

�
 , the insured 

only receives the minimum of 1 + g and A1 = (1 + �(E))
A1

A0

.

Now, consider the case that A1

A0

> K1 = 1 +
g

𝛼
 , i.e. P1 = 1 + �

(
A1

A0

− 1
)
 . Again, 

under default risk, the insured nevertheless only receives the lower of 1 + �

(
A1

A0

− 1
)
 

(5)In particular, the relation 𝛼(E) >
−g(1 − 𝛼)

𝛼 + g
⇔ g >

−𝛼𝛼(E)

1 − 𝛼 + 𝛼(E)

(6)
�
P1 − A1

�+
=

⎧
⎪⎪⎨⎪⎪⎩

�
1 + 𝛼(E)

��
K2 −

A1

A0

�
1� A1

A0
≤K1

�

+
�
1 + 𝛼(E) − 𝛼

��
K3 −

A1

A0

�
1�

K1<
A1

A0
<K3

� for 𝛼(E) ≤ −g(1−𝛼)

𝛼+g

�
1 + 𝛼(E)

��
K2 −

A1

A0

�+

for 𝛼(E) >
−g(1−𝛼)

𝛼+g

.

Fig. 2  Strikes depending on the guarantee value g. For varying guarantees g, the figures illustrate the 
strikes K1 (black solid line), K2 (black dashed line), and K3 (black dotted line). The left hand figure is 
based on �(E) = 0 (where the ordering of the strikes changes at g = 0 ) while the right hand figure is based 
on �(E) ≥ 0 (where the ordering of the strikes changes at g < 0)
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and A1 = (1 + �(E))
A1

A0

 , which is defined by the benchmark K3 =
1−�

1−�+�(E)
 . In sum‑

mary, we obtain

Using Lemma 2 immediately gives the following Proposition.9
Proposition 2 (Payoff representation of liabilities) Let K1 , K2 and K3 be defined as in 
Equation (4). For P0 = 1 and �(E) = E0 ( A0 = 1 + �(E) ) it holds

 (i) Low equity to debt ratio: For �(E) ≤ −g(1−�)

�+g
 , the payoff (return) to the insured 

is given by

 (ii) High equity to debt ratio: For 𝛼(E) >
−g(1−𝛼)

𝛼+g
 it holds

L1 =

⎧
⎪⎪⎨⎪⎪⎩

(1 + 𝛼(E))
A1

A0

for
A1

A0

< min{K1,K2}

1 + g for min {K1,K2} ≤ A1

A0

< K1

(1 + 𝛼(E))
A1

A0

for K1 ≤
A1

A0

< max{K1,K3}

1 + 𝛼

�
A1

A0

− 1
�

for
A1

A0

≥ max{K1,K2,K3}.

(7)
L1 =

⎧
⎪⎨⎪⎩

(1 + 𝛼(E))
A1

A0

for
A1

A0

< K3

1 + 𝛼

�
A1

A0

− 1
�

for
A1

A0

≥ K3,

i.e. L1 = (1 + 𝛼(E))
A1

A0

− (1 − 𝛼 + 𝛼(E))

�
A1

A0

− K3

�+

.

(8)
L1 =

⎧
⎪⎪⎨⎪⎪⎩

(1 + 𝛼(E))
A1

A0

for
A1

A0

< K2

1 + g for K2 ≤
A1

A0

< K1

1 + 𝛼

�
A1

A0

− 1
�

for
A1

A0

≥ K1,

i.e. L1 = (1 + 𝛼(E))
A1

A0

− (1 + 𝛼(E))

�
A1

A0

− K2

�+

+ 𝛼

�
A1

A0

− K1

�+

.

9 

min{K1,K2} =

{
K1 for 𝛼(E) ≤ −g(1−𝛼)

𝛼+g

K2 for 𝛼(E) >
−g(1−𝛼)

𝛼+g

, max{K1,K3} =

{
K3 for 𝛼(E) ≤ −g(1−𝛼)

𝛼+g

K1 for 𝛼(E) >
−g(1−𝛼)

𝛼+g

,

max{K1,K2,K3} =

{
K3 for 𝛼(E) ≤ −g(1−𝛼)

𝛼+g

K1 for 𝛼(E) >
−g(1−𝛼)

𝛼+g

.
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For a low equity to debt ratio (Case (i)), the above Proposition states that the 
liabilities of the insured are given by the payoff of 

 (i) 1+�(E)

A0

 long positions in the insurer’s assets A and
 (ii) 1−�+�(E)

A0

 short calls with strike K = K3A0 =
1−�

1−�+�(E)
A0.

For a high equity to debt ratio (Case (ii)), the above Proposition states that the liabil‑
ities of the insured are given by the payoff of 

 (i) 1+�(E)

A0

 long positions in the insurer’s assets A,
 (ii) 1+�(E)

A0

 short positions in a call on A with strike K = K2A0 =
1+g

1+�(E)
A0 and

 (iii) �

A0

 long calls with strike K = K1A0 =

(
1 +

g

�

)
A0.

In addition, the above Proposition immediately implies the following important 
properties of the liability payoffs.

Corollary 1 (Properties of the liability payoff) Let L1 be the liability payoff stated in 
Proposition 2, then it holds

 (i) L1 is increasing in g and �(E) . For g > 0 , L1 is increasing in �.
 (ii) For �(E) ≤ −g(1−�)

�+g
 , L1 is concave in A1

A0

.
 (iii) For 𝛼(E) >

−g(1−𝛼)

𝛼+g
 , L1 is piecewise concave and piecewise convex in A1

A0

.

An illustration of L1 is given in Fig.  3. The left hand figure is based on 
�(E) ≤ −g(1−�)

�+g
 (low equity fraction) while the right hand figure is based on the case 

Fig. 3  Contract payoffs L1 depending on the asset return A1

A0

 . For varying the asset return A1

A0

 , the figures 
illustrate the payoff L1 = P1 − (P1 − A1)

+ . It holds 0 = 𝛼
(E)

1
< 𝛼

(E)

2
< 𝛼

(E)

3
 . The black solid line refer to 

�(E) = 0 , the black dashed line to �(E) = �
(E)

2
 , and the dotted line to �(E) = �

(E)

3
 . The left hand figure is 

based on �(E) ≤ −g(1−�)

�+g
 (low equity fraction) while the right hand figure is based on 𝛼(E) >

−g(1−𝛼)

𝛼+g
 (high 

equity fraction) while. In particular, the payoffs on the left hand side are piecewise concave and convex 
while the payoffs on the right hand side are concave
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𝛼(E) >
−g(1−𝛼)

𝛼+g
 (high equity fraction). In particular, the payoffs on the left hand side 

are concave while the payoffs on the right hand side are piecewise concave and con‑
vex while. Intuitively, it is clear that a higher amount of equity means that the real 
degree of guarantee is, ceteris paribus, higher than for a lower amount of equity. 
This is resembled in the payoff profiles, i.e. a higher amount of equity gives more 
convexity to the payoff profile (implying a more valuable guarantee).

2.3  Fair pricing and regulatory requirements

Throughout the following analysis, we make some assumptions on the contract 
design (and the model setup for the financial market). We assume that the financial 
market model is arbitrage free. Furthermore, we assume that, because of competi‑
tion, the contracts are fairly priced such that no arbitrage is introduced (among the 
insurers and between the insurance products and the financial market products):

Assumption 1 (No arbitrage) We assume that the financial market model is arbi‑
trage free. Thus, the fundamental theorem of asset pricing implies the existence of 
an equivalent pricing measure ℙ∗ such that the price of any traded asset X with pay‑
off XT at T > 0 is given by the expected discounted payoff under ℙ∗,i.e.

where r̃u denotes the forward rate, such that ∫ T

0
r̃u du is the continuously com‑

pounded interest rate prevailing at time T.

Assumption 2 (Fair pricing) We assume competition between the insurance com‑
panies (and with the opportunity to invest in the financial market). In particular, 
we thus assume that the insurance contracts are fairly priced, i.e. depending on the 
investment decisions which are carried out by the insurer on the financial market, 
the contract prices are given by the arbitrage free (financial market) prices.10

Assumption 3 (Stakeholders)The policyholders are not able to participate at the 
arbitrage free financial market, such that they cannot replicate future cash‑flows. 
They just have the possibility to invest in the asset side of the insurance company. 
The insurer itself, resp. its shareholders, of course have this access to the market.11

In addition, we assume later that an admissible contract design must honor regu‑
latory requirements as e.g. posed by an upper bound on the shortfall probability. 

(9)X0 = 𝔼
ℙ∗

[
e− ∫ T

0
r̃u duXT

]
,

10 It should be mentioned that in practice it would not be possible to e.g. make sure that all these con‑
tracts are initially fair: Rather, in practice, cross‑subsidizing effects are unavoidable (cf. e.g. Hieber et al. 
(2015)).
11 This assumption is reasonable and has often been used in other literature dealing with this topic, e.g. 
Schmeiser and Wagner (2015) or Briys and de Varenne (1997).
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First, we consider the assumption on the contract pricing and the implications of 
postulating an arbitrage free financial model setup. Subsequently, we introduce the 
regulatory requirement and represent the shortfall probability in terms of the strikes 
introduced above.

Along the lines of Proposition 2, the arbitrage free value of the liabilities (and 
the default put, respectively) is given by the (arbitrage free) value of the corre‑
sponding portfolio of plain vanilla options. To simplify the exposition, we refer to 
a one year horizon, i.e. the call (or put) options have a maturity of T = 1 . The 
(arbitrage free) value of a call (put) option (with maturity T = 1 ) and strike K is 
denoted by Call(K) (Put(K)). W.l.o.g., we refer to the options written on the 
increments A1

A0

 (which is implied by the investment strategy of the insurer), i.e. we 
use the relation

To be more precise, Call(K) (Put(K)) denotes the t = 0 value of the T = 1 payoff (
A1

A0

− K
)+

 ( 
(
K −

A1

A0

)+

 , respectively).

Proposition 3 (Fair pricing conditions) Assume that the asset A can be synthesized 
by a financial market strategy, i.e. the t = 0 price of the payoff A1 is A0 (A is an asset 
paying no dividends). In addition, assume that the financial market is arbitrage free. 
Then, the fair pricing condition (posed by the normalization P0 = 1 ) is given by the 
condition that the market consistent price of the payoff L1 is equal to P0 = 1 . In par-
ticular, depending on the equity fraction �(E) , the guarantee g, and the participation 
rate � , the following pricing conditions hold:

 (i) Low equity to debt ratio: For �(E) ≤ −g(1−�)

�+g
 , it holds

 (ii) High equity to debt ratio: For 𝛼(E) >
−g(1−𝛼)

𝛼+g
 , it holds 

where the strikes K1 , K2 and K3 are defined as in Equation (4).
Corollary 2 (Properties of fair contracts under default risk) The fair pricing condi-
tions imply the following properties

 (i) For �(E) = 0 , a fair contract implies �fair = 1.
 (ii) In the special case that g = −1 (no guarantee) it also holds �fair = 1.

The proof is straightforward and the results are intuitive: Part (i) states that with‑
out equity, the insured face the whole risk of the asset investments, i.e. the (fair) 

(
A1

A0

− K

)+

=
1

A0

(
A1 − KA0

)+
.

(10)1 = 1 + �(E) − (1 − � + �(E))Call(K3).

(11)1 = 1 + �(E) − (1 + �(E))Call(K2) + �Call(K1).
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liabilities are given by L1 =
A1

A0

 . In particular, without further restrictions on the dis‑
tribution of A1

A0

 , i.e. restrictions on the riskiness of the investment strategy, there is no 
guarantee without equity. The interpretation of part (ii) is analogous. Since there is 
no guarantee if g = −1 , a fair contract must imply L1 =

A1

A0

.
Now consider the condition that there is a regulatory requirement on the shortfall 

probability. Assume that the regulator requires an upper bound � for the probability 
that the intended guaranteed accumulation P1 is not honored because the asset value 
A1 is lower, i.e.

Again, normalizing P0 = 1 and using A1 = (1 + �(E))
A1

A0

 implies that the event {
A1 < P1

}
 can be represented in terms of the strikes K1 = 1 +

g

�
 , K2 =

1+g

1+�(E)
 and 

K3 =
1−�

1−�+�(E)
:

K1 defines the level of A1

A0

 such that the inner option is in the money, i.e. where the 

intended payoff P1 pays out 1 + �

(
A1

A0

− 1
)
 instead of 1 + g . The strike K2 defines the 

level of A1

A0

 such that the put option is in the money, i.e. the intended Payoff P1 is 
equal to 1 + g , but the asset side A1 is lower. K3 =

1−�

1−�+�(E)
 defines the level of A1

A0

 
where the liabilities can not be satisfied if the inner option is in the money, i.e.

With Lemma 2 and the representation of the shortfall event in Equation (13), we 
immediately obtain the following Proposition.

Proposition 4 (Shortfall probability) The shortfall probability SFP ∶= ℙ(A1 < P1) 
is given by

It is worth to emphasize that, e.g. in the context of Solvency II, the upper bound 
on the shortfall probability determines the amount of equity which is needed to 
assure the solvency to a high degree, i.e. to honor the liabilities to the insured. Recall 
that K2 =

1+g

1+�(E)
 and K3 =

1−�

1−�+�(E)
 . Obviously, the lower the strike is, the lower is the 

probability that the value of a given investment strategy drops below the strike. 
Since the above strikes are decreasing in the equity fraction �(E) , a higher equity 
fraction is able to reduce the shortfall probability.12

(12)ℙ(A1 < P1) ≤ 𝜖.

(13)
{
A1 < P1

}
=

{
A1

A0

≤ K1;
A1

A0

< K2

}
∪

{
A1

A0

> K1;
A1

A0

< K3

}
.

(14)
SFP = ℙ

(
A1

A0

< min{K1,K2}

)
+ ℙ

(
K1 ≤

A1

A0

≤ max{K1,K3}

)

= ℙ

(
A1

A0

< K3

)
1{

𝛼(E)≤ −g(1−𝛼)

𝛼+g

} + ℙ

(
A1

A0

≤ K2

)
1{

𝛼(E)>
−g(1−𝛼)

𝛼+g

}.

12 However, if one assumes a complete financial market model, any reduction in the shortfall probability 
can also be implemented by a change in the asset distribution by means of a suitable investment strategy.
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2.4  Black and Scholes model setup and illustration

Along the lines of the previous subsections, the contracts can be fairly priced in 
closed form in any arbitrage free model setup which allows closed form solutions of 
plain vanilla options. For the sake of simplicity, we place ourselves in a Black and 
Scholes model setup to give some illustrations. The financial market model over the 
filtrated probability space (Ω,F, (Ft)t∈[0,T],ℙ) is given by the Black and Scholes 
model, i.e. there are two investment possibilities, a risky asset S and a risk‑free asset 
B which accumulates according to a constant interest rate r. The filtration (Ft)t∈[0,T] 
is generated by the standard Brownian motion (Wt)t∈[0,T] . Because of the complete‑
ness of the Black and Scholes model, there exists a uniquely determined equiva‑
lent martingale measure ℙ∗ under which the process (W∗

t
)t∈[0,T] defines a standard 

Brownian motion. In particular, the risky asset (St)t∈[0,T] and risk free bond dynamics 
(Bt)t∈[0,T] are given by

Under the real world probability measure ℙ , the asset price follows a geometric 
Brownian motion with constant drift � ( 𝜇 > r ) and constant volatility � ( 𝜎 > 0 ). 
Under the uniquely defined equivalent martingale measure (pricing measure) ℙ∗ , the 
asset price follows a geometric Brownian motion with constant drift r and constant 
volatility � ( 𝜎 > 0 ). The risk free bond B grows at a constant interest rate r.

2.4.1  Constant mix strategies

Assuming that the insurer decides to implement an investment strategy which is 
described by a constant fraction of wealth m(A) invested in the risky asset (and the 
remaining fraction 1 − m(A) is invested in the risk free bond) implies that the asset 
process is also given by a lognormal process, i.e.

Thus, w.r.t. an investment horizon of T = 1 , it holds

�(RW) denotes the drift of the asset dynamics under the real word measure ℙ . Under 
the pricing measure ℙ∗ , the drift is equal to r. In particular, let N(�, �2) denote the 
normal distribution with mean � and variance �2 and Φ(⋅) the cumulative distribu‑
tion function of the standard normal distribution. Then it holds

dSt = St
(
� dt + � dWt

)
= St

(
r dt + � dW∗

t

)
, S0 = s

dBt = Btr dt, B0 = b.

dAt = At

(
m(A)

dSt

St
+ (1 − m(A))r dt

)
.

A1 = A0e
�
(RW)

A
−

1

2
�2
A
+�AW1 = A0e

r−
1

2
�2
A
+�AW

∗
1

where �
(RW)

A
= m(A)� + (1 − m(A))r and �A = m(A)�.
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In consequence, the arbitrage free (competitive) price of the liabilities L1 (the default 
put, respectively) can be derived by means of Proposition 3 where the call price 
formula Call(K) = Call(BS)(K, �A) is given by the Black and Scholes pricing formula 
(w.r.t. the returns), i.e.

Figure  4 gives an illustration of fair contract designs. The left figure illus‑
trates fair tuples of the contract parameter (�, g) . Along the lines of the model 
free results, the (return) payoff of the MRRG under default risk is increasing in 
� and g. Thus, in order to stay on a fair contract design, an increasing guaran‑
tee g must be compensated by decreasing the participation rate � . In addition, 
the fair (�, g) combinations are lower for higher equity fractions, i.e. the black 
line refers to �(E) = �

(E)

1
= 0.01 , the black dashed line to �(E) = �

(E)

2
= 0.02 , and 

the dotted line to �(E) = �
(E)

3
= 0.05 . This result is straightforward and can, for 

example, be found in Grosen and Jørgensen (2002). An interesting effect arises 
in view of the piecewise concave and piecewise convex payoff structures (implied 
by g > 0 and 𝛼(E) > 0 , cf. Corollary 1). Although the contract value is increasing 
in the equity fraction �(E) , this is not necessarily true with respect to the riskiness 
of the investments, i.e. w.r.t. m(A) (the volatility �A = m(A)� , respectively). Thus, 
for a fixed equity fraction �(E) , there may be two investment fractions m(A,1) and 
m(A,2) such that the contract is fairly priced. This is illustrated in the right hand 
plot of Fig.  4 which depicts fair contracts for the benchmark case in terms of fair 
combinations of the equity fraction �(E) and the investment fraction m(A) (defining 
the volatility of the assets, i.e. �A = m(A)� ). The solid line refers to � = 0.9 , the 
dashed line refers to a lower participation fraction � = 0.85 and the dotted line 
refers to � = 0.8 . For the shortfall probability given in Proposition 4, the Black 
and Scholes model setup immediately implies

 
Again, notice that, e.g. in the context of Solvency II, the upper bound on the 

shortfall probability is posed to determine the amount of equity which is needed to 
assure the solvency to a high degree, i.e. to honor the liabilities to the insured. Recall 
that K2 =

1+g

1+�(E)
 and K3 =

1−�

1−�+�(E)
 . Obviously, the lower the strike is, the lower is the 

ln
A1

A0

∼ N
(
�A −

1

2
�2
A
, �2

A

)
under ℙ, ln

A1

A0

∼ N
(
r −

1

2
�2
A
, �2

A

)
under ℙ∗.

(15)

Call(BS)(K, �A) = Φ(d1(K, �A)) − e−rKΦ(d2(K, �A)),

where d1(K, �A) =
− lnK + r +

1

2
�2
A

�A
and d2(K, �A) = d1(K, �A) − �A.

(16)

SFP = Φ(d0(K3))1
{
𝛼(E)≤ −g(1−𝛼)

𝛼+g

} + Φ(d0(K2))1
{
𝛼(E)>

−g(1−𝛼)

𝛼+g

},

where d0(K) ∶=
lnK − (𝜇A −

1

2
𝜎2
A
)

𝜎A
.
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probability of a constant mix strategy that its terminal value drops below the strike. 
Since the above strikes are decreasing in the equity fraction �(E) , a higher equity 
fraction is able to reduce the shortfall probability, cf. Figure 5 for an illustration. It is 
worth noticing that any reduction of the shortfall probability can also be obtained by 
suitably adjusting the investment strategy, i.e. the distribution of A1

A0

.

3  Optimal design of quantile guarantees

The following section discusses, from the perspective of the insured, the optimal 
design of a MRRG under default risk and an upper bound on the shortfall probabil‑
ity. A fair contract design which provides a higher (expected) utility to the insured is 
also beneficial to the insurance company. The contract provider competes with other 
insurers and the financial market. Choosing among different contracts, the insured 
selects the contract which provides herself the highest (expected) utility. Throughout 
the following, we assume that the preferences of the insured are described by a util‑
ity function u = u(CRRA) implying a constant relative risk aversion (CRRA) denoted 
by � , i.e. u(CRRA)(x) = x1−�

1−�
 ( 𝛾 > 1 ) and u(CRRA)(x) = ln x ( � = 1 ). Assuming CRRA 

preferences has its merits. There are empirical investigations which justify CRRA 
preference, cf. e.g. Chiappori and Paiella (2011). In addition, CRRA utility allows 
that the analysis is based on returns.13 The relevant optimization problem is posed 
by maximizing the expected utility of the insured under constraints posed by a com‑
petitive market (fair pricing) and the restrictions posed by the regulator.14 In the first 
instance, we formulate the optimization problem without stating the optimization 
arguments, i.e.

The first condition states the regulatory requirement on the upper bound on the 
shortfall of the intended payoff (guarantee) P1 . The second condition ensures that 
the asset value A1 is obtainable by a self‑financing investment strategy with initial 
investment A0 = 1 + �(E) , and the third part captures the fair pricing of the liabili‑
ties. To shed further light on the (overall) optimal design of quantile guarantees, we 

(17)
max𝔼

ℙ

[
u(L1)

]
s.t. ℙ

(
A1 < P1

)
≤ 𝜖, 𝔼

ℙ∗

[
e−rA1

]
= 1 + 𝛼(E) and 𝔼

ℙ∗

[
e−rL1

]
= 1.

13 It is worth mentioning that CRRA preferences can not explain the existence of (quantile) guarantees 
using, cf. Leland (1980). However one can understand that policy makers provide tax advantages for 
products with downside protection for old‑age provision to reduce the risk of poverty among the elderly 
and possible implications for tax payers ‑ even if downside protection reduces utility on the individual 
level for CRRA‑type policyholders. For the effect of taxation on equity‑linked life insurance we refer to 
Chen et al. (2019)
14 The optimization procedure with a value at risk restriction can be referred to as a chance‑constrained 
approach. It is transferable in a non‑linear (deterministic) optimization program of normal of log nor‑
mal returns are assumed (cf. McCabe and Witt (1980)). Basically, we also consider log normal payoffs 
for t = 1, 2,… under a Geometric Brownian Motion (GBM) assumption. However we have added the 
assumption that the insured is described by a constant relative risk aversion (CRRA) which gives further 
insights on the utility effects from the perspective of the insured.
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discuss and compare (in the Black and Scholes model setup) different approaches 
concerning the arguments which are optimally chosen in the maximization prob‑
lem (17) in order to maximize the utility which is provided to the insured. As a 
benchmark, we consider the optimal unconstrained strategy (no upper bound on the 
shortfall probability). For �(E) = 0 , this is the classic Merton problem (cf. Merton 
(1971)). The solution implies the highest possible utility and thus provides an upper 
bound of the expected utility of all contract designs.

We also comment on an approach suggested in Schmeiser and Wagner (2015) 
who assume that the insurer implements a constant mix strategy, but can decide on 
the fraction of asset wealth which is invested riskily. The insurer simultaneously 
determines the equity fraction �(E) and the investment fraction m(A) such that the 
pricing and shortfall constraints are satisfied for a given guarantee g. The utility to 
the insured is then maximized by selecting the guarantee g which gives the highest 
expected utility.

Finally, we consider the optimal solution under the pricing and shortfall con‑
straints (without restricting the insurer’s investment strategy to constant mix 
strategies).

3.1  The Merton solution as a benchmark

Assume that the insured is not committed to select among MRRG contracts, only. 
Instead, assume that she can, without transaction costs, dynamically trade on the 
financial market. In terms of the MRRG contracts, this is the special case that 
�(E) = 0 (the insured owns the asset side herself) and a vanishing shortfall probabil‑
ity bound � = 1 (she is not restricted by the regulator). The optimization problem 
(17) then boils down to

i.e. the investor chooses the optimal payoff L1 = A1 (return, respectively, A0 = P0 = 1

).15 Assuming a Black and Scholes model setup to describe the financial market 
model, gives the classic Merton problem. The solution is firstly stated in Merton 
(1971). Under the real world measure ℙ , the optimal payoff L∗

1
=

A∗
1

A0

 is given by

In the optimum, the investor uses a constant mix strategy where the fraction m(A) of 
portfolio wealth which is invested riskily is given by the quotient of the (local) excess 

max
A1

𝔼
ℙ

[
u

(
A1

A0

)]
s.t. 𝔼

ℙ∗

[
e−r

A1

A0

]
= 1,

(18)

A∗
1

A0

= e
�
(RW)

A
−

1

2
�2
A
+�AW1 ,

where �
(RW)

A
= m(A)� + (1 − m(A))r, �A = m(A)� and m(A) =

� − r

��2
=∶ m(Mer).

15 Recall that �(E) = 0 implies � = 1 , cf. Corollary 2 . With A0 = 1 it follows L1 = A1.
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return ( � − r ) and the squared asset volatility scaled by the parameter of relative risk 
aversion ��2 . The certainty equivalent wealth/return CE which makes the investor 
indifferent to the Merton payoff is defined by the condition u(CE) = 𝔼

ℙ
[u(A1)] , i.e. 

CE = u−1(𝔼
ℙ
[u(A1)]) . Straightforward calculations imply

where yCE∗ denotes the (optimal Merton) savings rate. Notice that the above CE∗ 
defines an upper bound to all certainty equivalents which are implied by (admissi‑
ble) MRRG contracts and refer to the upper bound by CE(Mer) . Analogously, we refer 
to the optimal Merton payoff (fraction) by A(Mer)

1
 ( m(Mer)).

3.2  Upper bound on SFP and restriction to constant mix strategies

Schmeiser and Wagner (2015) consider the optimization problem under a SFP con‑
dition but assume that the insurer implements a constant mix strategy. In conse‑
quence, the insurer does not consider a quantile hedge to honor the guarantee. To 
ensure the SFP condition for a given guarantee, the insurer is restricted to suitable 
combinations of investment fractions and equity capital. Amongst other results, 
Schmeiser and Wagner (2015) consider the optimization problem

where G  denotes the set of admissible guarantee rates and where the equity fraction 
�(E) and the investment fraction of the asset side m(A) are determined simultaneously 
by the conditions16

Notice that ℙ
(
A1 < P1

)
= SFP is analytically given by Equation (16). The liabil‑

ity value 𝔼
ℙ∗

[
e−rL1

]
 is stated in Proposition 3 in combination with Equation (15).17 

A few comments are worth mentioning here: Schmeiser and Wagner (2015) con‑
sider the exact fulfillment of the shortfall probability corresponding to the minimum 
safety requirement where the ruin probability SFP is equal to the upper bound � . 
Intuitively, this is meaningful if the shortfall constraint is binding in the case without 
equity capital, i.e. if the upper bound on the shortfall probability � is sufficiently low 
compared to the lowest guarantee contained in the set G  . In addition, the authors 
consider an exogenously given participation fraction � (e.g. � = 0.9 as implied by 
German legislation). However, � ( 1 − � , respectively) implicitly defines a guarantee 

(19)CE∗ = e
r+

(�−r)2

2��2 =∶ CE(Mer) and yCE∗ = lnCE∗ = r +
(� − r)2

2��2
,

max
g∈G

𝔼
ℙ
[u(L1)],

ℙ
(
A1 < P1

)
≤ 𝜖 and 𝔼

ℙ∗

[
e−rL1

]
= 1.

16 Notice that the condition 𝔼
ℙ∗

[
e−rA1

]
= 1 + �(E) is ensured since the insurer implements a constant 

mix strategy with initial investment 1 + �(E).
17 Once the equity fraction �(E) and the investment fraction of the asset side m(A) are determined, the 
expected utility (and CE) can be stated in quasi closed form. Schmeiser and Wagner (2015) determine 
the solution by Monte Carlo simulations.
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fee, i.e. the insured gives up some upside participation for downside protection. In 
particular, if � is already sufficiently low (compared to g), there does not exist an 
equity fraction �(E) ≥ 0 such that the (fair) pricing condition can be satisfied, cf. Fig.  
4 and the results in Schmeiser and Wagner (2015).

As a numerical example, we refer to the benchmark parameter setting summarized 
in Table 1 and consider the above optimization problem for the guarantees g, taking the 
values g ∈ G = {−0.1,−0.095,… , 0.02, 0.025} and a shortfall probability bound given 
by � = 0.005 . For each g ∈ G  , Table 2 summarizes the combination of equity fraction 
�(E) and investment fraction m(A) (implying that the SFP is exactly met and the contract 
is fairly priced) as well as the certainty equivalent contract wealths CEs of insureds 
which are described by three different levels of relative risk aversion ( � = 2, 3.56, and 
5.94). In addition, the Merton solution is summarized in the upper line. For each level 
of relative risk aversion, the highest certainty equivalent (CE) is marked which implies 
the optimal guarantee rate. Observe that the CEs obtained by the (optimal) contracts are 
close to (but below) the Merton solution. In addition, the corresponding investment frac‑
tions m(A) are close to (but above) the Merton fractions. Intuitively, this is explained by 

Table 1  Benchmark parameter 
setting

Model parameter Contract parameter Upper 
bound on 
SFP

r � � P0 A0 � g �

0.03 0.07 0.2 1 1+�(E) 0.9 0.0175 0.005

Fig. 4  The contract and model parameters are given as in Table 1. The left figures illustrate fair tuples 
of the contract parameter (�, g) . The black line refers to �(E) = �

(E)

1
= 0.01 , the black dashed line to 

�(E) = �
(E)

2
= 0.02 , and the dotted line to �(E) = �

(E)

3
= 0.05 . The figure on the right hand side (the black 

line, respectively) depicts fair contracts for the benchmark case in terms of fair combinations of the 
equity fraction �(E) and the investment fraction m(A) (defining the volatility of the assets, i.e. �A = m(A)� ). 
The solid line refers to � = 0.9 , the dashed line refers to a lower participation fraction � = 0.85 and the 
dotted line refers to � = 0.8
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the participation fraction � which is (along the lines of the benchmark parametrization) 
equal to � = 0.9 , i.e. the investor gives up 10% of the upside returns.

3.3  Optimal quantile payoff

As mentioned above, the Black and Scholes model is complete such that any state 
dependent payoff is attainable, i.e. it can be synthesized by a self‑financing strategy 
in the asset S and the risk free investment opportunity B. In addition with the 
assumption that the contracts are fairly priced, we can obtain the utility maximizing 
quantile guarantee payoff L1 with an initial investment of P0 = 1 , i.e. the optimal 
payoff is independent of the equity fraction �(E) . Thus, w.l.o.g. we can set �(E) = 0 . 
Recall from Corollary 2 that for �(E) = 0 , a fair contract implies � = 1 , i.e. 
L1 = A1 =

A1

A0

 (since P0 = 1 and A0 = 1 + �(E) = 1 ), such that the optimization prob‑
lem (17) simplifies to

The solution to this problem can already fully be traced back to Basak and Shapiro 
(2001) who state the optimal payoff (in dependence of the state prices) under a ter‑
minal VaR constraint.18

(20)max
A1

𝔼
ℙ

[
u(A1)

]
s.t. ℙ

(
A1 < 1 + g

)
≤ 𝜖 and 𝔼

ℙ∗

[
e−rA1

]
= 1.

Fig. 5  If not otherwise mentioned, the contract and model parameters are given as in Table 1. The black 
lines depict the fair contracts in terms of fair combinations of the equity fraction �(E) and the investment 
fraction m(A) (defining the volatility of the assets, i.e. �A = m(A)� ). The shaded region is the region where 
the upper bound on the shortfall probability ( � = 0.005 ) is honored. While the figure on the left hand 
side refers to the benchmark guarantee g = 0.0175 , the right hand side is implied by g = −0.0175 (color 
figure online)

18 Basak and Shapiro (2001) state the optimal solution in dependence of the state prices for a general 
class of utility functions in a dynamic complete market setup where the investor can choose between one 
risk‑less bond and several risky stocks.
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Table 2  The table states, for the benchmark parameter setting summarized in Table  1, the results 
of the optimization problem constrained to constant mix strategies for the set of guarantees 
g ∈ G = {−0.1,−0.095,… , 0.02, 0.025} and a shortfall probability bound given by � = 0.005

In particular, for each g ∈ G  , the combination of equity fraction �(E) and investment fraction m(A) (imply‑
ing that the SFP is exactly met and the contract is fairly priced) are given in columns two and three. 
The last three columns summarize the associated certainty equivalent contract wealths CEs of insureds 
described by three different levels of relative risk aversion ( � = 2, 3.56, and 5.94). In addition, the Mer‑
ton solution is given in the upper line. For each level of relative risk aversion, the highest certainty equiv‑
alent (CE) which can be obtained by optimally choosing the guarantee is marked. For these cases, the CE 
which can be obtained without a restriction to constant mix strategies is included in italics

g �(E) m(A) L0 SFP CE�=2 CE�=3.56 CE�=5.94

m(Mer) = 0.5 m(Mer) = 0.28 m(Mer) = �.���

CE(Mer) = 1.0408 CE(Mer) = 1.0363 CE(Mer) = 1.0339

Certainty equivalents of quantile MRRGs under the additional restriction to constant mix strategies 
( � = 0.005)

− 0.100 0.1285 0.5277 1 0.005 1.0405 1.0341 1.0247
(1.0406)

− 0.095 0.1250 0.5101 1 0.005 1.0405 1.0345 1.0257
− 0.090 0.1211 0.4921 1 0.005 1.0404 1.0348 1.0266
− 0.085 0.1175 0.4745 1 0.005 1.0403 1.0351 1.0275
− 0.080 0.1140 0.4571 1 0.005 1.0401 1.0353 1.0283
− 0.075 0.1105 0.4397 1 0.005 1.0400 1.0355 1.0290
−0.070 0.1073 0.4229 1 0.005 1.0398 1.0357 1.0297
− 0.065 0.1034 0.4047 1 0.005 1.0396 1.0359 1.0304
− 0.060 0.1000 0.3876 1 0.005 1.0394 1.0360 1.0310
− 0.055 0.0970 0.3710 1 0.005 1.0392 1.0361 1.0315
− 0.050 0.0925 0.3521 1 0.005 1.0389 1.0361 1.0320
− 0.045 0.0890 0.3347 1 0.005 1.0386 1.0361 1.0324

(1.0362)
− 0.040 0.0850 0.3165 1 0.005 1.0383 1.0361 1.0328
− 0.035 0.0812 0.2987 1 0.005 1.0380 1.0360 1.0331
− 0.030 0.0775 0.2811 1 0.005 1.0377 1.0359 1.0334
− 0.025 0.0738 0.2634 1 0.005 1.0373 1.0358 1.0336
− 0.020 0.0694 0.2443 1 0.005 1.0369 1.0356 1.0337
−0.015 0.0653 0.2259 1 0.005 1.0365 1.0354 1.0338
−0.010 0.0611 0.2074 1 0.005 1.0360 1.0351 1.0338

(1.0338)
−0.005 0.0569 0.1887 1 0.005 1.0356 1.0349 1.0338
0.000 0.0519 0.1684 1 0.005 1.0350 1.0345 1.0336
0.005 0.0471 0.1485 1 0.005 1.0345 1.0341 1.0334
0.010 0.0419 0.1278 1 0.005 1.0339 1.0336 1.0331
0.015 0.0362 0.1063 1 0.005 1.0333 1.0331 1.0328
0.020 0.0299 0.0833 1 0.005 1.0326 1.0325 1.0323
0.025 0.0219 0.0567 1 0.005 1.0318 1.0317 1.0317
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Proposition 5 (Optimal quantile return payoff) If the shortfall probability is not 

binding, i.e. if ℙ
(

A
(Mer)

1

A0

≤ 1 + g

)
≤ � , the optimal solution coincides with the Mer-

ton solution. If the shortfall probability is binding, i.e. if ℙ
(

A
(Mer)

1

A0

≤ 1 + g

)
> 𝜖 , the 

optimal return payoff w.r.t. the optimization problem (20) is given as follows

where 0 ≤ K ≤ K ∶= 1 + g . K is determined by the SFP bound � and � by the pric-
ing condition, i.e.

In the limiting cases � → 1 (no constraint on the shortfall probability) and � → 0 
(full guarantee) it holds

 (i) For � → 1 (and/or ℙ
(

A
(Mer)

1

A0

≤ 1 + g

)
≤ � ), it holds � = 1 , and K = K,i.e. the 

optimal (return) payoff is given by the Merton solution 
(

A∗
1

A0

=
A
(Mer)

1

A0

)
.

 (ii) For � → 0 , it holds K = 0 (and K = 1 + g ) such that

where � solves

and Call(BS) is given by Equation (15).19

Instead of explicitly stating the adoption to our setup, it is worth to comment on 
the intuition behind the result. Obviously, if the quantile constraint is not binding, 
the optimal solution is given by the Merton solution. W.r.t. the other limiting case 
where the return payoff is constrained by a shortfall probability of zero ( � → 0 ), 
we also refer to El  Karoui et  al. (2005). The optimal unconstrained payoff is a 

A∗
1

A0

= 𝛽
A
(Mer)

1

A0

+

(
1 + g − 𝛽

A
(Mer)

1

A0

)
1{

K<𝛽
A
(Mer)

1

A0
≤K

},

ℙ

�
A
(Mer)

1

A0

≤
K

𝛽

�
= 𝜖 and 1 − 𝛽 = e−r𝔼

ℙ∗

⎡⎢⎢⎣

�
1 + g − 𝛽

A
(Mer)

1

A0

�
1�

K<𝛽
A
(Mer)

1

A0
≤K

�
⎤⎥⎥⎦
.

A∗
1

A0

= (1 + g) +

(
�
A
(Mer)

1

A0

− (1 + g)

)+

,

1 = e−r(1 + g) + �Call(BS)
(
1 + g

�
, �

(Mer)

A

)

19 Notice that the pricing condition is, by means of the put call parity, now given in terms of the call 
price.
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modification of the Merton solution (unconstrained solution).20 Intuitively, it is clear 
that a full hedge of the guarantee features a put option. Notice that

i.e. the return of the Merton solution is backed up by a put option with strike 
K = 1 + g . The put payoff gives the tightest (and thus cheapest) possibility to obtain 
a full hedge of the guarantee. Thus, it enables the investor to obtain the tightest mod‑
ification of the unconstrained optimal payoff. To honor the pricing condition, i.e. the 
value of the payoff must be equal to one, the investor can no longer obtain the full 
Merton return but only a fraction � of it. In particular, while the value of A

(Mer)

1

A0

 is 
equal to one, the investor now receives only a fraction of the return, i.e. in the pres‑
ence of a (non vanishing) guarantee, her investment amount which is not needed to 
finance the put is only a fraction � ( 0 < 𝛽 < 1 ). In summary, the fraction � is deter‑
mined by a fix point problem which is due to the condition that the value of the put 
on the return � A

(Mer)

1

A0

 must be equal to the reduction of the initial investment 1 − � (i.e. 
both sides depend on � ). Intuitively it is now clear that any deviation from a perfect 
guarantee ( � → 0 ), an admissible shortfall probability which is higher than zero 
gives rise to lower hedging costs than the solution characterized above. While in the 
case of a zero shortfall probability the optimal payoff is given by

where K = 0 and K = 1 + g , the investor is now allowed to implement a smaller 
guarantee interval [K,K] where 0 ≤ K < K ≤ 1 + g . Notice that the upper bound on 
the shortfall probability implies that fixing either K or K implies the other strike 
such that � is determined by the resulting fix point problem. However, the cheapest 
way to do so is by setting K = 1 + g , i.e. starting with the high asset prices (Merton 
returns, respectively) which are linked to the cheapest states (to be hedged). In sum‑
mary, the optimal quantile hedge is a scaled version of the Merton solution overlaid 
by the (cheapest) quantile hedge which honors the SFP bound.21 In order to illustrate 
the improvement obtained by the optimal quantile hedge, we add in Table 2 the CEs 
associated with the optimal quantile guarantees, cf. italic numbers in brackets below 
the bold faced numbers referring to the optimal values under the restriction to con‑
stant mix strategies (and choosing the guarantee). Again, it is worth to emphasize 

(1 + g) +

(
�
A
(Mer)

1

A0

− (1 + g)

)+

= �
A
(Mer)

1

A0

+

(
(1 + g) − �

A
(Mer)

1

A0

)+

,

𝛽
A
(Mer)

1

A0

+

(
(1 + g) − 𝛽

A
(Mer)

1

A0

)
1{

K<𝛽
A
(Mer)

1

A0
≤K

},

21 W.r.t. quantile hedges, the interested reader is referred to Föllmer and Leukert (1999) who show how 
to obtain the highest success probability when hedging a claim with a lower initial investment than the 
one needed for a full hedge (or the other way round).

20 In fact, the result does not depend on the Black and Scholes model which implies the Merton solution.
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that the optimal quantile payoff can be implemented for any equity fraction �(E) of 
the insurer.

4  Conclusion

The paper analyzes the optimal design of participating life insurance contracts 
with minimum return rate guarantees under default risk. The benefits to the insured 
depend on the performance of an investment strategy which is conducted by the 
insurer. This strategy is initialized by an amount given by the sum of equity and 
the contributions of the insured. Unless there is a default event, the insured receives 
the maximum of a guaranteed rate and a participation in the returns. Considering 
default risk modifies the payoff of the insured by means of a default put implying 
a compound option feature (nested maximum). Based on yearly returns, we show 
that, in spite of the compound option feature, the (yearly return) payoff of the default 
put (and the liabilities to the insured) can be represented by piecewise linear func‑
tions of the investment return, i.e. the payoff of a portfolio of plain vanilla options. 
Thus, the liabilities are easily priced in any model setup which gives closed form 
solutions for standard options. In a complete market setup, we then derive the opti‑
mal (expected utility maximizing) quantile guarantee payoff of an investor/insured 
with constant relative risk aversion. Because of the completeness assumption, the 
return payoff can be implemented by the insurance company for any equity to debt 
ratio. We illustrate the utility loss which arise if the insurer implements a suboptimal 
investment strategy.
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